|
Boost-Commit : |
From: pbristow_at_[hidden]
Date: 2007-07-13 13:34:53
Author: pbristow
Date: 2007-07-13 13:34:53 EDT (Fri, 13 Jul 2007)
New Revision: 7422
URL: http://svn.boost.org/trac/boost/changeset/7422
Log:
Initial NAG example
Added:
sandbox/math_toolkit/libs/math/doc/distributions/NAG_library.qbk
Added: sandbox/math_toolkit/libs/math/doc/distributions/NAG_library.qbk
==============================================================================
--- (empty file)
+++ sandbox/math_toolkit/libs/math/doc/distributions/NAG_library.qbk 2007-07-13 13:34:53 EDT (Fri, 13 Jul 2007)
@@ -0,0 +1,56 @@
+[section:NAG_library Comparison with C, R, FORTRAN-style Free Functions]
+
+
+You are probably familiar with a statistics library that has free functions,
+for example the classic [@http://nag.com/numeric/CL/CLdescription.asp NAG C library]
+and matching [@http://nag.com/numeric/FL/FLdescription.asp NAG FORTRAN Library],
+[@http://office.microsoft.com/en-us/excel/HP052090051033.aspx Microsoft Excel BINOMDIST(number_s,trials,probability_s,cumulative)],
+[@http://www.r-project.org/ R], [@http://www.ptc.com/products/mathcad/mathcad14/mathcad_func_chart.htm MathCAD pbinom]
+and many others.
+
+If so, you may find 'Distributions as Objects' unfamiliar, if not alien.
+
+However, *do not panic*, both definition and usage are not really very different.
+
+A very simple example of generating the same values for the binomial distribution follows.
+(If you find slightly different values, the Boost C++ version, using double or better,
+is very likely to be the more accurate.
+Of course, accuracy is not usually a concern for most applications of this function).
+
+The [@http://www.nag.co.uk/numeric/cl/manual/pdf/G01/g01bjc.pdf NAG function specification] is
+
+ void nag_binomial_dist(Integer n, double p, Integer k,
+ double *plek, double *pgtk, double *peqk, NagError *fail)
+
+and is called
+
+ g01bjc(n, p, k, &plek, &pgtk, &peqk, NAGERR_DEFAULT);
+
+The equivalent using this Boost C++ library is:
+
+ using boost::math::binomial_distribution;
+ // Get name in the right namespace (avoids very long names).
+ binomial_distribution(RealType n, RealType p); // Default RealType is double,
+
+ binomial_distribution<>my_dist(4, 0.5); // NAG n = 4, p = 0.5
+
+and values can be output thus:
+
+ cout
+ << my_dist.trials() << " " // Echo the NAG input n = 4 trials.
+ << my_dist.success_fraction() << " " // Echo the NAG input p = 0.5
+ << cdf(my_dist, 2) << " " // NAG plek with k = 2
+ << cdf(complement(my_dist, 2)) << " " // NAG pgtk with k = 2
+ << pdf(my_dist, 2) << endl; // NAG peqk with k = 2
+
+
+cdf(dist, k) is equivalent to NAG library plek, lower tail probability of <= k
+
+cdf(complement(dist, k)) is equivalent to NAG library pgtk, upper tail probability of > k
+
+pdf(dist, k) is equivalent to NAG library peqk, point probability of == k
+
+See [@../../example/binomial_example3.cpp binomial_example3.cpp] for details.
+
+[endsect][/ section:NAG_library Comparison with C, R, FORTRAN-style Free Functions]
+
Boost-Commit list run by bdawes at acm.org, david.abrahams at rcn.com, gregod at cs.rpi.edu, cpdaniel at pacbell.net, john at johnmaddock.co.uk