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1. Introduction

1.1 Object-Based Hierarchical Interior-Based Representations

  A location query is a process where we take a location "a" as input and return the objects
in which "a" is a member when using a representation that stores with each object the
addresses  of  the  cells  it  comprises  (i.e.,  an  explicit  representation).  The  most  natural
hierarchy that can be imposed on the objects that would enable us to answer this query is
one that aggregates every M objects (that are hopefully in close spatial proximity, although
this  is  not  a  requirement)  into larger objects.  This  process is  repeated recursively  until
there is  just one aggregated object left.  Since the objects may have different sizes and
shapes,  it  is  not  easy  to  compute  and represent  the  aggregate  object.  Moreover,  it  is
similarly  difficult  to test  each one of  them (and their  aggregates)  to determine if  they
contain "a" since each one may require a different test by virtue of the different shapes.
Thus, it is useful to use a common aggregate shape and point inclusion test to prune the
search.

Illustration 1: example of a location query



  The common aggregate shape and point inclusion test that we use assumes the existence
of a minimum enclosing box (termed a bounding box) for each object. This bounding box is
part of the data associated with each object and aggregate of objects. In this case, we
reformulate our  object hierarchy in terms of bounding boxes. In particular, we aggregate
the  bounding  boxes  of  every  M  objects  into  a  box  (i.e.,  block)  of  minimum  size  that
contains them. This process is repeated recursively until there is just one block left. The
value associated with the bounding box b is its location (e.g., the coordinate values of its
diagonally opposite corners for two-dimensional data). It should be clear that the bounding
boxes serve as a filter to prune the search for an object  that  contains "a"and are not
necessarily disjoint; in fact, the objects may be configured in space in such a way that no
disjoint hierarchy is possible. By the same reasoning, the objects themselves need not be
disjoint.

  The  process  that  we  have  just  outlined  can  be  described  more  formally  as  follows:
Assume that there are N objects in the space, and let n be the smallest power of M such
that Mn ≥ N. Assume that all aggregates contain M elements with the exception of the last
one at each level, which may contain less than M as Mn is not necessarily equal to N. The
hierarchy of objects consists of the set D of sets {Di} (0 ≤ i ≤ n), where Dn corresponds to the
set of bounding boxes of the individual objects; Dn−1 corresponds to the result of the initial
aggregation of the bounding boxes into N/M bounding boxes, each of which contains M
bounding boxes of objects; and D0 is a set containing just one element corresponding to the
aggregations of all of the objects and is a bounding boxthat encloses all of the objects. 

  We term the resulting hierarchy an object pyramid. What we have is a  multiresolution
representation as the original collection of objects is described at several levels of detail by
virtue of the number of objects whose bounding boxes are grouped at each level.

1.2 Searching an object pyramid

  Searching an object pyramid consisting of sets Di (0 ≤ i ≤ n) for the object containing a
particular location "a" (i.e., the location query) proceeds as follows:

We start with D0, which consists of just one bounding box "b" and determine if "a" is inside
b. If it is not, then we exit, and the answer is negative. If it is, then we examine the M
elements in D1 that are covered by "b" and repeat the test using their bounding boxes; we
exit if "a" is not covered by at least one of the bounding boxes at this level. This process is
applied recursively to all elements of Dj for 0 ≤ j ≤ n until all elements of D n have been
processed, at which time the process stops. The advantage of this method is that elements
of Dj (1 ≤ j ≤ n) are not examined unless "a" is guaranteed to be covered by at least one of
the elements of Dj−1.

  The  bounding  boxes  serve  to  distinguish  between  occupied  and unoccupied  space,
thereby indicating whether the search for the objects that contain a particular location
(i.e., the location query) should proceed further. At a first glance, it would appear that the
object pyramid is rather inefficient for responding to the location query because, in the
worst  case,  all  of  the  bounding  boxes  at  all  levels  must  be  examined.  However,  the



maximum number  of  bounding  boxes  in  the object  pyramid,  and hence the maximum

number that will have to be inspected, is ∑
j=0

n

M j≤2N .

  Of course, we may also have to examine the actual sets of locations associated with each
object when the bounding box does not result in any of the objects being pruned from
further  consideration  since  the  objects  are  not  necessarily  rectangular  in  shape  (i.e.,
boxes).  Thus,  using the hierarchy provided by the object pyramid results in at most an
additional factor of 2 in terms of the number of bounding box tests while possibly saving
many more tests. Therefore, the maximum amount of work to answer the location query
with the hierarchy is  of  the same order of  magnitude as that  which would have been
needed had the hierarchy not been introduced.

1.3 The object tree pyramid

  As we can see, the way in which we introduced the hierarchy to form the object pyramid
did not  necessarily  enable us  to make more efficient  use of  the explicit  interior based
representation  to  respond  to  the  location  query.  The  problem  was  that  once  we
determined  that  location  a  was  covered  by  one  of  the  bounding  boxes,  say  b,  in  D j ,
(0  ≤  j  ≤  n  −  1),   we had no  way  to  access  the  bounding  boxes  making  up b  without
examining all of the bounding boxes in Dj+1. This is easy to rectify by imposing an access
structure  in  the  form  of  a  tree  T  on  the  elements  of  the  hierarchy  D.  One  possible
implementation is a tree of fanout M, where the root T0 corresponds to the bounding box
in D0. T0 has M links to its M children { T1k }, which correspond to the M bounding boxes in
D1 that D0 comprises. The set of nodes { Tik } at depth i correspond to the bounding boxes in
Di (0 ≤ i ≤ n), while the set of leaf nodes { Tnk } correspond to Dn. In particular, node t in the
tree at depth j corresponds to bounding box b in D j (0 ≤ j ≤ n − 1), and t contains M pointers
to its M children in Tj+1 corresponding to the bounding boxes in Dj+1 that are contained in
b. We use the term object-tree pyramid to describe this structure.

  The object-tree pyramid that we have just described still has a worst case where we may
have to examine all of the bounding boxes in Dj (1 ≤ j ≤ n) when executing the location
query or its variants (e.g., a window query). This is the case if query location a is contained
in every bounding box in Dj−1. Such a situation, although rare, can arise in practice because
"a" may be included in the bounding boxes of many objects, termed a  false hit, as the
bounding boxes are not disjoint, while a is contained in a much smaller number of objects.
Equivalently,  false  hits  are  caused  by  the  fact  that  a  spatial  object  may  be  spatially
contained in full or in part in several bounding boxes or nodes while being associated with
just one node or bounding box.

  However, unlike the object pyramid, the object-tree pyramid does guarantee that only the
bounding  boxes  that  contain  a,  and  no  others,  will  be  examined.  Thus,  we  have  not
improved on the worst case of the object pyramid although we have reduced its likelihood,
because we may still have to examine 2N bounding boxes. It is interesting to observe that
the object pyramid and the object-tree pyramid are instances of an explicit interior-based



representation since  it  is  still  the  case  that  associated  with  each  object  "o"  is  a  set
containing the addresses of the cells that it comprises. Note also that the access structure
facilitates only the determination of the object associated with a particular cell and not
which cells are contiguous. Thus, the object-tree pyramid is not an instance of an implicit
interior-based representation.

1.4 Efficiency factors of the object tree pyramid

  The decision as to which objects to aggregate is an important factor in the efficiency of
the object-tree pyramid in responding to the location query. The efficiency of the object-
tree pyramid for search operations depends on its abilities to distinguish between occupied
space and unoccupied space and to prevent a node from being examined needlessly due to
a false overlap with other nodes.

  The extent  to which these efficiencies are realized is  a direct  result  of  how well  our
aggregation policy is able to satisfy the following two goals. The first goal is to minimize the
number of aggregated nodes that must be visited by the search. This goal is accomplished
by minimizing the area common to sibling aggregated nodes (termed overlap). The second
goal is to reduce the likelihood that sibling aggregated nodes are visited by the search. This
is accomplished by minimizing the total area spanned by the bounding boxes of the sibling
aggregated nodes (termed coverage). A related goal to that of minimizing the coverage is
minimizing the area in sibling aggregated nodes that is not spanned by the bounding boxes
of any of the children of the sibling aggregated nodes (termed dead area). Of course, at
times, these goals may be contradictory.

Illustration 2: Object tree pyramid and its spatial extends



2.  Aggregation Techniques

2.1 Ordering based aggregation techniques

  The most frequently used ordering technique is based on mapping the bounding boxes of
the objects to a representative point in a lower, the same, or a higher-dimensional space
and then applying one of the space-ordering methods described here. We use the term
object number to refer to the result of the application of space ordering. For example,
twodimensional  rectangle  objects  can  be  transformed  into  one  of  the  following
representative points

1. The centroid

2. The centroid and the horizontal and vertical extends

3. The  x  and  y  coordinate  values  of  the  two  diagonally  opposite  corners  of  the
rectangle

4. The (x,y) pair or the lower right corner of the rectangle and its height and width

Illustration 3: (a) Four BBs (b) Min coverage 
(c) Min overlap (dead area in grey)



Consider for example the following collection of rectangle objects in illustration 4, which
are reduced to their  centroid.  The numbers associated with the rectangles denote the
relative times at which they were created. 

  Illustration 5 shows the results of applying a Morton order (a) and a Peano Hilbert order
(b) to the above collection. 

Illustration 4: A collection of rectangle objects



Once the N objects have been ordered, the hierarchy D is built in the order Dn, Dn−1, ..., D1,
D0, where n is the smallest power of M such that Mn ≥ N. Dn consists of the set of original
objects and their bounding boxes. There are two ways of grouping the items to form the
hierarchy  D:  one-dimensional  and  multidimensional  grouping.  In  the  one-dimensional
grouping method, Dn−1 is formed as follows: 

 The first M objects and their corresponding bounding boxes form the first aggregate, the
second M objects and their corresponding bounding boxes form the second aggregate, and
so on. Dn−2 is formed by applying this aggregation process again to the set Dn−1 of N/M
objects and their bounding boxes. This process is continued recursively until we obtain the
set D0 containing just one element corresponding to a bounding box that encloses all of the
objects. Note, however, that when the process is continued recursively, the elements of the
sets Di (0 ≤ i ≤ n − 1) are not necessarily ordered in the same manner as the elements of Dn.

  There are several implementations of the object-tree pyramid using the one-dimensional
grouping methods. For example, the Hilbert packed R-tree [11] is an object-tree pyramid
that makes use of a Peano-Hilbert order. It is important to note that only the leaf nodes of
the Hilbert  packed R-tree are ordered using the Peano-Hilbert  order.  The nodes at  the
remaining levels are ordered according to the time at which they were created.

  A slightly different approach is employed in the  packed R-tree [12],  which is  another
instance of an object-tree pyramid. The packed R-tree is based on ordering the objects on
the basis of some criterion, such as increasing value of the x coordinate or any of the
space-ordering methods shown in Figure 5. Once this order has been obtained, the leaf
nodes in the packed R-tree are filled by examining the objects in increasing order, where
each leaf node is filled with the first unprocessed object and its M − 1 nearest neighbors
that have not yet been inserted into other leaf nodes. Once an entire level of the packed R-
tree has been obtained, the algorithm is reapplied to add nodes at the next level using the

Illustration 5: Space ordering methods : (a) Morton (b) Peano Hilbert



same nearest neighbor criterion, terminating when a level contains just one node. The only
difference between the ordering that is applied at the levels containing the nonleaf nodes
from that used at the level of the leaf nodes is that, in the former case we are ordering the
bounding boxes while, in the latter case, we are ordering the actual objects.

            2.1.2 Multidimensional grouping – The STR method 

  The sort-tile-recurse method (STR method) of Leutenegger, Lopez, and Edgington [7] is an
example  of  the  multidimensional  grouping  method.  It  is  assumed,  without  loss  of
generality, that the underlying space is  two-dimensional,  although the extension of the
method to higher dimensions is straightforward. 

  Assuming a total of N rectangles and a node capacity of M rectangles per leaf node, Dn−1 is
formed by constructing a tiling of the underlying space consisting of s vertical slabs, where
each slab contains s tiles. Each tile corresponds to an object-tree pyramid leaf node that is
filled to capacity. Note that the result of this process is that the underlying space is being
tiled with rectangular tiles, thereby resembling a grid, but, most importantly, unlike a grid,
the horizontal edges of horizontally adjacent tiles (i.e., with a common vertical edge)  do
not  form  a  straight  line (i.e.,  are  not  connected).  Using  this  process  means  that  the
underlying space is  tiled with approximately sqrt(N/M) × sqrt(N/M) tiles  and results  in
approximately N/M object-tree pyramid leaf nodes. The tiling process is applied recursively
to these N/M tiles to form Dn−2, Dn−3,... until just one node is obtained.

  The  STR  method builds  the object-tree  pyramid in  a  bottom-up manner.  The  actual
mechanics of the STR method are as follows: 

 Sort the rectangles on the basis of one coordinate value of some easily identified point that
is associated with them, say the x coordinate value of their centroid. Aggregate the sorted
rectangles into sqrt(N/M) groups of sqrt(NM) rectangles, each of which forms a  vertical

Illustration 6: The bounding boxes corresponding to the first level of aggregation for the (a) 
Hilbertpacked R-tree, (b) Morton packed R-tree, and (c) packed R-tree (using a Peano-Hilbertorder
for the initial ordering) for the collection of 22 rectangle objects M = 6



slab containing all rectangles whose centroid’s x coordinate value lies in the slab. Next, for
each vertical slab v, sort all  rectangles in v on the basis of their centroid’s y coordinate
value. Aggregate the sqrt(NM) sorted rectangles in each slab v into sqrt(N/M) groups of M
rectangles each. Recall that the elements of these groups form the leaf nodes of the object-
tree pyramid. Notice that the minimum bounding boxes of the rectangles in each tile are
usually  larger  than  the  tiles.  The  process  of  forming  a  gridlike  tiling  is  now  applied
recursively to the N/M minimum bounding boxes of the tiles, with N taking on the value of
N/M until the number of tiles is no larger than M, in which case all of the tiles fit in the root
node, and we are done.

  A couple of items are worthy of further note. First, the minimum bounding boxes of the
rectangles in each tile are usually larger than the tiles. This means that  the tiles at each
level will overlap. Thus, we do not have a true grid in the sense that the elements at each
level  of  the  object-tree  pyramid  are  usually  not  disjoint.  Second,  the  ordering  that  is
applied is quite similar to a row order (actually column order to be precise), where the x
coordinate value serves as a primary key to form the vertical slabs while the y coordinate
value serves as the secondary key to form the tiles from the vertical slabs. 

Notice that the STR method is a bottom-up technique. However, the same idea could also
be applied in a top-down manner so that we originally start with M tiles that are then
further partitioned. In other words, we start with sqrt(M) vertical slabs containing sqrt(M)
tiles apiece. The disadvantage of the top-down method is that it requires that we make
roughly  2logMN  passes  over  all  of  the  data,  whereas  the  bottom-up  method  has  the
advantage of making just two passes over the data (one for the x coordinate value and one
for  the  y  coordinate  value)  since  all  recursive  invocations  of  the  algorithm  deal  with
centroids  of  the  tiles.  Regardless  of  how  the  objects  are  aggregated,  the  object-tree
pyramid is analogous to a height-balanced M-ary tree where only the leaf nodes contain
data (objects in this case), and all of the leaf nodes are at the same level.

2.2 Extend based aggregation techniques – the R-Tree

  When the objects  are  to  be aggregated on the basis  of  their  extent  (i.e.,  the  space
occupied by their bounding boxes), then good dynamic behavior is achieved by making use
of an  R-tree [1]. An R-tree is a generalization of the object-tree pyramid where, for an
order (m,M) R-tree, the number of objects or bounding boxes that are aggregated in each
node is permitted to range between m ≤ M/2 and M. On the other hand, it is always M for
the object-tree pyramid. The root node in an R-tree has at least two entries unless it is a
leaf node, in which case it has just one entry corresponding to the bounding box of an
object.  The R-tree is  usually built  as the objects are encountered  rather than after all
objects have been input. Of the different variations on the object-tree pyramid that we
have  presented,  the  R-tree  is  the  one  used  most  frequently,  especially  in  database
applications. Note that the R-tree is not unique. Its structure depends heavily on the order
in which the individual objects were inserted into (and possibly deleted from) the tree.



  Given that each R-tree node can contain a varying number of objects or bounding boxes,
it is not surprising that the R-tree was inspired by the B-tree. This means that nodes are
viewed as analogous to disk pages. Thus, the parameters defining the tree (i.e., m and M)
are chosen so that a small number of nodes is visited during a spatial query (i.e., variants of
the location query), which means that m and M are usually quite large.

  The need to minimize the number of disk accesses also affects the format of each Rtree
node.  Recall  that in the definition of the object-tree pyramid, each node p contains M
pointers to p’s children and one bounding box corresponding to the union of the bounding
boxes of p’s children. This means that in order to decide which of node p’s children should
be descended, we must access the nodes corresponding to these children to perform the
point-inclusion test. Each such access requires a disk I/O operation. In order to avoid these
disk I/O operations, the format of R-tree node p is modified so that p contains k (m ≤ k ≤ M)
pointers to p’s children and the k bounding boxes of p’s children, instead of containing just
one bounding box corresponding to the union of the bounding boxes of p’s children as is
the case for the object-tree pyramid. Once again, we observe that the k point inclusion
tests do not require any disk I/O operations at the cost of being able to aggregate a smaller
number of objects in each node since m and M are now smaller, assuming that the page
size is fixed.

  As long as the number of objects in each R-tree leaf node is between m and M, no action
needs to be taken on the R-tree structure other than adjusting the bounding boxes when
inserting or deleting an object. If the number of objects in a leaf node decreases below m,
then the node is said to  underflow. In this case, the objects in the underflowing nodes
must  be  reinserted,  and  bounding  boxes  in  nonleaf  nodes  must  be  adjusted.  If  these
nonleaf nodes also underflow, then the objects in their leaf nodes must also be reinserted.
If  the  number  of  objects  in  a  leaf  node  increases  above  M,  then  the  node  is  said  to
overflow.  In this case, it must be split,  and the M + 1 objects that it  contains must be
distributed in the two resulting nodes. Splits are propagated up the tree.

  Underflows in an R-tree are handled in an analogous manner to the way they are dealt

Illustration 7: example rTree (a) data structure (b) spatial extends



with  in  a  B-tree.  In  contrast,  the  overflow situation  points  out  a  significant  difference
between an R-tree and a B-tree. In a B-tree, we usually do not have a choice as to the node
p that is to contain t since the tree is ordered. Thus, once we determine that p is full, we
must either split p or apply a rotation (also known as deferred splitting) process. On the
other hand, in an R-tree, we can insert t into any node p, as long as p is not full . However,
once t is inserted into p, we must expand the bounding box associated with p to include
the space spanned by the bounding box b of t. Of course, we can also insert t in a full node
p, in which case we must also split p.

  The need to expand the bounding box of p has an effect on the future performance of the
R-tree,  and thus we must make a wise choice with respect to p.  As in the case of the
object-tree  pyramid,  the  efficiency  of  the  R-tree  for  search  operations  depends  on its
abilities to distinguish between occupied space and unoccupied space and to prevent a
node from being examined needlessly due to a false overlap with other nodes. Again, as in
the object-tree pyramid, the extent to which these efficiencies are realized is a direct result
of how well we are able to satisfy our goals of minimizing  coverage  and overlap. These
goals guide the initial R-tree creation process and are subject to the previously mentioned
constraint that the R-tree is usually built as the objects are encountered rather than after
all objects have been input.

3. R-Tree Construction : bulk insertion and bulk loading

   At times, it is desired to update an existing object-tree pyramid with a large number of
objects at once. Performing these updates one object at a time using the implementations
of the dynamic methods described above can be expensive. The CPU and I/O costs can be
lowered by grouping the input objects prior to the insertion. This technique is known as
bulk insertion. It can also be used to build the object-tree pyramid from scratch, in which
case it is also known as bulk loading. 

  A simple bulk insertion idea is to sort all of the m new objects to be inserted according to
some order (e.g., Peano-Hilbert) and then insert them into an existing object-tree pyramid
in this  order.  The rationale for sorting the new objects  is  to have each new object  be
relatively close to the previously inserted object so that, most of the time, the nodes on
the insertion path are likely to be the same, which is even more likely to be the case if
some  caching  mechanism  is  employed.  Thus,  the  total  number  of  I/O  operations  is
reduced. This technique works fine when the number of objects being inserted is small
relative to the total number of objects. Also, it may be the best choice when the collection
of new objects is spread over a relatively large portion of the underlying space, as, in such
cases, the use of other methods may lead to excessive overlap. It can be used with any of
the methods of building an object-tree pyramid.

  The  bulk loading methods that we describe [14, 13] are quite different from the bulk
insertion methods described above as the individual objects are inserted using the dynamic
insertion rules. In particular, the objects are not preprocessed (e.g., via an explicit sorting
step or aggregation into a distinct object-tree pyramid) prior to insertion as is the case for



the bulk insertion methods. In particular, the sorting can be viewed as a variant of a lazy
evaluation method, where the sorting is deferred as much as possible. Nevertheless, at the
end of the bulk loading process, the data is ordered on the basis of the underlying tree
structure and hence can be considered sorted. These methods are general in that they are
applicable to most balanced tree data structures that resemble a B-tree, including a large
class  of  multidimensional  index  structures,  such as  the  R-tree.  They  are  based  on the
general concept of the buffer tree of Arge [15], in which case each internal node of the
buffer tree structure contains a buffer of records stored on disk. A main memory buffer is
employed when transferring records from the buffer of a node to the buffers of its child
nodes. 

  In simpler terms, the process works as follows. We keep inserting into the buffer of the
root node until its buffer is full. At this time, we distribute its content, as described above,
and  possibly  reapply  the  process  to  the  children  if  they  are  full,  and  so  on,  until
encountering leaf nodes, at which time a node split is needed if the nodes contain more
entries than the block size. Once all full buffers have been emptied, the root’s buffer is
filled with more data, and the insertion process is repeated. Once all of the objects in the
dataset have been processed, a pass is made over the buffer associated with the root node,
and the remaining entries are inserted into the appropriate children of the tree rooted at
the node. The same process is applied to the buffers associated with the children of the
root and their descendants so that all nonempty buffers in the tree have been emptied. At
this point, the leaf nodes of the object-tree pyramid have been constructed. Next, apply
the same building process to the minimum bounding boxes of the leaf nodes,  thereby
constructing the level of the object tree pyramid corresponding to the parents of the leaf
nodes. This process is continued until the number of leaf nodes is less than the maximum
capacity of an object-tree pyramid leaf node.

4. R-Trees on GPUs

  As commodity GPUs (Graphics Processing Units) are increasingly becoming available on
personal workstations and cluster computers, there are considerable research interests in
applying  the  massive  data  parallel  GPGPU  (General  Purpose  computing  on  GPUs)
technologies to index and query large-scale geospatial data on GPUs using R-Trees. In the
study by You et al [2] the potentials of accelerating both R-Tree bulk loading and spatial
window query processing on GPUs using R-Trees are evaluated. In addition to designing an
efficient data layout schema for R-Trees on GPUs, they implement several parallel spatial
window query processing techniques on GPUs using both dynamically generated R-Trees
constructed on CPUs and bulk loaded R-Trees constructed on GPUs. 



4. 1 Node Layout 

  Simple linear array based data structures are used to represent an R-Tree. Simple linear
data  structures  can  be  easily  streamed  between  CPU  main  memory  and  GPU  device
memory without serialization and are also cache friendly on both CPUs and GPUs. In this
design, each non-leaf node is represented as a  tuple {MBR, pos, len}, where MBR is the
minimum bounding rectangle of the corresponding node, pos and len are the first child
position and the number of children, respectively, as illustrated in Fig. 8

 

  The  tree  nodes are  serialized  into  an  array  based on the  Breadth-First  Search  (BFS)
ordering. The decision to record only the first child node position instead of recording the
positions of all child nodes in our approach is to reduce memory footprint. Since sibling
nodes are stored sequentially, their positions can be easily calculated by adding the offsets
back  to  the  first  child  node  position.  In  addition  to  memory  efficiency,  the  feature  is
desirable on GPUs as it facilitates parallelization by using thread identifiers as the offsets.

Illustration 8: Node layout of linearized R-Tree



4. 2 Parallel Bulk Loading on GPUs

  In the study at hand, both low-x packing [6] and STR packing [7] are implemented for bulk
loading  R-Trees.  Instead  of  using  native  GPU  programming  languages  (such  as  Nvidia
CUDA3)  directly,  the   implementations  are  built  on  top  of  several  parallel  primitives
provided by the Thrust library [5]. 

  To explain low-x packing two concepts must be presented : 

– reduce : reduce is a generalization of summation. it  computes the sum (or some
other binary operation) of all the elements in the range [first, last). Reduce is similar
to  the  C++  Standard  Template  Library's  std::accumulate.  The  primary  difference
between  the  two  functions  is  that  std::accumulate  guarantees  the  order  of
summation, while reduce requires associativity of the binary operation to parallelize
the reduction.

– reduce_by_key is a generalization of reduce to key-value pairs. For each group of
consecutive keys in the range [keys_first, keys_last) that are equal, reduce_by_key
copies the first element of the group to the keys_output. The corresponding values
in the range are reduced using the plus and the result copied to values_output.

  The low-x packing approach is the parallel counterpart of one-dimensional grouping using
low-x ordering. In the sorting stage, the original data (MBRs) is sorted by applying a linear
ordering schema (low-x in this case) using a sort_by_key parallel primitive. Every d items
are packed into one node at the upper level until the root is created. We first calculate the
number  of  levels  and  the  number  of  nodes  at  each  level  for  memory  allocation  and
addressing  during  the  packing  iteration.  We  then  construct  the  R-Tree  level  by  level
bottom-up using a reduce_by_key primitive. The MBRs, first child positions and numbers of
children are evaluated from the data items at the lower levels as follows. For the d items
with a same key (ie belonging to the same node), the MBR for the parent node is the union
of  MBRs  of  the  children nodes.  For  each  R-Tree  node,  the  first  child  position  (pos)  is
computed  as  the  minimum  sequential  index  of  lower  level  nodes  (by  using  a
counting_iterator)  and  the  length  (len)  is  calculated  as  the  sum  of  1s  (by  using  a
const_iterator initially set to 1) for each child node. 

  The parallel version of the Sort-Tile-Recurse R-Tree bulk loading algorithm on GPUs differs
from the sequential one, in the application of a sort_by_key parallel primitive in the initial
sorting  step  and the  parallel  sorting  of  the  vertical  slabs  produced.  To  implement  the
second sort where each slice is sorted individually, an auxiliary array is used to identify
items  that  belong  to  the  same  slice.  This  is  achieved  by  assigning  the  same  unique
identifier  for all  items that belong to the same slice.   The difference between the two
packing  algorithms  is  that  the  low-x  packing  algorithm  only  sorts  once  while  the  STR
packing algorithm requires multiple sorts at each level.



5. GPU based R-Tree batched query

 

 Instead of accelerating a single query, the goal of a parallel implementation as in [2] is to
support efficient  batched query processing on the GPU in parallel. To leverage massively
parallel  processing  power  of  GPUs,  we  need  to  balance  workload  among  all  parallel
processing units while minimizing expensive global memory operations on GPUs.

  In the DFS approach, each thread processes a query in a Depth-FirstSearch (DFS) manner
and thus a stack is required to track visited nodes for each query. A naïve implementation
can be maintaining the stack on GPU global memory and each thread does its own work.
Note that the stack is frequently read and written but the global memory accesses are not
coalesced  in  the  naive  implementation.  To  improve  the  performance,  perblock  shared
memory is utilized for the stack structure instead. While it is well known that GPU shared
memory is usually limited for many applications,  this is not a disabling factor for DFS based
R-Tree query processing although it does affect the scalability of the approach. For an R-
Tree with a depth of h, which is typically in the order of a few tens, a stack of size larger
than h is sufficient for DFS-based queries. As we assign a thread to a query in a batch, the
total required shared memory M is in the order of h*t, where t is the number of threads in
a computing block (or the number of queries in a batch). Even for t as large as 256, M is still
significantly less than the typical 16 KB or 48 KB limit. To keep track of visited information
in DFS traversals, the data items in the stack are organized using two fields, index and visit.
The  index  field  is  the  position  to  the  R-Tree  node  array  that  provides  access  to  the
corresponding  R-Tree node.  The  visit  field  is  used for  recording  the  number  of  visited
children under the current R-Tree node.

  As an improvement to the DFS-based spatial window query processing technique, the
BFS-based technique is developed to balance the workload within a GPU computing block.
A  queue  is  maintained for  all  the  threads inside  a  computing  block  to  process  all  the
batched queries assigned to a computing block. Each element of the queue is represented
in the form of {index, qid} where index is the position to the R-Tree node array so that the
corresponding R-Tree node can be retrieved (the same as in DFS based one). The qid field
represents the identifier of the query that is being processed. In the BFS-based technique,
R-Tree  nodes  whose  MBRs  intersect  with  any  of  the  query  windows  are  expanded  in
parallel and stored in the queue level by level.



6. Experiments and evaluation 

  All  experiments  are  performed on a  workstation  with two Intel  E5405 processors  at
2.0GHz (8 cores in total) and one Nvidia Quadro 6000 GPU with CUDA 5.0 installed. For all
experiments,  -O3  flag  is  used  for  optimization.  To  evaluate  the  performance  of  the
proposed techniques,  we use benchmark datasets  from R-Tree benchmark [9].   As the
baseline for CPU-based dynamic R-Tree implementation, [8] was used.

Illustration 9



Illustration 10: query performance on differenct R-Trees

Illustration 11: Performance comparison between BFS and DFS based query 
processing



7. Conclusions

  In the study at hand [2], parallel designs were implemented for R-Tree representation,
bulk loading and query processing on GPUs. Extensive experiments have shown that the
GPU parallel  query  implementations  can provide  great  speed ups  over  multi-core  CPU
based implementations.  It has also been shown that R-Tree qualities can have significant
impacts on query performance on GPUs. Building high quality R-Tree on the GPU is crucial
to achieve high performance in query processing.

  An interesting observation in [10] pointed out that space-driven indexes (e.g., quadtree
variants)  worked  better  than  data-driven  indexes  (e.g.,  R-Tree  variants)  in  a  parallel
computing context (e.g., the Thinking Machine CM-5 used in the experiments). However, it
is unclear to what degree the observation still holds on modern GPUs which have a quite
different  parallel  hardware  architecture.  As  future  work  plan,  in  addition  to  further
investigating on GPU based bulk loading that have been discussed inline, it's also planned
to  compare  R-Tree  based  indexing  approaches  with  quadtree  based  ones  on  GPUs  to
further explore their respective advantages and disadvantages. 
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