Graph Connectives Ideas

In this first proposal, I will use Adjacency Matrix to describe my solution of dealing with two graphs: $\mathrm{G}_{1}, \mathrm{G}_{2}$. The many graphs problem, I think, can be solved by the formula:

Source: www.cs.rpi.edu
$\operatorname{Union}\left(\mathrm{G}_{1} \ldots \mathrm{G}_{\mathrm{n}-1}, \mathrm{G}_{\mathrm{n}}\right)=\operatorname{Union}\left(\mathrm{G}_{1}\right.$, Union $\left(\ldots \operatorname{Union}\left(\mathrm{G}_{\mathrm{n}-1}, \mathrm{G}_{\mathrm{n}}\right)\right)$.
In my opinion, formulas for Join, Intersection, and Difference are similar to the above one.
I will also use n as number of vertices, $G_{1}=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$, and $G_{2}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ to provide examples.

1) Union.

$$
\text { Union }\left(\mathrm{G}_{1}, \mathrm{G}_{2}\right)=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] \quad \cup \quad\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{lllll}
\mathbf{0} & \mathbf{1} & \mathbf{0} & 0 & 0 \\
\mathbf{1} & \mathbf{0} & \mathbf{1} & 0 & 0 \\
\mathbf{0} & \mathbf{1} & \mathbf{0} & 0 & 0 \\
0 & 0 & 0 & \mathbf{0} & \mathbf{1} \\
0 & 0 & 0 & \mathbf{1} & \mathbf{0}
\end{array}\right]
$$

Complexity: $\mathrm{O}\left(\min ^{2}\left(\mathrm{n}_{1}, \mathrm{n}_{2}\right)\right)$.
Solution: Attach the smaller graph to the bigger one.
2) Join.

$$
\operatorname{Join}\left(G_{1}, G_{2}\right)=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]+\left[\begin{array}{lll}
0 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{lllll}
\mathbf{0} & \mathbf{1} & 0 & 1 & 1 \\
\mathbf{1} & \mathbf{0} & 1 & 1 & 1 \\
\mathbf{0} & \mathbf{1} & \mathbf{0} & 1 & 1 \\
1 & 1 & 1 & \mathbf{0} & 1 \\
1 & 1 & 1 & \mathbf{1} & \mathbf{0}
\end{array}\right]
$$

Complexity: $\mathrm{O}\left(\min ^{2}\left(\mathrm{n}_{1}, \mathrm{n}_{2}\right)+\mathrm{n}_{1} * \mathrm{n}_{2}\right)$.
Solution: Union and then connect all vertices of one graph to all of the other.
3) Intersection.

Intersection $\left(G_{1,}, G_{2}\right)=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right] \cap\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]=\left[\begin{array}{lll}0 & \mathbf{1} & 0 \\ \mathbf{1} & 0 & \mathbf{0} \\ 0 & \mathbf{0} & 0\end{array}\right]$
Complexity: $\mathrm{O}\left(\min ^{2}\left(\mathrm{n}_{1}, \mathrm{n}_{2}\right)\right)$.
Solution: Scan all edges of the smaller graph and check with the bigger graph.
4) Difference.

$$
\text { Difference }\left(\mathrm{G}_{1}, \mathrm{G}_{2}\right)=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]-\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{lll}
0 & \mathbf{0} & 0 \\
\mathbf{0} & 0 & \mathbf{1} \\
0 & \mathbf{1} & 0
\end{array}\right]
$$

Complexity: $\mathrm{O}\left(\min ^{2}\left(\mathrm{n}_{1}, \mathrm{n}_{2}\right)\right)$.
Solution: Scan all edges of the smaller graph and check with the bigger graph.

After getting feedbacks, I will continue proposing my plan in dealing with graphs which use list structures.

Tri Nguyen.

