Boost logo

Boost :

From: Rob Stewart (stewart_at_[hidden])
Date: 2005-07-18 13:52:46


From: David Abrahams <dave_at_[hidden]>
>
> I think the tutorial documentation is close to complete. Last minute
> editorial comments would be appreciated. See
>
> libs/parameter/doc/html/index.html

I just took a look at
http://boost-consulting.com/boost/libs/parameter/doc/html/index.html
and I have a few comments.

> The best way to make comments is to embed them in a copy of the
> source:
>
> libs/parameter/doc/index.rst

Attached.

-- 
Rob Stewart                           stewart_at_[hidden]
Software Engineer                     http://www.sig.com
Susquehanna International Group, LLP  using std::disclaimer;
===File ~/tmp/index.rst=====================================
+++++++++++++++++++++++++++++++++++++++++++++++++
 The Boost Parameter Library |(logo)|__
+++++++++++++++++++++++++++++++++++++++++++++++++
.. |(logo)| image:: ../../../../boost.png
   :alt: Boost
__ ../../../../index.htm
.. Firefox, at least, seems to need some help lowering
   subscripts. Without the following, subscripts seem not to drop
   at all.
.. raw:: html
  <style type="text/css">
  sub {
    vertical-align: -20%
  }
  </style>
-------------------------------------
:Authors:       David Abrahams, Daniel Wallin
:Contact:       dave_at_[hidden], dalwan01_at_[hidden]
:organization:  `Boost Consulting`_
:date:          $Date: 2005/07/15 18:43:59 $
:copyright:     Copyright David Abrahams, Daniel Wallin
                2005. Distributed under the Boost Software License,
                Version 1.0. (See accompanying file LICENSE_1_0.txt
                or copy at http://www.boost.org/LICENSE_1_0.txt)
.. _`Boost Consulting`: http://www.boost-consulting.com
:Abstract: Use this library to write functions that accept
  arguments by name:
  .. parsed-literal::
    new_window("alert", **width=10**, **titlebar=false**);
  This capability is especially useful when a function has more
  than one argument with a useful default value, since named
  arguments can be passed in any order.
.. _concepts: ../../../more/generic_programming.html#concept
.. contents:: **Table of Contents**
.. role:: concept
   :class: interpreted
.. section-numbering::
-------------------------------------
==============
 Introduction
==============
In C++, arguments are normally given meaning by their positions
with respect to a parameter list.  That protocol is fine when there
is at most one parameter with a default value, but when there are
even a few useful defaults, the positional interface becomes
burdensome:
* Since an argument's meaning is given by its position, we have to
  choose an (often arbitrary) order for parameters with default
  values, making some combinations of defaults unusable:
  .. parsed-literal::
    window* new_window(
       char const* name, 
       **int border_width = default_border_width,**
       bool movable = true,
       bool initially_visible = true
       );
    const bool movability = false;
    window* w = new_window("alert box", movability);
  In the example above we wanted to make an unmoveable window
  with a default ``border_width``, but instead we got a moveable
  window with a ``border_width`` of zero.  To get the desired
  effect, we'd need to write:
  .. parsed-literal::
    window* w = new_window(
       "alert box", **default_border_width**, movability);
* It can become difficult for readers to understand the meaning of
  arguments at the call site::
    window* w = new_window("alert", 1, true, false);
  Is this window moveable and initially invisible, or unmoveable
  and initially visible?  The reader needs to remember the order
  of arguments to be sure.  
* The author of the call may not remember the order of the
  arguments either, leading to hard-to-find bugs.
This library addresses the problems outlined above by associating
each parameter with a keyword object.  Now users can identify
arguments by keyword, rather than by position:
.. parsed-literal::
  window* w = new_window("alert box", **movable=**\ false); // OK!
.. I'm inclined to leave this part out.  In particular, the 2nd
   point is kinda lame because even with the library, we need to
   introduce overloads -- dwa:
   C++ has two other limitations, with respect to default arguments,
   that are unrelated to its positional interface:
   * Default values cannot depend on the values of other function
     parameters:
     .. parsed-literal::
       // Can we make resize windows to a square shape by default?
       void resize(
         window* w,
         int **width**, 
         int height **= width** // nope, error!
       );
   * Default values in function templates are useless for any
     argument whose type should be deduced when the argument is
     supplied explicitly::
        template <class T> 
        void f(T x = 0);
        f(3.14) // ok: x supplied explicitly; T is double
        f();    // error: can't deduce T from default argument 0!
   As a side effect of using the Boost Parameter library, you may find
   that you circumvent both of these limitations quite naturally.
==========
 Tutorial
==========
In this section we'll show how the Parameter library can be used to
build an expressive interface to the `Boost Graph library`__\ 's
|dfs|_ algorithm. [#old_interface]_ After laying some groundwork
and describing the algorithm's abstract interface, we'll show you
how to build a basic implementation with keyword support.  Then
we'll add support for default arguments and we'll gradually refine the
implementation with syntax improvements.  Finally we'll show how to
streamline the implementation of named parameter interfaces,
improve their participation in overload resolution, and optimize
their runtime efficiency.
__ ../../../graph/index.html
.. _dfs: ../../../graph/doc/depth_first_search.html
.. |dfs| replace:: ``depth_first_search``
Headers And Namespaces
======================
Most components of the Parameter library are declared in a
header named for the component.  For example, ::
  #include <boost/parameter/keyword.hpp>
will ensure ``boost::parameter::keyword`` is known to the
compiler.  There is also a combined header,
``boost/parameter.hpp``, that includes most of the library's
components.  For the the rest of this tutorial, unless we say
otherwise, you can use the rule above to figure out which header
to ``#include`` to access any given component of the library.
Also, the examples below will also be written as if the
namespace alias ::
  namespace parameter = boost::parameter;
has been declared: we'll write ``parameter::xxx`` instead of
``boost::parameter::xxx``.
The Abstract Interface to |dfs|
===============================
The Graph library's |dfs| algorithm is a generic function accepting
between one and four arguments by reference, as shown in the table
below:
Seeing the function described via table is harder to grasp.  I suggest showing the function signature first, but omit the defaults for clarity.  That will provide parameter names, in context, which will make the connection to the table simpler.
.. _`parameter table`: 
.. _`default expressions`: 
.. table:: ``depth_first_search`` Parameters
  +----------------+----------+----------------------------------+
  | Parameter Name | Dataflow | Default Value (if any)           |
  +================+==========+==================================+
  |``graph``       | in       |none - this argument is required. |
  +----------------+----------+----------------------------------+
  |``visitor``     | in       |``boost::dfs_visitor<>()``        |
  +----------------+----------+----------------------------------+
  |``root_vertex`` | in       |``*vertices(graph).first``        |
  +----------------+----------+----------------------------------+
  |``index_map``   | in       |``get(boost::vertex_index,graph)``|
  +----------------+----------+----------------------------------+
  |``color_map``   | out      |an ``iterator_property_map``      |
  |                |          |created from a ``std::vector`` of |
  |                |          |``default_color_type`` of size    |
  |                |          |``num_vertices(graph)`` and using |
  |                |          |the ``index_map`` for the index   |
  |                |          |map.                              |
  +----------------+----------+----------------------------------+
Don't be intimidated by the complex default values.  For the
purposes of this exercise, you don't need to understand what they
mean. Also, we'll show you how the default for ``color_map`` is
computed later in the tutorial; trust us when we say that the
complexity of its default will become valuable.
Defining the Keywords
=====================
The point of this exercise is to make it possible to call
``depth_first_search`` with keyword arguments, leaving out any
arguments for which the default is appropriate:
.. parsed-literal::
  graphs::depth_first_search(graph, **color_map = my_color_map**);
To make that syntax legal, there needs to be an object called
``color_map`` with an assignment operator that can accept a
``my_color_map`` argument.  In this step we'll create one such
**keyword object** for each parameter.  Each keyword object will be
identified by a unique **keyword tag type**.  
We're going to define our interface in namespace ``graphs``.  Since
users need access to the keyword objects, but not the tag types,
we'll define the keyword objects so they're acceessible through
``graphs``, and we'll hide the tag types away in a tested
namespace, ``graphs::tag``.  The library provides a convenient
macro for that purpose: [#msvc_keyword]_ ::
  #include <boost/parameter/keyword.hpp>
  namespace graphs
  {
    BOOST_PARAMETER_KEYWORD(tag, graph);
    BOOST_PARAMETER_KEYWORD(tag, visitor);
    BOOST_PARAMETER_KEYWORD(tag, root_vertex);
    BOOST_PARAMETER_KEYWORD(tag, index_map);
    BOOST_PARAMETER_KEYWORD(tag, color_map);
  }
The declaration of the ``visitor`` keyword you see here is
equivalent to::
  namespace graphs 
  {
    namespace tag { struct visitor; }
    namespace { 
      boost::parameter::keyword<tag::visitor>& visitor
      = boost::parameter::keyword<tag::visitor>::get();
    }
  }
This \x{00E2}\x{20AC}\x{0153}fancy dance\x{00E2}\x{20AC} involving the unnamed namespace and references
is all done to avoid violating the One Definition Rule (ODR)
[#odr]_ when the named parameter interface is used by function
templates that are instantiated in multiple translation
units.
Defining the Implementation Function
====================================
Next we can write the skeleton of the function that implements
the core of ``depth_first_search``::
  namespace graphs { namespace core
  {
    template <class ArgumentPack>
    void depth_first_search(ArgumentPack const& args)
    {
        // algorithm implementation goes here
    }
  }}
.. |ArgumentPack| replace:: :concept:`ArgumentPack`
``core::depth_first_search`` has an |ArgumentPack|
parameter: a bundle of references to the arguments that the caller
passes to the algorithm, tagged with their keywords.  To extract
each parameter, just pass its keyword object to the
|ArgumentPack|\ 's subscript operator.  Just to get a feel for how
things work, let's add some temporary code to print the arguments:
.. parsed-literal::
  namespace graphs { namespace core
  {
    template <class ArgumentPack>
    void depth_first_search(ArgumentPack const& args)
    {
        std::cout << "graph:\\t" << **args[graph]** << std::endl;
        std::cout << "visitor:\\t" << **args[visitor]** << std::endl;
        std::cout << "root_vertex:\\t" << **args[root_vertex]** << std::endl;
        std::cout << "index_map:\\t" << **args[index_map]** << std::endl;
        std::cout << "color_map:\\t" << **args[color_map]** << std::endl;
    }
  }} // graphs::core
It's unlikely that many of the arguments the caller will eventually
pass to ``depth_first_search`` can be printed, but for now the code
above will give us something to experiment with.  To see the
keywords in action, we can write a little test driver:
.. parsed-literal::
  int main()
  {
      using namespace graphs;
      core::depth_first_search(**(**
        graph = 'G', visitor = 2, root_vertex = 3.5, 
        index_map = "hello, world", color_map = false\ **)**);
  }
An overloaded comma operator (``operator,``) combines the results
of assigning to each keyword object into a single |ArgumentPack|
object that gets passed on to ``core::depth_first_search``.  The
extra set of parentheses you see in the example above are required:
without them, each assignment would be interpreted as a separate
function argument and the comma operator wouldn't take effect.
We'll show you how to get rid of the extra parentheses later in
this tutorial.
Of course, we can pass the arguments in any order::
  int main()
  {
      using namespace graphs;
      core::depth_first_search((
        root_vertex = 3.14, graph = 'G', color_map = false, 
        index_map = "hello, world", visitor = 2));
  }
either of the two programs above will print::
  graph:       G
  visitor:     2
  root_vertex: 3.5
  index_map:   hello, world
  color_map:   false
Adding Defaults
===============
Currently, all the arguments to ``depth_first_search`` are
required.  If any parameter can't be found, there will be a
compilation error where we try to extract it from the
|ArgumentPack| using the subscript operator.  To make it
legal to omit an argument we need to give it a default value.
Syntax
------
We can make any of the parameters optional by following its keyword
with the ``|`` operator and the parameter's default value within
the square brackets.  In the following example, we've given
``root_vertex`` a default of ``42`` and ``color_map`` a default of
``"hello, world"``.
.. parsed-literal::
  namespace graphs { namespace core
  {
    template <class ArgumentPack>
    void depth_first_search(ArgumentPack const& args)
    {
        std::cout << "graph:\\t" << args[graph] << std::endl;
        std::cout << "visitor:\\t" << args[visitor] << std::endl;
        std::cout << "root_vertex:\\t" << args[root_vertex\ **|42**\ ] << std::endl;
        std::cout << "index_map:\\t" << args[index_map] << std::endl;
        std::cout << "color_map:\\t" << args[color_map\ **|"hello, world"**\ ] << std::endl;
    }
  }} // graphs::core
Now we can invoke the function without supplying ``color_map`` or
``root_vertex``::
  core::depth_first_search((
    graph = 'G', index_map = "index", visitor = 6));
The call above would print::
  graph:       G
  visitor:     6
  root_vertex: 42
  index_map:   index
  color_map:   hello, world
.. Important::
   The index expression ``args[\x{00E2}\x{20AC}\x{00A6}]`` always yields a *reference*
   that is bound either to the actual argument passed by the caller
   or, if no argument is passed explicitly, to the specified
   default value.
Getting More Realistic
----------------------
Now it's time to put some more realistic defaults in place.  We'll
have to give up our print statements\x{00E2}\x{20AC}\x{201D}at least if we want to see the
defaults work\x{00E2}\x{20AC}\x{201D}since the default values of these
parameters generally aren't printable.
Instead, we'll connect local variables to the arguments and use
those in our algorithm:
.. parsed-literal::
  namespace graphs { namespace core
  {
    template <class ArgumentPack>
    void depth_first_search(ArgumentPack const& args)
    {
        *Graph*   g = args[graph];
        *Visitor* v = args[visitor|\ *default-expression*\ :sub:`1`\ ];
        *Vertex*  s = args[root_vertex|\ *default-expression*\ :sub:`2`\ ];
        *Index*   i = args[index_map|\ *default-expression*\ :sub:`3`\ ];
        *Color*   c = args[visitor|\ *default-expression*\ :sub:`4`\ ];
        *\x{00E2}\x{20AC}\x{00A6}use g, v, s, i, and c to implement the algorithm\x{00E2}\x{20AC}\x{00A6}*
    }
  }} // graphs::core
We'll insert the `default expressions`_ in a moment, but first we
need to come up with the types *Graph*, *Visitor*, *Vertex*,
*Index*, and *Color*.
The ``binding`` |Metafunction|_
-------------------------------
To compute the type of a parameter we can use a |Metafunction|_
called ``binding``:
.. parsed-literal::
  binding<ArgumentPack, Keyword, Default = void>
  { typedef *see text* type; };
where ``Default`` is the type of the default argument, if any.
For example, to declare and initialize ``g`` above, we could write:
.. parsed-literal::
  typedef typename parameter::binding<
    ArgumentPack,\ **tag::graph**
  >::type Graph;
  Graph g = args[graph];
As shown in the `parameter table`_, ``graph`` has no default, so
the ``binding`` invocation for *Graph* takes only two arguments.
The default ``visitor`` is ``boost::dfs_visitor<>()``, so the
``binding`` invocation for *Visitor* takes three arguments:
.. parsed-literal::
  typedef typename parameter::binding<
    ArgumentPack,\ **tag::visitor,boost::dfs_visitor<>**
  >::type Visitor;
  Visitor v = args[visitor|\ **boost::dfs_visitor<>()**\ ];
Note that the default ``visitor`` is supplied as a *temporary*
instance of ``dfs_visitor``.  Because ``args[\x{00E2}\x{20AC}\x{00A6}]`` always yields
a reference, making ``v`` a reference would cause it to bind to
that temporary, and immediately dangle.  Therefore, it's crucial
that we passed ``dfs_visitor<>``, and not ``dfs_visitor<>
const&``, as the last argument to ``binding``.
.. Important:: 
   Never pass ``binding`` a reference type as the default unless
   you know that the default value passed to the |ArgumentPack|\ 's
   indexing operator will outlive the reference you'll bind to it.
Sometimes there's no need to use ``binding`` at all.  The
``root_vertex`` argument is required to be of the graph's
``vertex_descriptor`` type, [#vertex_descriptor]_ so we can just
use that knowledge to bypass ``binding`` altogether.
.. parsed-literal::
  typename **boost::graph_traits<Graph>::vertex_descriptor**
    s = args[root_vertex|\ ***vertices(g).first**\ ];
.. _dangling:
.. |Metafunction| replace:: :concept:`Metafunction`
.. _Metafunction: ../../../mpl/doc/refmanual/metafunction.html
Beyond Ordinary Default Arguments
---------------------------------
Here's how you might write the declaration for the ``index_map``
parameter:
.. parsed-literal::
  typedef typename parameter::binding<
      ArgumentPack
    , tag::index_map
    , **typename boost::property_map<Graph, vertex_index_t>::const_type**
  >::type Index;
  Index i = args[index_map|\ **get(boost::vertex_index,g)**\ ];
Notice two capabilities we've gained over what
plain C++ default arguments provide:
1. The default value of the ``index`` parameter depends on the
   value of the ``graph`` parameter.  That's illegal in plain C++:
   
   .. parsed-literal::
     void f(int **graph**, int index = **graph** + 1); // error
2. The ``index`` parameter has a useful default, yet it is
   templated and its type can be deduced when  an ``index``
   argument is explicitly specified by the caller.  In plain C++, you
   can *specify* a default value for a parameter with deduced type,
   but it's not very useful:
   .. parsed-literal::
     template <class Index>
     int f(Index index **= 42**);  // OK
     int y = f();                // **error; can't deduce Index**
Syntactic Refinement
====================
In this section we'll describe how you can allow callers to invoke
``depth_first_search`` with just one pair of parentheses, and to
omit keywords where appropriate.
Describing the Positional Argument Order
----------------------------------------
.. _ParameterSpec:
.. |ParameterSpec| replace:: :concept:`ParameterSpec`
First, we'll need to build a type that describes the allowed
parameters and their ordering when passed positionally.  This type
is known as a |ParameterSpec|. [#typedef]_ ::
  namespace graphs
  {
    struct dfs_params
      : parameter::parameters<
            tag::graph
          , tag::visitor
          , tag::root_vertex
          , tag::index_map
          , tag::color_map
        >
    {};
  }
The ``parameters`` template supplies a function-call
operator that groups all its arguments into an |ArgumentPack|.  Any
arguments passed to it without a keyword label will be associated
with a parameter according to its position in the |ParameterSpec|.
So for example, given an object ``p`` of type ``dfs_params``, ::
  p('G', index_map=1)
yields an |ArgumentPack| whose ``graph`` parameter has a value of
``'G'``, and whose ``index_map`` parameter has a value of ``1``.
Forwarding Functions
--------------------
  
Next we need a family of overloaded ``depth_first_search`` function
templates that can be called with anywhere from one to five
arguments.  These *forwarding functions* will invoke an instance of
``dfs_params`` as a function object, passing their parameters
to its ``operator()`` and forwarding the result on to
``core::depth_first_search``::
  namespace graphs
  {
    template <class A0>
    void depth_first_search(A0 const& a0)
    {
       core::depth_first_search(dfs_params()(a0));
    }
    template <class A0, class A1>
    void depth_first_search(A0 const& a0, A1 const& a1)
    {
       core::depth_first_search(dfs_params()(a0,a1));
    }
This is hard to see:
                      \x{00E2}\x{2039}\x{00AE}
    template <class A0, class A1, \x{00E2}\x{20AC}\x{00A6}class A4>
    void depth_first_search(A0 const& a0, A1 const& a1, \x{00E2}\x{20AC}\x{00A6}A4 const& a4)
    {
       core::depth_first_search(dfs_params()(a0,a1,a2,a3,a4));
    }
  }
That's it!  We can now call ``graphs::depth_first_search`` with
from one to five arguments passed positionally or via keyword.
\x{00E2}\x{20AC}\x{0153}Out\x{00E2}\x{20AC} Parameters
----------------
Well, that's not *quite* it.  The overload set above works fine
when ``color_map`` is passed by keyword, but it breaks down when it
is passed positionally.  As you may recall from the
``depth_first_search`` `parameter table`_, ``color_map`` is an
\x{00E2}\x{20AC}\x{0153}out\x{00E2}\x{20AC} parameter.  That means the five-argument
``depth_first_search`` overload should really take its final
argument by non-``const`` reference.  On the other hand, assigning
into a keyword object yields a temporary |ArgumentPack| object, and
*Where is this assignment occurring?*
a conforming C++ compiler will refuse to bind a non-``const``
reference to a temporary.  To support an interface in which the last
parameter is an \x{00E2}\x{20AC}\x{0153}out\x{00E2}\x{20AC} parameter,
and the last argument is passed by keyword, there must be a
``depth_first_search`` overload taking its other arguments by ``const``
reference.
*Why?*
The simplest solution in this case is to add another
overload:
.. parsed-literal::
   template <class A0, class A1, \x{00E2}\x{20AC}\x{00A6}class A4>
   void depth_first_search(A0 **const&** a0, A1 **const&** a1, \x{00E2}\x{20AC}\x{00A6}\ A4\ **&** a4)
   {
       core::depth_first_search(dfs_params()(a0,a1,a2,a3,a4));
   }
That works nicely, but only because there is only one \x{00E2}\x{20AC}\x{0153}out\x{00E2}\x{20AC}
parameter and it is in the last position.  If ``color_map`` had
been the first parameter, we would have needed *ten* overloads.  In
the worst case\x{00E2}\x{20AC}\x{201D}where the function has five \x{00E2}\x{20AC}\x{0153}out\x{00E2}\x{20AC} parameters\x{00E2}\x{20AC}\x{201D}2\
:sup:`5` or 32 overloads would be required.  This \x{00E2}\x{20AC}\x{0153}\ `forwarding
problem`_\ \x{00E2}\x{20AC} is well-known to generic library authors, and the C++
standard committee is working on a proposal__ to address it.
.. _`forwarding problem`: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2002/n1385.htm
__ http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1690.html
If it is impractical for you to write the overloads that would be
required for positional \x{00E2}\x{20AC}\x{0153}out\x{00E2}\x{20AC} arguments to be passed directly, you
still have the option to ask users to pass them through |ref|_,
which will ensure that the algorithm implementation sees a
non-``const`` reference:
.. parsed-literal::
  depth_first_search(g, v, s, i, **boost::ref(c)**);
.. |ref| replace:: ``boost::ref``
.. _ref: http://www.boost.org/doc/html/reference_wrapper.html
Generating Forwarding Functions with Macros
-------------------------------------------
To remove some of the tedium of writing overloaded forwarding
functions, the library supplies a macro, suitably located in
``boost/parameter/macros.hpp``, that will generate free function
overloads for you::
  BOOST_PARAMETER_FUN(void, depth_first_search, 1, 5, dfs_params);
will generate a family of five ``depth_first_search`` overloads, in
the current scope, that pass their arguments through
``dfs_params``.  Instead of ``core::depth_first_search``, these
overloads will forward the |ArgumentPack| on to a function called
``depth_first_search_with_named_params``, also in the current
scope.  It's up to you to implement that function.  You could
simply transplant the body of ``core::depth_first_search`` into
``depth_first_search_with_named_params`` if you were going to use
this approach.
Note that ``BOOST_PARAMETER_FUN`` only takes arguments by ``const``
reference, so you will have to add any additional overloads
required to handle positional \x{00E2}\x{20AC}\x{0153}out\x{00E2}\x{20AC} parameters yourself.  We are
looking into providing a more sophisticated set of macros to
address this problem and others, for an upcoming release of Boost.
Controlling Overload Resolution
===============================
The parameters of our templated forwarding functions are completely
general; in fact, they're a perfect match for any argument type
whatsoever.  The problems with exposing such general function
templates have been the subject of much discussion; especially in
the presence of `unqualified calls`__.  Probably the safest thing
to do is to isolate the forwarding functions in a namespace
containing no types [#using]_, but often we'd *like* our functions
to play nicely with argument-dependent lookup and other function
overloads.  In that case, it's neccessary to remove the functions
from the overload set when the passed argument types aren't
appropriate.
__ http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/lwg-defects.html#225
This sort of overload control can be accomplished in C++ by taking
advantage of the SFINAE (Substitution Failure Is Not An Error) rule. [#sfinae]_
The named parameters library provides built-in SFINAE support
through the following class templates:
.. parsed-literal::
     template< class KeywordTag, class Predicate = *unspecified* >
     struct required;
     template< class KeywordTag, class Predicate = *unspecified* >
     struct optional;
Instead of directly using keyword tags in our |ParameterSpec|, we
can use ``required`` and ``optional`` to indicate which function
parameters are required, and optionally pass ``Predicate``\ s to
describe the type requirements for each function parameter.
The ``Predicate`` argument must be a unary  `MPL
lambda expression`_  that, when applied to the
actual type of the argument, indicates whether that argument type
meets the function's requirements for that parameter position.
.. _`MPL lambda expression`: ../../../mpl/doc/refmanual/lambda-expression.html
For example, let's say we want to restrict our ``depth_first_search()`` so that
the ``graph`` parameter is required and the ``root_vertex``
parameter is convertible to ``int``.  We might write:
.. parsed-literal::
  #include <boost/type_traits/is_convertible.hpp>
  #include <boost/mpl/placeholders.hpp>
  namespace graphs
  {
    using namespace boost::mpl::placeholders;
    struct dfs_params
      : parameter::parameters<
            **parameter::required<tag::graph>**
          , parameter::optional<tag::visitor>
          , **parameter::optional<
                tag::root_vertex, boost::is_convertible<_,int>
            >**
          , parameter::optional<tag::index_map>
          , parameter::optional<tag::color_map>
        >
    {};
  }
Now we add an additional defaulted argument to each of our
``depth_first_search`` overloads to trigger SFINAE:
.. parsed-literal::
  namespace graphs
  {
    template <class A0>
    void depth_first_search(
        A0 const& a0
      , typename dfs_params::match<A0>::type p = dfs_params())
    {
       core::depth_first_search(**p**\ (a0));
    }
    template <class A0, class A1>
    void depth_first_search(
        A0 const& a0, A1 const& a1
      , typename dfs_params::match<A0,A1>::type p = dfs_params())
    {
       core::depth_first_search(**p**\ (a0,a1));
    }
                      \x{00E2}\x{2039}\x{00AE}
    template <class A0, class A1, \x{00E2}\x{20AC}\x{00A6}class A4>
    void depth_first_search(
        A0 const& a0, A1 const& a1, \x{00E2}\x{20AC}\x{00A6}A4 const& A4
      , typename dfs_params::match<A0,A1,A2,A3,A4>::type p = dfs_params())
    {
       core::depth_first_search(**p**\ (a0,a1,a2,a3,a4));
    }
  }
These additional parameters are not intended to be used directly
by callers; they merely trigger SFINAE by becoming illegal types
when the ``name`` argument is not convertible to ``const
char*``. The ``BOOST_PARAMETER_FUN`` macro described earlier
adds these extra function parameters for you.
Efficiency Issues
=================
The ``color_map`` parameter gives us a few efficiency issues to
consider.  Here's a first cut at extraction and binding:
.. parsed-literal::
  typedef 
    vector_property_map<boost::default_color_type, Index>
  default_color_map;
  typename parameter::binding<
      ArgumentPack
    , tag::color_map
    , default_color_map
  >::type color = args[color_map|\ **default_color_map(num_vertices(g),i)**\ ];
Eliminating Copies
------------------
The library has no way to know whether an explicitly-supplied
argument is expensive to copy (or even if it is copyable at all),
so ``binding<\x{00E2}\x{20AC}\x{00A6},k,\x{00E2}\x{20AC}\x{00A6}>::type`` is always a reference type when the
*k* parameter is supplied by the caller.  Since ``args[\x{00E2}\x{20AC}\x{00A6}]``
yields a reference to the actual argument, ``color`` will be bound
to the actual ``color_map`` argument and no copying will be done.
As described above__, because the default is a temporary, it's
important that ``color`` be a non-reference when the default is
used.  In that case, the default value will be *copied* into
``color``.  If we store the default in a named variable, though,
``color`` can be a reference, thereby eliminating the copy:
.. parsed-literal::
  default_color_map default_color(num_vertices(g),i);
  typename parameter::binding<
      ArgumentPack
    , tag::color_map
    , **default_color_map&**
  >::type color = args[color_map|default_color];
__ dangling_
.. Hint:: 
   To avoid making needless copies, pass a *reference to the
   default type* as the third argument to ``binding``.
Eliminating Construction
------------------------
Of course it's nice to avoid copying ``default_color``, but the
more important cost is that of *constructing* it in the first
place.  A ``vector_property_map`` is cheap to copy, since it holds
its elements via a |shared_ptr|_.  On the other hand, construction of
``default_color`` costs at least two dynamic memory allocations and
``num_vertices(g)`` copies; it would be better to avoid doing this
work when the default value won't be needed.
.. |shared_ptr| replace:: ``shared_ptr``
.. _shared_ptr: ../../../smart_ptr/shared_ptr.htm
To that end, the library allows us to supply a callable object
that\x{00E2}\x{20AC}\x{201D}if no argument was supplied by the caller\x{00E2}\x{20AC}\x{201D}will be invoked to
construct the default value.  Instead of following the keyword with
the ``|`` operator, we'll use ``||`` and follow it with a
nullary (zero-argument) function object that constructs a
default_color_map.  Here, we build the function object using
Boost.Lambda_: [#bind]_
.. _Boost.Lambda: ../../../lambda/index.html
.. parsed-literal::
  // After #include <boost/lambda/construct.hpp>
  typename parameter::binding<
      ArgumentPack
    , tag::color_map
    , default_color_map
  >::type color = args[
    color_map
    **|| boost::lambda::construct<default_color_map>(num_vertices(g),i)**
  ];
.. sidebar:: Memnonics
   To remember the difference between ``|`` and ``||``, recall that
   ``||`` normally uses short-circuit evaluation: its second
   argument is only evaluated if its first argument is ``false``.
   Similarly, in ``color_map[param||f]``, ``f`` is only invoked if
   no ``color_map`` argument was supplied.
Default Forwarding
------------------
Types that are expensive to construct yet cheap to copy aren't all
that typical, and even copying the color map is more expensive than
we might like.  It might be nice to avoid both needless
construction *and* needless copying of the default color map.  The
simplest way to achieve that is to avoid naming it altogether, at
least not in ``core::depth_first_search``.  Instead, we could just
introduce another function template to implement the actual
algorithm:
.. parsed-literal::
  namespace graphs { namespace core
  {
    template <class G, class V, class S, class I, class C>
    void **dfs_impl**\ (G& g, V& v, S& s, I& i, C& c)
    {
        *\x{00E2}\x{20AC}\x{00A6}actual algorithm implementation\x{00E2}\x{20AC}\x{00A6}*
    }
  }}
Then, in ``core::depth_first_search``, we'll simply forward the
result of indexing ``args`` to ``core::dfs_impl``::
  core::dfs_impl( 
      g,v,s,i
    , args[
        color_map
        || boost::lambda::construct<default_color_map>(num_vertices(g),i)
      ]);
In real code, after going to the trouble to write ``dfs_impl``,
we'd probably just forward all the arguments.
Dispatching Based on the Presence of a Default
----------------------------------------------
In fact, the Graph library itself constructs a slightly different
``color_map``, to avoid even the overhead of initializing a
|shared_ptr|_::
   std::vector<boost::default_color_type> 
     color_vec(num_vertices(g));
   boost::iterator_property_map<
       typename std::vector<
          boost::default_color_type
       >::iterator
     , Index
   > c(color_vec.begin(), i);
To avoid instantiating that code when it isn't needed, we'll have
to find a way to select different function implementations, at
compile time, based on whether a ``color_map`` argument was
supplied.  By using `tag dispatching`_ on the presence of a
``color_map`` argument, we can do just that:
.. _`tag dispatching`: ../../../../more/generic_programming.html#tag_dispatching
.. parsed-literal::
  #include <boost/type_traits/is_same.hpp>
  #include <boost/mpl/bool.hpp>
  namespace graphs { namespace core {
  
    template <class ArgumentPack>
    void dfs_dispatch(ArgumentPack& args, **mpl::true_**)
    {
        *\x{00E2}\x{20AC}\x{00A6}use the color map computed in the previous example\x{00E2}\x{20AC}\x{00A6}*
    }
    
    template <class ArgumentPack>
    void dfs_dispatch(ArgumentPack& args, **mpl::false_**)
    {
        *\x{00E2}\x{20AC}\x{00A6}use args[color]\x{00E2}\x{20AC}\x{00A6}*
    }
    
    template <class ArgumentPack>
    void depth_first_search(ArgumentPack& args)
    {
        typedef typename binding<args,tag::color>::type color\_;
        core::dfs_dispatch(args, **boost::is_same<color\_,void>()**\ );
    }
  }}
We've used the fact that the default for ``binding``\ 's third
argument is ``void``: because specializations of ``is_same`` are
``bool``-valued MPL |Integral Constant|_, it will be derived either
from ``mpl::true_`` or ``mpl::false_``, and the appropriate
``dfs_dispatch`` implementation will be selected.
.. |Integral Constant| replace:: :concept:`Integral Constant`
.. _`Integral Constant`: ../../../mpl/doc/refmanual/integral-constant.html
--------------------------
.. [#old_interface] As of Boost 1.33.0 the Graph library was still
   using an `older named parameter mechanism`__, but there are
   plans to change it to use Boost.Parameter (this library) in an
   upcoming release, while keeping the old interface available for
   backward-compatibility.  
__ ../../../graph/doc/bgl_named_params.html
.. [#odr] The **One Definition Rule** says that any given entity in
   a C++ program must have the same definition in all translation
   units (object files) that make up a program.
.. [#msvc_keyword] If you use Visual C++ 6.x, you may find you also
   need the following using declarations, which really should be
   redundant.  This need has been observed, but then it disappeared
   as the code evolved, so add these only as a last resort::
    namespace graphs
    {
      using graphs::graph;
      using graphs::visitor;
      using graphs::root_vertex;
      using graphs::index_map;
      using graphs::color_map;
    }
.. [#vertex_descriptor] If you're not familiar with the Boost Graph
   Library, don't worry about the meaning of any
   Graph-library-specific details you encounter.  In this case you
   could replace all mentions of vertex descriptor types with
   ``int`` in the text, and your understanding of the Parameter
   library wouldn't suffer.
.. [#typedef] In principle you can also declare a
   |ParameterSpec| as a ``typedef``::
     typedef parameter::parameters<
           tag::graph, tag::visitor, tag::root_vertex
         , tag::index_map, tag::color_map
     > dfs_parameters;
     
   Some older compilers seem to be happier with the use of
   inheritance, though.
.. [#bind] The Lambda library is known not to work on `some
   less-conformant compilers`__.  When using one of those you could
   define ::
   
      template <class T>
      struct construct2
      {
          typedef T result_type;
          template <class A1, class A2>
          T operator() { return T(a1,a2); }
      };
    and use Boost.Bind_ to generate the function object::
      boost::bind(construct2<default_color_map>,num_vertices(g),i)
.. [#using] You can always give the illusion that the function
   lives in an outer namespace by applying a *using-declaration*::
      namespace foo_overloads
      {
        // foo declarations here
        void foo() { ... }
        ...
      }
      using foo_overloads::foo;  
.. [#sfinae] If type substitution during the instantiation of a
   function template results in an invalid type, no compilation
   error is emitted; instead the overload is removed from the
   overload set. By producing an invalid type in the function
   signature depending on the result of some condition, whether or
   not an overload is considered during overload resolution can be
   controlled.  The technique is formalized in the |enable_if|_
   utility.  See
   http://www.semantics.org/once_weakly/w02_SFINAE.pdf for more
   information on SFINAE.
.. |enable_if| replace:: ``enable_if``
.. _enable_if: ../../../utility/enable_if.html
__ http://www.boost.org/regression/release/user/lambda.html
.. _Boost.Bind: ../../../libs/bind/index.html
============================================================

Boost list run by bdawes at acm.org, gregod at cs.rpi.edu, cpdaniel at pacbell.net, john at johnmaddock.co.uk