|
Ublas : |
From: Vardan Akopian (vakopian_at_[hidden])
Date: 2006-02-15 22:19:19
A quick note and a question.
For block matrices to be possible with ublas, we also need to make
sure that there are no implicit assumptions of the element (scalar)
product being commutative, i.e. a*b = b*a.
Can anyone confirm or deny the presence for these kind of assumptions?
-Vardan
On 2/15/06, Riccardo Rossi <rrossi_at_[hidden]> wrote:
> Dear Gunther,
> first of all thanks for your quick answer, i have however a doubt
> concerning your proposal:
>
> first of all let's consider the code
> Matrix A(3,3);
>
> Vector b(3);
>
> Vector c(3);
>
> c = A * b;
>
> using boost 1.32.0 ( i still didn't upgrade to 1.33.1) i get an error
> message due to the existance of two candidates for the overloaded operator *
> ... the error message reads
>
> ..\..\..\..\external_libraries\boost\boost_1_32_0\boost\numeric\ublas\vector_expression.hpp(1468):
> could be
> 'boost::numeric::ublas::vector_binary_scalar1_traits<E1,E2,F,C1>::result_type
> boost::numeric::ublas::operator
> *<Kratos::Matrix,boost::numeric::ublas::vector<T>>(const T1 &,const
> boost::numeric::ublas::vector_expression<E> &)'
>
> with
>
> [
>
> E1=const Kratos::Matrix,
>
> E2=boost::numeric::ublas::vector<double>,
>
> F=boost::numeric::ublas::scalar_multiplies<Kratos::Matrix,double>,
>
> C1=boost::numeric::ublas::scalar_reference<const Kratos::Matrix>,
>
> T=double,
>
> T1=Kratos::Matrix,
>
> E=boost::numeric::ublas::vector<double>
>
> ]
>
> ..\..\..\..\external_libraries\boost\boost_1_32_0\boost\numeric\ublas\matrix_expression.hpp(3631):
> or
> 'boost::numeric::ublas::matrix_binary_scalar2_traits<E1,E2,F,C2>::result_type
> boost::numeric::ublas::operator
> *<boost::numeric::ublas::matrix<T>,Kratos::Vector>(const
> boost::numeric::ublas::matrix_expression<E> &,const T2 &)'
>
> with
>
> [
>
> E1=boost::numeric::ublas::matrix<double>,
>
> E2=const Kratos::Vector,
>
> F=boost::numeric::ublas::scalar_multiplies<double,Kratos::Vector>,
>
> C2=boost::numeric::ublas::scalar_reference<const Kratos::Vector>,
>
> T=double,
>
> E=boost::numeric::ublas::matrix<double>,
>
> T2=Kratos::Vector
>
> ]
>
> while trying to match the argument list '(Kratos::Matrix, Kratos::Vector)'
>
> \kra
>
>
> in any case even if i define univocally my operator *, as i understand the
> operation
>
> c = A * b
>
> is not efficient as a temporary is created for each multiplication, while
> the correct form would be
>
> noalias(c) = prod(A,b);
>
> for me efficiency is crucial ...
>
> concerning the Symmetric Product wouldn't it work if i define i binary prod
> Vector Vector as a scalar prod?
> i mean
> trans(a)*a = inner_prod(a,a)?
>
> okkk
>
> thanks for the attention
>
> grettings
> Riccardo
>
>
>
> ----- Original Message -----
> From: "Gunter Winkler" <guwi17_at_[hidden]>
> To: "ublas mailing list" <ublas_at_[hidden]>
> Sent: Wednesday, February 15, 2006 12:53 PM
> Subject: Re: [ublas] blocked products and relation UBLAS/GLAS
>
>
> > On Tuesday 14 February 2006 19:37, Riccardo Rossi wrote:
> >> dear list,
> >> i am more or less a Newbie at using ublas for sparse operations
> >> and i would love a little advice on some delicate questions.
> >>
> >> in particular i would like to work with a sparse matrix in which all of
> >> the
> >> single terms are vectors or matrices instead of double. All the
> >> containers
> >> are templated matrices which implies that i am free to do it
> >> nevertheless...
> >
> > You can use the matrix and vector classes as a container for any type
> > provided
> > the type is default and zero constructable. That means you need a
> > constructor
> > like
> >
> > my_type(const int zero) : ...
> > { assert( 0 == zero ); }
> >
> > which is necessary to let the sparse types know what "zero element" means.
> >
> >> how can i make the library to know how to perform the multiplication
> >> between all of the different terms? the case is for example of a
> >> SparseMatrix of Matrices to be multiplied by a vector of vectors.
> >
> > the easiest way is to use a custom type as value type which behaves like a
> > scalar. That means you have to overload the usual arithmetic operators for
> > your type.
> >
> >> Similarly i would like to create a matrix doing something like A =
> >> trans(B)*B (i think it is called Symmetric Product)... is it available
> >> in
> >> ublas?
> >
> > this is more complicated because ublas assumes that a scalar is symmetric
> > and
> > therefore never calls trans(x) for any scalar x. Maybe you can create a
> > new
> > specialization of
> >
> > matrix_unary2_traits (in matrix_expression.hpp, lines 1648ff)
> >
> > that defines a new result type.
> >
> > // (trans m) [i] [j] = m [j] [i]
> > template<class E>
> > BOOST_UBLAS_INLINE
> > typename matrix_unary2_traits<const E,
> > scalar_identity<typename E::value_type> >::result_type
> > trans (const matrix_expression<E> &e) {
> > typedef typename matrix_unary2_traits<const E,
> > scalar_identity<typename E::value_type>
> > >::expression_type expression_type;
> > return expression_type (e ());
> > }
> >
> > (you have to replace scalar_identity by scalar_transpose and write you own
> > scalar_transpose, see functional.hpp - ask me if you need help doing
> > this.)
> >
> >> finally i would like to know what is the relation of ublas to GLAS
> >
> > GLAS is (will be) a general linear algebra library supporting different
> > back
> > ends, e.g. ublas. Maybe Karl can better comment on that.
> >
> > mfg
> > Gunter
> > _______________________________________________
> > ublas mailing list
> > ublas_at_[hidden]
> > http://lists.boost.org/mailman/listinfo.cgi/ublas
> >
> >
>
>
> _______________________________________________
> ublas mailing list
> ublas_at_[hidden]
> http://lists.boost.org/mailman/listinfo.cgi/ublas
>