
 1

BMOCK
User Guide

By Asher Sterkin
Principal Engineer, NDS Technologies Israel

e-mail: asterkin@nds.com, asher.sterkin@gmail.com
Last update : 19/12/2007

1 Overview
The bmock (tentatively stands for Boost Mock) is a C++ library supporting Mock

objects (www.mockobjects.com). The bmock library is tightly integrated with the
Boost.Test unit testing library (www.boost.org). Conceptually the bmock library follows
more or less the same approach as JMock (www.jmock.org) , NMock (www.nmock.org)
libraries, but in its current form it follows a strict type checking approach suggested by
the EasyMock (www.easymock.org) library. In many aspects the bmock library is quite
different from another C++ mock library: Mockpp (mockpp.sourceforge.net) primarily
because bmock by no means enforces a developer to work within a pure Object-Oriented
paradigm. Originally the idea of the bmock library was triggered by a need for PC-based
unit testing of consumer electronics software written in a plain “C” with a very arcane
system APIs. For that reason bmock was from the very beginning developed using the
link time resolution approach: you want to use a mock version of some function, all what
you need is to supply this mock version at link time. For that reason mixing mock and
real versions of the same function within the same project is not possible.

Since C++ does not support reflection generating mocks on the fly in run-time does
not seem to be possible. Still, minimizing efforts spent on mocks creation is a must,
otherwise nobody will ever use them. For that reason in the bmock library mocks are
automatically generated from an IDL like function annotations like this:

BMOCK_FUNCTION(int ,f,1,(IN(int ,x)))

Basic support for IN, OUT, and IN_OUT arguments as well as a special treatment

for raw memory (usually void *) buffers are provided. The bmock library supports
generating mocks for plain “C” functions, and C++ member functions including
constructors and destructors. C++ exceptions and general callbacks are supported as well.

The current version of the bmock library is available for Visual C++ 8.0 only, and is
tightly integrated with the Visual Studio .NET 2005 IDE.

In addition to the bmock library itself this distribution contains the Boost.Statechart
library (http://boost-sandbox.sourceforge.net/libs/statechart/doc/index.html) and a Visual
Studio .NET 2005 project template for Python (www.pyhton.org) modules created with
the Boost.Python (http://www.boost.org/libs/python/doc/index.html) library

2 Installation
1. Unzip the bmock_g_r_i_b.rar file at C:\ drive (or where is you Visual Studio

.NET 2005 is installed)

 2

2. If you plan on using the Boost.Python template, add C:\Boost\lib to your PATH
environment variable

3. Launch Visual Studio 2005

3 Working with bmock projects
1. The bmock library comes with three basic project templates: BoostUnitTest for

developing unit test applications, BMockLibrary for developing stand-alone mock
libraries, and BoostPython for developing Python modules with the Boost.Python
library.

2. Select “New Project” menu option.
3. In the “New Project” dialog box select Visual C++ and one of the following

options: BoostUnitTest, BMockLibrary, BMockConsoleApp, BoostPythonModule,
AntProject.

4. Normally you will work with either the BoostUnitTest or BMockLibrary type of
projects.

5. The BMockConsoleApp project template supports building a console version of
mocked application. This is an experimental feature intended to support integration
of bmock-based units with Java version FitLibrary.

6. The BoostPython project template supports creating a Python module using the
Boost.Python integration technology. The main reason for providing this template is

 3

that it might be useful for integrating bmock-based units with the Python version of
the FitLibrary.

7. The AntProject project template creates an Apache Ant. This kind of project is
mainly used for batch build and installation automation purposes.

8. Provide a name for you project and press OK.
9. A new C++ project will be automatically generated.
10. By default all bmock projects are configured for automatic creation and using pre-

compiled headers. If you do not want to use precompiled headers for your target
source code files, you will need to set manually the file’s
Properties/C++/Precompiled Headers/Create-Use Precompiled Header to “Not
Using Precompiled Headers” as follows:

11. If you need to include “C” source files into your project it is recommended to set
their “Compile As” to C++ as follows:

 4

12. C++ code generation for the both BoostUnitTest and BMockLibrary projects is set
to use a Multithreading Static version of the C++ run-time:

 5

13. You SHALL NOT change this setting.
14. The BoostUnitTest projects are configured to run tests automatically as a Post-Build

event. If all tests are passing you will see in Visual Studio Output window a
summary message like this:

15. If one or more tests failed you will get an compiler-like error message in the Visual
Studio Output and Error List window as follows:

16. A double click on an error message line will bring you to the source code line
where a particular test failed.

 6

17. In earlier versions of bmock the BoostUnitTest projects does not support bmock
and boost warnings, if you created the project with an old bmock version you can
configure it to support the warnings by adding

 --log_level=warning
in the project’s post build event command line, thus creating a command line that
looks like this:
"$(OutDir)/$(TargetFileName)" --result_code=no --report_level=detailed --
report_format=XML --log_level=warning

18. In order to compile and run your current test all that you need to do is to press

CTRL-SHIFT-B if you want to build the whole solution or SHIFT-F6 if you want
to build/run only the current test (might be handy for a large solution). To make
SHIFT-F6 work properly ensure that your keyboard setting
(Tools/Options/Keyboard) are set for Visual C# 2005 as follows:

 7

19. All project templates come with non-trivial stdafx.h and stdafx.cpp. Although you
might add additional frequently used header files into a stdafx.h file, you SHOULD
NOT modify or delete any of existing definitions – they all come on purpose.

20. The only exception from the rule stated above is when you need to include one or
more header files coming with Microsoft Windows SDK (for example
WinSock2.h). The right place to put these additional includes is within the stdafx.h
file as follows:

// stdafx.h : include file for standard system incl ude files,
// or project specific include files that are used frequently, but
// are changed infrequently
//
#pragma once
#define WIN32
#define _CONSOLE
#define WIN32_LEAN_AND_MEAN // Exclude rarely-used stuff from
Windows headers
#define _CRT_SECURE_NO_DEPRECATE
#define _SCL_SECURE_NO_DEPRECATE
#include <vld.h>
#pragma warning (push)
#pragma warning (disable : 4267)
#include <boost/test/auto_unit_test.hpp>
#pragma warning (pop)
#include <windows.h>
#undef FAR
#define FAR
#undef PASCAL
#define PASCAL
//
// If required put other windows header files (e.g. WinSock2.h) here

 8

//
#undef IN
#undef OUT
#include <bmock/bmock.hpp>
#include <bmock/bmock_util.hpp>

21. Normally you may keep your target source files as a part of the BoostUnitTest
project, but sometimes you might want to isolate them into a separate static library.
In order to avoid any project settings headache it’s recommended to use the
BMockLibrary template for this - there is nothing harmful. At any development it is
recommended to build your final product using a separate build script or even a
separate set of development tools (in consumer electronics it’s usually just out of
the question).

22. The BoostUnitTest project template includes a memory leaks detection library
called VLD (http://www.codeproject.com/tools/visualleakdetector.asp). If your
tests do not leave dynamic memory unreleased, nothing will happen. But if there is
some memory leak, the VLD library will print an error message as follows:

23. In order to get a more detailed diagnostics you need to run your unit test application
with debugger (press F5). Then you will get the following:

 9

24. Double click on the first reference line within the stack trace report will bring you
to the corresponding source code location where unreleased piece of memory has
been allocated.

25. The both BoostUnitTest BMockLibrary project templates are configured to perform
all types of run-time checks in the Debug mode:

 10

26. Unfortunately this kind of errors are not automatically printed when a test is being
run as a Post-Build Event (see more about recommended policy for unit test
exception handling below). Un-initialized variables are the most typical cause for
run-time errors and the C++ compiler will normally issue a warning. The test itself
will most likely fail with a fatal error like this:

27. For a more in-depth investigation run your unit test with a debugger.

4 Writing Unit Tests

4.1 Using the Boost.Test Library
1. The BoostUnitTest projects are configured for working with the

BOOST_AUTO_UNIT_TEST facility. Except for this the rest of the Boost.Test
library features are fully supported. For instance a simple test will look like:

 11

#include <StdAfx.h>

static const int expected = 125;

static int f() {
 return expected;
}

BOOST_AUTO_UNIT_TEST(testF_Equal) {
 int result;

 BOOST_CHECK_NO_THROW(result = f());
 BOOST_CHECK_EQUAL(expected,result);
}

2. A more sophisticated test using the Boost lambda library and Boost.Test predicates
will look like:

#include <StdAfx.h>
#include <boost/lambda/lambda.hpp>
using namespace boost::lambda;

static const int expected = 125;
static const int not_expected = 127;

static int f() {
 return expected;
}

BOOST_AUTO_UNIT_TEST(testF_NotEqual) {
 using namespace boost::lambda;
 int result;

 BOOST_CHECK_NO_THROW(result = f());
 BOOST_CHECK_PREDICATE((_1 != _2), (not_expected) (result));
}

3. For complete documentation of the Boost.Test library consult

http://www.boost.org/libs/test/doc/index.html.

4.2 Working with Fixtures
1. The bmock library comes with a built-in support for fixture classes similar to those

of JUnit (www.junit.org) and NUnit (www.nunit.org) taking into consideration the
lack of reflection support in C++. Simply saying, a fixture is a class, which
constructor and destructor are automatically invoked at the beginning and at the end
of EVERY test. This feature is typically required when a number of tests share the
same initialization and cleanup procedure, but NOT the same state of member
variables. The latter is considered as unhealthy practice by many unit testing gurus
and is not recommended (although you can achieve this effect by using the
Boost.Test library test case classes directly). A simple test using the bmock fixture
will look like:

 12

#include <StdAfx.h>

static const int expected_1 = 125;
static const int expected_2 = 127;

static int f(int &x) {
 x = expected_2;
 return expected_1;
}

struct f_tester {
 f_tester() {
 result_ = f(x_);
 }
 int x_;
 int result_;
};

BMOCK_TEST(f_tester,test_Equal) {
 BOOST_CHECK_EQUAL(expected_1,result_);
}

BMOCK_TEST(f_tester,test_NotEqual) {
 BOOST_CHECK_EQUAL(expected_2,x_);
}

2. This practice is also useful when we want to test multiple effects of the same

function (updating an argument and returning a value), but independently.
3. If a constructor (setUp) or destructor (tearDown) method fails a corresponding error

message is printed and the test is aborted (which will not happen if we used just a
local variable of type f_tester allocated on stack).

4. An error message for setUp failure will look like:

5. An error message for teardown failure will look like:

 13

4.3 Writing Unit Tests using Mocks
1. In unit testing we use mocks whenever we need to break down dependencies

between a class or function we are writing a test for and between a class or function
this unit under test depends on. Reasons for doing this may include lack of critical
resources (e.g. database or network connectivity), large time required for running
unit tests in a real environment (very typical for consumer electronics), and,
probably the most important, complexity of test scenario. Even if our unit under test
depends only on pure computational functions that would deserve representing
these functions with mocks just in order to simplify the testing. Indeed, in order to
test a function with M possible branches, which depends on another function with N
possible branches, we will need to supply M*N test cases in order to provide a
required level of test coverage. This grows exponentially and does not scale well. If
we use mocks, we will need to supply M+N test cases, and this number grows
linearly. For additional useful discussion of the role of mocks read the “Mock
Roles, Not Objects” article at http://www.jmock.org/oopsla2004.pdf.

2. As the most of existing automatic mock generators such as EasyMock
(www.easymock.org), JMock (www.jmock.org) and NMock (www.nmock.org) the
bmock library follows a so-called Record/Replay paradigm. We first Record our
test scenario in a form of expectations towards mocks to be used indirectly in the
test, and then we Replay this test scenario by invoking one or more functions from
the unit under test. In its most simple form a unit test using mocks will look like:

#include <StdAfx.h>

static BMOCK_VOID_FUNCTION(f,1,(IN(int ,x)))

static void g(int x) {
 f(x);
}
struct arg_tester {
 static const int expected1 = 10;
 static const int expected2 = 11;
};

BMOCK_TEST(arg_tester,testArgumentsValidation_Ok) {
 BMOCK_EXPECT(f(expected1)); //record a mock expectation
 BMOCK_REPLAY; //switch to replay mode
 BOOST_CHECK_NO_THROW(g(expected1)); //invoke a function under test
 BMOCK_VERIFY; //verify expectations fulfillement
}

 14

3. For a detailed description of mock specification see the next chapter.
4. Unlike JMock and NMock and similar to EasyMock the bmock library in its

current form records all expectations via direct invocation of mock functions.
Primarily this is done in order to support a strong type checking and a proper
handling of functions overloading. On the flip side this approach currently prevents
from implementing some advanced types of constrains such as Ignore, Less,
Greater, Range, etc. These capabilities might be supported in the future versions of
bmock .

5. Notice the usage of, the BOOST_CHECK_NO_THROW macro, in the function
under test invocation. Using this macro is highly recommended since it guarantees
that any failure in the course of the test execution will be properly diagnosed. For
tests, which are expected to fail use the BOOST_CHECK_THROW macro (see
http://www.boost.org/libs/test/doc/index.html)

6. Use BMOCK_REPLAY for switching between Record and Replay modes.
7. At the end of the test use BMOCK_VERIFY macro in order to validate that all

expectations have been fulfilled.
8. After the BMOCK_VERIFY macro another Record/Replay cycle could start,

though it’s recommended to use this advanced feature wisely and only when it’s
really necessary. Otherwise it’s better to write a separate test.

4.4 Specifying Expectations

BMOCK_EXPECT(void_function(arg1,arg2, …))
BMOCK_EXPECT_RETURN (ret_value,function(arg1,arg2,…))
BMOCK_EXPECT_THROW(new exception_class(),function(arg1,arg2,…))
BMOCK_EXPECT_CALLBACK(callback_functor)
BMOCK_REPEAT(number_of_times_to_repeat)

in_out_raw_mem(input_value,output_value)
in_out_str(input_C_string,output_C_string)
in_out_raw_mem(input_buffer,input_length,output_buffer,output_length)
out_raw_mem(output_value)
out_str(output_C_string)
out_raw_mem(output_buffer,output_length)
in_raw_mem(input_value)
in_str(input_C_string)
in_raw_mem(input_buffer,input_length)

1. Values for input arguments are specified as is
2. Values for output arguments are specified as is. For example:

#include <StdAfx.h>

static BMOCK_FUNCTION(int ,f,3,(IN(int ,x),OUT(int ,&y),OUT(int ,*z)))

struct update_arguments {

 15

 update_arguments()
 :y_expected(y)
 ,z_expected(z)
 ,y_actual(0)
 ,z_actual(0)
 ,r_actual(0)
 {}

 static const int y = 39;
 static const int z = 57;
 static const int x = 25;
 static const int r = 197;

 int y_expected;
 int z_expected;
 int y_actual;
 int z_actual;
 int r_actual;
};

BMOCK_TEST(update_arguments,test_full) {
 BMOCK_EXPECT_RETURN(r,f(x,y_expected,&z_expected)) ;
 BMOCK_REPLAY;
 BOOST_CHECK_NO_THROW(r_actual = f(x,y_actual,&z_ac tual));
 BMOCK_VERIFY;
 BOOST_CHECK_EQUAL(r,r_actual);
 BOOST_CHECK_EQUAL(y,y_actual);
 BOOST_CHECK_EQUAL(z,z_actual);
}

3. Notice, that in the case of OUT arguments what is supplied are values the
corresponding arguments should obtain. Multiple settings are freely supported, for
example (suing the same fixture as above):

static BMOCK_VOID_FUNCTION(g,2,(OUT(int ,&y),OUT(int ,*z)))
BMOCK_TEST(update_arguments,test_multiple) {
 BMOCK_EXPECT(g(y_expected,&z_expected));
 ++y_expected;
 ++z_expected;
 BMOCK_EXPECT(g(y_expected,&z_expected));
 BMOCK_REPLAY;
 BOOST_CHECK_NO_THROW(g(y_actual,&z_actual));
 BOOST_CHECK_EQUAL(y,y_actual);
 BOOST_CHECK_EQUAL(z,z_actual);
 BOOST_CHECK_NO_THROW(g(y_actual,&z_actual));
 BOOST_CHECK_EQUAL(y+1,y_actual);
 BOOST_CHECK_EQUAL(z+1,z_actual);
 BMOCK_VERIFY;
}

4. Values for input/output arguments are supplied using a special in_out_raw_mem

function, for example:

#include <StdAfx.h>
using namespace bmock;

 16

static BMOCK_FUNCTION(int ,f,3,(IN(int ,x)
,IN_OUT(int &,y),IN_OUT(int ,*z)))

struct in_out_arguments {
 in_out_arguments()
 :y_actual(y_in)
 ,z_actual(z_in)
 ,r_actual(0)
 {
 BMOCK_EXPECT_RETURN(r,f(x,* in_out_raw_mem(y_in,y_out)
 , in_out_raw_mem (z_in,z_out)));
 BMOCK_REPLAY;
 BOOST_CHECK_NO_THROW(r_actual = f(x,y_actual,&z_a ctual));
 BMOCK_VERIFY;
 }
 static const int x = 25;
 static const int y_in = 39;
 static const int y_out = 139;
 static const int z_in = 57;
 static const int z_out = 157;
 static const int r = 197;

 int y_actual;
 int z_actual;
 int r_actual;
};

BMOCK_TEST(in_out_arguments,test_return_value) {
 BOOST_CHECK_EQUAL(r,r_actual);
}

BMOCK_TEST(in_out_arguments,test_reference_argument) {
 BOOST_CHECK_EQUAL(y_out,y_actual);
}

BMOCK_TEST(in_out_arguments,test_pointer_argument) {
 BOOST_CHECK_EQUAL(z_out,z_actual);
}

5. Notice another possible (and actually classical!) use of fixture.
6. Sometimes even though an argument is specific as input/output all, what is required

in a particular test, is its output value. This could happen when an input value has
no meaning for a particular function call (often happens with many system level
APIs), for some reason cannot be predicted by the test, or just is not interesting for
this particular test. This kind of input/output arguments are sometimes called
input/output-output arguments. To specify properly these arguments a special
out_raw_mem function is used. For example (using the same functions):

struct out_arguments {
 out_arguments()
 :y_actual(0) //still need to initialized
 ,z_actual(0)
 ,r_actual(0)
 {
 BMOCK_EXPECT_RETURN(r,f(x,*out_raw_mem(y_out)

 17

 ,out_raw_mem(z_out)));
 BMOCK_REPLAY;
 BOOST_CHECK_NO_THROW(r_actual = f(x,y_actual,&z_a ctual));
 BMOCK_VERIFY;
 }
 static const int x = 25;
 static const int y_out = 139;
 static const int z_out = 157;
 static const int r = 197;

 int y_actual;
 int z_actual;
 int r_actual;
};

BMOCK_TEST(out_arguments,test_all) {
 BOOST_CHECK_EQUAL(r,r_actual);
 BOOST_CHECK_EQUAL(y_out,y_actual);
 BOOST_CHECK_EQUAL(z_out,z_actual);
}

7. Sometimes in a certain test scenario input/output arguments are actually treated as

input-only. For that purpose a special in_raw_mem function is used. For example
(using the same functions as above):

struct in_arguments {
 in_arguments()
 :y_actual(y_in)
 ,z_actual(z_in)
 ,r_actual(0)
 {
 BMOCK_EXPECT_RETURN(r,f(x,*in_raw_mem(y_in)
 ,in_raw_mem(z_in)));
 BMOCK_REPLAY;
 BOOST_CHECK_NO_THROW(r_actual = f(x,y_actual,&z_a ctual));
 BMOCK_VERIFY;
 }
 static const int x = 25;
 static const int y_in = 39;
 static const int z_in = 57;
 static const int r = 197;

 int y_actual;
 int z_actual;
 int r_actual;
};

BMOCK_TEST(in_arguments,test_all) {
 BOOST_CHECK_EQUAL(r,r_actual);
 BOOST_CHECK_EQUAL(y_in,y_actual); //not changed!
 BOOST_CHECK_EQUAL(z_in,z_actual); //not changed!
}

 18

8. Input/output arguments, which are null-terminated strings, need to be treated in a
special way. For that purpose special in_out_str, out_str, and in_str functions
have to be used. For example:

#include <StdAfx.h>
using namespace bmock;

static BMOCK_VOID_FUNCTION(h,1,(IN_OUT(char * const ,str)))

static const char s_str[] = "qwertyuiop[]" ;
static char s_str_exp[] = "asdfghjkl;'zxcvbnm,." ;

struct in_out_string_argument {
 in_out_string_argument()
 {
 strcpy(buf,s_str);
 }

 static const size_t L = sizeof (s_str_exp);
 char buf[L];
};

BMOCK_TEST(in_out_string_argument,test_char_OK) {
 BMOCK_EXPECT(h(in_out_str (s_str,s_str_exp)));
 BMOCK_REPLAY;
 BOOST_CHECK_NO_THROW(h(buf));
 BMOCK_VERIFY;
 BOOST_CHECK_EQUAL(mismatch_at(buf,buf+L,s_str_exp) ,L);
}

9. There is a certain tradeoff between using null-terminated strings and RAW_MEM
buffers. The former are slightly more convenient since there the arguments length is
calculated automatically. The latter is safer, especially for OUT and IN_OUT
arguments, since in this case maximal output length restriction is validated.

10. By default unsigned char * pointers are treated as null-terminated strings. The
main reason for this decision was the fact that many legacy “C” projects use
unsigned char* pointers for null-terminated strings.

11. The mismatch_at function is used to comparing the expected and actual strings
such that it would be possible to report an exact first position where the two strings
differ if any.

12. Values of output or input/output arguments, which are arrays or non-typed raw
memory buffers, have to be supplied using a full form of the in_out_raw_mem,
out_raw_mem, and in_raw_mem functions accordingly (notice that for values of
input arguments only the buffer needs to be supplied one should not supply these
values using in_raw_mem). For example:

#include <StdAfx.h>
#include <algorithm>
#include <boost/lambda/lambda.hpp>
using namespace bmock;

static BMOCK_VOID_FUNCTION(g,2,(

 19

 RAW_MEM(OUT, void * const ,outbuf,len)
,IN(const size_t,len)))

static BMOCK_VOID_FUNCTION(h,2,(
 RAW_MEM(IN_OUT, void * const ,buf,len)

,IN(const size_t,len)))

static const unsigned char inp_buf[] = {0x00,0x01,0x02,0x03
 ,0x04,0x05,0x06,0x07
 ,0x08,0x09,0x0A,0x0B
 ,0x0C,0x0D,0x0E,0x0F};
static const size_t L1 = sizeof (inp_buf);
static const unsigned char out_buf[] = {0x10,0x11,0x12,0x13
 ,0x14,0x15,0x16,0x17
 ,0x18,0x19,0x1A,0x1B
 ,0x1C,0x1D,0x1E,0x1F};
static const size_t L2 = sizeof (out_buf);

static const size_t DELTA = 10;
static const size_t L3 = L2+DELTA;
static unsigned char act_buf[L3];

struct out_raw_buffer {
 out_raw_buffer() {
 std::fill_n(act_buf,L3,0);
 }

 static const size_t DELTA = 10;
 static const size_t L3 = L2+DELTA;
 unsigned char act_buf[L3];
};

BMOCK_TEST(out_raw_buffer,test_OK) {
 using namespace boost::lambda;
 BMOCK_EXPECT(g(out_raw_mem(out_buf,L2),L3));
 BMOCK_REPLAY;
 BOOST_CHECK_NO_THROW(g(act_buf,L3));
 BMOCK_VERIFY;
 BOOST_CHECK_EQUAL(L2,mismatch_at(out_buf,out_buf+L 2,act_buf));
 BOOST_CHECK_EQUAL(DELTA,index_of(act_buf+L2,act_bu f+L3,_1!=0));
}

struct in_out_raw_buffer : public out_raw_buffer {
 in_out_raw_buffer()
 {
 std::copy(inp_buf,inp_buf+L1,act_buf);
 }
};

BMOCK_TEST(in_out_raw_buffer,test_in_out_raw_buffer _OK) {
 using namespace boost::lambda;
 BMOCK_EXPECT(h(in_out_raw_mem(inp_buf,L1,out_buf,L 2),L1));
 BMOCK_REPLAY;
 BOOST_CHECK_NO_THROW(h(act_buf,L1));
 BMOCK_VERIFY;
 BOOST_CHECK_EQUAL(L2,mismatch_at(out_buf,out_buf+L 2,act_buf));
 BOOST_CHECK_EQUAL(DELTA,index_of(act_buf+L2,act_bu f+L3,_1!=0));

 20

}

13. In the last test the index_of function is used in order to validate that all bytes of the

act_buf are non-zero. For all kind of pointer arguments a NULL value supplied in
expectation is treated as is, that means it’s expected to obtain the NULL pointer for
this argument (IN, OUT or IN_OUT). However within IN_OUT argument
expectation pair the NULL pointer is treated as ignore. For example
in_out_raw_mem(NULL,0,NULL,0) would mean “ignore the argument”.

14. For any argument you want to ignore you need to use the IGN(type,name) macro.
for example:

#include <StdAfx.h>
using namespace bmock;
using namespace boost;

static const int actual = 10;

static BMOCK_VOID_FUNCTION(ig,2,(IGN(int ,x),IN(int ,y)))

BOOST_AUTO_UNIT_TEST(testArgumentsValidationIGNMacr odifferentValue) {
 int x=12;
 BMOCK_CONTROL(c);
 BMOCK_EXPECT_C(c,ig(actual,x));
 BMOCK_REPLAY_C(c);
 BOOST_CHECK_NO_THROW(ig(x,x));
 BMOCK_VERIFY_C(c);
}

BOOST_AUTO_UNIT_TEST(testArgumentsValidationIGNMacr oSameValue) {
 int x=10;
 BMOCK_CONTROL(c);
 BMOCK_EXPECT_C(c,ig(actual,x));
 BMOCK_REPLAY_C(c);
 BOOST_CHECK_NO_THROW(ig(x,x));
 BMOCK_VERIFY_C(c);

}

15. Callback expectations are provided for the most recent BMOCK_EXPECT,
BMOCK_EXPECT_RETURN, BMOCK_EXPECT_THROW, BMOCK_STUB,
BMOCK_STUB_RETURN or BMOCK_STUB_THROW. For example:

#include <StdAfx.h>
#include <boost/bind.hpp>
#include <cstring>
using namespace bmock;
using namespace boost;

static BMOCK_VOID_FUNCTION(f,1,(IN(const char * const ,str)))
static BMOCK_VOID_FUNCTION(g,1,(OUT(char * const ,str)))

static const char s_str[] = "qwertyuiop[]" ;

struct callback_tester {
 callback_tester() {

 21

 std::fill_n(buf, sizeof (buf),0);
 BMOCK_EXPECT(f(s_str));
 BMOCK_EXPECT_CALLBACK(bind(g,buf));
 BMOCK_EXPECT(g((char *)s_str));
 BMOCK_REPLAY;
 }
 ~callback_tester() {
 BMOCK_VERIFY;
 }
 static const size_t L = sizeof (s_str);
 char buf[L];
};

BMOCK_TEST(callback_tester,test_OK) {
 BOOST_CHECK_NO_THROW(f(s_str));
 BOOST_CHECK_EQUAL(mismatch_at(buf,buf+L,s_str),L);
}

struct callback {
 callback() {
 std::fill_n(buf, sizeof (buf),0);
 }

 static const size_t L = sizeof (s_str);
 char buf[L];
 int x;
};
BMOCK_TEST(callback,test_callback_invoked_by_last_s tub) {
 BMOCK_EXPECT(g((char *)s_str));
 BMOCK_EXPECT(f(s_str));
 BMOCK_STUB(k(x));
 BMOCK_EXPECT_CALLBACK(bind(g,buf));
 BMOCK_REPLAY;
 BOOST_CHECK_NO_THROW(k(x));
 BOOST_CHECK_NO_THROW(f(s_str));
 BOOST_CHECK_EQUAL(L,mismatch_at(buf,buf+L,s_str));
 BMOCK_VERIFY;
}

16. Usually callback functors are constructed using the Boost library lambda::bind

function. Using a stand-alone version of the bind function is not recommended due
to potential conflicts with some bmock library headers.

17. More then one callback can be specified.
18. In the current version of the bmock library callbacks are invoked within the scope

of the most recent mock function right after the input arguments validation.
19. Repeat expectations are provided for the most recent BMOCK_EXPECT,

BMOCK_EXPECT_RETURN or BMOCK_EXPECT_THROW. For example:
#include <StdAfx.h>
using namespace bmock;
using namespace boost;
using namespace std;

static BMOCK_VOID_FUNCTION(f,0,())
struct repetition_tester{
 int result;

 22

};

BMOCK_TEST(repetition_tester,testVoidFunctionCall_R epetition) {
 BMOCK_EXPECT(f());
 BMOCK_REPEAT(5);
 BMOCK_REPLAY;
 for (int i=0;i<5;i++)
 BOOST_CHECK_NO_THROW(f());
 BMOCK_VERIFY;
}

4.5 Specifying Expectations for Constructor and Destructor
1. Expectations for regular C++ class member functions are specified in the same way.

Currently expectations for this pointer are not supported. This limitation might be
reconsidered in the future.

2. In order to specify expectations for constructor and destructor some extra effort is
required. For example:

#include <stdafx.h>

struct test_mock_class {
 test_mock_class(int x, int *y);
 ~test_mock_class();
};

BMOCK_CONSTRUCTOR(test_mock_class,2,(IN(int ,x),OUT(int *,y)))
BMOCK_DESTRUCTOR(test_mock_class);

struct test_mock_class_fixture {
 test_mock_class_fixture()
 :x(10)
 ,exp_y(11)
 ,y(0)
 ,ptr(NULL)
 {}

 const int x;
 int exp_y;
 int y;
 test_mock_class *ptr;
};

BMOCK_TEST(test_mock_class_fixture,test_contructor_ destructor) {
 BMOCK_EXPECT(ptr = new test_mock_class(x,&exp_y));
 BMOCK_EXPECT(delete ptr);
 BMOCK_REPLAY;
 BOOST_CHECK_NO_THROW({ test_mock_class tst(x,&y);});
 BMOCK_VERIFY;
 BOOST_CHECK_EQUAL(exp_y,y);
}

BMOCK_TEST(test_mock_class_fixture,test_contructor_ only) {
 test_mock_class *ptr1;

 BMOCK_EXPECT(ptr = new test_mock_class(x,&exp_y));

 23

 BMOCK_REPLAY;
 BOOST_CHECK_NO_THROW(ptr1 = new test_mock_class(x,&y));
 BMOCK_VERIFY;
 BOOST_CHECK_EQUAL(exp_y,y);
 //tierDown
 BMOCK_EXPECT(delete ptr);
 BMOCK_REPLAY;
 delete ptr1;
 BMOCK_VERIFY;
}

BMOCK_TEST(test_mock_class_fixture,test_destructor_ only) {
 //setUp
 test_mock_class *ptr1;

 BMOCK_EXPECT(ptr = new test_mock_class(x,&exp_y));
 BMOCK_REPLAY;
 BOOST_CHECK_NO_THROW(ptr1 = new test_mock_class(x,&y));
 BMOCK_VERIFY;
 //test
 BMOCK_EXPECT(delete ptr);
 BMOCK_REPLAY;
 BOOST_CHECK_NO_THROW(delete ptr1;);
 BMOCK_VERIFY;
}

3. In order to specify an expectation for a constructor some object needs to be created

in the Record mode. For example:

 BMOCK_EXPECT(ptr = new test_mock_class(x,&exp_y));

4. In order to specify an expectation for a destructor a previously created object needs

to be destroyed. For example:
 BMOCK_EXPECT(delete ptr);

5. Sometimes it might look a bit unusual and require an additional EXPECT-

REPLAY-VERIFY cycle. For example:

BMOCK_TEST(test_mock_class_fixture,test_destructor_ only) {
 //setUp
 test_mock_class *ptr1;

 BMOCK_EXPECT(ptr = new test_mock_class(x,&exp_y));
 BMOCK_REPLAY;
 BOOST_CHECK_NO_THROW(ptr1 = new test_mock_class(x,&y));
 BMOCK_VERIFY;
 //test
 BMOCK_EXPECT(delete ptr);
 BMOCK_REPLAY;
 BOOST_CHECK_NO_THROW(delete ptr1;);
 BMOCK_VERIFY;
}

 24

4.6 Specifying Stub Expectations
BMOCK_STUB(void_function(arg1,arg2, …))
BMOCK_STUB_RETURN (ret_value,function(arg1,arg2,…))
BMOCK_STUB_THROW(new exception_class(),function(arg1,arg2,…))

1. Stubs can be called any number of times (or not at all), and it
 does not matter when they are called.
2. The IN arguments of stubs are ignored, and the OUT arguments are treated as OUT
arguments for expectations.
3. For each function one can specify only one stub.
For example:

BMOCK_VOID_FUNCTION(g,0,())
BMOCK_VOID_FUNCTION(h,2,(IN(int ,x),OUT(int &,y)))
BMOCK_FUNCTION(int ,f,2,(IN(int ,x),OUT(int &,y)))

BMOCK_TEST(arg_tester,test_void_stub_no_arguments_w ith_other_expectatio
n_multiple_calls_to_stub)
{
 int x=4;
 int y=8;
 int z_1=0;
 int z_2=0;
 int r=0;
 BMOCK_EXPECT_RETURN(10,f(x,y));
 BMOCK_STUB(g());
 BMOCK_EXPECT(h(x,y));
 BMOCK_REPLAY;
 BOOST_CHECK_NO_THROW(g());
 BOOST_CHECK_NO_THROW(r=f(x,z_1));
 BOOST_CHECK_NO_THROW(g());
 BOOST_CHECK_NO_THROW(h(x,z_2));
 BOOST_CHECK_NO_THROW(g());
 BMOCK_VERIFY;
 BOOST_CHECK_EQUAL(y,z_1);
 BOOST_CHECK_EQUAL(y,z_2);
}

BMOCK_TEST(arg_tester,test_void_stub_no_arguments_w ith_other_expectatio
n_no_calls_to_stub)
{
 int x=4;
 int y=8;
 int z_1=0;
 int z_2=0;
 int r=0;
 BMOCK_EXPECT_RETURN(10,f(x,y));
 BMOCK_STUB(g());
 BMOCK_EXPECT(h(x,y));
 BMOCK_REPLAY;
 BOOST_CHECK_NO_THROW(r=f(x,z_1));
 BOOST_CHECK_NO_THROW(h(x,z_2));
 BMOCK_VERIFY;

 25

 BOOST_CHECK_EQUAL(y,z_1);
 BOOST_CHECK_EQUAL(y,z_2);
}

4. If there is an expectation and a stub for the same function the expectation overwrites
the stub:
BMOCK_TEST(arg_tester,test_void_stub_with_arguments _with_other_expectat
ion_multiple_calls_to_stub_expectation_overwrites_s tub)
{
 int x=4;
 int y=8;
 int x_1=3;
 int y_1=9;
 int z_1=0;
 int z_2=0;
 int l_1=0;
 int l_2=0;
 BMOCK_EXPECT_RETURN(10,f(x,y));
 BMOCK_STUB(h(x_1,y_1));
 BMOCK_EXPECT(h(x,y));
 BMOCK_REPLAY;
 BOOST_CHECK_NO_THROW(h(x,l_1));
 BOOST_CHECK_NO_THROW(r=f(x,z_1));
 BOOST_CHECK_NO_THROW(h(x,z_2));
 BOOST_CHECK_NO_THROW(h(x,l_2));
 BMOCK_VERIFY;
 BOOST_CHECK_EQUAL(y,z_1);
 BOOST_CHECK_EQUAL(y,z_2);
 BOOST_CHECK_EQUAL(y_1,l_1);
 BOOST_CHECK_EQUAL(y_1,l_2);
}

5 Specifying Mocks

There are two ways to specify mocks:

• Not Dynamic Mocks- who are specified in a different project than the real
function.

• Dynamic Mocks- who are specified with the real function’s declaration and
definition.

5.1 Specifying Not Dynamic Mocks

BMOCK_VOID_FUNCTION(function_name,#of_arguments,(argument_list))
BMOCK_FUNCTION(return_type, function_name,#of_arguments,(argument_list))
BMOCK_CONSTRUCTOR(class_name,#of_arguments,(argument_list))
BMOCK_DESTRUCTOR(class_name);
BMOCK_METHOD(ret_type, class_name, method_name,#of_arguments,(arg_list))
BMOCK_VOID_METHOD(class_name, method_name,#of_arguments,(arg_list))
BMOCK_CONST_METHOD(ret_type, class_name, method,#of_arguments,(arg_list))
BMOCK_CONST_VOID_METHOD(class_name, method,#of_arguments,(arg_list))

 26

IN(type,name)
OUT(type,name)
IN_OUT(type,name)
IN_PTR(type,name)
IN_OUT_PTR(type,name)
RAW_MEM(IN,type,name,input_length)
RAW_MEM(OUT,type,name,max_output_length)
RAW_MEM(IN_OUT,type,name,max_output_length)
CLBK(type,name)
IGN(type,name)

1. In order to use these kind of mocks BMOCK_GENERATE_CODE should not be
defined.

2. Mock functions are specified with an IDL-like macro annotation.
3. Built-in and string (including unsigned char * pointers) types input arguments are

specified using the IN(type, name) macro.
4. Built-in and string (including unsigned char * pointers) types output arguments are

specified using the OUT(type, name) macro.
5. Built-in and string (including unsigned char * pointers) types input/output

arguments are specified using the IN_OUT(type, name) macro.
6. Pointer (void, partial types) input arguments are specified using the IN_PTR(type,

name) macro.
7. Function pointers input arguments are specified using the CLBK(type, name)

macro.
8. Pointer (void, functions or partial types) input/output arguments are specified using

the IN_OUT_PTR(type, name) macro.
9. Raw-memory input arguments are specified using the

RAW_MEM(IN,type,name,input_length) macro.
10. Raw-memory output arguments are specified using the

RAW_MEM(OUT,type,name,max_output_length) macro.
11. Raw-memory input/output arguments are specified using the

RAW_MEM(IN_OUT,type,name,max_output_length) macro.
12. In order to ignore the argument’s value use the IGN(type,name) macro.
13. For any argument with a non-built-in type you will need to decide about its

serialization mechanism. It could either be a hexadecimal dump or a formatted
output. If it’s hexadecimal dump you will need to declare it as a RAW_MEM with
length 1. If it’s a formatted output will need to define for it << (shift left) and >>
(shift right) C++ operators within the std:: namespace. For example:

#include <StdAfx.h>
#include <iostream>
#include <semaphore.h>

namespace std {
 ostream & operator <<(ostream &os, const sem_t &s) {
 os << s.sem << ' ' << s.nbWaiters;
 return os;
 }

 27

 istream & operator >>(istream &is,sem_t &s) {
 char blank;
 is >> s.sem;
 is >> blank;
 is >> s.nbWaiters;
 return is;
 }
}

14. Enum serialization is supported in test mode. For details on console mode support
see BMock Console Mode chapter.

15. If a data structure has internal pointers (e,g, char *) to be dynamically allocated

during de-serialization, the programmer can use the function
bmock::get_buffer(ptr, length) which allocates memory and takes care of the
memory cleanup (void* are treated as unsigned chars*) . To be more accurate this
problem exists only for plain “C” structures, which do not have destructors. For
example:

struct serialization_test_data2 {
 serialization_test_data2()
 :data(NULL)
 ,length(0)
 {}
 int * data;
 char * Str;
 void * data_;

};

namespace std {

inline ostream & operator <<(ostream &os, const
serialization_test_data2 &td) {
 os<<*td.data;
 os<< ' ' ;
 os<<td.Str;
 os<< ' ' ;
 os<<(unsigned char *)td.data_;
 return os;
 }
 inline istream & operator >>(istream &is,serialization_test_data2
&td) {
 char blank;
 bmock::get_buffer(td.data,1);
 is>>*td.data;
 is>>blank;
 bmock::get_buffer(td.Str,9);
 is>>td.Str;
 is>>blank;
 bmock::get_buffer(td.data_,36);
 is>>(unsigned char *)td.data_;
 return is;
 }

 28

}

5.2 Specifying Dynamic Mocks
1. Dynamic Mocks can be declared only if BMOCK_GENERATE_CODE is

defined. And in this mode they are the only type of mocks that can be specified.
2. In order to generate mocks BMOCK_USE_MOCKS should be defined. If (for

example for release purpose) one wants to build all the function as regular
functions one only needs to not define BMOCK_USE_MOCKS.

3. A dynamic mock for a function/method or void function is specified this way:

BMOCK_SPECIFIC_MACRO
Implementation of the function
BMOCK_END

For example:

BMOCK_VOID_FUNCTION(f,0,())
x=0;
BMOCK_EN

BMOCK_FUNCTION(int,function_k,0,())
return 0;
BMOCK_END

BMOCK_METHOD(int,test_generate_mock_class,h,1,(IN(int,x)))
my_val=x
;return my_val;
BMOCK_END

BMOCK_CONSTRUCTOR(test_generate_mock_class,1,(OUT(double&,x)))
my_val=24;
x=my_val;
BMOCK_END

The bmock function declaration macros are the same for dynamic and not dynamic
mocks.

4. In order that a BMOCK_TEST will generate a mock for a function declared as a

dynamic mock the macro BMOCK_CREATE_FUNCTION_MOCK should be
used at the beginning of the test.

5. BMOCK_CREATE_FUNCTION_MOCK can recive as an argument :
• The function name BMOCK_CREATE_FUNCTION_MOCK(f);-the test

will generate a mock for f.
• A module name followed by a *

BMOCK_CREATE_FUNCTION_MOCK(C_MODULE_NAME*);-the
test will generate a mock for all functions with C_MODULE_NAME at the

 29

beginning of their name(c_MODULENAME_F etc.) (that were declared as
dynamic mocks).

• The function declaration (with or without the argument names) inside
quotation marks.
BMOCK_CREATE_FUNCTION_MOCK("void f_1(int)");
BMOCK_CREATE_FUNCTION_MOCK("int* f(int *,char &, string)");-
the test will generate a mock for the specified function only (not for the
other overloads).

6. In order that a BMOCK_TEST will generate a mock for a method declared as a
dynamic mock the macros BMOCK_CREATE_METHOD_MOCK should be
used at the beginning of the test.

7. BMOCK_CREATE_METHOD_MOCK can recive as an argument :

• A class name BMOCK_CREATE_METHOD_MOCK(class_name);-the test
will generate a mock for all methods of the class (that were declared as
dynamic mocks).

• BMOCK_CREATE_METHOD_MOCK(class_name::my_method);-the test
will generate a mock for the method my_method.

• BMOCK_CREATE_METHOD_MOCK(class_name::method_name_prefix*);
-the test will generate a mock for all the methods of the class that have this
prefix.

• The method declaration (with or without the argument names) inside
quotation marks.

BMOCK_CREATE_METHOD_MOCK("void class::method_f_1(int)");
BMOCK_CREATE_METHOD_MOCK("int* class::method_f(int *,char
&, string)");- the test will generate a mock for the specified method only
(not for the other overloads).

8. The functions that the test did not generate a mock for will be treated as regular

functions.
9. In order that the code would compile without the boost library one needs to

include some boost files. The directory Boost\boost_for_production_code holds
all the necessary files.

5.3 Specifying Mocks for COM Objects

1. At a bottom line Microsoft COM objects are translated into C++ abstract classes
with a set of pure virtual functions. Therefore for any COM object in principle its
mock version could be created.

2. In order to create a mock version for some COM object a new class has to be
derived from the original COM object’s interface redefining ALL its methods
including those, which are defined for the IUnknown interface. For example:

#pragma once
#include <comdef.h>

 30

#include <initguid.h>
#include <imceprop.h>

class CMock_IMCMpegVideoEncoder :
 public IMCMpegVideoEncoder
{
public :
 STDMETHOD(get_VideoMpegType)(THIS_ LPDWORD lpdw MpegType);
 STDMETHOD(put_VideoMpegType)(THIS_ DWORD dwMp egType);
//other methods of IMCMpegVideoEncoder
 HRESULT STDMETHODCALLTYPE QueryInterface(
 REFIID riid, void __RPC_FAR *__RPC_FAR *ppvObject);
 ULONG STDMETHODCALLTYPE AddRef(void);
 ULONG STDMETHODCALLTYPE Release(void);
};

3. Then in a separate .cpp file a mock version for each method has to be specified. For

example:

#include <stdafx.h>
#include "mock_mpeg_dlg.h"

BMOCK_FUNCTION(HRESULT,

CMock_IMCMpegVideoEncoder::GetDefaultVideoSettings,
 3,(
 IN(DWORD,dwMpegType),
 IN(DWORD,dwVideoMode),
 OUT(mpeg_v_settings*, pVSettings)
))

BMOCK_FUNCTION(HRESULT,

CMock_IMCMpegVideoEncoder::put_VideoSettings,
 1,
 (IN(mpeg_v_settings*, pVSettings)
))

4. Specifying a constructor or a destructor for this kind of mock classes is usually not

required.

6 Using BMock Console Mode
1. The BMockConsoleApp project template is intended to support integration with

Java version of the FitLibrary using the same definition of mock functions.
2. In this mode expectations are not set and the bmock library prints names of all

functions and values of their input arguments into standard output stream. In
addition it reads values of output arguments from the standard input stream.

3. The BMockConsoleApp project template uses the Boost.Program_options library in
order to ensure a consistent handling of all command line arguments. In order to
add declaration and processing of your unit-specific command line arguments
modify accordingly the main.cpp file automatically created by the
BMockConsoleApp project wizard:

 31

#include <stdafx.h>

int cpp_main(int argc, char * argv[]) {
 bmock::options opts("<put your application name here>");
 opts.add_options()
 //put your application options here
 //(see http://www.boost.org/doc/html/program_option s.html)
 //for format specification
 ;
 opts.parse(argc,argv);
 //run your application here
 return 0;
}

4. The format specification for adding application options to bmock::options is as
follows:

bmock::options opts("<put your application name here>");
opts.add_options()

("custom_option1" , "boolean option")
 ("custom_option2" ,value< int >(), "integer option")
 ("custom_option3" ,value< int >()->default_value(-1), "another
integer option")
 ;

The first parameter is the option name, the second is information about the value (if there
is a value), the third is the option’s discription. In this example the first option has no
value the second has value of type int and the third has value of type int with default
value -1.
For more options see http://www.boost.org/doc/html/program_options.html

5. The function parse(argc,argv) must be called so that the options defined by the
command line will be saved.

6. bmock::options has also a
template <typename T> T get(const std::string &opt_name) function.
When T is a bool it returns whether the option was defined or not.
If the option has a value, T can be the value type, and the output of the function will
be the value defined for the option.

7. Bmock::option’s function:
bool defined(const std::string &opt_name)

is the same as get < bool>.
8. All BMockConsoleApp handle a special –no_prompt switch. When this switch is

supplied via command line, all mock argument names will be printed on a separate
line (more convenient for integration with the Fit Library). If not supplied, output
argument names and values will be printed on the same line separated by the “=”
prompt character (more convenient for interactive mode).

9. In addition a –input=<file_name> switch is supported. When this switch is supplied
all values of output arguments are read from the specified file. When an end of the
input file is reached values of additional output arguments will be read from the
standard input. This feature allows a lightweight automation of running complex
testing scenario when it would be more convenient to pass through some initial
sequence of mocked function calls automatically.

 32

10. The BMockConsoleApp template automatically configures the –no_prompt and the
–input=input.dat command line. It also adds an empty input.dat file to the project.

11. The bmock console mode provides a built-in support for multi-threading. That is if
two or more threads are trying to write to the console pipe they will be serialized
through a mutex semaphore embedded within the console pipe infrastructure.

12. Any input line starting with a # (dash) character is treated as a comment and
ignored. In order to put a real # dash symbol as the first character put it twice: “##”.

13. Another option is to use the FIT log file of a previous run as the input (bmock
recognizes that this is a log file by the log extension). This option uses only the no
prompt switch. This option is run under debug mode and initializes a debug
breakpoint if there is a difference between this run and the previous run described
by the log file.

14. By running with the log file one can insert a breakpoint in the run by inserting a
“@” at the beginning of the line in the log file where he wants to break. In order to
put a real @ symbol as the first character of a line, put it twice: “@@”.

15. In console mode bmock allocates memory for return pointers and double pointers
out arguments. The default behavior of bmock is to also take care of their deletion,
in order to designate that the pointer is deleted externally by the client’s
function/method and thus bmock does no need to take care of its deletion one
should specify the function or out argument as:

BMOCK_ED_FUNCTION(console_custom_type *,k,0,());
ED_OUT(console_custom_type **,ptr))
IN_OUT_ED(console_custom_type **,p_x))

16. The default behavior of bmock when specifying a function, whose return value is a
void pointer or has an OUT argument which is a double void pointer, is to read a
numeric value. If the pointer is going to be de-referenced one needs to use the
macros:

BMOCK_ALLOC_FUNCTION(void*,f_alloc,0,());
ALLOC_OUT(void** ,x)
IN_OUT_ALLOC(void** ,x)
If the pointers are externally deleted one should use the “ED” macros as described
above.

17. In order to specify a function, whose return value is a pointer to an incomplete type
or has an OUT argument which is a double pointer to an incomplete type, one needs
to use these macros:

BMOCK_ICP_FUNCTION(incomp*,f_incomp,0,());
ICP_OUT(incomp** ,x);
IN_OUT_ICP(incomp** ,x))

18. When specifying a function, whose return value is a function pointer or has an OUT
argument which is a double function pointer, one can choose from two options:

• Specify through the input stream the correct numeric value of the function
pointer.

• If the numeric value is unknown one should specify it with the macro
BMOCK_REGISTER the function pointer before the beginning of the test run.
BMOCK_REGISTER_METHOD macro should be used to declare methods. This
macro works with either static or non static member functions.

 33

 for example:

int foo1(){ int x=0; return x;}

BMOCK_REGISTER(foo1);

class testclass {
 void f();
}

BMOCK_REGISTER_METHOD(testclass, f);

If the function pointer is of a mock function one can specify the function in
the mock declartion like this:

static BMOCK_ENTRY(FUNCTION(int ,foo,0,()),foo) .

Now when specifying through the input stream the function name, bmock
knows how to convert it to the correct numeric value.

19. Enum serialization in console mode is partially supported. Mocks can receive
enums as IN arguments but only int value will be printed to the console. For OUT
arguments and return values the console will expect the int value of the enum.

20. If one wants to use a dynamic mock as a mock he should declare that using the
macro’s BMOCK_CREATE_METHOD_MOCK and
BMOCK_CREATE_FUNCTION_MOCK inside the cpp_main. (the macro’s are
used as explained in the dynamic mocks chapter)

6.1 Integration with the FIT Library

1. The bmock library comes with a built-in support for integration between console
mode and popular Framework for Integrated Tests (FIT) library
http://sourceforge.net/projects/fitlibrary. The FIT library is mostly useful for writing
acceptance tests.

2. Acceptance tests are prepared in a form of HTML tables. For example:

 34

 Sample Event Queue Consumer

com.nds.bmock.console.SampleQueueConsumer

com.nds.bmock.console.SampleSetupFixture
Field1 Field2
123 579

com.nds.bmock.console.EventJournal
eventType eventPayload logRecord? counter?
123 579, A Log Record0 1
123 579, A Log Record1 2
123 579, A Log Record2 3
123 579, A Log Record3 4
123 579, A Log Record4 5
123 579, A Log Record5 6
123 579, A Log Record6 7
123 579, A Log Record7 8
123 579, A Log Record8 9
123 579, A Log Record9 10

3. The FIT library comes with a handy folder runner which scans a particular file

folder for test files and publishes results in another specified folder. This might be
configured to be launched under Eclispe as follows:

 35

4. The input and output folders are specified as follows:

 36

5. In the example above the SampleQueueConsumer is so-called DoFixture class
specified as follows:

import com.nds.bmock.console.Proxy;
import fitlibrary.DoFixture;

public class SampleQueueConsumer extends DoFixture {
 private transient String msg;
 private transient final Proxy proxy ;
 private transient final AmsLog log ;
 private transient final SampleSetupFixture consumerData ;
 private transient final EventJournal eventJournal ;

 public SampleQueueConsumer() throws Exception {
 super();
 this. proxy = new Proxy(this);
 this. log = new AmsLog(this);
 this. consumerData = new SampleSetupFixture(this);
 this. eventJournal = new EventJournal(this);
 }

6. Here the Proxy class comes from the com.nds.bmock.console.Proxy package, which
is supplied within the bmockConsole.jar file within the \Boost\lib directory.

 37

7. By default this class’s run() method will look for an .EXE file, which is located in
the current directory (where the FIT FolderRunner is running) and has the same
name as the target class name (supplied in the Proxy constructor). In this particular
case the Proxy class will look for a SampleQueueConsumer.exe file, which is
supposed to be a normal bmock console mode application. All pipe wire and
method call dispatching is performed automatically.

8. In case your bmock console application is located in another directory you can use
the overloaded Proxy constructor:
 public Proxy(final Object fixture, final String dir)

where dir parameter is the path to bmock console. The path can be absolute or
relative. Remember to use double backslashes in the path string.

9. By convention the Proxy class will look for the same class and method name as
specified in the console pipe text. For example, it will try to automatically map the
“PscAdpater::getOpCode” string into the getOpCode() method of the PscAdapter
class defined within the same package as the target class (supplied to the Proxy
constructor). It will first try to obtain a pointer onto Psc object from the target class
through the getPscAdapter() method. If not successful it will create a single copy of
such object and will use it for all methods.

10. By convention all IN arguments are specified as is and OUT and IN_OUT
arguments are specified as arrays. For instance:

 public Integer getOpCode(final Integer hCatalog
, final Integer hProg
, final Integer[] opCode)

{
 opCode[0] = 1;
 return 1;
 }

11. Return value will be automatically printed into the pipe.
12. In addition the Proxy class provides a special support for event queues. For that

purpose the Event queue class has to be passed as an argument to the Proxy class
start() method, as follows:

 public void setUp() throws Exception {
 this. proxy .start(AmsQueue. class);
 }
 public void tearDown() throws Exception {
 this. proxy .stop();
 }

13. Running the proxy in setup() and stooping in tearDown() methods of DoFixture is a

good practice and highly recommended.
14. In the example above events are submitted by using a form of ColumnFixture as

follows:

import fit.ColumnFixture;

public class EventJournal extends ColumnFixture {
 private final transient SampleQueueConsumer consumer ;
 public transient Integer eventType ;

 38

 public transient String eventPayload ;

 public EventJournal(final SampleQueueConsumer consumer) {
 super();
 this. consumer = consumer;
 }
 public String logRecord() throws Exception {
 this. consumer .sendEvent(

new AmsEvent(this. eventType
, this. eventPayload));

 return this. consumer .getLogMsg();
 }
}

15. This ColumnFixture is in turn retrieved from the DoFixture class as follows (the

FIT library convention):

 public EventJournal
 getComDotNdsDotBmockDotConsoleDotJunitDotEventJou rnal() {
 return this. eventJournal ;
 }

16. Sending an event is simple as follows:

 public void sendEvent(final AmsEvent evt) throws Exception {
 this. proxy .put(evt);

 }

17. The AmsQueue class in example above has to be derived from the EventQueue

class as follows:

public class AmsQueue extends EventQueue {
 public AmsQueue(Proxy proxy) {
 super(proxy);
 }

 public void getEvent(final Integer[] eventType

, final String[] eventPayload)
throws InterruptedException

 {
 final AmsEvent event = (AmsEvent) super.get();
 eventType[0] = event.getType();
 eventPayload[0] = event.getPayload();
 }
}

18. The bmock console infrastructure performs all required synchronization internally

and ensures that only one event will be submitted and processed at once.
19. The bmock console infrastructure provides also supports “C” functions according

to the following convention: a) any string in a form of “Module_Function” will be
treated as a method “Function” of class “Module”. Any string in a form of
“Function” will be treated as a method of the main DoFixture class, if any.

 39

20. The bmock console infrastructure provides support for method with byte array
arguments:

• For methods with byte[] in arguments it automatically translates the
hexadecimal input to bytes.

• For methods with byte [] [] out arguments it automatically translates the out
argument to hexadecimal value.

• For methods with byte [] [] in_out arguments it supports the translation both
ways.

21. The bmock console infrastructure also contains the class ByteArray which supports
translation between Hexadecimal strings and byte arrays.

22. The class contains three constructors:
ByteArray(byte [] array_)
ByteArray()
ByteArray(final String Hex)
and these methods:

int length()
byte[] getBytes()
String toStringHex()
void hex2byte(final String Hex)

In order to receive a hexadecimal string from a byte array one needs to use the
toStringHex function as follows:

 final byte [] byte_= new byte []{123,31};
 final ByteArray array= new ByteArray(byte_);

String str=array.toStringHex();
 assertEquals(str, "7B1F");

There are two ways to receive a byte array from a hexadecimal string :
1.

 final String char_= "7B1F" ;
 final ByteArray array= new ByteArray();
 array.hex2byte(char_);
 final byte[] byte_=array.getBytes();
 assertEquals(((Byte)byte_[0]).intValue(),123);
 assertEquals(((Byte)byte_[1]).intValue(),31);

2.
 final String char_= "7B1F" ;
 final ByteArray array= new ByteArray(char_);
 final byte[] byte_=array.getBytes();
 assertEquals(((Byte)byte_[0]).intValue(),123);

 assertEquals(((Byte)byte_[1]).intValue(),31);

7 BullseyeCoverage

1. BullseyeCoverage is a code coverage analyzer for C++ and C that tells you how

much of your source code was tested.

 40

2. The tool supports both function coverage and condition coverage.
3. It integrates with Microsoft Visual Studio.
4. For more information see http://www.bullseye.com.

8 Known problems
23. RAW_MEM arguments with special, such as TLV, length treatment are not

properly supported. Will be fixed in some future version. In the meantime specify
them as RAW_MEM(IN_OUT,…) and try to play with the use some fixed length.

24. Keeping mock function declaration in a component header is not properly supported
yet. Planned to be dealt with in some future version.

25. Under Windows 2000 the memory leak detector needs to be copied into the Debug
directory. The easiest way to achieve this is to modify the corresponding post-build
event as follows (a standard support will be provided in the next version):

26. The current version of the Boost.Threads library causes a memory leak of 32 bytes.
A deep source code change of the Boost.Threads library is required in order to
eliminate this memory leak. It might be done in some future version of the bmock
library.

