|
Boost : |
From: Tom Brinkman (reportbase_at_[hidden])
Date: 2007-03-06 21:52:16
Just in case any one is curious, a euclidean vector is represented by its
Cartesian coordinates: (*p*0, *p*1,..., *p*d - 1) (in a d-dimensional
vectorial space). It can be defined by the difference between two points
(Locations), A and B: if A has coordinates (*a*0, *a*1,..., *a*d - 1) and B
(*b*0, *b*1,..., *b*d - 1), then vector [image: $ \bf AB$] = *B* - *A* has
coordinates (*b*0 - *a*0, *b*1 - *a*1,..., *b*d - 1 - *a*d - 1). The
requirements of Euclidean Vector are very similar to those of Location, and
could actually have been represented by a Location. However, an euclidean
vector is very different from a point, or location, (from a mathematical
point of view) and it would have been confusing to represent these two
entities by the same *concept*.
Yes, I'd be interested. Looking forward to reviewing your library. I'm not
shur that I have any comments right now other than to say that it would be a
great addition.
Boost list run by bdawes at acm.org, gregod at cs.rpi.edu, cpdaniel at pacbell.net, john at johnmaddock.co.uk