
 1

PROJECT PROPOSAL FOR

Google Summer of Code 2014

New Algorithms for Boost.numeric.uBLAS

Ganesh Prasad Sahoo

March 11, 2014

1 Abstract

This document is a short description of my vision and ideas for Google

Summer of Code 2014 project ‘New Algorithms for Boost.numeric.uBLAS’.

This project intends implement various matrix decomposition algorithms

and matrix solvers for the uBLAS library under Boost C++ libraries.

uBLAS is an elegant library of Boost for linear algebra. But it still needs a

wide range of algorithms to be implemented. In uBLAS we have support

for LU decomposition and triangular solvers, but we lack support for QR,

Cholesky, SVD, Eigen, Hessenberg and Schur decompositions and

respective solvers including Iterative linear solvers, eigen solvers and non

linear solvers. We also lack alogorithms for matrix diagonalisation,

simultaneous diagonalisation, inversion and determinant computation

(Though determinant can be easily computed using LU factorization, it

would be better to have an unary operation for that). Though it’s possible

to use Lapack++ algorithms over uBLAS data structures, it would be

better to have these algorithms implemented within uBLAS. My project

intends to implement these algorithms for Boost.numeric.uBLAS to make

it more versatile and user friendly.

 2

2 Personal Details

Name : Ganesh Prasad Sahoo

University : National Institute of Technology, Rourkela, India

Course : Computer Science and Engineering

Degree : Bachelor of Technology (Currently 4th Semester)

Email : sir.gnsp@gmail.com

Personal Contact : ManiSahi, Bhadrak, Odisha, 756181

Mobile : +91-9668588771

3 Availability

 I plan to spend 500 hours for my GSoC project working 50 hours a

week on an average. I intend spending more time on testing,

debugging and performance analysis, my codes must be clean,

effective, optimized and perfectly readable.

 My project can be divided into 3 classes of algorithms :

Decompositions, Solvers and Unary Operations. Hence, I intended to

complete it in four phases, dedicating the fourth phase completely to

testing, debugging, performance analysis, documentation and

prerelease code revisions and improvements.

 Documentations are as important as the code itself, so my plans are

to use 60% of my time in coding and 40% of my time in writing

documentations. My documentations will include Example snippets,

basic tutorials and references.

 I intend to start the actual development from 19th of May itself and

finish coding by 10th of August. I am already acquainted with the

uBLAS library and have thoroughly gone through the code and

documentations, so I would prefer to start my project before 19th of

mailto:sir.gnsp@gmail.com

 3

May, if possible and try to implement some more algorithms during

the coding period if time permits.

 There are absolutely no factors that will affect my availability during

the coding period, if we do not count upon any possibility of

accidental illness.

4 Background Information

4.1 Goals and Motivations

I have been acquainted with the Boost.numeric.uBLAS library for last 18

months. I am also getting quite acquainted with other linear algebra

libraries like eigen and Lapack++ lately. I have gone through the

documentations and source of the uBLAS library quite thoroughly and I

understand its design concepts. I have gone through the sources of eigen

and Lapack++ too. Therefore I have a clear idea and understanding about

what need to be implemented in uBLAS to make it a more versatile library

in its field of linear algebra.

Moreover I feel enthusiastic about the FOSS philosophy and I use many

open source softwares like Ubuntu, code::blocks etc. I respect the Boost

C++ libraries - they are a great wealth of cool libraries covering a wide

range of utilities. I understand that if I develop library for Boost, I must

write very clean and efficient code. I think it would be a great experience

and a valuable service to the open source world, so I want to contribute to

Boost.

And my interests lie in the fields of numerical computation and algorithmic

coding, so I am genuinely interested in the project I am proposing. I have

undertaken several courses relevant to this project during previous

semesters, so I feel quite confident and well equipped for this project.

 4

4.2 Education

4.2.1 History

2004 – 2009 : Passed High school certificate examination (Board

of Secondary Education,Odisha) with 93.5% of

marks

2009 – 2011 : Passed Higher Secondary Examination (Council of

Higher Secondary Education,Odisha) with 79% of

marks

2012 – Present : Student of B.Tech Computer Science and

Engineering at National Institute of Technology,

Rourkela, India

4.2.2 Relevant Courses Undertaken

o Mathematics – I (ODEs and Laplace Transforms) Autumn 2012

o Mathematics – II (Linear Algebra, Vector Calculus and Fourier

Analysis) Spring 2013

o Data Structures and Algorithms : Spring 2013

o Mathematics – III (Numerical Methods) Autumn 2013

o Numerical Methods Laboratory Course : Autumn 2013

o Elementary Number Theory : Autumn 2013

o Discrete Mathematics : Autumn 2013

o Mathematics – IV (Complex Analysis) Spring 2014

o Principles of Programming Languages : Spring 2014

4.3 Experience

Dec, 2012 : A small library to support functions like getch(),

getche(),clrscr() etc for C/C++ under UNIX shell

like environments

Feb, 2013 : A library to support LISP like list processing

techniques in C++

 5

July, 2013 : Study of Strategy Based Games and development

of an Othello game based on improvised MinMax

algorithm

Sept, 2013 : An interpreter for a self-designed BrainF**k like

language, coding was minimal but counts for

studies into Computability theory

Oct, 2013 – Present : Development of concepts of ‘Two level Symbol

Rewrite Systems’ and the Programming Language

‘I’ and its interpreter.

Feb, 2014 : Gns::Meta-Liscpp library, A complete compile

time template metaprogramming library providing

a LISP like syntax for template meta programs in

C++. Available on git.

4.4 Skills

Languages : C, C++, C++11, C#, Java, Pascal, Python 3,

LISP (GCL), SWI-PROLOG, Haskell, Google Go.

(Among others : SQL, PL/SQL and VHDL).

C/C++ IDEs : Dev Cpp,Code::Blocks,Visual studio C++ Express

Compilers : gcc, MinGW, Visual C++, DMC

Debuggers : gdb

Profilers : gprof

Documentation : Docxygen

Version Control : git

4.5 Ratings

C++ : 4.5 (I am well acquainted with features and techniques)

C++ STL : 4.5 (I use it almost every time I code in C++)

Boost : 3 (I am acquainted with a handful of libraries only)

Subversion : 1 (I am a git user, never exactly used subversion)

Git : 4 (well, I use it)

 6

5 Project Proposal

5.1 Introduction

The goal of this project is to provide a set of unary operations, factorization

algorithms and solvers to make the Boost.numeric.uBLAS library more

versatile and user friendly. The list of the to be implemented algorithms is

given below :

1 Unary Operators :

(a) Determinant

(b) Inverse (For Square Martices)

(c) Moore-Penrose Pseudo Inverse (For non-Square Matrices) *

(d) Diagonalization

2 Factorization Algorithms

(a) QR factorization

(b) Cholesky factorization

(c) SVD factorization

(d) Eigen factorization

(e) Hessenberg factorization *

(f) Schur factorization *

3 Solvers

(a) Iterative Linear Solver (using Gauss-Seidel method)

(b) Eigen Solver

(c) QR Solver

(d) Nonlinear Solver *

(e) Constrained Conjugate Gradient *

(f) Minimal Residual Solver *

In the following sections I’ll briefly describe these operators and algorithms

and my ideas for their implementations. Then I’ll be dividing the

development period in 3 phases and propose a timeline and set milestones

for this project. (The algorithms marked with * are to be implemented if

and only if the other implementations are complete ahead of timeline)

 7

5.2 Factorization Algorithms

5.2.1 QR Factorization

I intend to implement the QR Factorization using Householder

Transformations. Householder reflections can be used to calculate QR

decompositions by reflecting first one column of a matrix onto a multiple

of a standard basis vector, calculating the transformation matrix,

multiplying it with the original matrix and then recursing down the

(i, i) minors of that product.

Prototypes :

template<class M, class T>

 typename M::size_type lu_factorize (M &m, T &u);

template<class M, class T>

 typename M::size_type lu_factorize (M &m, M &o, T &u);

Where M : class of matrices

 T : class of upper triangular matrices

 m : Matrix to be decomposed

 o : Orthogonal Matrix

 u : Upper Triangular Matrix

5.2.2 Cholesky Factorization

Cholesky Decomposition takes a Hermitian positive definite matrix and

factorizes it to the product of a lower triangular matrix with real and

positive diagonal entries and its conjugate transpose. I intend to use the

Cholesky - Banachiewicz algorithm for this.

Prototypes :

template<class H, class T>

 typename H::size_type lu_factorize (H &m, T &a);

template<class H, class T>

 typename H::size_type lu_factorize (H &m, T &a, T &b);

http://en.wikipedia.org/wiki/QR_decomposition
http://en.wikipedia.org/wiki/QR_decomposition
http://en.wikipedia.org/wiki/Minor_(linear_algebra)

 8

Where H : class of Hermitian matrices

 T : class of upper triangular matrices

 m : Matrix to be decomposed

 a : Lower Triangular Matrix

 b : conjugate transpose of a

5.2.3 SVD Factorization

The SVD of a matrix M is typically computed by a two-step procedure. In

the first step, the matrix is reduced to a bidiagonal matrix. This takes

O(mn2) floating-point operations (flops), assuming that m ≥ n . The second

step is to compute the SVD of the bidiagonal matrix. This step can only

be done with an iterative method. However, in practice it suffices to

compute the SVD up to a certain precision, like the machine epsilon. If this

precision is considered constant, then the second step takes O(n) iterations,

each costing O(n) flops.

My plans are to implement the 1st step using householder transformations,

this will take comparatively less time to code, as I would have implemented

householder transformations during the development of QR decomposition.

The second step is similar to that of eigenvalue decompositions. So

implementing this will also reduce the implementation time for Eigen

decompositions. (links to some algorithms are given in the reference)

Prototypes :

template<class M, class D>

 typename M::size_type SVD_factorize (M &m, D &s, M &v);

template<class M, class D>

 typename M::size_type SVD_factorize (M &m, M &u, D &s, M &v);

Where M : class of matrices

 D : class of diagonal matrices

 m : Matrix to be decomposed

 u, v : Unitary matrices

 s : Diagonal matrix

http://en.wikipedia.org/wiki/Bidiagonal_matrix
http://en.wikipedia.org/wiki/Iterative_method
http://en.wikipedia.org/wiki/Machine_epsilon

 9

5.2.4 Eigen Decomposition

Eigen Decomposition can be done in two steps, first step is to calculate the

eigenvalues and second step is to determine the corresponding eigen

vectors. I plan to implement the first step using power iteration method

and the second step using the iterative linear solver based on Gauss-Seidel

method. But for this decomposition to be implemented, the unary operator

inverse must be implemented beforehand. Because that’ll make the testing

procedure easy.

Prototypes :

template<class M, class D>

 typename M::size_type SVD_factorize (M &m, D &l);

template<class M, class D>

 typename M::size_type SVD_factorize (M &m, M &q, D &l);

Where M : class of matrices

 D : class of diagonal matrices

 m : Matrix to be decomposed (Square matrix)

 q : Square matrix with eigen vectors as columns

 s : Diagonal matrix with eigenvalues as diagonal enties

5.2.5 Hessenberg Factorization *

Hessenberg Factorization of a nxn real square matrix can be implemented

using n-2 Householder transformations. For complex matrices and general

cases, the QR algorithm is used.

(To be implemented if all other algorithms are done ahead of proposed

timeline)

5.2.6 Schur Factorization *

Hessenberg factorization is the first step of Schur factorization. It can be

done with the QR algorithm with multiple shifts.

(To be implemented if all other algorithms are done ahead of proposed

timeline)

 10

5.3 Solvers

5.3.1 Iterative linear solver

I intend to implement the iterative linear solver using Gauss-Seidel method.

The future plans are to implement the Jacobi method. As LU factorization

and triangular solver are already present in uBLAS, this algorithm would

take very less amount of time to implement.

5.3.2 Eigen Solver

I plan to implement the eigen solver after completing the iterative linear

solver and the eigen decomposition due to the dependencies of the

algorithms. Again, this solver would take minimal amount of time to

implement, once the iterative linear solver and eigen decomposition are

implemented.

5.3.3 QR Solver

As the name suggests, this solver is dependent upon the QR algorithm. So,

it is to be implemented after the QR algorithm. Provided the dependencies,

this algorithm would take minimal amount of time to be implemented.

The non linear solver, constrained conjugate gradient and the minimal residual

solver are to be implemented if all other algorithms are implemented completely

before the GSoC pencil down date.

5.4 Unary Operators

5.4.1 Determinant

I plan to implement an iterative method of finding determinant with O(n2)

time complexity for nxn square matrices with no extra memory usage. It is

to be implemented after the factorizations and solvers are implemented. If

 11

possible, I would like to write an LU based determinant function too, to

compare the complexities of both implementations.

5.4.2 Inverse

Inverse operator can be easily implemented using an improvised iterartive

linear solver. This operator is to be optimized for every type of storage used

for every class of matrices. As inverse is an widely used term in linear

algebra, it would be better to have it optimized as much as possible. Future

plans are to implement the Moore-Penrose pseudo inverse for non square

matrices.

5.4.3 Diagonalisation

This is the easiest thing to implement after eigen decomposition and eigen

solver.

6 Timeline and Milestones

The project is divided into 3 phases : #1. Base Algorithms, #2. Dependent

Algorithms, #3. Operators and Intensive Testing. The detailed timeline is

given below.

Present – May 18 : Getting closer with the boost community,

exploring existing libraries, discussing with the

mentor about implementations, figuring out

optimization strategies for each class of algorithms

and preparing a detailed design.

Phase #1

May 18 – June 15 Implementation of Base Algorithms :

- Householder Transformation (7 days)

- Iterative Linear Solver (5 days)

- QR Decomposition Algorithm (7 days)

- Cholesky Decomposition (7 days)

 12

Phase #2

June 16 – July 16 Implementation of dependent algorithms:

- Eigen Decomposition (7 days)

- Eigen Solver (4 days)

- Diagonalisation (4 days)

- QR Solver (7 days)

- SVD decomposition (8 days)

Phase #3

July 17 – August 8 Implementation of Operators and intensive testing

- Determinant (7 days)

- Inverse (7 days)

- Intensive testing and performance analysis

(5 days)

- Code and Documentation revision and

improvements (3 days)

August 9 – August 11 Preparation of final report.

Future Plans Implementation of the algorithms marked by * in

the list.

I’ll be using 60% of the time in coding and 40% in writing documentation,

tesing and performance analysis. I’ll be submitting my codes weekly for

reviews and advice.

7 References

QR Decomposition : http://en.wikipedia.org/wiki/QR_algorithm#The_practical_QR_algorithm

Cholesky Decomposition : http://en.wikipedia.org/wiki/Cholesky_decomposition

SVD factorization : http://www.cs.utexas.edu/users/inderjit/public_papers/HLA_SVD.pdf

Eigen factorization : http://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

Power Iteration Method : http://en.wikipedia.org/wiki/Power_method

Gauss-Seidel iteration method : http://en.wikipedia.org/wiki/Gauss%E2%80%93Seidel_method

http://en.wikipedia.org/wiki/QR_algorithm#The_practical_QR_algorithm
http://en.wikipedia.org/wiki/Cholesky_decomposition
http://www.cs.utexas.edu/users/inderjit/public_papers/HLA_SVD.pdf
http://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix
http://en.wikipedia.org/wiki/Power_method
http://en.wikipedia.org/wiki/Gauss%E2%80%93Seidel_method

