#ifndef BOOST_STATECHART_STATE_MACHINE_HPP_INCLUDED #define BOOST_STATECHART_STATE_MACHINE_HPP_INCLUDED ////////////////////////////////////////////////////////////////////////////// // (c) Copyright Andreas Huber Doenni 2002-2005 // Distributed under the Boost Software License, Version 1.0. (See accompany- // ing file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) ////////////////////////////////////////////////////////////////////////////// #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // boost::polymorphic_downcast // BOOST_NO_EXCEPTIONS, BOOST_MSVC, BOOST_MSVC_STD_ITERATOR #include #include #ifdef BOOST_MSVC # pragma warning( push ) # pragma warning( disable: 4702 ) // unreachable code (in release mode only) #endif #include #ifdef BOOST_MSVC # pragma warning( pop ) #endif #include // std::allocator #include // std::bad_cast #include // std::less #include #ifdef BOOST_MSVC // We permanently turn off the following level 4 warnings because users will // have to do so themselves anyway if we turn them back on # pragma warning( disable: 4511 ) // copy constructor could not be generated # pragma warning( disable: 4512 ) // assignment op could not be generated #endif namespace boost { namespace statechart { namespace detail { ////////////////////////////////////////////////////////////////////////////// template< class StateBaseType, class EventBaseType, class IdType > class send_function { public: ////////////////////////////////////////////////////////////////////////// send_function( StateBaseType & toState, const EventBaseType & evt, IdType eventType ) : toState_( toState ), evt_( evt ), eventType_( eventType ) { } result operator()() { return detail::result_utility::make_result( toState_.react_impl( evt_, eventType_ ) ); } private: ////////////////////////////////////////////////////////////////////////// StateBaseType & toState_; const EventBaseType & evt_; IdType eventType_; }; ////////////////////////////////////////////////////////////////////////////// struct state_cast_impl_pointer_target { public: ////////////////////////////////////////////////////////////////////////// template< class StateBaseType > static const StateBaseType * deref_if_necessary( const StateBaseType * pState ) { return pState; } template< class Target, class IdType > static IdType type_id() { Target p = 0; return type_id_impl< IdType >( p ); } static bool found( const void * pFound ) { return pFound != 0; } template< class Target > static Target not_found() { return 0; } private: ////////////////////////////////////////////////////////////////////////// template< class IdType, class Type > static IdType type_id_impl( const Type * ) { return Type::static_type(); } }; struct state_cast_impl_reference_target { template< class StateBaseType > static const StateBaseType & deref_if_necessary( const StateBaseType * pState ) { return *pState; } template< class Target, class IdType > static IdType type_id() { return remove_reference< Target >::type::static_type(); } template< class Dummy > static bool found( const Dummy & ) { return true; } template< class Target > static Target not_found() { throw std::bad_cast(); } }; template< class Target > struct state_cast_impl : public mpl::if_< is_pointer< Target >, state_cast_impl_pointer_target, state_cast_impl_reference_target >::type {}; ////////////////////////////////////////////////////////////////////////////// template< class RttiPolicy > class history_key { public: ////////////////////////////////////////////////////////////////////////// template< class HistorizedState > static history_key make_history_key() { return history_key( HistorizedState::context_type::static_type(), HistorizedState::orthogonal_position::value ); } typename RttiPolicy::id_type history_context_type() const { return historyContextType_; } friend bool operator<( const history_key & left, const history_key & right ) { return std::less< typename RttiPolicy::id_type >()( left.historyContextType_, right.historyContextType_ ) || ( ( left.historyContextType_ == right.historyContextType_ ) && ( left.historizedOrthogonalRegion_ < right.historizedOrthogonalRegion_ ) ); } private: ////////////////////////////////////////////////////////////////////////// history_key( typename RttiPolicy::id_type historyContextType, orthogonal_position_type historizedOrthogonalRegion ) : historyContextType_( historyContextType ), historizedOrthogonalRegion_( historizedOrthogonalRegion ) { } const typename RttiPolicy::id_type historyContextType_; const orthogonal_position_type historizedOrthogonalRegion_; }; } // namespace detail ////////////////////////////////////////////////////////////////////////////// template< class MostDerived, class InitialState, class Allocator = std::allocator< void >, class ExceptionTranslator = null_exception_translator > class state_machine : noncopyable { public: ////////////////////////////////////////////////////////////////////////// typedef Allocator allocator_type; typedef detail::rtti_policy rtti_policy_type; typedef event_base event_base_type; typedef intrusive_ptr< const event_base_type > event_base_ptr_type; void initiate() { terminate(); { terminator guard( *this ); detail::result_utility::get_result( translator_( initial_construct_function( *this ), exception_event_handler( *this ) ) ); guard.dismiss(); } process_queued_events(); } void terminate() { terminator guard( *this ); detail::result_utility::get_result( translator_( terminate_function( *this ), exception_event_handler( *this ) ) ); guard.dismiss(); } bool terminated() const { return pOutermostState_ == 0; } void process_event( const event_base_type & evt ) { send_event( evt ); process_queued_events(); } template< class Target > Target state_cast() const { typedef detail::state_cast_impl< Target > impl; for ( typename state_list_type::const_iterator pCurrentLeafState = currentStates_.begin(); pCurrentLeafState != currentStatesEnd_; ++pCurrentLeafState ) { const state_base_type * pCurrentState( get_pointer( *pCurrentLeafState ) ); while ( pCurrentState != 0 ) { // The unnecessary try/catch overhead for pointer targets is // typically small compared to the cycles dynamic_cast needs #ifndef BOOST_NO_EXCEPTIONS try #endif { Target result = dynamic_cast< Target >( impl::deref_if_necessary( pCurrentState ) ); if ( impl::found( result ) ) { return result; } } #ifndef BOOST_NO_EXCEPTIONS // Intentionally swallow std::bad_cast exceptions. We'll throw one // ourselves when we fail to find a state that can be cast to Target catch ( const std::bad_cast & ) {} #endif pCurrentState = pCurrentState->outer_state_ptr(); } } return impl::template not_found< Target >(); } template< class Target > Target state_downcast() const { typedef detail::state_cast_impl< Target > impl; typename rtti_policy_type::id_type targetType = impl::template type_id< Target, rtti_policy_type::id_type >(); for ( typename state_list_type::const_iterator pCurrentLeafState = currentStates_.begin(); pCurrentLeafState != currentStatesEnd_; ++pCurrentLeafState ) { const state_base_type * pCurrentState( get_pointer( *pCurrentLeafState ) ); while ( pCurrentState != 0 ) { if ( pCurrentState->dynamic_type() == targetType ) { return static_cast< Target >( impl::deref_if_necessary( pCurrentState ) ); } pCurrentState = pCurrentState->outer_state_ptr(); } } return impl::template not_found< Target >(); } typedef detail::state_base< allocator_type, rtti_policy_type > state_base_type; class state_iterator : public std::iterator< std::forward_iterator_tag, state_base_type, std::ptrdiff_t #ifndef BOOST_MSVC_STD_ITERATOR , const state_base_type *, const state_base_type & #endif > { public: ////////////////////////////////////////////////////////////////////// explicit state_iterator( typename state_base_type::state_list_type::const_iterator baseIterator ) : baseIterator_( baseIterator ) {} const state_base_type & operator*() const { return **baseIterator_; } const state_base_type * operator->() const { return &**baseIterator_; } state_iterator & operator++() { ++baseIterator_; return *this; } state_iterator operator++( int ) { return state_iterator( baseIterator_++ ); } bool operator==( const state_iterator & right ) const { return baseIterator_ == right.baseIterator_; } bool operator!=( const state_iterator & right ) const { return !( *this == right ); } private: typename state_base_type::state_list_type::const_iterator baseIterator_; }; state_iterator state_begin() const { return state_iterator( currentStates_.begin() ); } state_iterator state_end() const { return state_iterator( currentStatesEnd_ ); } void unconsumed_event( const event_base & ) {} protected: ////////////////////////////////////////////////////////////////////////// state_machine() : currentStatesEnd_( currentStates_.end() ), pOutermostState_( 0 ), isInnermostCommonOuter_( false ), performFullExit_( true ) { } // This destructor was only made virtual so that that // polymorphic_downcast can be used to cast to MostDerived. virtual ~state_machine() { terminate_impl( false ); } public: ////////////////////////////////////////////////////////////////////////// // The following declarations should be private. // They are only public because many compilers lack template friends. ////////////////////////////////////////////////////////////////////////// typedef MostDerived inner_context_type; typedef mpl::integral_c< detail::orthogonal_position_type, 0 > inner_orthogonal_position; typedef mpl::integral_c< detail::orthogonal_position_type, 1 > no_of_orthogonal_regions; typedef MostDerived outermost_context_type; typedef state_machine outermost_context_base_type; typedef state_machine * inner_context_ptr_type; typedef typename state_base_type::node_state_base_ptr_type node_state_base_ptr_type; typedef typename state_base_type::leaf_state_ptr_type leaf_state_ptr_type; typedef typename state_base_type::state_list_type state_list_type; typedef mpl::clear< mpl::list<> >::type context_type_list; typedef mpl::bool_< false > shallow_history; typedef mpl::bool_< false > deep_history; typedef mpl::bool_< false > inherited_deep_history; detail::reaction_result react_impl( const event_base_type &, typename rtti_policy_type::id_type ) { return detail::do_forward_event; } void exit_impl( inner_context_ptr_type &, typename state_base_type::node_state_base_ptr_type &, bool ) {} void set_outermost_unstable_state( typename state_base_type::node_state_base_ptr_type & pOutermostUnstableState ) { pOutermostUnstableState = 0; } // Returns a reference to the context identified by the template // parameter. This can either be _this_ object or one of its direct or // indirect contexts. template< class Context > Context & context() { // As we are in the outermost context here, only this object can be // returned. return *polymorphic_downcast< MostDerived * >( this ); } template< class Context > const Context & context() const { // As we are in the outermost context here, only this object can be // returned. return *polymorphic_downcast< const MostDerived * >( this ); } outermost_context_type & outermost_context() { return *polymorphic_downcast< MostDerived * >( this ); } const outermost_context_type & outermost_context() const { return *polymorphic_downcast< const MostDerived * >( this ); } outermost_context_base_type & outermost_context_base() { return *this; } const outermost_context_base_type & outermost_context_base() const { return *this; } void terminate_as_reaction( state_base_type & theState ) { terminate_impl( theState, performFullExit_ ); pOutermostUnstableState_ = 0; } void terminate_as_part_of_transit( state_base_type & theState ) { terminate_impl( theState, performFullExit_ ); isInnermostCommonOuter_ = true; } void terminate_as_part_of_transit( state_machine & ) { terminate_impl( *pOutermostState_, performFullExit_ ); isInnermostCommonOuter_ = true; } void post_event( const event_base_ptr_type & pEvent ) { BOOST_ASSERT( get_pointer( pEvent ) != 0 ); eventQueue_.push_back( pEvent ); } template< class State > void add( const intrusive_ptr< State > & pState ) { // The second dummy argument is necessary because the call to the // overloaded function add_impl would otherwise be ambiguous. node_state_base_ptr_type pNewOutermostUnstableStateCandidate = add_impl( pState, *pState ); if ( isInnermostCommonOuter_ || is_in_highest_orthogonal_region< State >() && ( get_pointer( pOutermostUnstableState_ ) == pState->State::outer_state_ptr() ) ) { isInnermostCommonOuter_ = false; pOutermostUnstableState_ = pNewOutermostUnstableStateCandidate; } } void add_inner_state( detail::orthogonal_position_type position, state_base_type * pOutermostState ) { BOOST_ASSERT( position == 0 ); detail::avoid_unused_warning( position ); pOutermostState_ = pOutermostState; } void remove_inner_state( detail::orthogonal_position_type position ) { BOOST_ASSERT( position == 0 ); detail::avoid_unused_warning( position ); pOutermostState_ = 0; } void defer_event( const event_base_type & evt, const state_base_type * pForState ) { deferredMap_[ pForState ].push_back( evt.intrusive_from_this() ); } void release_events( const state_base_type * pForState ) { const typename deferred_map_type::iterator pFound = deferredMap_.find( pForState ); // We are not guaranteed to find an entry because a state is marked for // having deferred events _before_ the event is actually deferred. An // exception might be thrown during deferral. if ( pFound != deferredMap_.end() ) { eventQueue_.splice( eventQueue_.end(), pFound->second ); deferredMap_.erase( pFound ); } } template< class HistorizedState > void store_shallow_history() { // 5.2.10.6 declares that reinterpret_casting a function pointer to a // different function pointer and back must yield the same value. The // following reinterpret_cast is the first half of such a sequence. store_history_impl( shallowHistoryMap_, history_key_type::make_history_key< HistorizedState >(), reinterpret_cast< void (*)() >( &HistorizedState::deep_construct ) ); } template< class HistoryContext, detail::orthogonal_position_type orthogonalPosition > void clear_shallow_history() { // If you receive a // "use of undefined type 'boost::STATIC_ASSERTION_FAILURE'" or // similar compiler error here then you tried to clear shallow history // for a state that does not have shallow history. That is, the state // does not pass either statechart::has_shallow_history or // statechart::has_full_history to its base class template. BOOST_STATIC_ASSERT( HistoryContext::shallow_history::value ); typedef typename mpl::at_c< typename HistoryContext::inner_initial_list, orthogonalPosition >::type historized_state; store_history_impl( shallowHistoryMap_, history_key_type::make_history_key< historized_state >(), 0 ); } template< class DefaultState > void construct_with_shallow_history( const typename DefaultState::context_ptr_type & pContext ) { construct_with_history_impl< DefaultState >( shallowHistoryMap_, pContext ); } template< class HistorizedState, class LeafState > void store_deep_history() { typedef typename detail::make_context_list< typename HistorizedState::context_type, LeafState >::type history_context_list; typedef detail::constructor< history_context_list, outermost_context_base_type > constructor_type; // 5.2.10.6 declares that reinterpret_casting a function pointer to a // different function pointer and back must yield the same value. The // following reinterpret_cast is the first half of such a sequence. store_history_impl( deepHistoryMap_, history_key_type::make_history_key< HistorizedState >(), reinterpret_cast< void (*)() >( &constructor_type::construct ) ); } template< class HistoryContext, detail::orthogonal_position_type orthogonalPosition > void clear_deep_history() { // If you receive a // "use of undefined type 'boost::STATIC_ASSERTION_FAILURE'" or // similar compiler error here then you tried to clear deep history for // a state that does not have deep history. That is, the state does not // pass either statechart::has_deep_history or // statechart::has_full_history to its base class template BOOST_STATIC_ASSERT( HistoryContext::deep_history::value ); typedef typename mpl::at_c< typename HistoryContext::inner_initial_list, orthogonalPosition >::type historized_state; store_history_impl( deepHistoryMap_, history_key_type::make_history_key< historized_state >(), 0 ); } template< class DefaultState > void construct_with_deep_history( const typename DefaultState::context_ptr_type & pContext ) { construct_with_history_impl< DefaultState >( deepHistoryMap_, pContext ); } private: // implementation ////////////////////////////////////////////////////////////////////////// void initial_construct() { InitialState::initial_deep_construct( *polymorphic_downcast< MostDerived * >( this ) ); } class initial_construct_function { public: ////////////////////////////////////////////////////////////////////// initial_construct_function( state_machine & machine ) : machine_( machine ) { } result operator()() { machine_.initial_construct(); return detail::result_utility::make_result( detail::do_discard_event ); // there is nothing to be consumed } private: ////////////////////////////////////////////////////////////////////// state_machine & machine_; }; friend class initial_construct_function; class terminate_function { public: ////////////////////////////////////////////////////////////////////// terminate_function( state_machine & machine ) : machine_( machine ) {} result operator()() { machine_.terminate_impl( true ); return detail::result_utility::make_result( detail::do_discard_event ); // there is nothing to be consumed } private: ////////////////////////////////////////////////////////////////////// state_machine & machine_; }; friend class terminate_function; template< class ExceptionEvent > detail::reaction_result handle_exception_event( const ExceptionEvent & exceptionEvent, state_base_type * pCurrentState ) { if ( terminated() ) { // there is no state that could handle the exception -> bail out throw; } // If we are stable, an event handler has thrown. // Otherwise, either a state constructor, a transition action or an exit // function has thrown and the state machine is now in an invalid state. // This situation can be resolved by the exception event handler // function by orderly transiting to another state or terminating. // As a result of this, the machine must not be unstable when this // function is left. state_base_type * const pOutermostUnstableState = get_pointer( pOutermostUnstableState_ ); state_base_type * const pHandlingState = pOutermostUnstableState == 0 ? pCurrentState : pOutermostUnstableState; BOOST_ASSERT( pHandlingState != 0 ); // Setting a member variable to a special value for the duration of a // call surely looks like a kludge (normally it should be a parameter of // the call). However, in this case it is unavoidable because the call // below could result in a call to user code where passing through an // additional bool parameter is not acceptable. performFullExit_ = false; const detail::reaction_result reactionResult = pHandlingState->react_impl( exceptionEvent, exceptionEvent.dynamic_type() ); // If the above call throws then performFullExit_ will obviously not be // set back to true. In this case the termination triggered by the // scope guard further up in the call stack will take care of this. performFullExit_ = true; if ( ( reactionResult != detail::do_discard_event ) || ( get_pointer( pOutermostUnstableState_ ) != 0 ) ) { throw; } return detail::do_discard_event; } class exception_event_handler { public: ////////////////////////////////////////////////////////////////////// exception_event_handler( state_machine & machine, state_base_type * pCurrentState = 0 ) : machine_( machine ), pCurrentState_( pCurrentState ) { } template< class ExceptionEvent > detail::reaction_result operator()( const ExceptionEvent & exceptionEvent ) { return machine_.handle_exception_event( exceptionEvent, pCurrentState_ ); } private: ////////////////////////////////////////////////////////////////////// state_machine & machine_; state_base_type * pCurrentState_; }; friend class exception_event_handler; class terminator { public: terminator( state_machine & machine ) : machine_( machine ), dismissed_( false ) {} ~terminator() { if ( !dismissed_ ) { machine_.terminate_impl( false ); } } void dismiss() { dismissed_ = true; } private: state_machine & machine_; bool dismissed_; }; friend class terminator; void send_event( const event_base_type & evt ) { terminator guard( *this ); BOOST_ASSERT( get_pointer( pOutermostUnstableState_ ) == 0 ); const typename rtti_policy_type::id_type eventType = evt.dynamic_type(); detail::reaction_result reactionResult = detail::do_forward_event; for ( typename state_list_type::iterator pState = currentStates_.begin(); ( reactionResult == detail::do_forward_event ) && ( pState != currentStatesEnd_ ); ++pState ) { // CAUTION: The following statement could modify our state list! // We must not continue iterating if the event was consumed reactionResult = detail::result_utility::get_result( translator_( detail::send_function< state_base_type, event_base_type, rtti_policy_type::id_type >( **pState, evt, eventType ), exception_event_handler( *this, get_pointer( *pState ) ) ) ); } guard.dismiss(); if ( reactionResult == detail::do_forward_event ) { polymorphic_downcast< MostDerived * >( this )->unconsumed_event( evt ); } } void process_queued_events() { while ( !eventQueue_.empty() ) { const event_base_ptr_type pCurrentEvent( eventQueue_.front() ); eventQueue_.pop_front(); send_event( *pCurrentEvent ); } } void terminate_impl( bool performFullExit ) { performFullExit_ = true; if ( !terminated() ) { // this also empties deferredMap_ terminate_impl( *pOutermostState_, performFullExit ); } eventQueue_.clear(); shallowHistoryMap_.clear(); deepHistoryMap_.clear(); } void terminate_impl( state_base_type & theState, bool performFullExit ) { isInnermostCommonOuter_ = false; // If pOutermostUnstableState_ == 0, we know for sure that // currentStates_.size() > 0, otherwise theState couldn't be alive any // more if ( get_pointer( pOutermostUnstableState_ ) != 0 ) { theState.remove_from_state_list( currentStatesEnd_, pOutermostUnstableState_, performFullExit ); } // Optimization: We want to find out whether currentStates_ has size 1 // and if yes use the optimized implementation below. Since // list<>::size() is implemented quite inefficiently in some std libs // it is best to just decrement the currentStatesEnd_ here and // increment it again, if the test failed. else if ( currentStates_.begin() == --currentStatesEnd_ ) { // The machine is stable and there is exactly one innermost state. // The following optimization is only correct for a stable machine // without orthogonal regions. leaf_state_ptr_type & pState = *currentStatesEnd_; pState->exit_impl( pState, pOutermostUnstableState_, performFullExit ); } else { BOOST_ASSERT( currentStates_.size() > 1 ); // The machine is stable and there are multiple innermost states theState.remove_from_state_list( ++currentStatesEnd_, pOutermostUnstableState_, performFullExit ); } } node_state_base_ptr_type add_impl( const leaf_state_ptr_type & pState, detail::leaf_state< allocator_type, rtti_policy_type > & ) { if ( currentStatesEnd_ == currentStates_.end() ) { pState->set_list_position( currentStates_.insert( currentStatesEnd_, pState ) ); } else { *currentStatesEnd_ = pState; pState->set_list_position( currentStatesEnd_ ); ++currentStatesEnd_; } return 0; } node_state_base_ptr_type add_impl( const node_state_base_ptr_type & pState, state_base_type & ) { return pState; } template< class State > static bool is_in_highest_orthogonal_region() { return mpl::equal_to< typename State::orthogonal_position, mpl::minus< typename State::context_type::no_of_orthogonal_regions, mpl::integral_c< detail::orthogonal_position_type, 1 > > >::value; } typedef detail::history_key< rtti_policy_type > history_key_type; typedef std::map< history_key_type, void (*)(), std::less< history_key_type > > history_map_type; void store_history_impl( history_map_type & historyMap, const history_key_type & historyId, void (*pConstructFunction)() ) { historyMap[ historyId ] = pConstructFunction; } template< class DefaultState > void construct_with_history_impl( history_map_type & historyMap, const typename DefaultState::context_ptr_type & pContext ) { typename history_map_type::iterator pFoundSlot = historyMap.find( history_key_type::make_history_key< DefaultState >() ); if ( ( pFoundSlot == historyMap.end() ) || ( pFoundSlot->second == 0 ) ) { // We have never entered this state before or history was cleared DefaultState::deep_construct( pContext, *polymorphic_downcast< MostDerived * >( this ) ); } else { typedef void construct_function( const typename DefaultState::context_ptr_type &, typename DefaultState::outermost_context_base_type & ); // 5.2.10.6 declares that reinterpret_casting a function pointer to a // different function pointer and back must yield the same value. The // following reinterpret_cast is the second half of such a sequence. construct_function * const pConstructFunction = reinterpret_cast< construct_function * >( pFoundSlot->second ); (*pConstructFunction)( pContext, *polymorphic_downcast< MostDerived * >( this ) ); } } typedef std::list< event_base_ptr_type, typename boost::detail::allocator::rebind_to< allocator_type, event_base_ptr_type >::type > event_queue_type; typedef std::map< const state_base_type *, event_queue_type, std::less< const state_base_type * > > deferred_map_type; event_queue_type eventQueue_; deferred_map_type deferredMap_; state_list_type currentStates_; typename state_list_type::iterator currentStatesEnd_; state_base_type * pOutermostState_; bool isInnermostCommonOuter_; node_state_base_ptr_type pOutermostUnstableState_; ExceptionTranslator translator_; bool performFullExit_; history_map_type shallowHistoryMap_; history_map_type deepHistoryMap_; }; } // namespace statechart } // namespace boost #endif