
Google Summer of Code 2013 Proposal
Boost.org – Boost.MultiPrecision

Personal Details
Name Saurav Bhattacharya
College Indian Institute of Technology Kharagpur
Course Computer Science and Engineering
Degree Bachelor of Technology (honors) in Computer Science and Engineering and

 Master of Technology in Computer and Information Technology
Email online.saurav@gmail.com
Availability I plan to spend about 40 hours in a week for my GSoC 2013 project
 My intended start date is June 1st 2013 and end date is September 15th 2013

My academic semester after the university summer vacation starts roughly from the 3rd
week of July

Background Information
Educational Background
I am currently enrolled in the Dual Degree Course in the Department of CSE at IIT Kharagpur. As part of
my curriculum I have taken the following courses (chronologically):

Physics*
Programming and Data Structures*
Mathematics I and II
Electrical Technology*
Algorithms I and II*
Discrete Structures
Introduction to Electronics*
Formal Language and Automata Theory
Switching Circuits and Logic Design*
Probability and Statistics
Computer Organization and Architecture*
Compilers*
Artificial Intelligence
Database Management Systems*
Operating Systems*
Complex Network Theory
Theory of Computation
Computer Networks*
Cryptography and Network Security
Logic for Computer Science
Machine Learning
Distributed Systems

* contains additional lab component

Programming Background
My internships are summarized as follows (reverse chronological order):

Google Summer of Code 2012 at European Smalltalk User Group
o Pharo Smalltalk
o Microsoft Excel XLSX Format
o May 2012 to August 2012

École Polytechnique Fédérale de Lausanne

o Java Standard Edition
o Swing GUI Toolkit
o Java Universal Network Framework
o Scripting in AWK and Bash
o PostgreSQL database management
o May 2011 to July 2011

IIM Bangalore

o Adobe Flex
o ActionScript
o MySQL database management
o May 2010 to July 2010

My Open Source contribution is limited to my work at ESUG, but I want to do more in this area.
Boost.org will provide a great window of opportunity for me to start contributing to Open Source. This is
one of the reasons why I am applying to Boost.org for my Google Summer of Code 2013 project.

As part of my curriculum, I have also written various programs in C++, Java and Python. They are
summarized as follows:

64 bit pipelined MIPS-like processor
Compiler for a Reduced C language
Software tool for ranking of courses in a University
UNIX-like Memory resident file system
Text-based conferencing system for Linux

Last, but not the least, I have written some programs just for fun. Some of them are:

A Simple To Do list
Debt Managing Software for monitoring money lent to/borrowed from friends
Visualizer tool for displaying players statistics (in a local competition)
Estimator for the number of Domino’s Pizza Stores in India (original idea was based on a
published paper)

Programming Interests
Programming is an activity which is part of a very complicated system invented by man and yet it is easy
enough to be done by a 4th grader. When looking at the big picture it never fails to amaze me and I rate
programming as high in my interests as I rate Music.

C++, much different from how I understand the language now, was the first real programming language I
worked with. The amazing ways C++ drives technology, the entire economy and the whole world. Boost
Libraries, ones that make C++ even more powerful to use and work with. It is an honor for me to be
even be asked to write a reason for having an interest in contributing to Boost C++ Libraries.

Proposed Project Interests
Of the various project ideas mentioned in the ideas’ page, Boost.MultiPrecision seemed most intuitive
and clear as to what the project is about, and what is expected of me as a student. There were a couple
of other ideas too, but on reading up further on some of them I finally narrowed down to my current
choice due to the following points:

It is an algorithmic intensive project, something which always interests me. Such projects
provide room for innovating and trying new and better methods and technologies, and I like
that.
The guideline for the project steps have already been provided in the website. So instead of
spending more time figuring out the smaller chunks, I can directly use those guidelines and use
them as a starting place to more efficiently plan my timeline.
The project focusses on C++, Templates and the STL: something that I have been wanting to
work on. Through GSoC, this will be an excellent opportunity for me to learn and do more in this
area.
It is an optimization problem. The current implementation of Boost.MultiPrecision suffers from
performance losses and lack of extensibility. This project includes writing a radix-2 floating-point
back-end to improve performance, and provide more extensibility in the process. In layman’s
terms, making something existing, better: that is something which has always interested me.

Relevant Previous Work
I have written code for various algorithms both in my curriculum as also during my internships. Some of
them are:

Merge Sort
Dijkstra's
Gradient descent
Ford-Fulkerson
Girvan Newman
Jarvis March
Round Robin
Data Encryption Standard

All my academic projects were written in C/C++ (without using C++ exclusive features – OOP, STL,
Templates). I have also worked intensively on register level code in Verilog (CPU Design and Encryption
cipher) and that gave me insight into the bit level nuances of programing, something that will prove to
be very valuable for this project

Plans Beyond
As I have mentioned earlier too, I wish to continue contributing to Boost C++ Libraries and be a part of
the Open Source Movement. I have great reverence for the OSS Ideology and Boost C++ will provide me
with a golden opportunity in this regard. Having completed my GSoC project, I will be at a better
position to re-evaluate my contributing mode and strategy. I will continue to maintain my project and
take it further; I will even strive to be a mentor for a student next year.

Contextual Knowledge
The ratings are as follows (0 to 5):

C++ 4
C++ Standard Library 3
Boost C++ Libraries 2
Subversion 2

Development Environments
I am most familiar with Eclipse and Visual Studio for coding in C++. I am also comfortable with terminal
based programming in UNIX like environments.

Project Proposal

Background
Boost.Multiprecision is a new Boost library that offers multiple precision integer, rational and floating-
point types with precision exceeding those of built-in float, double and long double.
Boost.Multiprecision uses a uniform architecture that embodies the extended precision type with a
front-end generic number template combined with one of several back-end number types that grind out
the nuts-and-bolts of the multi precision work.

The current floating-point back-end for Boost.Multiprecision uses decimal (radix-10) and suffers certain
performance losses and lack of extensibility therefrom. This project will provide a binary (radix-2)
floating point back-end that is expected to improve efficiency and provide a more natural conversion to
and from C++ built-in floating-point types having radix-2 such as float, double, and long double.

Related Work
There are other multi precision frameworks available for floating point data, two of which are:

GNU MP Bignum Library
GNU MPFR Library

Both of these use a high performance radix 2 implementation for their respective floating point
backends which make both of them fast and efficient. Boost provides high performance floating point
support using these external libraries:

boost/multiprecision/gmp.hpp
boost/multiprecision/mpfr.hpp

However, the code including the above header files becomes dependent on external libraries. Boost
would like to have its own version of a self-contained binary (radix 2) floating point multi precision
backend, using only C++ implementation.

Problem Definition

The current decimal floating point backed is defined in cpp_dec_float.hpp.
The task for this project is to write a multi precision floating point backend using radix-2 implementation
say, cpp_bin_float.hpp

Class template cpp_bin_float fulfilling all the requirements of a Backend type (link)
I/O handling and C++ <iostream> and <iomanip> support for the radix-2 FP-backend
Implementation of basic algebraic functions (addition, subtraction, multiplication, and division)

o Decision on classes of precision ranges to be supported and their respective algorithms
o Two precision levels for Multiplication/Division

below THRESHOLD : Algorithm 1
above THRESHOLD : Algorithm 2
(see Resources below)

Optionally (only if time permits):

Support of transcendental functions from <cmath>
Seamless integration with Boost.Math

Resources
The following are the list of resources:

boost/multiprecision/cpp_dec_float.hpp – a useful guide
cpp_bin_float.hpp available in boost sandbox – initial sketch
Multiprecision documentation (link)
Modern Computer Arithmetic (link) – algorithms (all relevant to radix-2) :

I/O – PrintFixed algorithm
FPAdd for floating point addition/subtraction
Sterbenz’s theorem for floating point subtractive cancellation
Multiplication

o Karatsuba’s algorithm
o Complex FFT algorithm

Division
o ShortDivision algorithm
o DivideNewton algorithm

From my mentor, Christopher Kormanyos I shall receive:

Introduction to the project and its high-level view
Choice of algorithms/precision levels/additional functions to be supported
Technical guidance and useful tips/tricks

Proposed Milestones and Schedule

The suggested Google Summer of Code 2013 TimeLine is given here. Based on this, I have put together
the following timeline of milestones:

May 27 – June 1
Read up Boost.Multiprecision documentation
Understand Boost.Multiprecision backend requirements

June 3 – June 8
Get familiar with existing code for decimal floating point backend
Discuss with mentor about the same
Review and discuss the floating point backend from sandbox

June 10 – June 15
 Discuss about different precision levels and respective algorithms
 Check base conversion methods to and from radix-2 and radix-10
 Finalize precision levels to support and the conversion methods to use
 Begin coding I/O for character-based strings

June 17 – June 22
 Discuss possible methods for providing <iostream> and <iomanip> support
 Continue coding I/O support

June 24 – June 29
 Take a break for some other commitments

July 1 – July 5
 Write tests for I/O support
 Code for <iostream> and <iomanip> support
 Write unit tests

July 7 – July 12
 Discuss and finalize Addition and Subtraction algorithms
 Begin coding Addition
 Write unit tests

July 14 – July 19
 Code Subtraction and Cancellation
 Write unit tests
 Discuss Multiplication algorithms for different ranges

July 21 – July 26
 Code high performance Multiplication
 Write unit tests

July 28 – August 3
 Code for ultra-high performance Multiplication
 Write unit tests

August 5 – August 10
 Discuss Division algorithms for different ranges
 Begin coding for Division

August 12 – August 17
 Write unit tests for Division
 Discuss backend interoperability with Boost.Math
 Integrate Boost.Math with backend

August 19 – August 31 (two weeks)
 Complete Boost.Math integration
 Buffer time to complete any previous unfinished work
 If time permits, work on transcendental functions

September 2 – September 7
 Clean up code
 Perform additional tests

Write documentation

Timeline still leaves enough time till the hard deadline – September 23

