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1 Abstract 

This document is a short description of my vision and ideas for Google 

Summer of Code 2014 project ‘New Algorithms for Boost.numeric.uBLAS’. 

This project intends implement various matrix decomposition algorithms 

and matrix solvers for the uBLAS library under Boost C++ libraries.  

 

uBLAS is an elegant library of Boost for linear algebra. But it still needs a 

wide range of algorithms to be implemented. In uBLAS we have support 

for LU decomposition and triangular solvers, but we lack support for QR, 

Cholesky, SVD, Eigen, Hessenberg and Schur decompositions and 

respective solvers including Iterative linear solvers, eigen solvers and non 

linear solvers. We also lack alogorithms for matrix diagonalisation, 

simultaneous diagonalisation, inversion and determinant computation 

(Though determinant can be easily computed using LU factorization, it 

would be better to have an unary operation for that). Though it’s possible 

to use Lapack++ algorithms over uBLAS data structures, it would be 

better to have these algorithms implemented within uBLAS. My project 

intends to implement these algorithms for Boost.numeric.uBLAS to make 

it more versatile and user friendly. 
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2 Personal Details 

Name :  Ganesh Prasad Sahoo 

University :  National Institute of Technology, Rourkela, India 

Course :  Computer Science and Engineering 

Degree :  Bachelor of Technology ( Currently 4th Semester ) 

Email :  sir.gnsp@gmail.com  

 

Personal Contact :    ManiSahi, Bhadrak, Odisha, 756181 

Mobile :      +91-9668588771 

 

3 Availability 

 I plan to spend 500 hours for my GSoC project working 50 hours a 

week on an average. I intend spending more time on testing, 

debugging and performance analysis, my codes must be clean, 

effective, optimized and perfectly readable. 

 My project can be divided into 3 classes of algorithms : 

Decompositions, Solvers and Unary Operations. Hence, I intended to 

complete it in four phases, dedicating the fourth phase completely to 

testing, debugging, performance analysis, documentation and 

prerelease code revisions and improvements. 

 Documentations are as important as the code itself, so my plans are 

to use 60% of my time in coding and 40% of my time in writing 

documentations. My documentations will include Example snippets, 

basic tutorials and references. 

 I intend to start the actual development from 19th of May itself and 

finish coding by 10th of August. I am already acquainted with the 

uBLAS library and have thoroughly gone through the code and 

documentations, so I would prefer to start my project before 19th of 

mailto:sir.gnsp@gmail.com
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May, if possible and try to implement some more algorithms during 

the coding period if time permits. 

 There are absolutely no factors that will affect my availability during 

the coding period, if we do not count upon any possibility of 

accidental illness.  

 

4 Background Information 

4.1 Goals and Motivations 

I have been acquainted with the Boost.numeric.uBLAS library for last 18 

months. I am also getting quite acquainted with other linear algebra 

libraries like eigen and Lapack++ lately. I have gone through the 

documentations and source of the uBLAS library quite thoroughly and I 

understand its design concepts. I have gone through the sources of eigen 

and Lapack++ too. Therefore I have a clear idea and understanding about 

what need to be implemented in uBLAS to make it a more versatile library 

in its field of linear algebra.  

Moreover I feel enthusiastic about the FOSS philosophy and I use many 

open source softwares like Ubuntu, code::blocks etc. I respect the Boost 

C++ libraries -  they are a great wealth of cool libraries covering a wide 

range of utilities. I understand that if I develop library for Boost, I must 

write very clean and efficient code. I think it would be a great experience 

and a valuable service to the open source world, so I want to contribute to 

Boost. 

And my interests lie in the fields of numerical computation and algorithmic 

coding, so I am genuinely interested in the project I am proposing. I have 

undertaken several courses relevant to this project during previous 

semesters, so I feel quite confident and well equipped for this project. 
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4.2 Education 

4.2.1 History 

2004 – 2009 :  Passed High school certificate examination (Board 

of Secondary Education,Odisha) with 93.5% of 

marks 

2009 – 2011 : Passed Higher Secondary Examination (Council of 

Higher Secondary Education,Odisha) with 79% of 

marks 

2012 – Present : Student of B.Tech Computer Science and 

Engineering at National Institute of Technology, 

Rourkela, India 

4.2.2 Relevant Courses Undertaken  

o Mathematics – I ( ODEs and Laplace Transforms ) Autumn 2012 

o Mathematics – II ( Linear Algebra, Vector Calculus and Fourier 

Analysis ) Spring 2013  

o Data Structures and Algorithms : Spring 2013 

o Mathematics – III ( Numerical Methods ) Autumn 2013 

o Numerical Methods Laboratory Course : Autumn 2013 

o Elementary Number Theory : Autumn 2013  

o Discrete Mathematics : Autumn 2013 

o Mathematics – IV ( Complex Analysis ) Spring 2014 

o Principles of Programming Languages : Spring 2014 

4.3 Experience 

Dec, 2012 : A small library to support functions like getch(), 

getche(),clrscr() etc for C/C++ under UNIX shell 

like environments 

Feb, 2013 : A library to support LISP like list processing 

techniques in C++ 
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July, 2013 : Study of Strategy Based Games and development 

of an Othello game based on improvised MinMax 

algorithm 

Sept, 2013 : An interpreter for a self-designed BrainF**k like 

language, coding was minimal but counts for 

studies into Computability theory 

Oct, 2013 – Present : Development of concepts of ‘Two level Symbol 

Rewrite Systems’ and the Programming Language 

‘I’ and its interpreter.  

Feb, 2014 : Gns::Meta-Liscpp library, A complete compile 

time template metaprogramming library providing 

a LISP like syntax for template meta programs in 

C++. Available on git. 

4.4 Skills 

Languages : C, C++, C++11, C#, Java, Pascal, Python 3, 

LISP (GCL), SWI-PROLOG, Haskell, Google Go. 

(Among others : SQL, PL/SQL and VHDL ). 

C/C++ IDEs :  Dev Cpp,Code::Blocks,Visual studio C++ Express 

Compilers :   gcc, MinGW, Visual C++, DMC 

Debuggers :   gdb 

Profilers :   gprof 

Documentation :  Docxygen 

Version Control :  git 

4.5 Ratings 

C++ :   4.5  (I am well acquainted with features and techniques) 

C++ STL :  4.5  (I use it almost every time I code in C++) 

Boost :   3  (I am acquainted with a handful of libraries only) 

Subversion : 1  (I am a git user, never exactly used subversion) 

Git :     4  (well, I use it) 
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5 Project Proposal 

5.1 Introduction 

The goal of this project is to provide a set of unary operations, factorization 

algorithms and solvers to make the Boost.numeric.uBLAS library more 

versatile and user friendly. The list of the to be implemented algorithms is 

given below : 

 

1 Unary Operators : 

(a) Determinant 

(b) Inverse (For Square Martices) 

(c) Moore-Penrose Pseudo Inverse (For non-Square Matrices) * 

(d) Diagonalization 

2 Factorization Algorithms 

(a) QR factorization 

(b) Cholesky factorization 

(c) SVD factorization 

(d) Eigen factorization 

(e) Hessenberg factorization  * 

(f) Schur factorization * 

3 Solvers 

(a) Iterative Linear Solver (using Gauss-Seidel method) 

(b) Eigen Solver 

(c) QR Solver 

(d) Nonlinear Solver  * 

(e) Constrained Conjugate Gradient *  

(f) Minimal Residual Solver * 

In the following sections I’ll briefly describe these operators and algorithms 

and my ideas for their implementations. Then I’ll be dividing the 

development period in 3 phases and propose a timeline and set milestones 

for this project. (The algorithms marked with * are to be implemented if 

and only if the other implementations are complete ahead of timeline) 
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5.2 Factorization Algorithms  

5.2.1 QR Factorization   

I intend to implement the QR Factorization using Householder 

Transformations. Householder reflections can be used to calculate QR 

decompositions by reflecting first one column of a matrix onto a multiple 

of a standard basis vector, calculating the transformation matrix, 

multiplying it with the original matrix and then recursing down the 

(i, i) minors of that product. 

Prototypes :  

template<class M, class T> 

    typename M::size_type lu_factorize (M &m, T &u); 

template<class M, class T> 

    typename M::size_type lu_factorize (M &m, M &o, T &u); 

 

Where   M : class of matrices 

   T : class of upper triangular matrices 

   m : Matrix to be decomposed 

   o : Orthogonal Matrix 

   u : Upper Triangular Matrix 

5.2.2 Cholesky Factorization 

Cholesky Decomposition takes a Hermitian positive definite matrix and 

factorizes it to the product of a lower triangular matrix with real and 

positive diagonal entries and its conjugate transpose. I intend to use the 

Cholesky - Banachiewicz algorithm for this. 

Prototypes :  

template<class H, class T> 

    typename H::size_type lu_factorize (H &m, T &a); 

template<class H, class T> 

    typename H::size_type lu_factorize (H &m, T &a, T &b); 

http://en.wikipedia.org/wiki/QR_decomposition
http://en.wikipedia.org/wiki/QR_decomposition
http://en.wikipedia.org/wiki/Minor_(linear_algebra)
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Where   H : class of Hermitian matrices 

   T : class of upper triangular matrices 

   m : Matrix to be decomposed 

   a :  Lower Triangular Matrix 

   b :  conjugate transpose of a 

5.2.3 SVD Factorization  

The SVD of a matrix M is typically computed by a two-step procedure. In 

the first step, the matrix is reduced to a bidiagonal matrix. This takes 

O(mn2) floating-point operations (flops), assuming that m ≥ n . The second 

step is to compute the SVD of the bidiagonal matrix. This step can only 

be done with an iterative method. However, in practice it suffices to 

compute the SVD up to a certain precision, like the machine epsilon. If this 

precision is considered constant, then the second step takes O(n) iterations, 

each costing O(n) flops.  

My plans are to implement the 1st step using householder transformations, 

this will take comparatively less time to code, as I would have implemented 

householder transformations during the development of QR decomposition. 

The second step is similar to that of eigenvalue decompositions. So 

implementing this will also reduce the implementation time for Eigen 

decompositions. (links to some algorithms are given in the reference) 

Prototypes :  

template<class M, class D> 

    typename M::size_type SVD_factorize (M &m, D &s, M &v); 

template<class M, class D> 

    typename M::size_type SVD_factorize (M &m, M &u, D &s, M &v); 

Where   M : class of matrices 

   D : class of diagonal matrices 

   m : Matrix to be decomposed 

   u, v :  Unitary matrices 

   s :  Diagonal matrix 

http://en.wikipedia.org/wiki/Bidiagonal_matrix
http://en.wikipedia.org/wiki/Iterative_method
http://en.wikipedia.org/wiki/Machine_epsilon
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5.2.4 Eigen Decomposition  

Eigen Decomposition can be done in two steps, first step is to calculate the 

eigenvalues and second step is to determine the corresponding eigen 

vectors. I plan to implement the first step using power iteration method 

and the second step using the iterative linear solver based on Gauss-Seidel 

method. But for this decomposition to be implemented, the unary operator 

inverse must be implemented beforehand. Because that’ll make the testing 

procedure easy. 

 

Prototypes : 

template<class M, class D> 

    typename M::size_type SVD_factorize (M &m, D &l); 

template<class M, class D> 

    typename M::size_type SVD_factorize (M &m, M &q, D &l); 

Where   M : class of matrices 

   D : class of diagonal matrices 

   m : Matrix to be decomposed (Square matrix) 

   q :  Square matrix with eigen vectors as columns 

   s :  Diagonal matrix with eigenvalues as diagonal enties 

5.2.5 Hessenberg Factorization * 

Hessenberg Factorization of a nxn real square matrix can be implemented 

using n-2 Householder transformations. For complex matrices and general 

cases, the QR algorithm is used.  

(To be implemented if all other algorithms are done ahead of proposed 

timeline) 

5.2.6 Schur Factorization * 

Hessenberg factorization is the first step of Schur factorization. It can be 

done with the QR algorithm with multiple shifts. 

(To be implemented if all other algorithms are done ahead of proposed 

timeline) 
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5.3 Solvers 

5.3.1 Iterative linear solver 

I intend to implement the iterative linear solver using Gauss-Seidel method. 

The future plans are to implement the Jacobi method. As LU factorization 

and triangular solver are already present in uBLAS, this algorithm would 

take very less amount of time to implement. 

 

5.3.2 Eigen Solver 

I plan to implement the eigen solver after completing the iterative linear 

solver and the eigen decomposition due to the dependencies of the 

algorithms. Again, this solver would take minimal amount of time to 

implement, once the iterative linear solver and eigen decomposition are 

implemented. 

 

5.3.3 QR Solver 

As the name suggests, this solver is dependent upon the QR algorithm. So, 

it is to be implemented after the QR algorithm. Provided the dependencies, 

this algorithm would take minimal amount of time to be implemented. 

 

The non linear solver, constrained conjugate gradient and the minimal residual 

solver are to be implemented if all other algorithms are implemented completely 

before the GSoC pencil down date. 

 

5.4 Unary Operators 

5.4.1 Determinant 

I plan to implement an iterative method of finding determinant with O(n2) 

time complexity for nxn square matrices with no extra memory usage. It is 

to be implemented after the factorizations and solvers are implemented. If 
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possible, I would like to write an LU based determinant function too, to 

compare the complexities of both implementations.  

5.4.2 Inverse 

Inverse operator can be easily implemented using an improvised iterartive 

linear solver. This operator is to be optimized for every type of storage used 

for every class of matrices. As inverse is an widely used term in linear 

algebra, it would be better to have it optimized as much as possible. Future 

plans are to implement the Moore-Penrose pseudo inverse for non square 

matrices. 

5.4.3 Diagonalisation 

This is the easiest thing to implement after eigen decomposition and eigen 

solver. 

 

6  Timeline and Milestones 

The project is divided into 3 phases : #1. Base Algorithms, #2. Dependent 

Algorithms, #3. Operators and Intensive Testing. The detailed timeline is 

given below. 

 

Present – May 18 :  Getting closer with the boost community, 

exploring existing libraries, discussing with the 

mentor about implementations, figuring out 

optimization strategies for each class of algorithms 

and preparing a detailed design. 

Phase #1 

May 18 – June 15 Implementation of Base Algorithms : 

- Householder Transformation ( 7 days ) 

- Iterative Linear Solver ( 5 days ) 

- QR Decomposition Algorithm ( 7 days ) 

- Cholesky Decomposition ( 7 days ) 
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Phase #2 

June 16 – July 16  Implementation of dependent algorithms: 

- Eigen Decomposition ( 7 days ) 

- Eigen Solver ( 4 days ) 

- Diagonalisation ( 4 days ) 

- QR Solver ( 7 days ) 

- SVD decomposition ( 8 days ) 

Phase #3 

July 17 – August 8 Implementation of Operators and intensive testing 

- Determinant ( 7 days ) 

- Inverse ( 7 days ) 

- Intensive testing and performance analysis  

(5 days) 

- Code and Documentation revision and 

improvements ( 3 days ) 

August 9 – August 11 Preparation of final report. 

Future Plans  Implementation of the algorithms marked by * in 

the list.   

 

I’ll be using 60% of the time in coding and 40% in writing documentation, 

tesing and performance analysis. I’ll be submitting my codes weekly for 

reviews and advice.  

7 References 

QR Decomposition : http://en.wikipedia.org/wiki/QR_algorithm#The_practical_QR_algorithm 

Cholesky Decomposition : http://en.wikipedia.org/wiki/Cholesky_decomposition 

SVD factorization : http://www.cs.utexas.edu/users/inderjit/public_papers/HLA_SVD.pdf 

Eigen factorization : http://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix 

Power Iteration Method : http://en.wikipedia.org/wiki/Power_method 

Gauss-Seidel iteration method : http://en.wikipedia.org/wiki/Gauss%E2%80%93Seidel_method 
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