Build and Install of Boost on WindowsXP' for use
with Visual Studio .NET 2003

Prerequisites

Boost jam

Boost jam must be installed and made available. See the install instructions for boost
Jam.

Some current version of Python is recommended to be installed prior to the installation
of boost. My Python version was v.2.3.

Extract archive

After boost jam was installed and bjam.exe was made available, boost_1_33_1.tar.gz
must be extracted into some directory, e.g. G:\DevelopMSVSnet\EVnetW32MSVC7.

Set PATH variable and VC71_ROOT variable
If not already done, add the path to the Visual Studio .NET 2003 binaries directory to
the PATH variable, e.g. add C:\Programme\MSVS2003\Vc7\bin to PATH.

Dann “;C:\Programme\MSVS2003\Vc7\bin” anflgen und mit OK beenden.

To set the VC71_ROOT variable, use ->New, enter VC71_ROOT for the name and
C:\Programme\MSVS2003\Vc7 for the value of the new variable (Notice that
VC71_ROOT points to the installation directory of the Visual Studio .NET 2003 toolset.
Path poits to the bin subdirectory, however).

To build the Boost.Python libraries, other three variables must be set. Namely, in case of
my personal Python v.2.3. distribution, | had to set:

Variable Value
PYTHON_ROOT C:\Python23
PYTHON_VERSION 2.3
PYTHON_LIB_PATH C:\Python23\libs

Boost Installation
The common build and install process is driven by the top-level build file (Jamfile)
Open a DOS command window and change to the directory where you have extracted

the Boost distribution you downloaded, e.qg.
G:\DevelopMSVSnet\EVnetW32MSVC7\boost-1.31.0.

' This documentation was made for installation of boost on German version of Windows XP Professional.
Hope, this causes no confusion



The default build and install attempts to build all available libraries and installs the
libraries and Boost header files to default location C:\Boost. Within those directories
libraries are installed to the "lib" subdirectory, and headers to an "include/boost-1_31"
subdirectory, the version will reflect the distribution you are installing.

Invoke the build system, specifying the Visual Studio .NET 2003 toolset to build and
install. To use Boost with Visual Studio .NET 2003, the build command is:

bjam "-sTOOLS=vc-7_1" install

Then, wait patiently until the build process is finished. This may take quite some while,
even on a 3 GHz PC.

Note that only some static and dynamic link libraries will be build. Other Boost utilities
can be used/invoked directly by including the required header files.

There are a lot of - IMO quite advanced - options to control the build process. Have a
look at the following table, if you have some specific needs for the build process.

Action

none Only builds the Boost libraries. This lets you do the first
part of what the install action normally does without
copying the built libraries to the install location.

install Builds and installs Boost libraries and headers.

stage Builds the Boost libraries and copies them into a
common directory.

Option

--help Shows a short summary of the options and syntax of the
command.

-sTOOLS=<toolsets> The list of tools to compile with. Usually only one is
needed.

--prefix=PREFIX Install architecture independent files here.
Default; C:\Boost on Win32.
Default; /usr/local on Unix. Linux, etc.

--exec-prefix=EPREFIX Install architecture dependent files here.
Default; PREFIX

--libdir=DIR Install libraries here.
Default; EPREFIX/lib

--includedir=DIR Install source headers here. The Boost headers are
installed in a version specific "boost-<version>"
subdirectory in this directory.
Default; PREFIX/include

--builddir=DIR Build in this location instead of building within the
distribution tree. This moves where the sources for the
libraries are compiled to before they are installed.
Recommended!




Action

--stagedir=DIR

When staging only, with the "stage" action, copy to the
given location.
Default; /stage

--without-</ibrary>

Do not build, stage, or install the specified library.

--with-<library>

Build, stage, or install the specified library. This changes
the default from trying to build all possible libraries, to
only building the specified libraries.

--with-python-root[=PYTHON_ROOT]

Build Boost.Python libraries with the Python devel
packages located at PYTHON_ROOT. The Boost.Python
libraries are built only if the build can find the Python
development package at this location.

Default; C:\Python24 on Win32.

Default; /usr on Unix, Linux, Cygwin, etc.

--with-python-version[=2.4]

Build Boost.Python libraries with the Python version
indicated.
Default; 2.4.

--with-pydebug

Build Boost.Python libraries using the Python debug
runtime. This builds an additional set of libraries for use
with the debug version of Python. The regular versions
of the Boost.Python libraries are also built.

-SHAVE_ICU=1

Build Boost.Regex libraries with Unicode support
provided by the ICU libraries. ICU must have been built
with the same compiler that you are using to build
Boost, and must be installed into your compiler's include
and library search paths. See the Boost.Regex installation
documentation for more information.

-sICU_PATH=path

Build Boost.Regex libraries with Unicode support
provided by the ICU libraries. ICU must have been built
with the same compiler that you are using to build
Boost, and must have been built (or installed to)
directory path. For example if you configured ICU with --
prefix=/usr/local/icu/3.3, then use -sICU_PATH=/usr/local/icu/3.3.
See the Boost.Regex installation documentation for
more information.

-SNO_COMPRESSION=1

Build Boost.lostreams without support for the
compression filters which rely on the non-Boost libraries
zlib and libbz2. If you use Windows, this option is
enabled by default. If you use UNIX, the compression
filters will likely work with no configuration, so this
option should not be necessary. For full details see
Boost.lostreams Installation.

There are additional options as supported by Boost.Build and Boost.Jam. Of the
additional options perhaps the most imporant is "-sBUILD=<features/variants>" which
lets you override what is built by default. The "<features/variants>" value is a list,
separated by spaces, of build requests. Features take the form of a tag and a value or




values. And variants are single symbolic names for a collection of features. For example
the default is to request "debug release <runtime-link>static/dynamic
<threading>single/multi", in which "debug" and "release" are variants, and the rest
features with two values each.

In case of interest in more details, see the full documentation at www.boost.org.

Have fun,

Dietmar, 20.12.2005



