Boost logo

Boost-Commit :

From: john_at_[hidden]
Date: 2007-09-20 13:29:05


Author: johnmaddock
Date: 2007-09-20 13:29:05 EDT (Thu, 20 Sep 2007)
New Revision: 39419
URL: http://svn.boost.org/trac/boost/changeset/39419

Log:
Fixed typo in common_overviews.qbk.
Fixed TODO in rational.qbk.
Text files modified:
   sandbox/math_toolkit/libs/math/doc/common_overviews.qbk | 2 +-
   sandbox/math_toolkit/libs/math/doc/rational.qbk | 11 +++++++++--
   2 files changed, 10 insertions(+), 3 deletions(-)

Modified: sandbox/math_toolkit/libs/math/doc/common_overviews.qbk
==============================================================================
--- sandbox/math_toolkit/libs/math/doc/common_overviews.qbk (original)
+++ sandbox/math_toolkit/libs/math/doc/common_overviews.qbk 2007-09-20 13:29:05 EDT (Thu, 20 Sep 2007)
@@ -26,7 +26,7 @@
    including those that cannot be fully evaluated.
 * How [link math_toolkit.policy.pol_ref.internal_promotion accuracy is controlled by internal promotion] to use more precise types.
 * What working [link math_toolkit.policy.pol_ref.precision_pol precision] should be used to calculate results.
-* What do to when a [link math_toolkit.policy.pol_ref.assert_undefined mathematically undefined function]
+* What to do when a [link math_toolkit.policy.pol_ref.assert_undefined mathematically undefined function]
   is used: Should this raise a run-time or compile-time error?
 * Whether [link math_toolkit.policy.pol_ref.discrete_quant_ref discrete functions],
   like the binomial, should return real or only integral values, and how they are rounded.

Modified: sandbox/math_toolkit/libs/math/doc/rational.qbk
==============================================================================
--- sandbox/math_toolkit/libs/math/doc/rational.qbk (original)
+++ sandbox/math_toolkit/libs/math/doc/rational.qbk 2007-09-20 13:29:05 EDT (Thu, 20 Sep 2007)
@@ -155,8 +155,15 @@
 order as polynomials in ['1\/v]: this avoids unnecessary numerical overflow when the
 coefficients are large.
 
-TODO: mention second order Horner's method and other evaluation options,
-plus config, and performance test app.
+Both the polynomial and rational function evaluation algorithms can be
+tuned using various configuration macros to provide optimal performance
+for a particular combination of compiler and platform. This includes
+support for second-order Horner's methods. The various options are
+[link math_toolkit.perf.tuning documented here]. However, the performance
+benefits to be gained from these are marginal on most current hardware,
+consequently it's best to run the
+[link math_toolkit.perf.perf_test_app performance test application] before
+changing the default settings.
 
 [endsect][/section:rational Polynomial and Rational Function Evaluation]
 


Boost-Commit list run by bdawes at acm.org, david.abrahams at rcn.com, gregod at cs.rpi.edu, cpdaniel at pacbell.net, john at johnmaddock.co.uk