|
Boost-Commit : |
From: johnmaddock_at_[hidden]
Date: 2007-07-03 04:47:26
Author: johnmaddock
Date: 2007-07-03 04:47:25 EDT (Tue, 03 Jul 2007)
New Revision: 7346
URL: http://svn.boost.org/trac/boost/changeset/7346
Log:
Added sample Remez article
Added:
sandbox/boost_docs/trunk/doc/doc_test/doc/html/images/remez-2.png (contents, props changed)
sandbox/boost_docs/trunk/doc/doc_test/doc/html/images/remez-3.png (contents, props changed)
sandbox/boost_docs/trunk/doc/doc_test/doc/html/images/remez-4.png (contents, props changed)
sandbox/boost_docs/trunk/doc/doc_test/doc/html/images/remez-5.png (contents, props changed)
sandbox/boost_docs/trunk/doc/doc_test/doc/remez.qbk
Text files modified:
sandbox/boost_docs/trunk/doc/doc_test/doc/test.qbk | 1185 ++++++++++++++++++++-------------------
1 files changed, 594 insertions(+), 591 deletions(-)
Added: sandbox/boost_docs/trunk/doc/doc_test/doc/html/images/remez-2.png
==============================================================================
Binary file. No diff available.
Added: sandbox/boost_docs/trunk/doc/doc_test/doc/html/images/remez-3.png
==============================================================================
Binary file. No diff available.
Added: sandbox/boost_docs/trunk/doc/doc_test/doc/html/images/remez-4.png
==============================================================================
Binary file. No diff available.
Added: sandbox/boost_docs/trunk/doc/doc_test/doc/html/images/remez-5.png
==============================================================================
Binary file. No diff available.
Added: sandbox/boost_docs/trunk/doc/doc_test/doc/remez.qbk
==============================================================================
--- (empty file)
+++ sandbox/boost_docs/trunk/doc/doc_test/doc/remez.qbk 2007-07-03 04:47:25 EDT (Tue, 03 Jul 2007)
@@ -0,0 +1,372 @@
+[section:remez Sample Article (The Remez Method)]
+
+The [@http://en.wikipedia.org/wiki/Remez_algorithm Remez algorithm]
+is a methodology for locating the minimax rational approximation
+to a function. This short article gives a brief overview of the method, but
+it should not be regarded as a thorough theoretical treatment, for that you
+should consult your favorite textbook.
+
+Imagine that you want to approximate some function f(x) by way of a rational
+function R(x), where R(x) may be either a polynomial P(x) or a ratio of two
+polynomials P(x)/Q(x) (a rational function). Initially we'll concentrate on the
+polynomial case, as it's by far the easier to deal with, later we'll extend
+to the full rational function case.
+
+We want to find the "best" rational approximation, where
+"best" is defined to be the approximation that has the least deviation
+from f(x). We can measure the deviation by way of an error function:
+
+E[sub abs](x) = f(x) - R(x)
+
+which is expressed in terms of absolute error, but we can equally use
+relative error:
+
+E[sub rel](x) = (f(x) - R(x)) / |f(x)|
+
+And indeed in general we can scale the error function in any way we want, it
+makes no difference to the maths, although the two forms above cover almost
+every practical case that you're likely to encounter.
+
+The minimax rational function R(x) is then defined to be the function that
+yields the smallest maximal value of the error function. Chebyshev showed
+that there is a unique minimax solution for R(x) that has the following
+properties:
+
+* If R(x) is a polynomial of degree N, then there are N+2 unknowns:
+the N+1 coefficients of the polynomial, and maximal value of the error
+function.
+* The error function has N+1 roots, and N+2 extrema (minima and maxima).
+* The extrema alternate in sign, and all have the same magnitude.
+
+That means that if we know the location of the extrema of the error function
+then we can write N+2 simultaneous equations:
+
+R(x[sub i]) + (-1)[super i]E = f(x[sub i])
+
+where E is the maximal error term, and x[sub i] are the abscissa values of the
+N+2 extrema of the error function. It is then trivial to solve the simultaneous
+equations to obtain the polynomial coefficients and the error term.
+
+['Unfortunately we don't know where the extrema of the error function are located!]
+
+[h4 The Remez Method]
+
+The Remez method is an iterative technique which, given a broad range of
+assumptions, will converge on the extrema of the error function, and therefore
+the minimax solution.
+
+In the following discussion we'll use a concrete example to illustrate
+the Remez method: an approximation to the function e[super x][space] over
+the range \[-1, 1\].
+
+Before we can begin the Remez method, we must obtain an initial value
+for the location of the extrema of the error function. We could "guess"
+these, but a much closer first approximation can be obtained by first
+constructing an interpolated polynomial approximation to f(x).
+
+In order to obtain the N+1 coefficients of the interpolated polynomial
+we need N+1 points (x[sub 0]...x[sub N]): with our interpolated form
+passing through each of those points
+that yields N+1 simultaneous equations:
+
+f(x[sub i]) = P(x[sub i]) = c[sub 0] + c[sub 1]x[sub i] ... + c[sub N]x[sub i][super N]
+
+Which can be solved for the coefficients c[sub 0]...c[sub N] in P(x).
+
+Obviously this is not a minimax solution, indeed our only guarantee is that f(x) and
+P(x) touch at N+1 locations, away from those points the error may be arbitrarily
+large. However, we would clearly like this initial approximation to be as close to
+f(x) as possible, and it turns out that using the zeros of an orthogonal polynomial
+as the initial interpolation points is a good choice. In our example we'll use the
+zeros of a Chebyshev polynomial as these are particularly easy to calculate,
+interpolating for a polynomial of degree 4, and measuring /relative error/
+we get the following error function:
+
+[$images/remez-2.png]
+
+Which has a peak relative error of 1.2x10[super -3].
+
+While this is a pretty good approximation already, judging by the
+shape of the error function we can clearly do better. Before starting
+on the Remez method propper, we have one more step to perform: locate
+all the extrema of the error function, and store
+these locations as our initial ['Chebyshev control points].
+
+[note
+In the simple case of a polynomial approximation, by interpolating through
+the roots of a Chebyshev polynomial we have in fact created a ['Chebyshev
+approximation] to the function: in terms of /absolute error/
+this is the best a priori choice for the interpolated form we can
+achieve, and typically is very close to the minimax solution.
+
+However, if we want to optimise for /relative error/, or if the approximation
+is a rational function, then the initial Chebyshev solution can be quite far
+from the ideal minimax solution.
+
+A more technical discussion of the theory involved can be found in this
+[@http://math.fullerton.edu/mathews/n2003/ChebyshevPolyMod.html online course].]
+
+[h4 Remez Step 1]
+
+The first step in the Remez method, given our current set of
+N+2 Chebyshev control points x[sub i], is to solve the N+2 simultaneous
+equations:
+
+P(x[sub i]) + (-1)[super i]E = f(x[sub i])
+
+To obtain the error term E, and the coefficients of the polynomial P(x).
+
+This gives us a new approximation to f(x) that has the same error /E/ at
+each of the control points, and whose error function ['alternates in sign]
+at the control points. This is still not necessarily the minimax
+solution though: since the control points may not be at the extrema of the error
+function. After this first step here's what our approximation's error
+function looks like:
+
+[$images/remez-3.png]
+
+Clearly this is still not the minimax solution since the control points
+are not located at the extrema, but the maximum relative error has now
+dropped to 5.6x10[super -4].
+
+[h4 Remez Step 2]
+
+The second step is to locate the extrema of the new approximation, which we do
+in two stages: first, since the error function changes sign at each
+control point, we must have N+1 roots of the error function located between
+each pair of N+2 control points. Once these roots are found by standard root finding
+techniques, we know that N extrema are bracketed between each pair of
+roots, plus two more between the endpoints of the range and the first and last roots.
+The N+2 extrema can then be found using standard function minimisation techniques.
+
+We now have a choice: multi-point exchange, or single point exchange.
+
+In single point exchange, we move the control point nearest to the largest extrema to
+the absissa value of the extrema.
+
+In multi-point exchange we swap all the current control points, for the locations
+of the extrema.
+
+In our example we perform multi-point exchange.
+
+[h4 Iteration]
+
+The Remez method then performs steps 1 and 2 above iteratively until the control
+points are located at the extrema of the error function: this is then
+the minimax solution.
+
+For our current example, two more iterations converges on a minimax
+solution with a peak relative error of
+5x10[super -4] and an error function that looks like:
+
+[$images/remez-4.png]
+
+[h4 Rational Approximations]
+
+If we wish to extend the Remez method to a rational approximation of the form
+
+f(x) = R(x) = P(x) / Q(x)
+
+where P(x) and Q(x) are polynomials, then we proceed as before, except that now
+we have N+M+2 unknowns if P(x) is of order N and Q(x) is of order M. This assumes
+that Q(x) is normalised so that it's leading coefficient is 1, giving
+N+M+1 polynomial coefficients in total, plus the error term E.
+
+The simultaneous equations to be solved are now:
+
+P(x[sub i]) / Q(x[sub i]) + (-1)[super i]E = f(x[sub i])
+
+Evaluated at the N+M+2 control points x[sub i].
+
+Unfortunately these equations are non-linear in the error term E: we can only
+solve them if we know E, and yet E is one of the unknowns!
+
+The method usually adopted to solve these equations is an iterative one: we guess the
+value of E, solve the equations to obtain a new value for E (as well as the polynomial
+coefficients), then use the new value of E as the next guess. The method is
+repeated until E converges on a stable value.
+
+These complications extend the running time required for the development
+of rational approximations quite considerably. It is often desirable
+to obtain a rational rather than polynomial approximation none the less:
+rational approximations will often match more difficult to approximate
+functions, to greater accuracy, and with greater efficiency, than their
+polynomial alternatives. For example, if we takes our previous example
+of an approximation to e[super x], we obtained 5x10[super -4] accuracy
+with an order 4 polynomial. If we move two of the unknowns into the denominator
+to give a pair of order 2 polynomials, and re-minimise, then the peak relative error drops
+to 8.7x10[super -5]. That's a 5 fold increase in accuracy, for the same number
+of terms overall.
+
+[h4 Practical Considerations]
+
+Most treatises on approximation theory stop at this point. However, from
+a practical point of view, most of the work involves finding the right
+approximating form, and then persuading the Remez method to converge
+on a solution.
+
+So far we have used a direct approximation:
+
+f(x) = R(x)
+
+But this will converge to a useful approximation only if f(x) is smooth. In
+addition round-off errors when evaluating the rational form mean that this
+will never get closer than within a few epsilon of machine precision.
+Therefore this form of direct approximation is often reserved for situations
+where we want efficiency, rather than accuracy.
+
+The first step in improving the situation is generally to split f(x) into
+a dominant part that we can compute accurately by another method, and a
+slowly changing remainder which can be approximated by a rational approximation.
+We might be tempted to write:
+
+f(x) = g(x) + R(x)
+
+where g(x) is the dominant part of f(x), but if f(x)\/g(x) is approximately
+constant over the interval of interest then:
+
+f(x) = g(x)(c + R(x))
+
+Will yield a much better solution: here /c/ is a constant that is the approximate
+value of f(x)\/g(x) and R(x) is typically tiny compared to /c/. In this situation
+if R(x) is optimised for absolute error, then as long as its error is small compared
+to the constant /c/, that error will effectively get wiped out when R(x) is added to
+/c/.
+
+The difficult part is obviously finding the right g(x) to extract from your
+function: often the asymptotic behaviour of the function will give a clue, so
+for example the function __erfc becomes proportional to
+e[super -x[super 2]]\/x as x becomes large. Therefore using:
+
+erfc(z) = (C + R(x)) e[super -x[super 2]]/x
+
+as the approximating form seems like an obvious thing to try, and does indeed
+yield a useful approximation.
+
+However, the difficulty then becomes one of converging the minimax solution.
+Unfortunately, it is known that for some functions the Remez method can lead
+to divergent behaviour, even when the initial starting approximation is quite good.
+Furthermore, it is not uncommon for the solution obtained in the first Remez step
+above to be a bad one: the equations to be solved are generally "stiff", often
+very close to being singular, and assuming a solution is found at all, round-off
+errors and a rapidly changing error function, can lead to a situation where the
+error function does not in fact change sign at each control point as required.
+If this occurs, it is fatal to the Remez method. It is also possible to
+obtain solutions that are perfectly valid mathematically, but which are
+quite useless computationally: either because there is an unavoidable amount
+of roundoff error in the computation of the rational function, or because
+the denominator has one or more roots over the interval of the approximation.
+In the latter case while the approximation may have the correct limiting value at
+the roots, the approximation is nonetheless useless.
+
+Assuming that the approximation does not have any fatal errors, and that the only
+issue is converging adequately on the minimax solution, the aim is to
+get as close as possible to the minimax solution before beginning the Remez method.
+Using the zeros of a Chebyshev polynomial for the initial interpolation is a
+good start, but may not be ideal when dealing with relative errors and\/or
+rational (rather than polynomial) approximations. One approach is to skew
+the initial interpolation points to one end: for example if we raise the
+roots of the Chebyshev polynomial to a positive power greater than 1
+then the roots will be skewed towards the middle of the \[-1,1\] interval,
+while a positive power less than one
+will skew them towards either end. More usefully, if we initially rescale the
+points over \[0,1\] and then raise to a positive power, we can skew them to the left
+or right. Returning to our example of e[super x][space] over \[-1,1\], the initial
+interpolated form was some way from the minimax solution:
+
+[$images/remez-2.png]
+
+However, if we first skew the interpolation points to the left (rescale them
+to \[0, 1\], raise to the power 1.3, and then rescale back to \[-1,1\]) we
+reduce the error from 1.3x10[super -3][space]to 6x10[super -4]:
+
+[$images/remez-5.png]
+
+It's clearly still not ideal, but it is only a few percent away from
+our desired minimax solution (5x10[super -4]).
+
+[h4 Remez Method Checklist]
+
+The following lists some of the things to check if the Remez method goes wrong,
+it is by no means an exhaustive list, but is provided in the hopes that it will
+prove useful.
+
+* Is the function smooth enough? Can it be better separated into
+a rapidly changing part, and an asymptotic part?
+* Does the function being approximated have any "blips" in it? Check
+for problems as the function changes computation method, or
+if a root, or an infinity has been divided out. The telltale
+sign is if there is a narrow region where the Remez method will
+not converge.
+* Check you have enough accuracy in your calculations: remember that
+the Remez method works on the difference between the approximation
+and the function being approximated: so you must have more digits of
+precision available than the precision of the approximation
+being constructed. So for example at double precision, you
+shouldn't expect to be able to get better than a float precision
+approximation.
+* Try skewing the initial interpolated approximation to minimise the
+error before you begin the Remez steps.
+* If the approximation won't converge or is ill-conditioned from one starting
+location, try starting from a different location.
+* If a rational function won't converge, one can minimise a polynomial
+(which presents no problems), then rotate one term from the numerator to
+the denominator and minimise again. In theory one can continue moving
+terms one at a time from numerator to denominator, and then re-minimising,
+retaining the last set of control points at each stage.
+* Try using a smaller interval. It may also be possible to optimise over
+one (small) interval, rescale the control points over a larger interval,
+and then re-minimise.
+* Keep absissa values small: use a change of variable to keep the abscissa
+over, say \[0, b\], for some smallish value /b/.
+
+[h4 References]
+
+The original references for the Remez Method and it's extension
+to rational functions are unfortunately in Russian:
+
+Remez, E.Ya., ['Fundamentals of numerical methods for Chebyshev approximations],
+"Naukova Dumka", Kiev, 1969.
+
+Remez, E.Ya., Gavrilyuk, V.T., ['Computer development of certain approaches
+to the approximate construction of solutions of Chebyshev problems
+nonlinearly depending on parameters], Ukr. Mat. Zh. 12 (1960), 324-338.
+
+Gavrilyuk, V.T., ['Generalization of the first polynomial algorithm of
+E.Ya.Remez for the problem of constructing rational-fractional
+Chebyshev approximations], Ukr. Mat. Zh. 16 (1961), 575-585.
+
+Some English language sources include:
+
+Fraser, W., Hart, J.F., ['On the computation of rational approximations
+to continuous functions], Comm. of the ACM 5 (1962), 401-403, 414.
+
+Ralston, A., ['Rational Chebyshev approximation by Remes' algorithms],
+Numer.Math. 7 (1965), no. 4, 322-330.
+
+A. Ralston, ['Rational Chebyshev approximation, Mathematical
+Methods for Digital Computers v. 2] (Ralston A., Wilf H., eds.),
+Wiley, New York, 1967, pp. 264-284.
+
+Hart, J.F. e.a., ['Computer approximations], Wiley, New York a.o., 1968.
+
+Cody, W.J., Fraser, W., Hart, J.F., ['Rational Chebyshev approximation
+using linear equations], Numer.Math. 12 (1968), 242-251.
+
+Cody, W.J., ['A survey of practical rational and polynomial
+approximation of functions], SIAM Review 12 (1970), no. 3, 400-423.
+
+Barrar, R.B., Loeb, H.J., ['On the Remez algorithm for non-linear
+families], Numer.Math. 15 (1970), 382-391.
+
+Dunham, Ch.B., ['Convergence of the Fraser-Hart algorithm for rational
+Chebyshev approximation], Math. Comp. 29 (1975), no. 132, 1078-1082.
+
+G. L. Litvinov, ['Approximate construction of rational
+approximations and the effect of error autocorrection],
+Russian Journal of Mathematical Physics, vol.1, No. 3, 1994.
+
+[endsect][/section:remez The Remez Method]
+
+
+
Modified: sandbox/boost_docs/trunk/doc/doc_test/doc/test.qbk
==============================================================================
--- sandbox/boost_docs/trunk/doc/doc_test/doc/test.qbk (original)
+++ sandbox/boost_docs/trunk/doc/doc_test/doc/test.qbk 2007-07-03 04:47:25 EDT (Tue, 03 Jul 2007)
@@ -1,591 +1,594 @@
-[article Document To Test Formatting
- [quickbook 1.4]
- [copyright 2007 John Maddock, Joel de Guzman, Eric Niebler and Matias Capeletto]
- [purpose Test Formatting Document]
- [license
- Distributed under the Boost Software License, Version 1.0.
- (See accompanying file LICENSE_1_0.txt or copy at
- [@http://www.boost.org/LICENSE_1_0.txt])
- ]
- [authors [Maddock, John], [de Guzman, Joel], [Niebler, Eric], [Capeletto, Matias] ]
- [category math]
- [/last-revision $Date: 2007-05-07 10:21:52 +0100 (Mon, 07 May 2007) $]
-]
-
-[include HTML4_symbols.qbk]
-
-[/ Some composite templates]
-[template super[x]'''<superscript>'''[x]'''</superscript>''']
-[template sub[x]'''<subscript>'''[x]'''</subscript>''']
-[template floor[x]'''⌊'''[x]'''⌋''']
-[template floorlr[x][lfloor][x][rfloor]]
-[template ceil[x] '''⌈'''[x]'''⌉''']
-
-[section Introduction]
-
-This document is purely a test case to test out HTML and PDF generation and style.
-
-This is some body text.
-
- int main()
- {
- double d = 2.345;
- return d;
- }
-
-We can count in Greek too: [alpha], [beta], [gamma].
-
-Try some superscrips and subscripts: x[super 2], x[sub i][super 3], [alpha][super 2],
-[beta][super [alpha]], [floor x], [floor [alpha]], [ceil a].
-
-[endsect]
-
-[section Code Blocks]
-
-[section Embedded code]
-
-These should be syntax highlighted:
-
- #include <iostream>
-
- int main()
- {
- // Sample code
- std::cout << "Hello, World\n";
- return 0;
- }
-
-[endsect]
-
-[section Imported code and callouts]
-
-[import stub.cpp]
-
-Here's some code with left-placed callouts:
-
-[class_]
-
-And again with callouts placed exactly where we put them:
-
-[foo_bar]
-
-[endsect]
-
-[section Larger example]
-
-Now let's include a larger example, this may span several pages
-and should not be chopped off half way through... some FO processors
-get this wrong!
-
- namespace boost{
-
- template <class BidirectionalIterator>
- class sub_match;
-
- typedef sub_match<const char*> csub_match;
- typedef sub_match<const wchar_t*> wcsub_match;
- typedef sub_match<std::string::const_iterator> ssub_match;
- typedef sub_match<std::wstring::const_iterator> wssub_match;
-
- template <class BidirectionalIterator>
- class sub_match : public std::pair<BidirectionalIterator, BidirectionalIterator>
- {
- public:
- typedef typename iterator_traits<BidirectionalIterator>::value_type value_type;
- typedef typename iterator_traits<BidirectionalIterator>::difference_type difference_type;
- typedef BidirectionalIterator iterator;
-
- bool matched;
-
- difference_type length()const;
- operator basic_string<value_type>()const;
- basic_string<value_type> str()const;
-
- int compare(const sub_match& s)const;
- int compare(const basic_string<value_type>& s)const;
- int compare(const value_type* s)const;
- #ifdef BOOST_REGEX_MATCH_EXTRA
- typedef implementation-private capture_sequence_type;
- const capture_sequence_type& captures()const;
- #endif
- };
- //
- // comparisons to another sub_match:
- //
- template <class BidirectionalIterator>
- bool operator == (const sub_match<BidirectionalIterator>& lhs,
- const sub_match<BidirectionalIterator>& rhs);
- template <class BidirectionalIterator>
- bool operator != (const sub_match<BidirectionalIterator>& lhs,
- const sub_match<BidirectionalIterator>& rhs);
- template <class BidirectionalIterator>
- bool operator < (const sub_match<BidirectionalIterator>& lhs,
- const sub_match<BidirectionalIterator>& rhs);
- template <class BidirectionalIterator>
- bool operator <= (const sub_match<BidirectionalIterator>& lhs,
- const sub_match<BidirectionalIterator>& rhs);
- template <class BidirectionalIterator>
- bool operator >= (const sub_match<BidirectionalIterator>& lhs,
- const sub_match<BidirectionalIterator>& rhs);
- template <class BidirectionalIterator>
- bool operator > (const sub_match<BidirectionalIterator>& lhs,
- const sub_match<BidirectionalIterator>& rhs);
-
-
- //
- // comparisons to a basic_string:
- //
- template <class BidirectionalIterator, class traits, class Allocator>
- bool operator == (const std::basic_string<iterator_traits<BidirectionalIterator>::value_type,
- traits,
- Allocator>& lhs,
- const sub_match<BidirectionalIterator>& rhs);
- template <class BidirectionalIterator, class traits, class Allocator>
- bool operator != (const std::basic_string<iterator_traits<BidirectionalIterator>::value_type,
- traits,
- Allocator>& lhs,
- const sub_match<BidirectionalIterator>& rhs);
- template <class BidirectionalIterator, class traits, class Allocator>
- bool operator < (const std::basic_string<iterator_traits<BidirectionalIterator>::value_type,
- traits,
- Allocator>& lhs,
- const sub_match<BidirectionalIterator>& rhs);
- template <class BidirectionalIterator, class traits, class Allocator>
- bool operator > (const std::basic_string<iterator_traits<BidirectionalIterator>::value_type,
- traits,
- Allocator>& lhs,
- const sub_match<BidirectionalIterator>& rhs);
- template <class BidirectionalIterator, class traits, class Allocator>
- bool operator >= (const std::basic_string<iterator_traits<BidirectionalIterator>::value_type,
- traits,
- Allocator>& lhs,
- const sub_match<BidirectionalIterator>& rhs);
- template <class BidirectionalIterator, class traits, class Allocator>
- bool operator <= (const std::basic_string<iterator_traits<BidirectionalIterator>::value_type,
- traits,
- Allocator>& lhs,
- const sub_match<BidirectionalIterator>& rhs);
-
- template <class BidirectionalIterator, class traits, class Allocator>
- bool operator == (const sub_match<BidirectionalIterator>& lhs,
- const std::basic_string<iterator_traits<BidirectionalIterator>::value_type,
- traits,
- Allocator>& rhs);
- template <class BidirectionalIterator, class traits, class Allocator>
- bool operator != (const sub_match<BidirectionalIterator>& lhs,
- const std::basic_string<iterator_traits<BidirectionalIterator>::value_type,
- traits,
- Allocator>& rhs);
- template <class BidirectionalIterator, class traits, class Allocator>
- bool operator < (const sub_match<BidirectionalIterator>& lhs,
- const std::basic_string<iterator_traits<BidirectionalIterator>::value_type,
- traits,
- Allocator>& rhs);
- template <class BidirectionalIterator, class traits, class Allocator>
- bool operator > (const sub_match<BidirectionalIterator>& lhs,
- const std::basic_string<iterator_traits<BidirectionalIterator>::value_type,
- traits,
- Allocator>& rhs);
- template <class BidirectionalIterator, class traits, class Allocator>
- bool operator >= (const sub_match<BidirectionalIterator>& lhs,
- const std::basic_string<iterator_traits<BidirectionalIterator>::value_type,
- traits,
- Allocator>& rhs);
- template <class BidirectionalIterator, class traits, class Allocator>
- bool operator <= (const sub_match<BidirectionalIterator>& lhs,
- const std::basic_string<iterator_traits<BidirectionalIterator>::value_type,
- traits,
- Allocator>& rhs);
-
- //
- // comparisons to a pointer to a character array:
- //
- template <class BidirectionalIterator>
- bool operator == (typename iterator_traits<BidirectionalIterator>::value_type const* lhs,
- const sub_match<BidirectionalIterator>& rhs);
- template <class BidirectionalIterator>
- bool operator != (typename iterator_traits<BidirectionalIterator>::value_type const* lhs,
- const sub_match<BidirectionalIterator>& rhs);
- template <class BidirectionalIterator>
- bool operator < (typename iterator_traits<BidirectionalIterator>::value_type const* lhs,
- const sub_match<BidirectionalIterator>& rhs);
- template <class BidirectionalIterator>
- bool operator > (typename iterator_traits<BidirectionalIterator>::value_type const* lhs,
- const sub_match<BidirectionalIterator>& rhs);
- template <class BidirectionalIterator>
- bool operator >= (typename iterator_traits<BidirectionalIterator>::value_type const* lhs,
- const sub_match<BidirectionalIterator>& rhs);
- template <class BidirectionalIterator>
- bool operator <= (typename iterator_traits<BidirectionalIterator>::value_type const* lhs,
- const sub_match<BidirectionalIterator>& rhs);
-
- template <class BidirectionalIterator>
- bool operator == (const sub_match<BidirectionalIterator>& lhs,
- typename iterator_traits<BidirectionalIterator>::value_type const* rhs);
- template <class BidirectionalIterator>
- bool operator != (const sub_match<BidirectionalIterator>& lhs,
- typename iterator_traits<BidirectionalIterator>::value_type const* rhs);
- template <class BidirectionalIterator>
- bool operator < ]``(const sub_match<BidirectionalIterator>& lhs,
- typename iterator_traits<BidirectionalIterator>::value_type const* rhs);
- template <class BidirectionalIterator>
- bool operator > (const sub_match<BidirectionalIterator>& lhs,
- typename iterator_traits<BidirectionalIterator>::value_type const* rhs);
- template <class BidirectionalIterator>
- bool operator >= (const sub_match<BidirectionalIterator>& lhs,
- typename iterator_traits<BidirectionalIterator>::value_type const* rhs);
- template <class BidirectionalIterator>
- bool operator <= (const sub_match<BidirectionalIterator>& lhs,
- typename iterator_traits<BidirectionalIterator>::value_type const* rhs);
-
- //
- // comparisons to a single character:
- //
- template <class BidirectionalIterator>
- bool operator == (typename iterator_traits<BidirectionalIterator>::value_type const& lhs,
- const sub_match<BidirectionalIterator>& rhs);
- template <class BidirectionalIterator>
- bool operator != (typename iterator_traits<BidirectionalIterator>::value_type const& lhs,
- const sub_match<BidirectionalIterator>& rhs);
- template <class BidirectionalIterator>
- bool operator < (typename iterator_traits<BidirectionalIterator>::value_type const& lhs,
- const sub_match<BidirectionalIterator>& rhs);
- template <class BidirectionalIterator>
- bool operator > (typename iterator_traits<BidirectionalIterator>::value_type const& lhs,
- const sub_match<BidirectionalIterator>& rhs);
- template <class BidirectionalIterator>
- bool operator >= (typename iterator_traits<BidirectionalIterator>::value_type const& lhs,
- const sub_match<BidirectionalIterator>& rhs);
- template <class BidirectionalIterator>
- bool operator <= (typename iterator_traits<BidirectionalIterator>::value_type const& lhs,
- const sub_match<BidirectionalIterator>& rhs);
-
- template <class BidirectionalIterator>
- bool operator == (const sub_match<BidirectionalIterator>& lhs,
- typename iterator_traits<BidirectionalIterator>::value_type const& rhs);
- template <class BidirectionalIterator>
- bool operator != (const sub_match<BidirectionalIterator>& lhs,
- typename iterator_traits<BidirectionalIterator>::value_type const& rhs);
- template <class BidirectionalIterator>
- bool operator < (const sub_match<BidirectionalIterator>& lhs,
- typename iterator_traits<BidirectionalIterator>::value_type const& rhs);
- template <class BidirectionalIterator>
- bool operator > (const sub_match<BidirectionalIterator>& lhs,
- typename iterator_traits<BidirectionalIterator>::value_type const& rhs);
- template <class BidirectionalIterator>
- bool operator >= (const sub_match<BidirectionalIterator>& lhs,
- typename iterator_traits<BidirectionalIterator>::value_type const& rhs);
- template <class BidirectionalIterator>
- bool operator <= (const sub_match<BidirectionalIterator>& lhs,
- typename iterator_traits<BidirectionalIterator>::value_type const& rhs);
- //
- // addition operators:
- //
- template <class BidirectionalIterator, class traits, class Allocator>
- std::basic_string<typename iterator_traits<BidirectionalIterator>::value_type, traits, Allocator>
- operator + (const std::basic_string<typename iterator_traits<BidirectionalIterator>::value_type,
- traits,
- Allocator>& s,
- const sub_match<BidirectionalIterator>& m);
- template <class BidirectionalIterator, class traits, class Allocator>
- std::basic_string<typename iterator_traits<BidirectionalIterator>::value_type, traits, Allocator>
- operator + (const sub_match<BidirectionalIterator>& m,
- const std::basic_string<typename iterator_traits<BidirectionalIterator>::value_type,
- traits,
- Allocator>& s);
- template <class BidirectionalIterator>
- std::basic_string<typename iterator_traits<BidirectionalIterator>::value_type>
- operator + (typename iterator_traits<BidirectionalIterator>::value_type const* s,
- const sub_match<BidirectionalIterator>& m);
- template <class BidirectionalIterator>
- std::basic_string<typename iterator_traits<BidirectionalIterator>::value_type>
- operator + (const sub_match<BidirectionalIterator>& m,
- typename iterator_traits<BidirectionalIterator>::value_type const * s);
- template <class BidirectionalIterator>
- std::basic_string<typename iterator_traits<BidirectionalIterator>::value_type>
- operator + (typename iterator_traits<BidirectionalIterator>::value_type const& s,
- const sub_match<BidirectionalIterator>& m);
- template <class BidirectionalIterator>
- std::basic_string<typename iterator_traits<BidirectionalIterator>::value_type>
- operator + (const sub_match<BidirectionalIterator>& m,
- typename iterator_traits<BidirectionalIterator>::value_type const& s);
- template <class BidirectionalIterator>
- std::basic_string<typename iterator_traits<BidirectionalIterator>::value_type>
- operator + (const sub_match<BidirectionalIterator>& m1,
- const sub_match<BidirectionalIterator>& m2);
-
- //
- // stream inserter:
- //
- template <class charT, class traits, class BidirectionalIterator>
- basic_ostream<charT, traits>&
- operator << (basic_ostream<charT, traits>& os,
- const sub_match<BidirectionalIterator>& m);
-
- } // namespace boost
-
-[endsect]
-
-[endsect]
-
-[section Basic Formatting]
-
-[section Font Styles]
-
-Here we go with some inline formatting:
-['italic], [*bold], [_underline], [^teletype], [-strikethrough],
-we can combine styles as well: ['[*bold italic]], [_[^teletype with underline]].
-
-[endsect]
-
-[section Replaceable Text]
-
-Text that is intended to be user-replaceable is [~rendered like this].
-
-[endsect]
-
-[section Quotations]
-
-Here we go: ["A question that sometimes drives me hazy: am I or are the others crazy?]--Einstein
-
-Note the proper left and right quote marks. Also, while you can simply use ordinary quote marks like "quoted", our quotation, above, will generate correct DocBook quotations (e.g. <quote>quoted</quote>).
-
-Like all phrase elements, quotations may be nested. Example:
-
-["Here's the rule for bargains: ["Do other men, for they would do you.] That's
-the true business precept.]
-
-[endsect]
-
-[section Inline Code]
-
-This text has inlined code `int main() { return 0; }` in it.
-The code should be syntax highlighted.
-
-[endsect]
-
-[section Links]
-
-Try this: [@http://www.boost.org this is [*boost's] website....] it should
-be visible as a link.
-
-[endsect]
-
-[section Footnotes]
-
-Here's one [footnote A sample footnote].
-
-And here's another [footnote Another sample footnote].
-
-[endsect]
-
-[section Blockquote]
-
-Lets indent the next paragraph:
-
-[:Here we go!!!]
-
-[endsect]
-
-[section Headings]
-
-Now try rendering some heading styles:
-
-[h1 Heading 1]
-
-[h2 Heading 2]
-
-[h3 Heading 3]
-
-[h4 Heading 4]
-
-[h5 Heading 5]
-
-[h6 Heading 6]
-
-[endsect]
-
-[endsect]
-
-[section Blurbs]
-
-[section Preformatted text]
-
-Here's some sample program output:
-
-[pre
-'''F test for equal standard deviations
-____________________________________
-
-Sample 1:
-Number of Observations = 240
-Sample Standard Deviation = 65.549
-
-Sample 2:
-Number of Observations = 240
-Sample Standard Deviation = 61.854
-
-Test Statistic = 1.123
-
-CDF of test statistic: = 8.148e-001
-Upper Critical Value at alpha: = 1.238e+000
-Upper Critical Value at alpha/2: = 1.289e+000
-Lower Critical Value at alpha: = 8.080e-001
-Lower Critical Value at alpha/2: = 7.756e-001
-
-Results for Alternative Hypothesis and alpha = 0.0500
-
-Alternative Hypothesis Conclusion
-Standard deviations are unequal (two sided test) REJECTED
-Standard deviation 1 is less than standard deviation 2 REJECTED
-Standard deviation 1 is greater than standard deviation 2 REJECTED'''
-]
-
-[endsect]
-
-[section Admonishments]
-
-There are four admonishments supported by Docbook XML:
-
-[note This is a note]
-
-[tip This is a tip]
-
-[important This is important]
-
-[caution This is a caution]
-
-[warning This is a warning
-
-They can contain more than one paragraph.
-]
-
-[endsect]
-
-[section Blurbs]
-
-[blurb [*An eye catching advertisement or note...]
-
-These should be rendered in a manner similar to admonishments.
-
-They can contain more than one paragraph.
-]
-
-[endsect]
-
-[endsect]
-
-[section Lists and Tables]
-
-[section Lists]
-
-A numbered list:
-
-# One
-# Two
-# Three
- # Three.a
- # Three.b
- # Three.c
-# Four
- # Four.a
- # Four.a.i
- # Four.a.ii
-# Five
-
-An unordered list:
-
-* First
-* Second
-* Third
-
-A mixture of the two:
-
-# 1
- * 1.a
- # 1.a.1
- # 1.a.2
- * 1.b
-# 2
- * 2.a
- * 2.b
- # 2.b.1
- # 2.b.2
- * 2.b.2.a
- * 2.b.2.b
-
-
-[endsect]
-
-[section Variable Lists]
-
-[variablelist A Variable List
- [[term 1] [The definition of term 1]]
- [[term 2] [The definition of term 2]]
- [[term 3] [The definition of term 3]]
-]
-
-[endsect]
-
-[section Tables]
-
-Here's a big table with code and other tricky things:
-
-[table Notes on the Implementation of the Beta Distribution
-[[Function][Implementation Notes]]
-[[pdf]
- [f(x;[alpha],[beta]) = x[super[alpha] - 1] (1 - x)[super[beta] -1] / B([alpha], [beta])
-
- Implemented using ibeta_derivative(a, b, x).]]
-
-[[cdf][Using the incomplete beta function ibeta(a, b, x)]]
-[[cdf complement][ibetac(a, b, x)]]
-[[quantile][Using the inverse incomplete beta function ibeta_inv(a, b, p)]]
-[[quantile from the complement][ibetac_inv(a, b, q)]]
-[[mean][`a/(a+b)`]]
-[[variance][`a * b / (a+b)^2 * (a + b + 1)`]]
-[[mode][`(a-1) / (a + b + 2)`]]
-[[skewness][`2 (b-a) sqrt(a+b+1)/(a+b+2) * sqrt(a * b)`]]
-[[kurtosis excess][ [$../beta_dist_kurtosis.png] ]]
-[[kurtosis][`kurtosis + 3`]]
-[[parameter estimation][ ]]
-[[alpha
-
- from mean and variance][`mean * (( (mean * (1 - mean)) / variance)- 1)`]]
-[[beta
-
- from mean and variance][`(1 - mean) * (((mean * (1 - mean)) /variance)-1)`]]
-[[The member functions `estimate_alpha` and `estimate_beta`
-
- from cdf and probability x
-
- and *either* `alpha` or `beta`]
- [Implemented in terms of the inverse incomplete beta functions
-
-ibeta_inva, and ibeta_invb respectively.]]
-[[`estimate_alpha`][`ibeta_inva(beta, x, probability)`]]
-[[`estimate_beta`][`ibeta_invb(alpha, x, probability)`]]
-]
-
-[endsect]
-
-[endsect]
-
-[section Images]
-
-These are tricky enough that they warrent their own section.
-
-Let's start with a PNG file that's set to 120dpi, it should render at
-a sensible size in both html and PDF forms. It should print OK too!
-
-[$images/digamma3.png]
-
-Now try again with a sample SVG image:
-
-[$images/open_clipart_library_logo.svg]
-
-
-[endsect]
-
-[include test_HTML4_symbols.qbk]
-
+[article Document To Test Formatting
+ [quickbook 1.4]
+ [copyright 2007 John Maddock, Joel de Guzman, Eric Niebler and Matias Capeletto]
+ [purpose Test Formatting Document]
+ [license
+ Distributed under the Boost Software License, Version 1.0.
+ (See accompanying file LICENSE_1_0.txt or copy at
+ [@http://www.boost.org/LICENSE_1_0.txt])
+ ]
+ [authors [Maddock, John], [de Guzman, Joel], [Niebler, Eric], [Capeletto, Matias] ]
+ [category math]
+ [/last-revision $Date: 2007-05-07 10:21:52 +0100 (Mon, 07 May 2007) $]
+]
+
+[include HTML4_symbols.qbk]
+
+[/ Some composite templates]
+[template super[x]'''<superscript>'''[x]'''</superscript>''']
+[template sub[x]'''<subscript>'''[x]'''</subscript>''']
+[template floor[x]'''⌊'''[x]'''⌋''']
+[template floorlr[x][lfloor][x][rfloor]]
+[template ceil[x] '''⌈'''[x]'''⌉''']
+
+[section Introduction]
+
+This document is purely a test case to test out HTML and PDF generation and style.
+
+This is some body text.
+
+ int main()
+ {
+ double d = 2.345;
+ return d;
+ }
+
+We can count in Greek too: [alpha], [beta], [gamma].
+
+Try some superscrips and subscripts: x[super 2], x[sub i][super 3], [alpha][super 2],
+[beta][super [alpha]], [floor x], [floor [alpha]], [ceil a].
+
+[endsect]
+
+[section Code Blocks]
+
+[section Embedded code]
+
+These should be syntax highlighted:
+
+ #include <iostream>
+
+ int main()
+ {
+ // Sample code
+ std::cout << "Hello, World\n";
+ return 0;
+ }
+
+[endsect]
+
+[section Imported code and callouts]
+
+[import stub.cpp]
+
+Here's some code with left-placed callouts:
+
+[class_]
+
+And again with callouts placed exactly where we put them:
+
+[foo_bar]
+
+[endsect]
+
+[section Larger example]
+
+Now let's include a larger example, this may span several pages
+and should not be chopped off half way through... some FO processors
+get this wrong!
+
+ namespace boost{
+
+ template <class BidirectionalIterator>
+ class sub_match;
+
+ typedef sub_match<const char*> csub_match;
+ typedef sub_match<const wchar_t*> wcsub_match;
+ typedef sub_match<std::string::const_iterator> ssub_match;
+ typedef sub_match<std::wstring::const_iterator> wssub_match;
+
+ template <class BidirectionalIterator>
+ class sub_match : public std::pair<BidirectionalIterator, BidirectionalIterator>
+ {
+ public:
+ typedef typename iterator_traits<BidirectionalIterator>::value_type value_type;
+ typedef typename iterator_traits<BidirectionalIterator>::difference_type difference_type;
+ typedef BidirectionalIterator iterator;
+
+ bool matched;
+
+ difference_type length()const;
+ operator basic_string<value_type>()const;
+ basic_string<value_type> str()const;
+
+ int compare(const sub_match& s)const;
+ int compare(const basic_string<value_type>& s)const;
+ int compare(const value_type* s)const;
+ #ifdef BOOST_REGEX_MATCH_EXTRA
+ typedef implementation-private capture_sequence_type;
+ const capture_sequence_type& captures()const;
+ #endif
+ };
+ //
+ // comparisons to another sub_match:
+ //
+ template <class BidirectionalIterator>
+ bool operator == (const sub_match<BidirectionalIterator>& lhs,
+ const sub_match<BidirectionalIterator>& rhs);
+ template <class BidirectionalIterator>
+ bool operator != (const sub_match<BidirectionalIterator>& lhs,
+ const sub_match<BidirectionalIterator>& rhs);
+ template <class BidirectionalIterator>
+ bool operator < (const sub_match<BidirectionalIterator>& lhs,
+ const sub_match<BidirectionalIterator>& rhs);
+ template <class BidirectionalIterator>
+ bool operator <= (const sub_match<BidirectionalIterator>& lhs,
+ const sub_match<BidirectionalIterator>& rhs);
+ template <class BidirectionalIterator>
+ bool operator >= (const sub_match<BidirectionalIterator>& lhs,
+ const sub_match<BidirectionalIterator>& rhs);
+ template <class BidirectionalIterator>
+ bool operator > (const sub_match<BidirectionalIterator>& lhs,
+ const sub_match<BidirectionalIterator>& rhs);
+
+
+ //
+ // comparisons to a basic_string:
+ //
+ template <class BidirectionalIterator, class traits, class Allocator>
+ bool operator == (const std::basic_string<iterator_traits<BidirectionalIterator>::value_type,
+ traits,
+ Allocator>& lhs,
+ const sub_match<BidirectionalIterator>& rhs);
+ template <class BidirectionalIterator, class traits, class Allocator>
+ bool operator != (const std::basic_string<iterator_traits<BidirectionalIterator>::value_type,
+ traits,
+ Allocator>& lhs,
+ const sub_match<BidirectionalIterator>& rhs);
+ template <class BidirectionalIterator, class traits, class Allocator>
+ bool operator < (const std::basic_string<iterator_traits<BidirectionalIterator>::value_type,
+ traits,
+ Allocator>& lhs,
+ const sub_match<BidirectionalIterator>& rhs);
+ template <class BidirectionalIterator, class traits, class Allocator>
+ bool operator > (const std::basic_string<iterator_traits<BidirectionalIterator>::value_type,
+ traits,
+ Allocator>& lhs,
+ const sub_match<BidirectionalIterator>& rhs);
+ template <class BidirectionalIterator, class traits, class Allocator>
+ bool operator >= (const std::basic_string<iterator_traits<BidirectionalIterator>::value_type,
+ traits,
+ Allocator>& lhs,
+ const sub_match<BidirectionalIterator>& rhs);
+ template <class BidirectionalIterator, class traits, class Allocator>
+ bool operator <= (const std::basic_string<iterator_traits<BidirectionalIterator>::value_type,
+ traits,
+ Allocator>& lhs,
+ const sub_match<BidirectionalIterator>& rhs);
+
+ template <class BidirectionalIterator, class traits, class Allocator>
+ bool operator == (const sub_match<BidirectionalIterator>& lhs,
+ const std::basic_string<iterator_traits<BidirectionalIterator>::value_type,
+ traits,
+ Allocator>& rhs);
+ template <class BidirectionalIterator, class traits, class Allocator>
+ bool operator != (const sub_match<BidirectionalIterator>& lhs,
+ const std::basic_string<iterator_traits<BidirectionalIterator>::value_type,
+ traits,
+ Allocator>& rhs);
+ template <class BidirectionalIterator, class traits, class Allocator>
+ bool operator < (const sub_match<BidirectionalIterator>& lhs,
+ const std::basic_string<iterator_traits<BidirectionalIterator>::value_type,
+ traits,
+ Allocator>& rhs);
+ template <class BidirectionalIterator, class traits, class Allocator>
+ bool operator > (const sub_match<BidirectionalIterator>& lhs,
+ const std::basic_string<iterator_traits<BidirectionalIterator>::value_type,
+ traits,
+ Allocator>& rhs);
+ template <class BidirectionalIterator, class traits, class Allocator>
+ bool operator >= (const sub_match<BidirectionalIterator>& lhs,
+ const std::basic_string<iterator_traits<BidirectionalIterator>::value_type,
+ traits,
+ Allocator>& rhs);
+ template <class BidirectionalIterator, class traits, class Allocator>
+ bool operator <= (const sub_match<BidirectionalIterator>& lhs,
+ const std::basic_string<iterator_traits<BidirectionalIterator>::value_type,
+ traits,
+ Allocator>& rhs);
+
+ //
+ // comparisons to a pointer to a character array:
+ //
+ template <class BidirectionalIterator>
+ bool operator == (typename iterator_traits<BidirectionalIterator>::value_type const* lhs,
+ const sub_match<BidirectionalIterator>& rhs);
+ template <class BidirectionalIterator>
+ bool operator != (typename iterator_traits<BidirectionalIterator>::value_type const* lhs,
+ const sub_match<BidirectionalIterator>& rhs);
+ template <class BidirectionalIterator>
+ bool operator < (typename iterator_traits<BidirectionalIterator>::value_type const* lhs,
+ const sub_match<BidirectionalIterator>& rhs);
+ template <class BidirectionalIterator>
+ bool operator > (typename iterator_traits<BidirectionalIterator>::value_type const* lhs,
+ const sub_match<BidirectionalIterator>& rhs);
+ template <class BidirectionalIterator>
+ bool operator >= (typename iterator_traits<BidirectionalIterator>::value_type const* lhs,
+ const sub_match<BidirectionalIterator>& rhs);
+ template <class BidirectionalIterator>
+ bool operator <= (typename iterator_traits<BidirectionalIterator>::value_type const* lhs,
+ const sub_match<BidirectionalIterator>& rhs);
+
+ template <class BidirectionalIterator>
+ bool operator == (const sub_match<BidirectionalIterator>& lhs,
+ typename iterator_traits<BidirectionalIterator>::value_type const* rhs);
+ template <class BidirectionalIterator>
+ bool operator != (const sub_match<BidirectionalIterator>& lhs,
+ typename iterator_traits<BidirectionalIterator>::value_type const* rhs);
+ template <class BidirectionalIterator>
+ bool operator < ]``(const sub_match<BidirectionalIterator>& lhs,
+ typename iterator_traits<BidirectionalIterator>::value_type const* rhs);
+ template <class BidirectionalIterator>
+ bool operator > (const sub_match<BidirectionalIterator>& lhs,
+ typename iterator_traits<BidirectionalIterator>::value_type const* rhs);
+ template <class BidirectionalIterator>
+ bool operator >= (const sub_match<BidirectionalIterator>& lhs,
+ typename iterator_traits<BidirectionalIterator>::value_type const* rhs);
+ template <class BidirectionalIterator>
+ bool operator <= (const sub_match<BidirectionalIterator>& lhs,
+ typename iterator_traits<BidirectionalIterator>::value_type const* rhs);
+
+ //
+ // comparisons to a single character:
+ //
+ template <class BidirectionalIterator>
+ bool operator == (typename iterator_traits<BidirectionalIterator>::value_type const& lhs,
+ const sub_match<BidirectionalIterator>& rhs);
+ template <class BidirectionalIterator>
+ bool operator != (typename iterator_traits<BidirectionalIterator>::value_type const& lhs,
+ const sub_match<BidirectionalIterator>& rhs);
+ template <class BidirectionalIterator>
+ bool operator < (typename iterator_traits<BidirectionalIterator>::value_type const& lhs,
+ const sub_match<BidirectionalIterator>& rhs);
+ template <class BidirectionalIterator>
+ bool operator > (typename iterator_traits<BidirectionalIterator>::value_type const& lhs,
+ const sub_match<BidirectionalIterator>& rhs);
+ template <class BidirectionalIterator>
+ bool operator >= (typename iterator_traits<BidirectionalIterator>::value_type const& lhs,
+ const sub_match<BidirectionalIterator>& rhs);
+ template <class BidirectionalIterator>
+ bool operator <= (typename iterator_traits<BidirectionalIterator>::value_type const& lhs,
+ const sub_match<BidirectionalIterator>& rhs);
+
+ template <class BidirectionalIterator>
+ bool operator == (const sub_match<BidirectionalIterator>& lhs,
+ typename iterator_traits<BidirectionalIterator>::value_type const& rhs);
+ template <class BidirectionalIterator>
+ bool operator != (const sub_match<BidirectionalIterator>& lhs,
+ typename iterator_traits<BidirectionalIterator>::value_type const& rhs);
+ template <class BidirectionalIterator>
+ bool operator < (const sub_match<BidirectionalIterator>& lhs,
+ typename iterator_traits<BidirectionalIterator>::value_type const& rhs);
+ template <class BidirectionalIterator>
+ bool operator > (const sub_match<BidirectionalIterator>& lhs,
+ typename iterator_traits<BidirectionalIterator>::value_type const& rhs);
+ template <class BidirectionalIterator>
+ bool operator >= (const sub_match<BidirectionalIterator>& lhs,
+ typename iterator_traits<BidirectionalIterator>::value_type const& rhs);
+ template <class BidirectionalIterator>
+ bool operator <= (const sub_match<BidirectionalIterator>& lhs,
+ typename iterator_traits<BidirectionalIterator>::value_type const& rhs);
+ //
+ // addition operators:
+ //
+ template <class BidirectionalIterator, class traits, class Allocator>
+ std::basic_string<typename iterator_traits<BidirectionalIterator>::value_type, traits, Allocator>
+ operator + (const std::basic_string<typename iterator_traits<BidirectionalIterator>::value_type,
+ traits,
+ Allocator>& s,
+ const sub_match<BidirectionalIterator>& m);
+ template <class BidirectionalIterator, class traits, class Allocator>
+ std::basic_string<typename iterator_traits<BidirectionalIterator>::value_type, traits, Allocator>
+ operator + (const sub_match<BidirectionalIterator>& m,
+ const std::basic_string<typename iterator_traits<BidirectionalIterator>::value_type,
+ traits,
+ Allocator>& s);
+ template <class BidirectionalIterator>
+ std::basic_string<typename iterator_traits<BidirectionalIterator>::value_type>
+ operator + (typename iterator_traits<BidirectionalIterator>::value_type const* s,
+ const sub_match<BidirectionalIterator>& m);
+ template <class BidirectionalIterator>
+ std::basic_string<typename iterator_traits<BidirectionalIterator>::value_type>
+ operator + (const sub_match<BidirectionalIterator>& m,
+ typename iterator_traits<BidirectionalIterator>::value_type const * s);
+ template <class BidirectionalIterator>
+ std::basic_string<typename iterator_traits<BidirectionalIterator>::value_type>
+ operator + (typename iterator_traits<BidirectionalIterator>::value_type const& s,
+ const sub_match<BidirectionalIterator>& m);
+ template <class BidirectionalIterator>
+ std::basic_string<typename iterator_traits<BidirectionalIterator>::value_type>
+ operator + (const sub_match<BidirectionalIterator>& m,
+ typename iterator_traits<BidirectionalIterator>::value_type const& s);
+ template <class BidirectionalIterator>
+ std::basic_string<typename iterator_traits<BidirectionalIterator>::value_type>
+ operator + (const sub_match<BidirectionalIterator>& m1,
+ const sub_match<BidirectionalIterator>& m2);
+
+ //
+ // stream inserter:
+ //
+ template <class charT, class traits, class BidirectionalIterator>
+ basic_ostream<charT, traits>&
+ operator << (basic_ostream<charT, traits>& os,
+ const sub_match<BidirectionalIterator>& m);
+
+ } // namespace boost
+
+[endsect]
+
+[endsect]
+
+[section Basic Formatting]
+
+[section Font Styles]
+
+Here we go with some inline formatting:
+['italic], [*bold], [_underline], [^teletype], [-strikethrough],
+we can combine styles as well: ['[*bold italic]], [_[^teletype with underline]].
+
+[endsect]
+
+[section Replaceable Text]
+
+Text that is intended to be user-replaceable is [~rendered like this].
+
+[endsect]
+
+[section Quotations]
+
+Here we go: ["A question that sometimes drives me hazy: am I or are the others crazy?]--Einstein
+
+Note the proper left and right quote marks. Also, while you can simply use ordinary quote marks like "quoted", our quotation, above, will generate correct DocBook quotations (e.g. <quote>quoted</quote>).
+
+Like all phrase elements, quotations may be nested. Example:
+
+["Here's the rule for bargains: ["Do other men, for they would do you.] That's
+the true business precept.]
+
+[endsect]
+
+[section Inline Code]
+
+This text has inlined code `int main() { return 0; }` in it.
+The code should be syntax highlighted.
+
+[endsect]
+
+[section Links]
+
+Try this: [@http://www.boost.org this is [*boost's] website....] it should
+be visible as a link.
+
+[endsect]
+
+[section Footnotes]
+
+Here's one [footnote A sample footnote].
+
+And here's another [footnote Another sample footnote].
+
+[endsect]
+
+[section Blockquote]
+
+Lets indent the next paragraph:
+
+[:Here we go!!!]
+
+[endsect]
+
+[section Headings]
+
+Now try rendering some heading styles:
+
+[h1 Heading 1]
+
+[h2 Heading 2]
+
+[h3 Heading 3]
+
+[h4 Heading 4]
+
+[h5 Heading 5]
+
+[h6 Heading 6]
+
+[endsect]
+
+[endsect]
+
+[section Blurbs]
+
+[section Preformatted text]
+
+Here's some sample program output:
+
+[pre
+'''F test for equal standard deviations
+____________________________________
+
+Sample 1:
+Number of Observations = 240
+Sample Standard Deviation = 65.549
+
+Sample 2:
+Number of Observations = 240
+Sample Standard Deviation = 61.854
+
+Test Statistic = 1.123
+
+CDF of test statistic: = 8.148e-001
+Upper Critical Value at alpha: = 1.238e+000
+Upper Critical Value at alpha/2: = 1.289e+000
+Lower Critical Value at alpha: = 8.080e-001
+Lower Critical Value at alpha/2: = 7.756e-001
+
+Results for Alternative Hypothesis and alpha = 0.0500
+
+Alternative Hypothesis Conclusion
+Standard deviations are unequal (two sided test) REJECTED
+Standard deviation 1 is less than standard deviation 2 REJECTED
+Standard deviation 1 is greater than standard deviation 2 REJECTED'''
+]
+
+[endsect]
+
+[section Admonishments]
+
+There are four admonishments supported by Docbook XML:
+
+[note This is a note]
+
+[tip This is a tip]
+
+[important This is important]
+
+[caution This is a caution]
+
+[warning This is a warning
+
+They can contain more than one paragraph.
+]
+
+[endsect]
+
+[section Blurbs]
+
+[blurb [*An eye catching advertisement or note...]
+
+These should be rendered in a manner similar to admonishments.
+
+They can contain more than one paragraph.
+]
+
+[endsect]
+
+[endsect]
+
+[section Lists and Tables]
+
+[section Lists]
+
+A numbered list:
+
+# One
+# Two
+# Three
+ # Three.a
+ # Three.b
+ # Three.c
+# Four
+ # Four.a
+ # Four.a.i
+ # Four.a.ii
+# Five
+
+An unordered list:
+
+* First
+* Second
+* Third
+
+A mixture of the two:
+
+# 1
+ * 1.a
+ # 1.a.1
+ # 1.a.2
+ * 1.b
+# 2
+ * 2.a
+ * 2.b
+ # 2.b.1
+ # 2.b.2
+ * 2.b.2.a
+ * 2.b.2.b
+
+
+[endsect]
+
+[section Variable Lists]
+
+[variablelist A Variable List
+ [[term 1] [The definition of term 1]]
+ [[term 2] [The definition of term 2]]
+ [[term 3] [The definition of term 3]]
+]
+
+[endsect]
+
+[section Tables]
+
+Here's a big table with code and other tricky things:
+
+[table Notes on the Implementation of the Beta Distribution
+[[Function][Implementation Notes]]
+[[pdf]
+ [f(x;[alpha],[beta]) = x[super[alpha] - 1] (1 - x)[super[beta] -1] / B([alpha], [beta])
+
+ Implemented using ibeta_derivative(a, b, x).]]
+
+[[cdf][Using the incomplete beta function ibeta(a, b, x)]]
+[[cdf complement][ibetac(a, b, x)]]
+[[quantile][Using the inverse incomplete beta function ibeta_inv(a, b, p)]]
+[[quantile from the complement][ibetac_inv(a, b, q)]]
+[[mean][`a/(a+b)`]]
+[[variance][`a * b / (a+b)^2 * (a + b + 1)`]]
+[[mode][`(a-1) / (a + b + 2)`]]
+[[skewness][`2 (b-a) sqrt(a+b+1)/(a+b+2) * sqrt(a * b)`]]
+[[kurtosis excess][ [$../beta_dist_kurtosis.png] ]]
+[[kurtosis][`kurtosis + 3`]]
+[[parameter estimation][ ]]
+[[alpha
+
+ from mean and variance][`mean * (( (mean * (1 - mean)) / variance)- 1)`]]
+[[beta
+
+ from mean and variance][`(1 - mean) * (((mean * (1 - mean)) /variance)-1)`]]
+[[The member functions `estimate_alpha` and `estimate_beta`
+
+ from cdf and probability x
+
+ and *either* `alpha` or `beta`]
+ [Implemented in terms of the inverse incomplete beta functions
+
+ibeta_inva, and ibeta_invb respectively.]]
+[[`estimate_alpha`][`ibeta_inva(beta, x, probability)`]]
+[[`estimate_beta`][`ibeta_invb(alpha, x, probability)`]]
+]
+
+[endsect]
+
+[endsect]
+
+[section Images]
+
+These are tricky enough that they warrent their own section.
+
+Let's start with a PNG file that's set to 120dpi, it should render at
+a sensible size in both html and PDF forms. It should print OK too!
+
+[$images/digamma3.png]
+
+Now try again with a sample SVG image:
+
+[$images/open_clipart_library_logo.svg]
+
+
+[endsect]
+
+[include test_HTML4_symbols.qbk]
+
+[include remez.qbk]
+
+
Boost-Commit list run by bdawes at acm.org, david.abrahams at rcn.com, gregod at cs.rpi.edu, cpdaniel at pacbell.net, john at johnmaddock.co.uk