Boost logo

Ublas :

Subject: Re: [ublas] Matrix multiplication performance
From: Michael Lehn (michael.lehn_at_[hidden])
Date: 2016-02-02 17:26:08


I also started to write down some notes on the rational behind the micro-kernel:

http://www.mathematik.uni-ulm.de/~lehn/test_ublas/session6/page01.html

On 02 Feb 2016, at 21:43, Michael Lehn <michael.lehn_at_[hidden]> wrote:

> (So the pages are re-done …)
>
>
>
> The bug is because NR is BlockSize<T>::NR divided by the vector length. So this
> should work
>
> //---------------------------------------------------------------------------------
> template <typename Index, typename T>
> typename std::enable_if<std::is_floating_point<T>::value,
> void>::type
> ugemm(Index kc, T alpha,
> const T *A, const T *B,
> T beta,
> T *C, Index incRowC, Index incColC)
> {
> A = (const T*) __builtin_assume_aligned (A, 128);
> B = (const T*) __builtin_assume_aligned (B, 128);
> static const unsigned div = 32/sizeof(T);
> static const Index MR = BlockSize<T>::MR;
> static const Index NR = BlockSize<T>::NR/div;
>
> typedef T vx __attribute__((vector_size (32)));
>
> vx P[MR*NR] __attribute__ ((aligned (128))) = {};
> const vx *B_ = (vx *)B;
> for (Index l=0; l<kc; ++l) {
> for (Index i=0; i<MR; ++i) {
> for (Index j=0; j<(NR); ++j) {
> P[i * NR + j] += A[i]*B_[j];
> }
> }
> A += MR;
> B_ += NR;
> }
>
> T *P_ = (T *)P;
> for (Index j=0; j<NR*div; ++j) {
> for (Index i=0; i<MR; ++i) {
> C[i*incRowC+j*incColC] *= beta;
> C[i*incRowC+j*incColC] += alpha*P_[i * NR * div + j];
> }
> }
> }
> //---------------------------------------------------------------------------------
>
> However, as Karl pointed out it also should treat the case beta==0
> as a special case.
>
> But I don’t get any speedup. For the performance relevant is
> mainly the loop
>
> for (Index l=0; l<kc; ++l) {
> for (Index i=0; i<MR; ++i) {
> for (Index j=0; j<(NR); ++j) {
> P[i * NR + j] += A[i]*B_[j];
> }
> }
> A += MR;
> B_ += NR;
> }
>
> From my experience, only if this is optimized to the extrem a little bit
> extra performance can be achieved by treating some special cases for
> the update
>
> T *P_ = (T *)P;
> for (Index j=0; j<NR*div; ++j) {
> for (Index i=0; i<MR; ++i) {
> C[i*incRowC+j*incColC] *= beta;
> C[i*incRowC+j*incColC] += alpha*P_[i * NR * div + j];
> }
> }
>
> The main reason my code looks weird is that I also want to use it
> for teaching. The way it is coded you easily can map it forth and
> back with the assembly code.
>
>
>> new kernel:
>>
>> template <typename Index, typename T>
>> typename std::enable_if<std::is_floating_point<T>::value,
>> void>::type
>> ugemm(Index kc, T alpha,
>> const T *A, const T *B,
>> T beta,
>> T *C, Index incRowC, Index incColC)
>> {
>> A = (const T*) __builtin_assume_aligned (A, 128);
>> B = (const T*) __builtin_assume_aligned (B, 128);
>> static const unsigned div = 32/sizeof(T);
>> static const Index MR = BlockSize<T>::MR;
>> static const Index NR = BlockSize<T>::NR/div;
>>
>> typedef T vx __attribute__((vector_size (32)));
>>
>> vx P[MR*NR] __attribute__ ((aligned (128))) = {};
>> const vx *B_ = (vx *)B;
>> for (Index l=0; l<kc; ++l) {
>> for (Index i=0; i<MR; ++i) {
>> for (Index j=0; j<(NR); ++j) {
>> P[i * NR + j] += A[i]*B_[j];
>> }
>> }
>> A += MR;
>> B_ += NR;
>> }
>>
>> T *P_ = (T *)P;
>> for (Index j=0; j<NR; ++j) {
>> for (Index i=0; i<MR; ++i) {
>> C[i*incRowC+j*incColC] *= beta;
>> C[i*incRowC+j*incColC] += alpha*P_[i * NR + j];
>> }
>> }
>> }
>
> _______________________________________________
> ublas mailing list
> ublas_at_[hidden]
> http://lists.boost.org/mailman/listinfo.cgi/ublas
> Sent to: michael.lehn_at_[hidden]