+++

Google Summer of Code 2008 Project Proposal + ++
Name
: Inosh Asanka Goonewardena
Email
: inoshmrt@gmail.com
IM
: inoshmrt@gmail.com,

Project
: JSON Archives for Boost.serialization
===

Synopsis

===

JSON is a serialization format which is widely used by the people. Before JSON was introduced xml was the widely used serialization format for most people. But after introduction of JSON it was able to conquer the world of XML from a single day.

Today JSON is used in everywhere with different platforms and environments. It is widely used with java scripts in web applications and as a data transferring media on several other applications. And most of emerging web services is being developed with JSON rather than xml. Many web service platforms (such as Apache Axis) have provided the support for JSON due to its usefulness.

Although JOSN strings were less readable than xml, it was more light weight than XML. And JSON can be processes much faster than XML. So JOSN is a vastly growing serialization format. As a widely used c++ library I think boost.serialization should have an archive type that supports JSON. It will improve the quality and the usefulness of the boost.serialization library.
As for the Google Summer of Code 2008 the Boost provides an opportunity to make a JOSN parser for Boost.serialization, this document is my proposal for a JSON parser for boost.serialization.
===

Deliverables

===
I planned to deliver following components with the completion of the project.

1. A json parsing engin
 This will be a JSON parsing engine which is to be developed using c++. And this will be the centralized place which has a knowledgebase of JSON parsing. This parser or engine will provide two interfaces which can provide both input and output JSON serialization.
2. A json output archive

This will be the interface for the JSON parser which provides the JSON output serialization. This can be a concrete class or an abstract class (interface) according to the implementation
3. A json input archive

This will be the interface for the JSON parser which provides the JSON input serialization. This can be a concrete class or an abstract class (interface) according to the implementation

As mentioned in the Boost project ideas wiki the final deliverables also can be two components, an input JSON serialization class and an output JSON serialization class. In either way the final product will provide the same set of functionalities, but according to my understanding the former method will provide a more readable and maintainable source code.
===

Project Details

===

The orientation of this project is to develop a powerful and simple JSON parser which can be used to the users of Boost.serialization library. As I have mentioned earlier the final implementation will consists of three main components.
1. A json parsing engine
2. A json output archive

3. A json input archive

1. A json parsing engine
--

This engine is capable of handling both input and output json serialization.

When an object is provided, this JSON parser will be able to extract attributes from that object and generate a json string relevant to the object attributes. Before extracting data from an object, its class type should be identified. This identification is provided with class descriptor of that particular object. But with the c++, the story is quite complex. As c++ doesn’t provides a standard mechanism to extract class descriptors from object, an optional way should be used to extract the class descriptor.
According to my recent researches Boost.serialization library provides a quite handy way to implement reflection. Actually it doesn’t implement pure reflection with class descriptors, but it provides a much easy and easy to use way to extract data members from the objects. So as I think this feature of Boost.serialization can be used to extract data members from the objects.

Next step is to make a json string using these values. Few months ago while I was developing a json parser I had to write a very long, complex and hardly readable source code to implement this feature. But using Boost.spirit library the same set of functionalities can be implemented in a simpler and more flexible manner.
Other functionality of the json parser is the de serialization of the json. So the parser should be capable to extract data from a json string and populate objects. According to my understandings this data extraction can be implemented using Boost.spirit library.

The trickiest part of the parser is populating objects back from the extracted data members. To populate objects, other than the values of the data members the class type is also required. So with the json string, the user may have to pass an empty object to the parser. So the parser can extract data and store them inside that object. This feature required more researches to find a much better way.
2. A json output archive

This will provide an interface for the json parser which outputs json when the objects are provided. This will use the functionalities provided by the json parser using encapsulation or extension.

3. A json input archive

This component is the inverse case of the json out put parser. So when a json string is provided this component will generate objects regards to the particular json string. This component also will use the functionalities provided by the json parser using encapsulation or extension.
===
The tentative timeline

===
April 15 – May 26: Preliminary researches (reflection further studies of Boost.serialization and Boost.spirit)
May26 – July 28: Implementing json parser

July 28 – August4: Implement json input archive

August4 - August11: Implement json input archive

August11 – August 18: Testing and bug fixings

===

Experiences

===

I have a good experience with working json and c++. Few months back I have implemented a json parser. According to the requirements this parser was implemented to work with just two class types.
I’m a new comer to the Boost library. But I’m currently studying some necessary areas of the Boost for this development. I studied the Boost.spirit and Boost.serialization libraries. Still I have a basic knowledge of these libraries, but it can be improved very shortly.

I have been working for leading software company for my internship as trainee software Engineer for six months. Mainly I involved there with open source web applications. During my internship I have been working with java. Also I’ve been working with Spring framework and MULE framework.

===

Biography

===

I am Inosh Asanka Goonewardena and I live and study in Sri Lanka. I am presently an undergraduate in the University of Moratuwa and following my Engineering degree there. My field of specialization is Computer Science and Engineering. I am very much keen in developing web applications. And also I’m interest in open source software development also.

I have developed a passion for open source development after seeing the contribution it has done to the development of awareness in almost all the application domains. For students in developing countries like Sri Lanka there is hardly any opportunity to participate in any of the commercial research and development programs. However open source community has enabled us to participate in various projects and experience different aspects of programming.

This is my first involvement in Google Summer of Code. And I am willing to complete above task in by best. I am a fast learner and a good programmer. In last year of studies I was able to be in first thirty ranks in the university with higher GPA.

I do not plan to do any other work during this summer or leave the country. However I am looking forward to get involved in open source development during my free time. I will be able to utilize 40 – 60 hours per week for the overdrive project. I will be applying only to the Boost C++ foundation project for Summer of Code 2008.
