|
Boost-Commit : |
From: john_at_[hidden]
Date: 2007-10-18 14:05:35
Author: johnmaddock
Date: 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
New Revision: 40161
URL: http://svn.boost.org/trac/boost/changeset/40161
Log:
Merged changes in Trunk.
Added:
sandbox/math_toolkit/boost/math/tools/workaround.hpp (contents, props changed)
sandbox/math_toolkit/libs/math/test/compile_test/dist_extreme_val_incl_test.cpp
- copied unchanged from r40158, /trunk/libs/math/test/compile_test/dist_extreme_val_incl_test.cpp
sandbox/math_toolkit/libs/math/test/compile_test/tools_toms748_inc_test.cpp
- copied unchanged from r40158, /trunk/libs/math/test/compile_test/tools_toms748_inc_test.cpp
sandbox/math_toolkit/libs/math/test/functor.hpp
- copied unchanged from r40158, /trunk/libs/math/test/functor.hpp
Removed:
sandbox/math_toolkit/libs/math/test/compile_test/dist_extreme_value_incl_test.cpp
sandbox/math_toolkit/libs/math/test/compile_test/tools_toms748_solve_inc_test.cpp
Text files modified:
sandbox/math_toolkit/boost/math/bindings/rr.hpp | 26
sandbox/math_toolkit/boost/math/concepts/real_concept.hpp | 47 ++
sandbox/math_toolkit/boost/math/concepts/std_real_concept.hpp | 20
sandbox/math_toolkit/boost/math/constants/constants.hpp | 10
sandbox/math_toolkit/boost/math/distributions/bernoulli.hpp | 4
sandbox/math_toolkit/boost/math/distributions/beta.hpp | 4
sandbox/math_toolkit/boost/math/distributions/binomial.hpp | 18
sandbox/math_toolkit/boost/math/distributions/cauchy.hpp | 8
sandbox/math_toolkit/boost/math/distributions/chi_squared.hpp | 6
sandbox/math_toolkit/boost/math/distributions/detail/inv_discrete_quantile.hpp | 6
sandbox/math_toolkit/boost/math/distributions/exponential.hpp | 10
sandbox/math_toolkit/boost/math/distributions/extreme_value.hpp | 10
sandbox/math_toolkit/boost/math/distributions/fisher_f.hpp | 10
sandbox/math_toolkit/boost/math/distributions/gamma.hpp | 10
sandbox/math_toolkit/boost/math/distributions/lognormal.hpp | 10
sandbox/math_toolkit/boost/math/distributions/negative_binomial.hpp | 18
sandbox/math_toolkit/boost/math/distributions/normal.hpp | 10
sandbox/math_toolkit/boost/math/distributions/pareto.hpp | 2
sandbox/math_toolkit/boost/math/distributions/poisson.hpp | 28
sandbox/math_toolkit/boost/math/distributions/rayleigh.hpp | 10
sandbox/math_toolkit/boost/math/distributions/students_t.hpp | 12
sandbox/math_toolkit/boost/math/distributions/uniform.hpp | 10
sandbox/math_toolkit/boost/math/distributions/weibull.hpp | 10
sandbox/math_toolkit/boost/math/policies/error_handling.hpp | 8
sandbox/math_toolkit/boost/math/policies/policy.hpp | 2
sandbox/math_toolkit/boost/math/special_functions/bessel.hpp | 10
sandbox/math_toolkit/boost/math/special_functions/beta.hpp | 8
sandbox/math_toolkit/boost/math/special_functions/cbrt.hpp | 24
sandbox/math_toolkit/boost/math/special_functions/detail/bessel_ik.hpp | 10
sandbox/math_toolkit/boost/math/special_functions/detail/bessel_jy.hpp | 12
sandbox/math_toolkit/boost/math/special_functions/detail/bessel_jy_asym.hpp | 6
sandbox/math_toolkit/boost/math/special_functions/detail/ibeta_inverse.hpp | 8
sandbox/math_toolkit/boost/math/special_functions/detail/igamma_large.hpp | 8
sandbox/math_toolkit/boost/math/special_functions/detail/unchecked_factorial.hpp | 13
sandbox/math_toolkit/boost/math/special_functions/ellint_1.hpp | 4
sandbox/math_toolkit/boost/math/special_functions/ellint_2.hpp | 1
sandbox/math_toolkit/boost/math/special_functions/ellint_3.hpp | 1
sandbox/math_toolkit/boost/math/special_functions/ellint_rj.hpp | 8
sandbox/math_toolkit/boost/math/special_functions/factorials.hpp | 6
sandbox/math_toolkit/boost/math/special_functions/gamma.hpp | 5
sandbox/math_toolkit/boost/math/special_functions/legendre.hpp | 16
sandbox/math_toolkit/boost/math/special_functions/log1p.hpp | 4
sandbox/math_toolkit/boost/math/special_functions/math_fwd.hpp | 12
sandbox/math_toolkit/boost/math/special_functions/sign.hpp | 11
sandbox/math_toolkit/boost/math/special_functions/spherical_harmonic.hpp | 3
sandbox/math_toolkit/boost/math/tools/config.hpp | 138 +++++--
sandbox/math_toolkit/boost/math/tools/fraction.hpp | 88 ++--
sandbox/math_toolkit/boost/math/tools/precision.hpp | 34 +-
sandbox/math_toolkit/boost/math/tools/test.hpp | 4
sandbox/math_toolkit/boost/math/tools/toms748_solve.hpp | 4
sandbox/math_toolkit/libs/math/doc/sf_and_dist/background.qbk | 6
sandbox/math_toolkit/libs/math/doc/sf_and_dist/bessel_ik.qbk | 6
sandbox/math_toolkit/libs/math/doc/sf_and_dist/bessel_introduction.qbk | 6
sandbox/math_toolkit/libs/math/doc/sf_and_dist/bessel_jy.qbk | 10
sandbox/math_toolkit/libs/math/doc/sf_and_dist/bessel_spherical.qbk | 6
sandbox/math_toolkit/libs/math/doc/sf_and_dist/concepts.qbk | 10
sandbox/math_toolkit/libs/math/doc/sf_and_dist/contact_info.qbk | 8
sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/bernoulli.qbk | 7
sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/binomial_example.qbk | 8
sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/chi_squared_examples.qbk | 12
sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/distribution_construction.qbk | 12
sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/f_dist_example.qbk | 10
sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/find_location_and_scale.qbk | 7
sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/gamma.qbk | 7
sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/lognormal.qbk | 7
sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/nag_library.qbk | 7
sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/negative_binomial_example.qbk | 8
sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/normal_example.qbk | 7
sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/pareto.qbk | 7
sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/rayleigh.qbk | 7
sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/students_t_examples.qbk | 7
sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/triangular.qbk | 8
sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/uniform.qbk | 7
sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/weibull.qbk | 6
sandbox/math_toolkit/libs/math/doc/sf_and_dist/ellint_legendre.qbk | 4
sandbox/math_toolkit/libs/math/doc/sf_and_dist/error_handling.qbk | 18
sandbox/math_toolkit/libs/math/doc/sf_and_dist/implementation.qbk | 2
sandbox/math_toolkit/libs/math/doc/sf_and_dist/math.qbk | 2
sandbox/math_toolkit/libs/math/doc/sf_and_dist/overview.qbk | 7
sandbox/math_toolkit/libs/math/doc/sf_and_dist/performance.qbk | 15
sandbox/math_toolkit/libs/math/doc/sf_and_dist/policy.qbk | 2
sandbox/math_toolkit/libs/math/doc/sf_and_dist/policy_tutorial.qbk | 4
sandbox/math_toolkit/libs/math/doc/sf_and_dist/references.qbk | 2
sandbox/math_toolkit/libs/math/doc/sf_and_dist/remez.qbk | 6
sandbox/math_toolkit/libs/math/doc/sf_and_dist/result_type_calc.qbk | 6
sandbox/math_toolkit/libs/math/doc/sf_and_dist/roadmap.qbk | 5
sandbox/math_toolkit/libs/math/doc/sf_and_dist/thread_safety.qbk | 7
sandbox/math_toolkit/libs/math/example/c_error_policy_example.cpp | 4
sandbox/math_toolkit/libs/math/example/error_handling_example.cpp | 8
sandbox/math_toolkit/libs/math/example/error_policies_example.cpp | 8
sandbox/math_toolkit/libs/math/example/error_policy_example.cpp | 10
sandbox/math_toolkit/libs/math/example/neg_binomial_sample_sizes.cpp | 12
sandbox/math_toolkit/libs/math/example/negative_binomial_example1.cpp | 2
sandbox/math_toolkit/libs/math/example/normal_misc_examples.cpp | 2
sandbox/math_toolkit/libs/math/example/students_t_example1.cpp | 48 +-
sandbox/math_toolkit/libs/math/example/students_t_example2.cpp | 64 +-
sandbox/math_toolkit/libs/math/example/students_t_example3.cpp | 68 ++--
sandbox/math_toolkit/libs/math/minimax/f.cpp | 20
sandbox/math_toolkit/libs/math/minimax/main.cpp | 51 ++
sandbox/math_toolkit/libs/math/test/Jamfile.v2 | 217 ++++++++++++-
sandbox/math_toolkit/libs/math/test/assoc_legendre_p.ipp | 5
sandbox/math_toolkit/libs/math/test/bessel_k_data.ipp | 120 +++---
sandbox/math_toolkit/libs/math/test/bessel_k_int_data.ipp | 186 +++++-----
sandbox/math_toolkit/libs/math/test/binomial_data.ipp | 5
sandbox/math_toolkit/libs/math/test/binomial_large_data.ipp | 5
sandbox/math_toolkit/libs/math/test/binomial_quantile.ipp | 5
sandbox/math_toolkit/libs/math/test/cbrt_data.ipp | 5
sandbox/math_toolkit/libs/math/test/compile_test/sf_fpclassify_incl_test.cpp | 2
sandbox/math_toolkit/libs/math/test/compile_test/sf_sph_harm_incl_test.cpp | 5
sandbox/math_toolkit/libs/math/test/compile_test/test_compile_result.hpp | 12
sandbox/math_toolkit/libs/math/test/compile_test/tools_roots_inc_test.cpp | 4
sandbox/math_toolkit/libs/math/test/compile_test/tools_test_inc_test.cpp | 3
sandbox/math_toolkit/libs/math/test/digamma_data.ipp | 5
sandbox/math_toolkit/libs/math/test/digamma_neg_data.ipp | 5
sandbox/math_toolkit/libs/math/test/digamma_root_data.ipp | 5
sandbox/math_toolkit/libs/math/test/digamma_small_data.ipp | 5
sandbox/math_toolkit/libs/math/test/ellint_k_data.ipp | 5
sandbox/math_toolkit/libs/math/test/erf_data.ipp | 5
sandbox/math_toolkit/libs/math/test/erf_inv_data.ipp | 5
sandbox/math_toolkit/libs/math/test/erf_large_data.ipp | 5
sandbox/math_toolkit/libs/math/test/erfc_inv_big_data.ipp | 5
sandbox/math_toolkit/libs/math/test/erfc_inv_data.ipp | 5
sandbox/math_toolkit/libs/math/test/gamma_inv_big_data.ipp | 5
sandbox/math_toolkit/libs/math/test/gamma_inv_data.ipp | 5
sandbox/math_toolkit/libs/math/test/gamma_inv_small_data.ipp | 153 ++++----
sandbox/math_toolkit/libs/math/test/handle_test_result.hpp | 9
sandbox/math_toolkit/libs/math/test/hermite.ipp | 5
sandbox/math_toolkit/libs/math/test/hypot_test.cpp | 1
sandbox/math_toolkit/libs/math/test/ibeta_int_data.ipp | 5
sandbox/math_toolkit/libs/math/test/ibeta_inv_data.ipp | 249 +++++++-------
sandbox/math_toolkit/libs/math/test/ibeta_inva_data.ipp | 5
sandbox/math_toolkit/libs/math/test/ibeta_large_data.ipp | 660 ++++++++++++++++++++--------------------
sandbox/math_toolkit/libs/math/test/igamma_big_data.ipp | 70 ++--
sandbox/math_toolkit/libs/math/test/igamma_int_data.ipp | 5
sandbox/math_toolkit/libs/math/test/igamma_inva_data.ipp | 5
sandbox/math_toolkit/libs/math/test/laguerre2.ipp | 5
sandbox/math_toolkit/libs/math/test/laguerre3.ipp | 5
sandbox/math_toolkit/libs/math/test/legendre_p.ipp | 5
sandbox/math_toolkit/libs/math/test/legendre_p_large.ipp | 5
sandbox/math_toolkit/libs/math/test/log1p_expm1_data.ipp | 5
sandbox/math_toolkit/libs/math/test/log1p_expm1_test.cpp | 24
sandbox/math_toolkit/libs/math/test/negative_binomial_quantile.ipp | 5
sandbox/math_toolkit/libs/math/test/poisson_quantile.ipp | 5
sandbox/math_toolkit/libs/math/test/powm1_sqrtp1m1_test.cpp | 15
sandbox/math_toolkit/libs/math/test/spherical_harmonic.ipp | 5
sandbox/math_toolkit/libs/math/test/test_bernoulli.cpp | 7
sandbox/math_toolkit/libs/math/test/test_bessel_i.cpp | 16
sandbox/math_toolkit/libs/math/test/test_bessel_j.cpp | 32 -
sandbox/math_toolkit/libs/math/test/test_bessel_k.cpp | 22
sandbox/math_toolkit/libs/math/test/test_bessel_y.cpp | 56 ++-
sandbox/math_toolkit/libs/math/test/test_beta.cpp | 20
sandbox/math_toolkit/libs/math/test/test_beta_dist.cpp | 3
sandbox/math_toolkit/libs/math/test/test_binomial.cpp | 66 ++-
sandbox/math_toolkit/libs/math/test/test_binomial_coeff.cpp | 17
sandbox/math_toolkit/libs/math/test/test_carlson.cpp | 37 -
sandbox/math_toolkit/libs/math/test/test_cauchy.cpp | 211 ++++++------
sandbox/math_toolkit/libs/math/test/test_cbrt.cpp | 34 +
sandbox/math_toolkit/libs/math/test/test_chi_squared.cpp | 5
sandbox/math_toolkit/libs/math/test/test_classify.cpp | 3
sandbox/math_toolkit/libs/math/test/test_constants.cpp | 6
sandbox/math_toolkit/libs/math/test/test_digamma.cpp | 11
sandbox/math_toolkit/libs/math/test/test_dist_overloads.cpp | 14
sandbox/math_toolkit/libs/math/test/test_ellint_1.cpp | 17
sandbox/math_toolkit/libs/math/test/test_ellint_2.cpp | 15
sandbox/math_toolkit/libs/math/test/test_ellint_3.cpp | 17
sandbox/math_toolkit/libs/math/test/test_erf.cpp | 42 -
sandbox/math_toolkit/libs/math/test/test_error_handling.cpp | 12
sandbox/math_toolkit/libs/math/test/test_exponential_dist.cpp | 48 +-
sandbox/math_toolkit/libs/math/test/test_extreme_value.cpp | 46 +-
sandbox/math_toolkit/libs/math/test/test_factorials.cpp | 3
sandbox/math_toolkit/libs/math/test/test_find_location.cpp | 2
sandbox/math_toolkit/libs/math/test/test_find_scale.cpp | 2
sandbox/math_toolkit/libs/math/test/test_fisher_f.cpp | 56 +-
sandbox/math_toolkit/libs/math/test/test_gamma.cpp | 55 ++-
sandbox/math_toolkit/libs/math/test/test_gamma_dist.cpp | 28
sandbox/math_toolkit/libs/math/test/test_hermite.cpp | 17
sandbox/math_toolkit/libs/math/test/test_ibeta.cpp | 109 ++++--
sandbox/math_toolkit/libs/math/test/test_ibeta_inv.cpp | 37 +
sandbox/math_toolkit/libs/math/test/test_ibeta_inv_ab.cpp | 37 +
sandbox/math_toolkit/libs/math/test/test_igamma.cpp | 65 ++-
sandbox/math_toolkit/libs/math/test/test_igamma_inv.cpp | 43 +
sandbox/math_toolkit/libs/math/test/test_igamma_inva.cpp | 33 +
sandbox/math_toolkit/libs/math/test/test_laguerre.cpp | 61 +--
sandbox/math_toolkit/libs/math/test/test_legendre.cpp | 59 --
sandbox/math_toolkit/libs/math/test/test_lognormal.cpp | 36 +-
sandbox/math_toolkit/libs/math/test/test_negative_binomial.cpp | 19 +
sandbox/math_toolkit/libs/math/test/test_normal.cpp | 38 +-
sandbox/math_toolkit/libs/math/test/test_pareto.cpp | 30
sandbox/math_toolkit/libs/math/test/test_poisson.cpp | 135 ++++---
sandbox/math_toolkit/libs/math/test/test_policy.cpp | 2
sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational.hpp | 5
sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_double1.cpp | 5
sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_double2.cpp | 5
sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_double3.cpp | 5
sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_double4.cpp | 4
sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_double5.cpp | 5
sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_float1.cpp | 5
sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_float2.cpp | 5
sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_float3.cpp | 5
sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_float4.cpp | 5
sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_ldouble1.cpp | 5
sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_ldouble2.cpp | 5
sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_ldouble3.cpp | 5
sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_ldouble4.cpp | 5
sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_ldouble5.cpp | 5
sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_real_concept1.cpp | 9
sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_real_concept2.cpp | 9
sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_real_concept3.cpp | 9
sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_real_concept4.cpp | 9
sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_real_concept5.cpp | 10
sandbox/math_toolkit/libs/math/test/test_rayleigh.cpp | 70 ++--
sandbox/math_toolkit/libs/math/test/test_spherical_harmonic.cpp | 34 -
sandbox/math_toolkit/libs/math/test/test_students_t.cpp | 92 ++--
sandbox/math_toolkit/libs/math/test/test_tgamma_ratio.cpp | 53 ++-
sandbox/math_toolkit/libs/math/test/test_uniform.cpp | 30
sandbox/math_toolkit/libs/math/test/test_weibull.cpp | 28
sandbox/math_toolkit/libs/math/test/tgamma_delta_ratio_data.ipp | 5
sandbox/math_toolkit/libs/math/test/tgamma_delta_ratio_int.ipp | 5
sandbox/math_toolkit/libs/math/test/tgamma_delta_ratio_int2.ipp | 5
sandbox/math_toolkit/libs/math/test/tgamma_ratio_data.ipp | 5
sandbox/math_toolkit/libs/math/tools/ellint_e_data.cpp | 5
sandbox/math_toolkit/libs/math/tools/ellint_f_data.cpp | 5
sandbox/math_toolkit/libs/math/tools/ellint_k_data.cpp | 5
sandbox/math_toolkit/libs/math/tools/factorial_tables.cpp | 4
sandbox/math_toolkit/libs/math/tools/generate_rational_test.cpp | 4
sandbox/math_toolkit/libs/math/tools/hermite_data.cpp | 4
sandbox/math_toolkit/libs/math/tools/laguerre_data.cpp | 4
sandbox/math_toolkit/libs/math/tools/legendre_data.cpp | 4
sandbox/math_toolkit/libs/math/tools/rational_tests.cpp | 4
sandbox/math_toolkit/libs/math/tools/spherical_harmonic_data.cpp | 4
230 files changed, 3139 insertions(+), 2165 deletions(-)
Modified: sandbox/math_toolkit/boost/math/bindings/rr.hpp
==============================================================================
--- sandbox/math_toolkit/boost/math/bindings/rr.hpp (original)
+++ sandbox/math_toolkit/boost/math/bindings/rr.hpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -425,7 +425,7 @@
{
template<>
-inline int digits<boost::math::ntl::RR>(BOOST_EXPLICIT_TEMPLATE_TYPE_SPEC(boost::math::ntl::RR))
+inline int digits<boost::math::ntl::RR>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(boost::math::ntl::RR))
{
return ::NTL::RR::precision();
}
@@ -493,7 +493,7 @@
}
template <>
-inline boost::math::ntl::RR max_value<boost::math::ntl::RR>(BOOST_EXPLICIT_TEMPLATE_TYPE_SPEC(boost::math::ntl::RR))
+inline boost::math::ntl::RR max_value<boost::math::ntl::RR>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(boost::math::ntl::RR))
{
static bool has_init = false;
static NTL::RR val;
@@ -507,7 +507,7 @@
}
template <>
-inline boost::math::ntl::RR min_value<boost::math::ntl::RR>(BOOST_EXPLICIT_TEMPLATE_TYPE_SPEC(boost::math::ntl::RR))
+inline boost::math::ntl::RR min_value<boost::math::ntl::RR>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(boost::math::ntl::RR))
{
static bool has_init = false;
static NTL::RR val;
@@ -521,7 +521,7 @@
}
template <>
-inline boost::math::ntl::RR log_max_value<boost::math::ntl::RR>(BOOST_EXPLICIT_TEMPLATE_TYPE_SPEC(boost::math::ntl::RR))
+inline boost::math::ntl::RR log_max_value<boost::math::ntl::RR>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(boost::math::ntl::RR))
{
static bool has_init = false;
static NTL::RR val;
@@ -536,7 +536,7 @@
}
template <>
-inline boost::math::ntl::RR log_min_value<boost::math::ntl::RR>(BOOST_EXPLICIT_TEMPLATE_TYPE_SPEC(boost::math::ntl::RR))
+inline boost::math::ntl::RR log_min_value<boost::math::ntl::RR>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(boost::math::ntl::RR))
{
static bool has_init = false;
static NTL::RR val;
@@ -551,7 +551,7 @@
}
template <>
-inline boost::math::ntl::RR epsilon<boost::math::ntl::RR>(BOOST_EXPLICIT_TEMPLATE_TYPE_SPEC(boost::math::ntl::RR))
+inline boost::math::ntl::RR epsilon<boost::math::ntl::RR>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(boost::math::ntl::RR))
{
return ldexp(boost::math::ntl::RR(1), 1-boost::math::policies::digits<boost::math::ntl::RR, boost::math::policies::policy<> >());
}
@@ -564,17 +564,17 @@
//
namespace constants{
-template<> inline boost::math::ntl::RR pi<boost::math::ntl::RR>(BOOST_EXPLICIT_TEMPLATE_TYPE_SPEC(boost::math::ntl::RR))
+template<> inline boost::math::ntl::RR pi<boost::math::ntl::RR>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(boost::math::ntl::RR))
{
- NTL::RR result;
- ComputePi(result);
- return result;
+ NTL::RR result;
+ ComputePi(result);
+ return result;
}
-template<> inline boost::math::ntl::RR e<boost::math::ntl::RR>(BOOST_EXPLICIT_TEMPLATE_TYPE_SPEC(boost::math::ntl::RR))
+template<> inline boost::math::ntl::RR e<boost::math::ntl::RR>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(boost::math::ntl::RR))
{
- NTL::RR result;
+ NTL::RR result;
result = 1;
- return exp(result);
+ return exp(result);
}
} // namespace constants
Modified: sandbox/math_toolkit/boost/math/concepts/real_concept.hpp
==============================================================================
--- sandbox/math_toolkit/boost/math/concepts/real_concept.hpp (original)
+++ sandbox/math_toolkit/boost/math/concepts/real_concept.hpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -25,10 +25,10 @@
#include <boost/math/tools/real_cast.hpp>
#include <boost/math/tools/precision.hpp>
#include <boost/math/policies/policy.hpp>
-
#include <ostream>
#include <istream>
#include <cmath>
+#include <math.h> // fmodl
#ifndef BOOST_MATH_REAL_CONCEPT_HPP
#define BOOST_MATH_REAL_CONCEPT_HPP
@@ -55,7 +55,7 @@
real_concept(int c) : m_value(c){}
real_concept(unsigned long c) : m_value(c){}
real_concept(long c) : m_value(c){}
-#ifdef BOOST_HAS_LONG_LONG
+#if defined(BOOST_HAS_LONG_LONG) || defined(__DECCXX) || defined(__SUNPRO_CC)
real_concept(unsigned long long c) : m_value(static_cast<long double>(c)){}
real_concept(long long c) : m_value(static_cast<long double>(c)){}
#elif defined(BOOST_HAS_MS_INT64)
@@ -195,8 +195,10 @@
{ return std::atan2(a.value(), b.value()); }
inline real_concept ceil(real_concept a)
{ return std::ceil(a.value()); }
+#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
inline real_concept fmod(real_concept a, real_concept b)
-{ return boost::math::tools::fmod_workaround(a.value(), b.value()); }
+{ return fmodl(a.value(), b.value()); }
+#endif
inline real_concept cosh(real_concept a)
{ return std::cosh(a.value()); }
inline real_concept exp(real_concept a)
@@ -226,8 +228,13 @@
{ return std::tan(a.value()); }
inline real_concept pow(real_concept a, real_concept b)
{ return std::pow(a.value(), b.value()); }
+#if !defined(__SUNPRO_CC)
inline real_concept pow(real_concept a, int b)
{ return std::pow(a.value(), b); }
+#else
+inline real_concept pow(real_concept a, int b)
+{ return std::pow(a.value(), static_cast<long double>(b)); }
+#endif
inline real_concept sin(real_concept a)
{ return std::sin(a.value()); }
inline real_concept sinh(real_concept a)
@@ -246,10 +253,28 @@
template <class charT, class traits>
inline std::basic_istream<charT, traits>& operator>>(std::basic_istream<charT, traits>& is, real_concept& a)
{
+#if defined(BOOST_MSVC) && defined(__SGI_STL_PORT)
+ //
+ // STLPort 5.1.4 has a problem reading long doubles from strings,
+ // see http://sourceforge.net/tracker/index.php?func=detail&aid=1811043&group_id=146814&atid=766244
+ //
+ double v;
+ is >> v;
+ a = v;
+ return is;
+#elif defined(__SGI_STL_PORT)
+ std::string s;
+ long double d;
+ is >> s;
+ std::sscanf(s.c_str(), "%Lf", &d);
+ a = d;
+ return is;
+#else
long double v;
is >> v;
a = v;
return is;
+#endif
}
} // namespace concepts
@@ -297,37 +322,41 @@
}
template <>
-inline concepts::real_concept max_value<concepts::real_concept>(BOOST_EXPLICIT_TEMPLATE_TYPE_SPEC(concepts::real_concept))
+inline concepts::real_concept max_value<concepts::real_concept>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(concepts::real_concept))
{
return max_value<long double>();
}
template <>
-inline concepts::real_concept min_value<concepts::real_concept>(BOOST_EXPLICIT_TEMPLATE_TYPE_SPEC(concepts::real_concept))
+inline concepts::real_concept min_value<concepts::real_concept>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(concepts::real_concept))
{
return min_value<long double>();
}
template <>
-inline concepts::real_concept log_max_value<concepts::real_concept>(BOOST_EXPLICIT_TEMPLATE_TYPE_SPEC(concepts::real_concept))
+inline concepts::real_concept log_max_value<concepts::real_concept>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(concepts::real_concept))
{
return log_max_value<long double>();
}
template <>
-inline concepts::real_concept log_min_value<concepts::real_concept>(BOOST_EXPLICIT_TEMPLATE_TYPE_SPEC(concepts::real_concept))
+inline concepts::real_concept log_min_value<concepts::real_concept>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(concepts::real_concept))
{
return log_min_value<long double>();
}
template <>
-inline concepts::real_concept epsilon(BOOST_EXPLICIT_TEMPLATE_TYPE_SPEC(concepts::real_concept))
+inline concepts::real_concept epsilon(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(concepts::real_concept))
{
+#ifdef __SUNPRO_CC
+ return std::numeric_limits<long double>::epsilon();
+#else
return tools::epsilon<long double>();
+#endif
}
template <>
-inline int digits<concepts::real_concept>(BOOST_EXPLICIT_TEMPLATE_TYPE_SPEC(concepts::real_concept))
+inline int digits<concepts::real_concept>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(concepts::real_concept))
{
// Assume number of significand bits is same as long double,
// unless std::numeric_limits<T>::is_specialized to provide digits.
Modified: sandbox/math_toolkit/boost/math/concepts/std_real_concept.hpp
==============================================================================
--- sandbox/math_toolkit/boost/math/concepts/std_real_concept.hpp (original)
+++ sandbox/math_toolkit/boost/math/concepts/std_real_concept.hpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -25,6 +25,7 @@
#include <ostream>
#include <istream>
#include <cmath>
+#include <math.h> // fmodl
#ifndef BOOST_MATH_STD_REAL_CONCEPT_HPP
#define BOOST_MATH_STD_REAL_CONCEPT_HPP
@@ -194,8 +195,13 @@
{ return std::atan2(a.value(), b.value()); }
inline boost::math::concepts::std_real_concept ceil(boost::math::concepts::std_real_concept a)
{ return std::ceil(a.value()); }
+#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
inline boost::math::concepts::std_real_concept fmod(boost::math::concepts::std_real_concept a, boost::math::concepts::std_real_concept b)
-{ return boost::math::tools::fmod_workaround(a.value(), b.value()); }
+{ return fmodl(a.value(), b.value()); }
+#else
+inline boost::math::concepts::std_real_concept fmod(boost::math::concepts::std_real_concept a, boost::math::concepts::std_real_concept b)
+{ return std::fmod(a.value(), b.value()); }
+#endif
inline boost::math::concepts::std_real_concept cosh(boost::math::concepts::std_real_concept a)
{ return std::cosh(a.value()); }
inline boost::math::concepts::std_real_concept exp(boost::math::concepts::std_real_concept a)
@@ -300,37 +306,37 @@
}
template <>
-inline concepts::std_real_concept max_value<concepts::std_real_concept>(BOOST_EXPLICIT_TEMPLATE_TYPE_SPEC(concepts::std_real_concept))
+inline concepts::std_real_concept max_value<concepts::std_real_concept>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(concepts::std_real_concept))
{
return max_value<long double>();
}
template <>
-inline concepts::std_real_concept min_value<concepts::std_real_concept>(BOOST_EXPLICIT_TEMPLATE_TYPE_SPEC(concepts::std_real_concept))
+inline concepts::std_real_concept min_value<concepts::std_real_concept>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(concepts::std_real_concept))
{
return min_value<long double>();
}
template <>
-inline concepts::std_real_concept log_max_value<concepts::std_real_concept>(BOOST_EXPLICIT_TEMPLATE_TYPE_SPEC(concepts::std_real_concept))
+inline concepts::std_real_concept log_max_value<concepts::std_real_concept>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(concepts::std_real_concept))
{
return log_max_value<long double>();
}
template <>
-inline concepts::std_real_concept log_min_value<concepts::std_real_concept>(BOOST_EXPLICIT_TEMPLATE_TYPE_SPEC(concepts::std_real_concept))
+inline concepts::std_real_concept log_min_value<concepts::std_real_concept>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(concepts::std_real_concept))
{
return log_min_value<long double>();
}
template <>
-inline concepts::std_real_concept epsilon(BOOST_EXPLICIT_TEMPLATE_TYPE_SPEC(concepts::std_real_concept))
+inline concepts::std_real_concept epsilon(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(concepts::std_real_concept))
{
return tools::epsilon<long double>();
}
template <>
-inline int digits<concepts::std_real_concept>(BOOST_EXPLICIT_TEMPLATE_TYPE_SPEC(concepts::std_real_concept))
+inline int digits<concepts::std_real_concept>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(concepts::std_real_concept))
{ // Assume number of significand bits is same as long double,
// unless std::numeric_limits<T>::is_specialized to provide digits.
return digits<long double>();
Modified: sandbox/math_toolkit/boost/math/constants/constants.hpp
==============================================================================
--- sandbox/math_toolkit/boost/math/constants/constants.hpp (original)
+++ sandbox/math_toolkit/boost/math/constants/constants.hpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -7,7 +7,7 @@
#ifndef BOOST_MATH_CONSTANTS_CONSTANTS_INCLUDED
#define BOOST_MATH_CONSTANTS_CONSTANTS_INCLUDED
-#include <boost/config.hpp>
+#include <boost/math/tools/config.hpp>
#ifdef BOOST_MSVC
#pragma warning(push)
#pragma warning(disable: 4127 4701)
@@ -37,16 +37,16 @@
#define BOOST_DEFINE_MATH_CONSTANT(name, x, y, exp)\
- template <class T> inline T name(BOOST_EXPLICIT_TEMPLATE_TYPE(T))\
+ template <class T> inline T name(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE(T))\
{\
static const T result = ::boost::lexical_cast<T>(BOOST_STRINGIZE(BOOST_JOIN(BOOST_JOIN(x, y), BOOST_JOIN(e, exp))));\
return result;\
}\
- template <> inline float name<float>(BOOST_EXPLICIT_TEMPLATE_TYPE_SPEC(float))\
+ template <> inline float name<float>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(float))\
{ return BOOST_JOIN(BOOST_JOIN(x, BOOST_JOIN(e, exp)), F); }\
- template <> inline double name<double>(BOOST_EXPLICIT_TEMPLATE_TYPE_SPEC(double))\
+ template <> inline double name<double>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(double))\
{ return BOOST_JOIN(x, BOOST_JOIN(e, exp)); }\
- template <> inline long double name<long double>(BOOST_EXPLICIT_TEMPLATE_TYPE_SPEC(long double))\
+ template <> inline long double name<long double>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(long double))\
{ return BOOST_JOIN(BOOST_JOIN(x, BOOST_JOIN(e, exp)), L); }
BOOST_DEFINE_MATH_CONSTANT(pi, 3.141592653589793238462643383279502884197169399375105820974944, 59230781640628620899862803482534211706798214808651328230664709384460955058223172535940812848111745028410270193852110555964462294895493038196, 0)
Modified: sandbox/math_toolkit/boost/math/distributions/bernoulli.hpp
==============================================================================
--- sandbox/math_toolkit/boost/math/distributions/bernoulli.hpp (original)
+++ sandbox/math_toolkit/boost/math/distributions/bernoulli.hpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -149,7 +149,7 @@
} // variance
template <class RealType, class Policy>
- RealType pdf(const bernoulli_distribution<RealType, Policy>& dist, const RealType k)
+ RealType pdf(const bernoulli_distribution<RealType, Policy>& dist, const RealType& k)
{ // Probability Density/Mass Function.
BOOST_FPU_EXCEPTION_GUARD
// Error check:
@@ -174,7 +174,7 @@
} // pdf
template <class RealType, class Policy>
- inline RealType cdf(const bernoulli_distribution<RealType, Policy>& dist, const RealType k)
+ inline RealType cdf(const bernoulli_distribution<RealType, Policy>& dist, const RealType& k)
{ // Cumulative Distribution Function Bernoulli.
RealType p = dist.success_fraction();
// Error check:
Modified: sandbox/math_toolkit/boost/math/distributions/beta.hpp
==============================================================================
--- sandbox/math_toolkit/boost/math/distributions/beta.hpp (original)
+++ sandbox/math_toolkit/boost/math/distributions/beta.hpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -364,7 +364,7 @@
} // kurtosis
template <class RealType, class Policy>
- inline RealType pdf(const beta_distribution<RealType, Policy>& dist, const RealType x)
+ inline RealType pdf(const beta_distribution<RealType, Policy>& dist, const RealType& x)
{ // Probability Density/Mass Function.
BOOST_FPU_EXCEPTION_GUARD
@@ -389,7 +389,7 @@
} // pdf
template <class RealType, class Policy>
- inline RealType cdf(const beta_distribution<RealType, Policy>& dist, const RealType x)
+ inline RealType cdf(const beta_distribution<RealType, Policy>& dist, const RealType& x)
{ // Cumulative Distribution Function beta.
BOOST_MATH_STD_USING // for ADL of std functions
Modified: sandbox/math_toolkit/boost/math/distributions/binomial.hpp
==============================================================================
--- sandbox/math_toolkit/boost/math/distributions/binomial.hpp (original)
+++ sandbox/math_toolkit/boost/math/distributions/binomial.hpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -231,8 +231,8 @@
}
if (p <= pow(1 - success_fraction, trials))
{ // p <= pdf(dist, 0) == cdf(dist, 0)
- return 0; // So the only reasonable result is zero.
- } // And root finder would fail otherwise.
+ return 0; // So the only reasonable result is zero.
+ } // And root finder would fail otherwise.
// Solve for quantile numerically:
//
@@ -406,9 +406,9 @@
}; // template <class RealType, class Policy> class binomial_distribution
typedef binomial_distribution<> binomial;
- // typedef binomial_distribution<double> binomial;
- // IS now included since no longer a name clash with function binomial.
- //typedef binomial_distribution<double> binomial; // Reserved name of type double.
+ // typedef binomial_distribution<double> binomial;
+ // IS now included since no longer a name clash with function binomial.
+ //typedef binomial_distribution<double> binomial; // Reserved name of type double.
template <class RealType, class Policy>
const std::pair<RealType, RealType> range(const binomial_distribution<RealType, Policy>& dist)
@@ -437,7 +437,7 @@
} // variance
template <class RealType, class Policy>
- RealType pdf(const binomial_distribution<RealType, Policy>& dist, const RealType k)
+ RealType pdf(const binomial_distribution<RealType, Policy>& dist, const RealType& k)
{ // Probability Density/Mass Function.
BOOST_FPU_EXCEPTION_GUARD
@@ -498,7 +498,7 @@
} // pdf
template <class RealType, class Policy>
- inline RealType cdf(const binomial_distribution<RealType, Policy>& dist, const RealType k)
+ inline RealType cdf(const binomial_distribution<RealType, Policy>& dist, const RealType& k)
{ // Cumulative Distribution Function Binomial.
// The random variate k is the number of successes in n trials.
// k argument may be integral, signed, or unsigned, or floating point.
@@ -676,8 +676,8 @@
// 1993, vol. 40, no3-4, pp. 185-189 (4 ref.)
// Bounds for median and 50 percetage point of binomial and negative binomial distribution
- // Metrika, ISSN 0026-1335 (Print) 1435-926X (Online)
- // Volume 41, Number 1 / December, 1994, DOI 10.1007/BF01895303
+ // Metrika, ISSN 0026-1335 (Print) 1435-926X (Online)
+ // Volume 41, Number 1 / December, 1994, DOI 10.1007/BF01895303
BOOST_MATH_STD_USING // ADL of std functions.
RealType p = dist.success_fraction();
RealType n = dist.trials();
Modified: sandbox/math_toolkit/boost/math/distributions/cauchy.hpp
==============================================================================
--- sandbox/math_toolkit/boost/math/distributions/cauchy.hpp (original)
+++ sandbox/math_toolkit/boost/math/distributions/cauchy.hpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -85,7 +85,7 @@
return 0.5;
}
result = -atan(1 / mx) / constants::pi<RealType>();
- return (((x > location) != complement) ? 1 - result : result);
+ return (((x > location) != complement) ? 1 - result : result);
} // cdf
template <class RealType, class Policy>
@@ -180,14 +180,14 @@
template <class RealType, class Policy>
inline const std::pair<RealType, RealType> range(const cauchy_distribution<RealType, Policy>&)
{ // Range of permissible values for random variable x.
- using boost::math::tools::max_value;
- return std::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>()); // - to + infinity.
+ using boost::math::tools::max_value;
+ return std::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>()); // - to + infinity.
}
template <class RealType, class Policy>
inline const std::pair<RealType, RealType> support(const cauchy_distribution<RealType, Policy>& )
{ // Range of supported values for random variable x.
- // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
+ // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
return std::pair<RealType, RealType>(-tools::max_value<RealType>(), tools::max_value<RealType>()); // - to + infinity.
}
Modified: sandbox/math_toolkit/boost/math/distributions/chi_squared.hpp
==============================================================================
--- sandbox/math_toolkit/boost/math/distributions/chi_squared.hpp (original)
+++ sandbox/math_toolkit/boost/math/distributions/chi_squared.hpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -58,14 +58,14 @@
template <class RealType, class Policy>
inline const std::pair<RealType, RealType> range(const chi_squared_distribution<RealType, Policy>& /*dist*/)
{ // Range of permissible values for random variable x.
- using boost::math::tools::max_value;
- return std::pair<RealType, RealType>(0, max_value<RealType>()); // 0 to + infinity.
+ using boost::math::tools::max_value;
+ return std::pair<RealType, RealType>(0, max_value<RealType>()); // 0 to + infinity.
}
template <class RealType, class Policy>
inline const std::pair<RealType, RealType> support(const chi_squared_distribution<RealType, Policy>& /*dist*/)
{ // Range of supported values for random variable x.
- // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
+ // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
return std::pair<RealType, RealType>(0, tools::max_value<RealType>()); // 0 to + infinity.
}
Modified: sandbox/math_toolkit/boost/math/distributions/detail/inv_discrete_quantile.hpp
==============================================================================
--- sandbox/math_toolkit/boost/math/distributions/detail/inv_discrete_quantile.hpp (original)
+++ sandbox/math_toolkit/boost/math/distributions/detail/inv_discrete_quantile.hpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -200,7 +200,7 @@
// If the root hasn't been bracketed yet, try again
// using the multiplier this time:
//
- if(sign(fb) == sign(fa))
+ if((boost::math::sign)(fb) == (boost::math::sign)(fa))
{
if(fa < 0)
{
@@ -208,7 +208,7 @@
// Zero is to the right of x2, so walk upwards
// until we find it:
//
- while(sign(fb) == sign(fa))
+ while((boost::math::sign)(fb) == (boost::math::sign)(fa))
{
if(count == 0)
policies::raise_evaluation_error(function, "Unable to bracket root, last nearest value was %1%", b, policy_type());
@@ -228,7 +228,7 @@
// Zero is to the left of a, so walk downwards
// until we find it:
//
- while(sign(fb) == sign(fa))
+ while((boost::math::sign)(fb) == (boost::math::sign)(fa))
{
if(fabs(a) < tools::min_value<value_type>())
{
Modified: sandbox/math_toolkit/boost/math/distributions/exponential.hpp
==============================================================================
--- sandbox/math_toolkit/boost/math/distributions/exponential.hpp (original)
+++ sandbox/math_toolkit/boost/math/distributions/exponential.hpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -80,16 +80,16 @@
template <class RealType, class Policy>
inline const std::pair<RealType, RealType> range(const exponential_distribution<RealType, Policy>& /*dist*/)
{ // Range of permissible values for random variable x.
- using boost::math::tools::max_value;
- return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>());
+ using boost::math::tools::max_value;
+ return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>());
}
template <class RealType, class Policy>
inline const std::pair<RealType, RealType> support(const exponential_distribution<RealType, Policy>& /*dist*/)
{ // Range of supported values for random variable x.
- // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
- using boost::math::tools::max_value;
- return std::pair<RealType, RealType>(0, max_value<RealType>());
+ // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
+ using boost::math::tools::max_value;
+ return std::pair<RealType, RealType>(0, max_value<RealType>());
}
template <class RealType, class Policy>
Modified: sandbox/math_toolkit/boost/math/distributions/extreme_value.hpp
==============================================================================
--- sandbox/math_toolkit/boost/math/distributions/extreme_value.hpp (original)
+++ sandbox/math_toolkit/boost/math/distributions/extreme_value.hpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -75,16 +75,16 @@
template <class RealType, class Policy>
inline const std::pair<RealType, RealType> range(const extreme_value_distribution<RealType, Policy>& /*dist*/)
{ // Range of permissible values for random variable x.
- using boost::math::tools::max_value;
- return std::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>());
+ using boost::math::tools::max_value;
+ return std::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>());
}
template <class RealType, class Policy>
inline const std::pair<RealType, RealType> support(const extreme_value_distribution<RealType, Policy>& /*dist*/)
{ // Range of supported values for random variable x.
- // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
- using boost::math::tools::max_value;
- return std::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>());
+ // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
+ using boost::math::tools::max_value;
+ return std::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>());
}
template <class RealType, class Policy>
Modified: sandbox/math_toolkit/boost/math/distributions/fisher_f.hpp
==============================================================================
--- sandbox/math_toolkit/boost/math/distributions/fisher_f.hpp (original)
+++ sandbox/math_toolkit/boost/math/distributions/fisher_f.hpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -57,16 +57,16 @@
template <class RealType, class Policy>
inline const std::pair<RealType, RealType> range(const fisher_f_distribution<RealType, Policy>& /*dist*/)
{ // Range of permissible values for random variable x.
- using boost::math::tools::max_value;
- return std::pair<RealType, RealType>(0, max_value<RealType>());
+ using boost::math::tools::max_value;
+ return std::pair<RealType, RealType>(0, max_value<RealType>());
}
template <class RealType, class Policy>
inline const std::pair<RealType, RealType> support(const fisher_f_distribution<RealType, Policy>& /*dist*/)
{ // Range of supported values for random variable x.
- // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
- using boost::math::tools::max_value;
- return std::pair<RealType, RealType>(0, max_value<RealType>());
+ // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
+ using boost::math::tools::max_value;
+ return std::pair<RealType, RealType>(0, max_value<RealType>());
}
template <class RealType, class Policy>
Modified: sandbox/math_toolkit/boost/math/distributions/gamma.hpp
==============================================================================
--- sandbox/math_toolkit/boost/math/distributions/gamma.hpp (original)
+++ sandbox/math_toolkit/boost/math/distributions/gamma.hpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -102,16 +102,16 @@
template <class RealType, class Policy>
inline const std::pair<RealType, RealType> range(const gamma_distribution<RealType, Policy>& /* dist */)
{ // Range of permissible values for random variable x.
- using boost::math::tools::max_value;
- return std::pair<RealType, RealType>(0, max_value<RealType>());
+ using boost::math::tools::max_value;
+ return std::pair<RealType, RealType>(0, max_value<RealType>());
}
template <class RealType, class Policy>
inline const std::pair<RealType, RealType> support(const gamma_distribution<RealType, Policy>& /* dist */)
{ // Range of supported values for random variable x.
- // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
- using boost::math::tools::max_value;
- return std::pair<RealType, RealType>(0, max_value<RealType>());
+ // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
+ using boost::math::tools::max_value;
+ return std::pair<RealType, RealType>(0, max_value<RealType>());
}
template <class RealType, class Policy>
Modified: sandbox/math_toolkit/boost/math/distributions/lognormal.hpp
==============================================================================
--- sandbox/math_toolkit/boost/math/distributions/lognormal.hpp (original)
+++ sandbox/math_toolkit/boost/math/distributions/lognormal.hpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -77,16 +77,16 @@
template <class RealType, class Policy>
inline const std::pair<RealType, RealType> range(const lognormal_distribution<RealType, Policy>& /*dist*/)
{ // Range of permissible values for random variable x is >0 to +infinity.
- using boost::math::tools::max_value;
- return std::pair<RealType, RealType>(0, max_value<RealType>());
+ using boost::math::tools::max_value;
+ return std::pair<RealType, RealType>(0, max_value<RealType>());
}
template <class RealType, class Policy>
inline const std::pair<RealType, RealType> support(const lognormal_distribution<RealType, Policy>& /*dist*/)
{ // Range of supported values for random variable x.
- // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
- using boost::math::tools::max_value;
- return std::pair<RealType, RealType>(0, max_value<RealType>());
+ // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
+ using boost::math::tools::max_value;
+ return std::pair<RealType, RealType>(0, max_value<RealType>());
}
template <class RealType, class Policy>
Modified: sandbox/math_toolkit/boost/math/distributions/negative_binomial.hpp
==============================================================================
--- sandbox/math_toolkit/boost/math/distributions/negative_binomial.hpp (original)
+++ sandbox/math_toolkit/boost/math/distributions/negative_binomial.hpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -259,16 +259,16 @@
template <class RealType, class Policy>
inline const std::pair<RealType, RealType> range(const negative_binomial_distribution<RealType, Policy>& /* dist */)
{ // Range of permissible values for random variable k.
- using boost::math::tools::max_value;
- return std::pair<RealType, RealType>(0, max_value<RealType>()); // max_integer?
+ using boost::math::tools::max_value;
+ return std::pair<RealType, RealType>(0, max_value<RealType>()); // max_integer?
}
template <class RealType, class Policy>
inline const std::pair<RealType, RealType> support(const negative_binomial_distribution<RealType, Policy>& /* dist */)
{ // Range of supported values for random variable k.
- // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
- using boost::math::tools::max_value;
- return std::pair<RealType, RealType>(0, max_value<RealType>()); // max_integer?
+ // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
+ using boost::math::tools::max_value;
+ return std::pair<RealType, RealType>(0, max_value<RealType>()); // max_integer?
}
template <class RealType, class Policy>
@@ -335,7 +335,7 @@
// chf of Negative Binomial distribution provided by derived accessors.
template <class RealType, class Policy>
- inline RealType pdf(const negative_binomial_distribution<RealType, Policy>& dist, const RealType k)
+ inline RealType pdf(const negative_binomial_distribution<RealType, Policy>& dist, const RealType& k)
{ // Probability Density/Mass Function.
BOOST_FPU_EXCEPTION_GUARD
@@ -361,7 +361,7 @@
} // negative_binomial_pdf
template <class RealType, class Policy>
- inline RealType cdf(const negative_binomial_distribution<RealType, Policy>& dist, const RealType k)
+ inline RealType cdf(const negative_binomial_distribution<RealType, Policy>& dist, const RealType& k)
{ // Cumulative Distribution Function of Negative Binomial.
static const char* function = "boost::math::cdf(const negative_binomial_distribution<%1%>&, %1%)";
using boost::math::ibeta; // Regularized incomplete beta function.
@@ -458,7 +458,7 @@
}
if (P <= pow(dist.success_fraction(), dist.successes()))
{ // p <= pdf(dist, 0) == cdf(dist, 0)
- return 0;
+ return 0;
}
/*
// Calculate quantile of negative_binomial using the inverse incomplete beta function.
@@ -527,7 +527,7 @@
// since the probability of zero failures may be non-zero,
return 0; // but zero is the best we can do:
}
- if (-Q <= powm1(dist.success_fraction(), dist.successes(), Policy()))
+ if (-Q <= boost::math::powm1(dist.success_fraction(), dist.successes(), Policy()))
{ // q <= cdf(complement(dist, 0)) == pdf(dist, 0)
return 0; //
}
Modified: sandbox/math_toolkit/boost/math/distributions/normal.hpp
==============================================================================
--- sandbox/math_toolkit/boost/math/distributions/normal.hpp (original)
+++ sandbox/math_toolkit/boost/math/distributions/normal.hpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -74,17 +74,17 @@
template <class RealType, class Policy>
inline const std::pair<RealType, RealType> range(const normal_distribution<RealType, Policy>& /*dist*/)
{ // Range of permissible values for random variable x.
- using boost::math::tools::max_value;
- return std::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>()); // - to + max value.
+ using boost::math::tools::max_value;
+ return std::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>()); // - to + max value.
}
template <class RealType, class Policy>
inline const std::pair<RealType, RealType> support(const normal_distribution<RealType, Policy>& /*dist*/)
{ // Range of supported values for random variable x.
- // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
+ // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
- using boost::math::tools::max_value;
- return std::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>()); // - to + max value.
+ using boost::math::tools::max_value;
+ return std::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>()); // - to + max value.
}
template <class RealType, class Policy>
Modified: sandbox/math_toolkit/boost/math/distributions/pareto.hpp
==============================================================================
--- sandbox/math_toolkit/boost/math/distributions/pareto.hpp (original)
+++ sandbox/math_toolkit/boost/math/distributions/pareto.hpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -212,7 +212,7 @@
}
// result = RealType(1) - pow((location / x), shape);
- result = -powm1(location/x, shape, Policy()); // should be more accurate.
+ result = -boost::math::powm1(location/x, shape, Policy()); // should be more accurate.
return result;
} // cdf
Modified: sandbox/math_toolkit/boost/math/distributions/poisson.hpp
==============================================================================
--- sandbox/math_toolkit/boost/math/distributions/poisson.hpp (original)
+++ sandbox/math_toolkit/boost/math/distributions/poisson.hpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -233,16 +233,16 @@
template <class RealType, class Policy>
inline const std::pair<RealType, RealType> range(const poisson_distribution<RealType, Policy>& /* dist */)
{ // Range of permissible values for random variable k.
- using boost::math::tools::max_value;
- return std::pair<RealType, RealType>(0, max_value<RealType>()); // Max integer?
+ using boost::math::tools::max_value;
+ return std::pair<RealType, RealType>(0, max_value<RealType>()); // Max integer?
}
template <class RealType, class Policy>
inline const std::pair<RealType, RealType> support(const poisson_distribution<RealType, Policy>& /* dist */)
{ // Range of supported values for random variable k.
- // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
- using boost::math::tools::max_value;
- return std::pair<RealType, RealType>(0, max_value<RealType>());
+ // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
+ using boost::math::tools::max_value;
+ return std::pair<RealType, RealType>(0, max_value<RealType>());
}
template <class RealType, class Policy>
@@ -306,7 +306,7 @@
} // RealType kurtosis
template <class RealType, class Policy>
- RealType pdf(const poisson_distribution<RealType, Policy>& dist, const RealType k)
+ RealType pdf(const poisson_distribution<RealType, Policy>& dist, const RealType& k)
{ // Probability Density/Mass Function.
// Probability that there are EXACTLY k occurrences (or arrivals).
BOOST_FPU_EXCEPTION_GUARD
@@ -353,7 +353,7 @@
} // pdf
template <class RealType, class Policy>
- RealType cdf(const poisson_distribution<RealType, Policy>& dist, const RealType k)
+ RealType cdf(const poisson_distribution<RealType, Policy>& dist, const RealType& k)
{ // Cumulative Distribution Function Poisson.
// The random variate k is the number of occurrences(or arrivals)
// k argument may be integral, signed, or unsigned, or floating point.
@@ -480,10 +480,10 @@
BOOST_MATH_STD_USING // ADL of std functions.
// if(p == 0) NOT necessarily zero!
// Not necessarily any special value of k because is unlimited.
- if (p <= exp(-dist.mean()))
- { // if p <= cdf for 0 events (== pdf for 0 events), then quantile must be zero.
- return 0;
- }
+ if (p <= exp(-dist.mean()))
+ { // if p <= cdf for 0 events (== pdf for 0 events), then quantile must be zero.
+ return 0;
+ }
return gamma_q_inva(dist.mean(), p, Policy()) - 1;
*/
typedef typename Policy::discrete_quantile_type discrete_type;
@@ -549,9 +549,9 @@
}
/*
if (-q <= boost::math::expm1(-dist.mean()))
- { // if q <= cdf(complement for 0 events, then quantile must be zero.
- return 0;
- }
+ { // if q <= cdf(complement for 0 events, then quantile must be zero.
+ return 0;
+ }
return gamma_p_inva(dist.mean(), q, Policy()) -1;
*/
typedef typename Policy::discrete_quantile_type discrete_type;
Modified: sandbox/math_toolkit/boost/math/distributions/rayleigh.hpp
==============================================================================
--- sandbox/math_toolkit/boost/math/distributions/rayleigh.hpp (original)
+++ sandbox/math_toolkit/boost/math/distributions/rayleigh.hpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -80,16 +80,16 @@
template <class RealType, class Policy>
inline const std::pair<RealType, RealType> range(const rayleigh_distribution<RealType, Policy>& /*dist*/)
{ // Range of permissible values for random variable x.
- using boost::math::tools::max_value;
- return std::pair<RealType, RealType>(static_cast<RealType>(1), max_value<RealType>());
+ using boost::math::tools::max_value;
+ return std::pair<RealType, RealType>(static_cast<RealType>(1), max_value<RealType>());
}
template <class RealType, class Policy>
inline const std::pair<RealType, RealType> support(const rayleigh_distribution<RealType, Policy>& /*dist*/)
{ // Range of supported values for random variable x.
- // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
- using boost::math::tools::max_value;
- return std::pair<RealType, RealType>((1), max_value<RealType>());
+ // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
+ using boost::math::tools::max_value;
+ return std::pair<RealType, RealType>((1), max_value<RealType>());
}
template <class RealType, class Policy>
Modified: sandbox/math_toolkit/boost/math/distributions/students_t.hpp
==============================================================================
--- sandbox/math_toolkit/boost/math/distributions/students_t.hpp (original)
+++ sandbox/math_toolkit/boost/math/distributions/students_t.hpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -63,16 +63,16 @@
template <class RealType, class Policy>
inline const std::pair<RealType, RealType> range(const students_t_distribution<RealType, Policy>& /*dist*/)
{ // Range of permissible values for random variable x.
- using boost::math::tools::max_value;
- return std::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>());
+ using boost::math::tools::max_value;
+ return std::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>());
}
template <class RealType, class Policy>
inline const std::pair<RealType, RealType> support(const students_t_distribution<RealType, Policy>& /*dist*/)
{ // Range of supported values for random variable x.
- // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
- using boost::math::tools::max_value;
- return std::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>());
+ // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
+ using boost::math::tools::max_value;
+ return std::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>());
}
template <class RealType, class Policy>
@@ -146,7 +146,7 @@
RealType z = degrees_of_freedom / (degrees_of_freedom + t2);
probability = ibeta(degrees_of_freedom / 2, static_cast<RealType>(0.5), z, Policy()) / 2;
}
- return (t > 0 ? 1 - probability : probability);
+ return (t > 0 ? 1 - probability : probability);
} // cdf
template <class RealType, class Policy>
Modified: sandbox/math_toolkit/boost/math/distributions/uniform.hpp
==============================================================================
--- sandbox/math_toolkit/boost/math/distributions/uniform.hpp (original)
+++ sandbox/math_toolkit/boost/math/distributions/uniform.hpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -140,16 +140,16 @@
template <class RealType, class Policy>
inline const std::pair<RealType, RealType> range(const uniform_distribution<RealType, Policy>& /* dist */)
{ // Range of permissible values for random variable x.
- using boost::math::tools::max_value;
- return std::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>()); // - to + infinity
+ using boost::math::tools::max_value;
+ return std::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>()); // - to + infinity
}
template <class RealType, class Policy>
inline const std::pair<RealType, RealType> support(const uniform_distribution<RealType, Policy>& dist)
{ // Range of supported values for random variable x.
- // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
- using boost::math::tools::max_value;
- return std::pair<RealType, RealType>(dist.lower(), dist.upper());
+ // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
+ using boost::math::tools::max_value;
+ return std::pair<RealType, RealType>(dist.lower(), dist.upper());
}
template <class RealType, class Policy>
Modified: sandbox/math_toolkit/boost/math/distributions/weibull.hpp
==============================================================================
--- sandbox/math_toolkit/boost/math/distributions/weibull.hpp (original)
+++ sandbox/math_toolkit/boost/math/distributions/weibull.hpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -102,16 +102,16 @@
template <class RealType, class Policy>
inline const std::pair<RealType, RealType> range(const weibull_distribution<RealType, Policy>& /*dist*/)
{ // Range of permissible values for random variable x.
- using boost::math::tools::max_value;
- return std::pair<RealType, RealType>(0, max_value<RealType>());
+ using boost::math::tools::max_value;
+ return std::pair<RealType, RealType>(0, max_value<RealType>());
}
template <class RealType, class Policy>
inline const std::pair<RealType, RealType> support(const weibull_distribution<RealType, Policy>& /*dist*/)
{ // Range of supported values for random variable x.
- // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
- using boost::math::tools::max_value;
- return std::pair<RealType, RealType>(0, max_value<RealType>());
+ // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
+ using boost::math::tools::max_value;
+ return std::pair<RealType, RealType>(0, max_value<RealType>());
}
template <class RealType, class Policy>
Modified: sandbox/math_toolkit/boost/math/policies/error_handling.hpp
==============================================================================
--- sandbox/math_toolkit/boost/math/policies/error_handling.hpp (original)
+++ sandbox/math_toolkit/boost/math/policies/error_handling.hpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -62,9 +62,9 @@
void raise_error(const char* function, const char* message)
{
if(function == 0)
- function = "Unknown function";
+ function = "Unknown function";
if(message == 0)
- message = "Cause unknown";
+ message = "Cause unknown";
std::string msg("Error in function ");
msg += (boost::format(function) % typeid(T).name()).str();
@@ -79,9 +79,9 @@
void raise_error(const char* function, const char* message, const T& val)
{
if(function == 0)
- function = "Unknown function";
+ function = "Unknown function";
if(message == 0)
- message = "Cause unknown";
+ message = "Cause unknown";
std::string msg("Error in function ");
msg += (boost::format(function) % typeid(T).name()).str();
Modified: sandbox/math_toolkit/boost/math/policies/policy.hpp
==============================================================================
--- sandbox/math_toolkit/boost/math/policies/policy.hpp (original)
+++ sandbox/math_toolkit/boost/math/policies/policy.hpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -35,7 +35,7 @@
namespace tools{
template <class T>
-int digits(BOOST_EXPLICIT_TEMPLATE_TYPE(T));
+int digits(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE(T));
}
Modified: sandbox/math_toolkit/boost/math/special_functions/bessel.hpp
==============================================================================
--- sandbox/math_toolkit/boost/math/special_functions/bessel.hpp (original)
+++ sandbox/math_toolkit/boost/math/special_functions/bessel.hpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -86,7 +86,12 @@
{
bessel_j_small_z_series_term<T, Policy> s(v, x);
boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
+#if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
+ T zero = 0;
+ T result = boost::math::tools::sum_series(s, boost::math::policies::digits<T, Policy>(), max_iter, zero);
+#else
T result = boost::math::tools::sum_series(s, boost::math::policies::digits<T, Policy>(), max_iter);
+#endif
policies::check_series_iterations("boost::math::bessel_j_small_z_series<%1%>(%1%,%1%)", max_iter, pol);
return result;
}
@@ -97,7 +102,12 @@
BOOST_MATH_STD_USING // ADL of std names
sph_bessel_j_small_z_series_term<T, Policy> s(v, x);
boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
+#if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
+ T zero = 0;
+ T result = boost::math::tools::sum_series(s, boost::math::policies::digits<T, Policy>(), max_iter, zero);
+#else
T result = boost::math::tools::sum_series(s, boost::math::policies::digits<T, Policy>(), max_iter);
+#endif
policies::check_series_iterations("boost::math::sph_bessel_j_small_z_series<%1%>(%1%,%1%)", max_iter, pol);
return result * sqrt(constants::pi<T>() / 4);
}
Modified: sandbox/math_toolkit/boost/math/special_functions/beta.hpp
==============================================================================
--- sandbox/math_toolkit/boost/math/special_functions/beta.hpp (original)
+++ sandbox/math_toolkit/boost/math/special_functions/beta.hpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -724,7 +724,7 @@
return s0;
if(normalised)
{
- prefix = h / tgamma_delta_ratio(a, b, pol);
+ prefix = h / boost::math::tgamma_delta_ratio(a, b, pol);
prefix /= pow(t, b);
}
else
@@ -741,7 +741,7 @@
//
// Now an initial value for J, see 9.6:
//
- T j = gamma_q(b, u, pol) / h;
+ T j = boost::math::gamma_q(b, u, pol) / h;
//
// Now we can start to pull things together and evaluate the sum in Eq 9:
//
@@ -777,11 +777,11 @@
for(unsigned m = 1; m < n; ++m)
{
mbn = m * b - n;
- p[n] += mbn * p[n-m] / unchecked_factorial<T>(tmp1);
+ p[n] += mbn * p[n-m] / boost::math::unchecked_factorial<T>(tmp1);
tmp1 += 2;
}
p[n] /= n;
- p[n] += bm1 / unchecked_factorial<T>(tnp1);
+ p[n] += bm1 / boost::math::unchecked_factorial<T>(tnp1);
//
// Now we want Jn from Jn-1 using Eq 9.6:
//
Modified: sandbox/math_toolkit/boost/math/special_functions/cbrt.hpp
==============================================================================
--- sandbox/math_toolkit/boost/math/special_functions/cbrt.hpp (original)
+++ sandbox/math_toolkit/boost/math/special_functions/cbrt.hpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -14,18 +14,18 @@
namespace detail
{
- template <class T>
- struct cbrt_functor
- {
- cbrt_functor(T const& target) : a(target){}
- std::tr1::tuple<T, T, T> operator()(T const& z)
- {
- T sqr = z * z;
- return std::tr1::make_tuple(sqr * z - a, 3 * sqr, 6 * z);
- }
- private:
- T a;
- };
+ template <class T>
+ struct cbrt_functor
+ {
+ cbrt_functor(T const& target) : a(target){}
+ std::tr1::tuple<T, T, T> operator()(T const& z)
+ {
+ T sqr = z * z;
+ return std::tr1::make_tuple(sqr * z - a, 3 * sqr, 6 * z);
+ }
+ private:
+ T a;
+ };
template <class T, class Policy>
T cbrt_imp(T z, const Policy&)
Modified: sandbox/math_toolkit/boost/math/special_functions/detail/bessel_ik.hpp
==============================================================================
--- sandbox/math_toolkit/boost/math/special_functions/detail/bessel_ik.hpp (original)
+++ sandbox/math_toolkit/boost/math/special_functions/detail/bessel_ik.hpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -37,14 +37,14 @@
BOOST_ASSERT(abs(x) <= 2);
BOOST_ASSERT(abs(v) <= 0.5f);
- T gp = tgamma1pm1(v, pol);
- T gm = tgamma1pm1(-v, pol);
+ T gp = boost::math::tgamma1pm1(v, pol);
+ T gm = boost::math::tgamma1pm1(-v, pol);
a = log(x / 2);
b = exp(v * a);
sigma = -a * v;
c = abs(v) < tools::epsilon<T>() ?
- 1 : sin_pi(v) / (v * pi<T>());
+ 1 : boost::math::sin_pi(v) / (v * pi<T>());
d = abs(sigma) < tools::epsilon<T>() ?
1 : sinh(sigma) / sigma;
gamma1 = abs(v) < tools::epsilon<T>() ?
@@ -256,7 +256,7 @@
if(reflect && (kind & need_i))
{
T z = (u + n % 2);
- Iv = sin_pi(z, pol) == 0 ?
+ Iv = boost::math::sin_pi(z, pol) == 0 ?
Iv :
policies::raise_overflow_error<T>(function, 0, pol); // reflection formula
}
@@ -313,7 +313,7 @@
if (reflect)
{
T z = (u + n % 2);
- *I = Iv + (2 / pi<T>()) * sin_pi(z) * Kv; // reflection formula
+ *I = Iv + (2 / pi<T>()) * boost::math::sin_pi(z) * Kv; // reflection formula
*K = Kv;
}
else
Modified: sandbox/math_toolkit/boost/math/special_functions/detail/bessel_jy.hpp
==============================================================================
--- sandbox/math_toolkit/boost/math/special_functions/detail/bessel_jy.hpp (original)
+++ sandbox/math_toolkit/boost/math/special_functions/detail/bessel_jy.hpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -41,10 +41,10 @@
BOOST_ASSERT(fabs(v) <= 0.5f); // precondition for using this routine
- T gp = tgamma1pm1(v, pol);
- T gm = tgamma1pm1(-v, pol);
- T spv = sin_pi(v, pol);
- T spv2 = sin_pi(v/2, pol);
+ T gp = boost::math::tgamma1pm1(v, pol);
+ T gm = boost::math::tgamma1pm1(-v, pol);
+ T spv = boost::math::sin_pi(v, pol);
+ T spv2 = boost::math::sin_pi(v/2, pol);
T xp = pow(x/2, v);
a = log(x / 2);
@@ -342,8 +342,8 @@
if (reflect)
{
T z = (u + n % 2);
- *J = cos_pi(z, pol) * Jv - sin_pi(z, pol) * Yv; // reflection formula
- *Y = sin_pi(z, pol) * Jv + cos_pi(z, pol) * Yv;
+ *J = boost::math::cos_pi(z, pol) * Jv - boost::math::sin_pi(z, pol) * Yv; // reflection formula
+ *Y = boost::math::sin_pi(z, pol) * Jv + boost::math::cos_pi(z, pol) * Yv;
}
else
{
Modified: sandbox/math_toolkit/boost/math/special_functions/detail/bessel_jy_asym.hpp
==============================================================================
--- sandbox/math_toolkit/boost/math/special_functions/detail/bessel_jy_asym.hpp (original)
+++ sandbox/math_toolkit/boost/math/special_functions/detail/bessel_jy_asym.hpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -233,10 +233,10 @@
void temme_asyptotic_y_small_x(T v, T x, T* Y, T* Y1, const Policy& pol)
{
T c = 1;
- T p = (v / sin_pi(v, pol)) * pow(x / 2, -v) / tgamma(1 - v, pol);
- T q = (v / sin_pi(v, pol)) * pow(x / 2, v) / tgamma(1 + v, pol);
+ T p = (v / boost::math::sin_pi(v, pol)) * pow(x / 2, -v) / boost::math::tgamma(1 - v, pol);
+ T q = (v / boost::math::sin_pi(v, pol)) * pow(x / 2, v) / boost::math::tgamma(1 + v, pol);
T f = (p - q) / v;
- T g_prefix = sin_pi(v / 2, pol);
+ T g_prefix = boost::math::sin_pi(v / 2, pol);
g_prefix *= g_prefix * 2 / v;
T g = f + g_prefix * q;
T h = p;
Modified: sandbox/math_toolkit/boost/math/special_functions/detail/ibeta_inverse.hpp
==============================================================================
--- sandbox/math_toolkit/boost/math/special_functions/detail/ibeta_inverse.hpp (original)
+++ sandbox/math_toolkit/boost/math/special_functions/detail/ibeta_inverse.hpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -913,14 +913,16 @@
inline typename tools::promote_args<RT1, RT2, RT3>::type
ibetac_inv(RT1 a, RT2 b, RT3 q)
{
- return ibetac_inv(a, b, q, static_cast<RT1*>(0), policies::policy<>());
+ typedef typename remove_cv<RT1>::type dummy;
+ return ibetac_inv(a, b, q, static_cast<dummy*>(0), policies::policy<>());
}
template <class RT1, class RT2, class RT3, class Policy>
-inline typename tools::promote_args<RT1, RT2, RT3>::type
+inline typename tools::promote_args<RT1, RT2, RT3>::type
ibetac_inv(RT1 a, RT2 b, RT3 q, const Policy& pol)
{
- return ibetac_inv(a, b, q, static_cast<RT1*>(0), pol);
+ typedef typename remove_cv<RT1>::type dummy;
+ return ibetac_inv(a, b, q, static_cast<dummy*>(0), pol);
}
} // namespace math
Modified: sandbox/math_toolkit/boost/math/special_functions/detail/igamma_large.hpp
==============================================================================
--- sandbox/math_toolkit/boost/math/special_functions/detail/igamma_large.hpp (original)
+++ sandbox/math_toolkit/boost/math/special_functions/detail/igamma_large.hpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -66,7 +66,7 @@
{
BOOST_MATH_STD_USING // ADL of std functions
T sigma = (x - a) / a;
- T phi = -log1pmx(sigma, pol);
+ T phi = -boost::math::log1pmx(sigma, pol);
T y = a * phi;
T z = sqrt(2 * phi);
if(x < a)
@@ -271,7 +271,7 @@
{
BOOST_MATH_STD_USING // ADL of std functions
T sigma = (x - a) / a;
- T phi = -log1pmx(sigma, pol);
+ T phi = -boost::math::log1pmx(sigma, pol);
T y = a * phi;
T z = sqrt(2 * phi);
if(x < a)
@@ -413,7 +413,7 @@
{
BOOST_MATH_STD_USING // ADL of std functions
T sigma = (x - a) / a;
- T phi = -log1pmx(sigma, pol);
+ T phi = -boost::math::log1pmx(sigma, pol);
T y = a * phi;
T z = sqrt(2 * phi);
if(x < a)
@@ -469,7 +469,7 @@
{
BOOST_MATH_STD_USING // ADL of std functions
T sigma = (x - a) / a;
- T phi = -log1pmx(sigma, pol);
+ T phi = -boost::math::log1pmx(sigma, pol);
T y = a * phi;
T z = sqrt(2 * phi);
if(x < a)
Modified: sandbox/math_toolkit/boost/math/special_functions/detail/unchecked_factorial.hpp
==============================================================================
--- sandbox/math_toolkit/boost/math/special_functions/detail/unchecked_factorial.hpp (original)
+++ sandbox/math_toolkit/boost/math/special_functions/detail/unchecked_factorial.hpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -16,18 +16,17 @@
#pragma warning(pop)
#endif
#include <cmath>
+#include <boost/math/special_functions/math_fwd.hpp>
namespace boost { namespace math
{
// Forward declarations:
template <class T>
-T unchecked_factorial(unsigned i);
-template <class T>
struct max_factorial;
// efinitions:
template <>
-inline float unchecked_factorial<float>(unsigned i)
+inline float unchecked_factorial<float>(unsigned i BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE_SPEC(float))
{
static const boost::array<float, 35> factorials = {{
1.0F,
@@ -78,7 +77,7 @@
template <>
-inline long double unchecked_factorial<long double>(unsigned i)
+inline long double unchecked_factorial<long double>(unsigned i BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE_SPEC(long double))
{
static const boost::array<long double, 171> factorials = {{
1L,
@@ -264,9 +263,9 @@
};
template <>
-inline double unchecked_factorial(unsigned i)
+inline double unchecked_factorial(unsigned i BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE_SPEC(double))
{
- return static_cast<double>(unchecked_factorial<long double>(i));
+ return static_cast<double>(boost::math::unchecked_factorial<long double>(i));
}
template <>
@@ -277,7 +276,7 @@
};
template <class T>
-inline T unchecked_factorial(unsigned i)
+inline T unchecked_factorial(unsigned i BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE_SPEC(T))
{
static const boost::array<T, 101> factorials = {{
boost::lexical_cast<T>("1"),
Modified: sandbox/math_toolkit/boost/math/special_functions/ellint_1.hpp
==============================================================================
--- sandbox/math_toolkit/boost/math/special_functions/ellint_1.hpp (original)
+++ sandbox/math_toolkit/boost/math/special_functions/ellint_1.hpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -17,6 +17,7 @@
#include <boost/math/special_functions/ellint_rf.hpp>
#include <boost/math/constants/constants.hpp>
#include <boost/math/policies/error_handling.hpp>
+#include <boost/math/tools/workaround.hpp>
// Elliptic integrals (complete and incomplete) of the first kind
// Carlson, Numerische Mathematik, vol 33, 1 (1979)
@@ -28,6 +29,9 @@
namespace detail{
+template <typename T, typename Policy>
+T ellint_k_imp(T k, const Policy& pol);
+
// Elliptic integral (Legendre form) of the first kind
template <typename T, typename Policy>
T ellint_f_imp(T phi, T k, const Policy& pol)
Modified: sandbox/math_toolkit/boost/math/special_functions/ellint_2.hpp
==============================================================================
--- sandbox/math_toolkit/boost/math/special_functions/ellint_2.hpp (original)
+++ sandbox/math_toolkit/boost/math/special_functions/ellint_2.hpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -18,6 +18,7 @@
#include <boost/math/special_functions/ellint_rd.hpp>
#include <boost/math/constants/constants.hpp>
#include <boost/math/policies/error_handling.hpp>
+#include <boost/math/tools/workaround.hpp>
// Elliptic integrals (complete and incomplete) of the second kind
// Carlson, Numerische Mathematik, vol 33, 1 (1979)
Modified: sandbox/math_toolkit/boost/math/special_functions/ellint_3.hpp
==============================================================================
--- sandbox/math_toolkit/boost/math/special_functions/ellint_3.hpp (original)
+++ sandbox/math_toolkit/boost/math/special_functions/ellint_3.hpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -21,6 +21,7 @@
#include <boost/math/special_functions/log1p.hpp>
#include <boost/math/constants/constants.hpp>
#include <boost/math/policies/error_handling.hpp>
+#include <boost/math/tools/workaround.hpp>
// Elliptic integrals (complete and incomplete) of the third kind
// Carlson, Numerische Mathematik, vol 33, 1 (1979)
Modified: sandbox/math_toolkit/boost/math/special_functions/ellint_rj.hpp
==============================================================================
--- sandbox/math_toolkit/boost/math/special_functions/ellint_rj.hpp (original)
+++ sandbox/math_toolkit/boost/math/special_functions/ellint_rj.hpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -87,10 +87,10 @@
BOOST_ASSERT(pmy >= 0);
T p = pmy + y;
- value = ellint_rj(x, y, z, p, pol);
+ value = boost::math::ellint_rj(x, y, z, p, pol);
value *= pmy;
- value -= 3 * ellint_rf(x, y, z, pol);
- value += 3 * sqrt((x * y * z) / (x * z + p * q)) * ellint_rc(x * z + p * q, p * q, pol);
+ value -= 3 * boost::math::ellint_rf(x, y, z, pol);
+ value += 3 * sqrt((x * y * z) / (x * z + p * q)) * boost::math::ellint_rc(x * z + p * q, p * q, pol);
value /= (y + q);
return value;
}
@@ -118,7 +118,7 @@
alpha = p * (sx + sy + sz) + sx * sy * sz;
alpha *= alpha;
beta = p * (p + lambda) * (p + lambda);
- sigma += factor * ellint_rc(alpha, beta, pol);
+ sigma += factor * boost::math::ellint_rc(alpha, beta, pol);
factor /= 4;
x = (x + lambda) / 4;
y = (y + lambda) / 4;
Modified: sandbox/math_toolkit/boost/math/special_functions/factorials.hpp
==============================================================================
--- sandbox/math_toolkit/boost/math/special_functions/factorials.hpp (original)
+++ sandbox/math_toolkit/boost/math/special_functions/factorials.hpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -133,7 +133,7 @@
// tgamma_delta_ratio is alreay optimised for that
// use case:
//
- return 1 / tgamma_delta_ratio(x, static_cast<T>(n), pol);
+ return 1 / boost::math::tgamma_delta_ratio(x, static_cast<T>(n), pol);
}
template <class T, class Policy>
@@ -162,7 +162,7 @@
unsigned n2 = tools::real_cast<unsigned>(floor(xp1));
if(n2 == xp1)
return 0;
- T result = tgamma_delta_ratio(xp1, -static_cast<T>(n2), pol);
+ T result = boost::math::tgamma_delta_ratio(xp1, -static_cast<T>(n2), pol);
x -= n2;
result *= x;
++n2;
@@ -177,7 +177,7 @@
// because tgamma_delta_ratio is alreay optimised
// for that use case:
//
- return tgamma_delta_ratio(x + 1, -static_cast<T>(n), pol);
+ return boost::math::tgamma_delta_ratio(x + 1, -static_cast<T>(n), pol);
}
} // namespace detail
Modified: sandbox/math_toolkit/boost/math/special_functions/gamma.hpp
==============================================================================
--- sandbox/math_toolkit/boost/math/special_functions/gamma.hpp (original)
+++ sandbox/math_toolkit/boost/math/special_functions/gamma.hpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -623,7 +623,7 @@
else if((fabs(d*d*a) <= 100) && (a > 150))
{
// special case for large a and a ~ z.
- prefix = a * log1pmx(d, pol) + z * static_cast<T>(0.5 - L::g()) / agh;
+ prefix = a * boost::math::log1pmx(d, pol) + z * static_cast<T>(0.5 - L::g()) / agh;
prefix = exp(prefix);
}
else
@@ -726,7 +726,8 @@
//
// Compute the full upper fraction (Q) when a is very small:
//
- T result = tgamma1pm1(a, pol) - powm1(x, a, pol);
+ T result;
+ result = boost::math::tgamma1pm1(a, pol) - boost::math::powm1(x, a, pol);
result /= a;
detail::small_gamma2_series<T> s(a, x);
boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
Modified: sandbox/math_toolkit/boost/math/special_functions/legendre.hpp
==============================================================================
--- sandbox/math_toolkit/boost/math/special_functions/legendre.hpp (original)
+++ sandbox/math_toolkit/boost/math/special_functions/legendre.hpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -16,7 +16,7 @@
// Recurrance relation for legendre P and Q polynomials:
template <class T1, class T2, class T3>
-inline typename tools::promote_args<T1, T2, T3>::type
+inline typename tools::promote_args<T1, T2, T3>::type
legendre_next(unsigned l, T1 x, T2 Pl, T3 Plm1)
{
typedef typename tools::promote_args<T1, T2, T3>::type result_type;
@@ -58,7 +58,7 @@
while(n < l)
{
std::swap(p0, p1);
- p1 = legendre_next(n, x, p0, p1);
+ p1 = boost::math::legendre_next(n, x, p0, p1);
++n;
}
return p1;
@@ -127,16 +127,16 @@
if(m < 0)
{
int sign = (m&1) ? -1 : 1;
- return sign * tgamma_ratio(static_cast<T>(l+m+1), static_cast<T>(l+1-m), pol) * legendre_p_imp(l, -m, x, sin_theta_power, pol);
+ return sign * boost::math::tgamma_ratio(static_cast<T>(l+m+1), static_cast<T>(l+1-m), pol) * legendre_p_imp(l, -m, x, sin_theta_power, pol);
}
// Special cases:
if(m > l)
return 0;
if(m == 0)
- return legendre_p(l, x, pol);
+ return boost::math::legendre_p(l, x, pol);
T p0 = boost::math::double_factorial<T>(2 * m - 1, pol) * sin_theta_power;
-
+
if(m&1)
p0 *= -1;
if(m == l)
@@ -149,7 +149,7 @@
while(n < l)
{
std::swap(p0, p1);
- p1 = legendre_next(n, m, x, p0, p1);
+ p1 = boost::math::legendre_next(n, m, x, p0, p1);
++n;
}
return p1;
@@ -166,7 +166,7 @@
}
template <class T, class Policy>
-inline typename tools::promote_args<T>::type
+inline typename tools::promote_args<T>::type
legendre_p(int l, int m, T x, const Policy& pol)
{
typedef typename tools::promote_args<T>::type result_type;
@@ -175,7 +175,7 @@
}
template <class T>
-inline typename tools::promote_args<T>::type
+inline typename tools::promote_args<T>::type
legendre_p(int l, int m, T x)
{
return boost::math::legendre_p(l, m, x, policies::policy<>());
Modified: sandbox/math_toolkit/boost/math/special_functions/log1p.hpp
==============================================================================
--- sandbox/math_toolkit/boost/math/special_functions/log1p.hpp (original)
+++ sandbox/math_toolkit/boost/math/special_functions/log1p.hpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -127,8 +127,8 @@
#ifdef BOOST_HAS_LOG1P
# if (defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901)) \
- || defined(linux) || defined(__linux) || defined(__linux__) \
- || defined(__hpux)
+ || ((defined(linux) || defined(__linux) || defined(__linux__)) && !defined(__SUNPRO_CC)) \
+ || (defined(__hpux) && !defined(_PA_RISC1_1))
template <class Policy>
inline float log1p(float x, const Policy& pol)
{
Modified: sandbox/math_toolkit/boost/math/special_functions/math_fwd.hpp
==============================================================================
--- sandbox/math_toolkit/boost/math/special_functions/math_fwd.hpp (original)
+++ sandbox/math_toolkit/boost/math/special_functions/math_fwd.hpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -28,8 +28,8 @@
namespace boost
{
- namespace math
- { // Math functions (in roughly alphabetic order).
+ namespace math
+ { // Math functions (in roughly alphabetic order).
// Beta functions.
template <class RT1, class RT2>
@@ -329,7 +329,7 @@
template <class RT, class Policy>
RT factorial(unsigned int, const Policy& pol);
template <class RT>
- RT unchecked_factorial(unsigned int);
+ RT unchecked_factorial(unsigned int BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE(RT));
template <class RT>
RT double_factorial(unsigned i);
template <class RT, class Policy>
@@ -347,10 +347,6 @@
template <class RT, class Policy>
typename tools::promote_args<RT>::type rising_factorial(RT x, int n, const Policy& pol);
- // Fpclassify - classify floating-point as NaN or infinity...
- template <class T>
- int fpclassify (T);
-
// Gamma functions.
template <class RT>
typename tools::promote_args<RT>::type tgamma(RT z);
@@ -625,7 +621,7 @@
template <class T>
bool isnormal BOOST_NO_MACRO_EXPAND(T t);
- } // namespace math
+ } // namespace math
} // namespace boost
#define BOOST_MATH_DECLARE_SPECIAL_FUNCTIONS(Policy)\
Modified: sandbox/math_toolkit/boost/math/special_functions/sign.hpp
==============================================================================
--- sandbox/math_toolkit/boost/math/special_functions/sign.hpp (original)
+++ sandbox/math_toolkit/boost/math/special_functions/sign.hpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -6,26 +6,27 @@
#ifndef BOOST_MATH_TOOLS_SIGN_HPP
#define BOOST_MATH_TOOLS_SIGN_HPP
-#include <cmath>
-#include <cstdlib>
+#include <boost/math/tools/config.hpp>
+#include <boost/math/special_functions/math_fwd.hpp>
namespace boost{ namespace math{
template <class T>
-inline int sign(const T& z)
+inline int sign BOOST_NO_MACRO_EXPAND(const T& z)
{
return (z == 0) ? 0 : (z < 0) ? -1 : 1;
}
template <class T>
-inline int signbit(const T& z)
+inline int signbit BOOST_NO_MACRO_EXPAND(const T& z)
{
return (z < 0) ? 1 : 0;
}
template <class T>
-inline T copysign(const T& x, const T& y)
+inline T copysign BOOST_NO_MACRO_EXPAND(const T& x, const T& y)
{
+ BOOST_MATH_STD_USING
return fabs(x) * boost::math::sign(y);
}
Modified: sandbox/math_toolkit/boost/math/special_functions/spherical_harmonic.hpp
==============================================================================
--- sandbox/math_toolkit/boost/math/special_functions/spherical_harmonic.hpp (original)
+++ sandbox/math_toolkit/boost/math/special_functions/spherical_harmonic.hpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -8,6 +8,7 @@
#define BOOST_MATH_SPECIAL_SPHERICAL_HARMONIC_HPP
#include <boost/math/special_functions/legendre.hpp>
+#include <boost/math/tools/workaround.hpp>
#include <complex>
namespace boost{
@@ -33,7 +34,7 @@
T leg = detail::legendre_p_imp(n, m, x, pow(fabs(sin_theta), T(m)), pol);
- T prefix = tgamma_delta_ratio(static_cast<T>(n - m + 1), static_cast<T>(2 * m), pol);
+ T prefix = boost::math::tgamma_delta_ratio(static_cast<T>(n - m + 1), static_cast<T>(2 * m), pol);
prefix *= (2 * n + 1) / (4 * constants::pi<T>());
prefix = sqrt(prefix);
return prefix * leg;
Modified: sandbox/math_toolkit/boost/math/tools/config.hpp
==============================================================================
--- sandbox/math_toolkit/boost/math/tools/config.hpp (original)
+++ sandbox/math_toolkit/boost/math/tools/config.hpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,3 +1,8 @@
+// Copyright (c) 2006-7 John Maddock
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
#ifndef BOOST_MATH_TOOLS_CONFIG_HPP
#define BOOST_MATH_TOOLS_CONFIG_HPP
@@ -13,13 +18,77 @@
#include <boost/math/tools/user.hpp>
-#if defined(__CYGWIN__) || defined(__FreeBSD__)
+#if defined(__CYGWIN__) || defined(__FreeBSD__) || defined(_PA_RISC1_1)
# define BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
#endif
#if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
+//
+// Borland post 5.8.2 uses Dinkumware's std C lib which
+// doesn't have true long double precision. Earlier
+// versions are problematic too:
+//
# define BOOST_MATH_NO_REAL_CONCEPT_TESTS
+# define BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
+# define BOOST_MATH_CONTROL_FP _control87(MCW_EM,MCW_EM)
+# include <float.h>
+#endif
+#if (defined(macintosh) || defined(__APPLE__) || defined(__APPLE_CC__)) && ((LDBL_MANT_DIG == 106) || (__LDBL_MANT_DIG__ == 106))
+//
+// Darwin's rather strange "double double" is rather hard to
+// support, it should be possible given enough effort though...
+//
+# define BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
+#endif
+
+#ifdef BOOST_MSVC
+ // Better safe than sorry, our tests don't support hardware exceptions:
+# define BOOST_MATH_CONTROL_FP _control87(MCW_EM,MCW_EM)
#endif
+#if defined(BOOST_NO_EXPLICIT_FUNCTION_TEMPLATE_ARGUMENTS) || BOOST_WORKAROUND(__SUNPRO_CC, <= 0x590)
+
+# include "boost/type.hpp"
+# include "boost/non_type.hpp"
+
+# define BOOST_MATH_EXPLICIT_TEMPLATE_TYPE(t) boost::type<t>* = 0
+# define BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(t) boost::type<t>*
+# define BOOST_MATH_EXPLICIT_TEMPLATE_NON_TYPE(t, v) boost::non_type<t, v>* = 0
+# define BOOST_MATH_EXPLICIT_TEMPLATE_NON_TYPE_SPEC(t, v) boost::non_type<t, v>*
+
+# define BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE(t) \
+ , BOOST_MATH_EXPLICIT_TEMPLATE_TYPE(t)
+# define BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE_SPEC(t) \
+ , BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(t)
+# define BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_NON_TYPE(t, v) \
+ , BOOST_MATH_EXPLICIT_TEMPLATE_NON_TYPE(t, v)
+# define BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_NON_TYPE_SPEC(t, v) \
+ , BOOST_MATH_EXPLICIT_TEMPLATE_NON_TYPE_SPEC(t, v)
+
+#else
+
+// no workaround needed: expand to nothing
+
+# define BOOST_MATH_EXPLICIT_TEMPLATE_TYPE(t)
+# define BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(t)
+# define BOOST_MATH_EXPLICIT_TEMPLATE_NON_TYPE(t, v)
+# define BOOST_MATH_EXPLICIT_TEMPLATE_NON_TYPE_SPEC(t, v)
+
+# define BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE(t)
+# define BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE_SPEC(t)
+# define BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_NON_TYPE(t, v)
+# define BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_NON_TYPE_SPEC(t, v)
+
+
+#endif // defined BOOST_NO_EXPLICIT_FUNCTION_TEMPLATE_ARGUMENTS
+
+#if BOOST_WORKAROUND(__SUNPRO_CC, <= 0x590)
+// Sun's compiler emits a hard error if a constant underflows:
+# define BOOST_MATH_SMALL_CONSTANT(x) 0
+#else
+# define BOOST_MATH_SMALL_CONSTANT(x) x
+#endif
+
+
#if BOOST_WORKAROUND(BOOST_MSVC, < 1400)
//
// Define if constants too large for a float cause "bad"
@@ -65,6 +134,12 @@
# define BOOST_MATH_INT_TABLE_TYPE(RT, IT) IT
#endif
//
+// Helper macro for controlling the FP behaviour:
+//
+#ifndef BOOST_MATH_CONTROL_FP
+# define BOOST_MATH_CONTROL_FP
+#endif
+//
// Helper macro for using statements:
//
#define BOOST_MATH_STD_USING \
@@ -108,53 +183,35 @@
{
return (std::max)((std::max)(a, b), (std::max)(c, d));
}
-//
-// We call this short forwarding function so that we can work around a bug
-// on Darwin that causes std::fmod to return a NaN. The test case is:
-// std::fmod(1185.0L, 1.5L);
-//
-template <class T>
-inline T fmod_workaround(T a, T b)
-{
- BOOST_MATH_STD_USING
- return fmod(a, b);
-}
-#if (defined(macintosh) || defined(__APPLE__) || defined(__APPLE_CC__)) && ((LDBL_MANT_DIG == 106) || (__LDBL_MANT_DIG__ == 106))
-template <>
-inline long double fmod_workaround(long double a, long double b)
-{
- return ::fmodl(a, b);
-}
-#endif
} // namespace tools
}} // namespace boost namespace math
#ifdef __linux__
- #include <fenv.h>
+ #include <fenv.h>
- namespace boost{ namespace math{
- namespace detail
- {
- struct fpu_guard
- {
- fpu_guard()
- {
- fegetexceptflag(&m_flags, FE_ALL_EXCEPT);
- feclearexcept(FE_ALL_EXCEPT);
- }
- ~fpu_guard()
- {
- fesetexceptflag(&m_flags, FE_ALL_EXCEPT);
- }
- private:
- fexcept_t m_flags;
- };
+ namespace boost{ namespace math{
+ namespace detail
+ {
+ struct fpu_guard
+ {
+ fpu_guard()
+ {
+ fegetexceptflag(&m_flags, FE_ALL_EXCEPT);
+ feclearexcept(FE_ALL_EXCEPT);
+ }
+ ~fpu_guard()
+ {
+ fesetexceptflag(&m_flags, FE_ALL_EXCEPT);
+ }
+ private:
+ fexcept_t m_flags;
+ };
- } // namespace detail
- }} // namespaces
+ } // namespace detail
+ }} // namespaces
- #define BOOST_FPU_EXCEPTION_GUARD boost::math::detail::fpu_guard local_guard_object;
+ #define BOOST_FPU_EXCEPTION_GUARD boost::math::detail::fpu_guard local_guard_object;
#else // All other platforms.
#define BOOST_FPU_EXCEPTION_GUARD
#endif
@@ -172,3 +229,4 @@
+
Modified: sandbox/math_toolkit/boost/math/tools/fraction.hpp
==============================================================================
--- sandbox/math_toolkit/boost/math/tools/fraction.hpp (original)
+++ sandbox/math_toolkit/boost/math/tools/fraction.hpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -17,52 +17,52 @@
namespace detail
{
- template <class T>
- struct is_pair : public boost::false_type{};
+ template <class T>
+ struct is_pair : public boost::false_type{};
- template <class T, class U>
- struct is_pair<std::pair<T,U> > : public boost::true_type{};
+ template <class T, class U>
+ struct is_pair<std::pair<T,U> > : public boost::true_type{};
- template <class Gen>
- struct fraction_traits_simple
- {
- typedef typename Gen::result_type result_type;
- typedef typename Gen::result_type value_type;
-
- static result_type a(const value_type& v)
- {
- return 1;
- }
- static result_type b(const value_type& v)
- {
- return v;
- }
- };
-
- template <class Gen>
- struct fraction_traits_pair
- {
- typedef typename Gen::result_type value_type;
- typedef typename value_type::first_type result_type;
-
- static result_type a(const value_type& v)
- {
- return v.first;
- }
- static result_type b(const value_type& v)
- {
- return v.second;
- }
- };
-
- template <class Gen>
- struct fraction_traits
- : public boost::mpl::if_c<
- is_pair<typename Gen::result_type>::value,
- fraction_traits_pair<Gen>,
- fraction_traits_simple<Gen> >::type
- {
- };
+ template <class Gen>
+ struct fraction_traits_simple
+ {
+ typedef typename Gen::result_type result_type;
+ typedef typename Gen::result_type value_type;
+
+ static result_type a(const value_type& v)
+ {
+ return 1;
+ }
+ static result_type b(const value_type& v)
+ {
+ return v;
+ }
+ };
+
+ template <class Gen>
+ struct fraction_traits_pair
+ {
+ typedef typename Gen::result_type value_type;
+ typedef typename value_type::first_type result_type;
+
+ static result_type a(const value_type& v)
+ {
+ return v.first;
+ }
+ static result_type b(const value_type& v)
+ {
+ return v.second;
+ }
+ };
+
+ template <class Gen>
+ struct fraction_traits
+ : public boost::mpl::if_c<
+ is_pair<typename Gen::result_type>::value,
+ fraction_traits_pair<Gen>,
+ fraction_traits_simple<Gen> >::type
+ {
+ };
} // namespace detail
Modified: sandbox/math_toolkit/boost/math/tools/precision.hpp
==============================================================================
--- sandbox/math_toolkit/boost/math/tools/precision.hpp (original)
+++ sandbox/math_toolkit/boost/math/tools/precision.hpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -37,7 +37,7 @@
// See Conceptual Requirements for Real Number Types.
template <class T>
-inline int digits(BOOST_EXPLICIT_TEMPLATE_TYPE(T))
+inline int digits(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(T))
{
#ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
BOOST_STATIC_ASSERT( ::std::numeric_limits<T>::is_specialized);
@@ -48,7 +48,7 @@
}
template <class T>
-inline T max_value(BOOST_EXPLICIT_TEMPLATE_TYPE(T))
+inline T max_value(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE(T))
{
#ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
BOOST_STATIC_ASSERT( ::std::numeric_limits<T>::is_specialized);
@@ -60,7 +60,7 @@
// -max_value<double> = -1.79769e+308, max_value<double> = 1.79769e+308.
template <class T>
-inline T min_value(BOOST_EXPLICIT_TEMPLATE_TYPE(T))
+inline T min_value(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE(T))
{
#ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
BOOST_STATIC_ASSERT( ::std::numeric_limits<T>::is_specialized);
@@ -80,13 +80,13 @@
// For type float first:
//
template <class T>
-inline T log_max_value(const mpl::int_<128>& BOOST_APPEND_EXPLICIT_TEMPLATE_TYPE(T))
+inline T log_max_value(const mpl::int_<128>& BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE(T))
{
return 88.0f;
}
template <class T>
-inline T log_min_value(const mpl::int_<128>& BOOST_APPEND_EXPLICIT_TEMPLATE_TYPE(T))
+inline T log_min_value(const mpl::int_<128>& BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE(T))
{
return -87.0f;
}
@@ -94,13 +94,13 @@
// Now double:
//
template <class T>
-inline T log_max_value(const mpl::int_<1024>& BOOST_APPEND_EXPLICIT_TEMPLATE_TYPE(T))
+inline T log_max_value(const mpl::int_<1024>& BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE(T))
{
return 709.0;
}
template <class T>
-inline T log_min_value(const mpl::int_<1024>& BOOST_APPEND_EXPLICIT_TEMPLATE_TYPE(T))
+inline T log_min_value(const mpl::int_<1024>& BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE(T))
{
return -708.0;
}
@@ -108,19 +108,19 @@
// 80 and 128-bit long doubles:
//
template <class T>
-inline T log_max_value(const mpl::int_<16384>& BOOST_APPEND_EXPLICIT_TEMPLATE_TYPE(T))
+inline T log_max_value(const mpl::int_<16384>& BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE(T))
{
return 11356.0L;
}
template <class T>
-inline T log_min_value(const mpl::int_<16384>& BOOST_APPEND_EXPLICIT_TEMPLATE_TYPE(T))
+inline T log_min_value(const mpl::int_<16384>& BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE(T))
{
return -11355.0L;
}
template <class T>
-inline T log_max_value(const mpl::int_<0>& BOOST_APPEND_EXPLICIT_TEMPLATE_TYPE(T))
+inline T log_max_value(const mpl::int_<0>& BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE(T))
{
#ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
BOOST_STATIC_ASSERT( ::std::numeric_limits<T>::is_specialized);
@@ -133,7 +133,7 @@
}
template <class T>
-inline T log_min_value(const mpl::int_<0>& BOOST_APPEND_EXPLICIT_TEMPLATE_TYPE(T))
+inline T log_min_value(const mpl::int_<0>& BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE(T))
{
#ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
BOOST_STATIC_ASSERT( ::std::numeric_limits<T>::is_specialized);
@@ -146,14 +146,14 @@
}
template <class T>
-inline T epsilon(const mpl::true_& BOOST_APPEND_EXPLICIT_TEMPLATE_TYPE(T))
+inline T epsilon(const mpl::true_& BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE(T))
{
return std::numeric_limits<T>::epsilon();
}
#if (defined(macintosh) || defined(__APPLE__) || defined(__APPLE_CC__)) && ((LDBL_MANT_DIG == 106) || (__LDBL_MANT_DIG__ == 106))
template <>
-inline long double epsilon<long double>(const mpl::true_& BOOST_APPEND_EXPLICIT_TEMPLATE_TYPE(long double))
+inline long double epsilon<long double>(const mpl::true_& BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE(long double))
{
// numeric_limits on Darwin tells lies here.
// This static assert fails for some unknown reason, so
@@ -164,7 +164,7 @@
#endif
template <class T>
-inline T epsilon(const mpl::false_& BOOST_APPEND_EXPLICIT_TEMPLATE_TYPE(T))
+inline T epsilon(const mpl::false_& BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE(T))
{
BOOST_MATH_STD_USING // for ADL of std names
static const T eps = ldexp(static_cast<T>(1), 1-policies::digits<T, policies::policy<> >());
@@ -174,7 +174,7 @@
} // namespace detail
template <class T>
-inline T log_max_value(BOOST_EXPLICIT_TEMPLATE_TYPE(T))
+inline T log_max_value(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE(T))
{
#ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
typedef typename mpl::if_c<
@@ -195,7 +195,7 @@
}
template <class T>
-inline T log_min_value(BOOST_EXPLICIT_TEMPLATE_TYPE(T))
+inline T log_min_value(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE(T))
{
#ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
typedef typename mpl::if_c<
@@ -217,7 +217,7 @@
}
template <class T>
-inline T epsilon(BOOST_EXPLICIT_TEMPLATE_TYPE(T))
+inline T epsilon(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE(T))
{
#ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
return detail::epsilon<T>(mpl::bool_< ::std::numeric_limits<T>::is_specialized>());
Modified: sandbox/math_toolkit/boost/math/tools/test.hpp
==============================================================================
--- sandbox/math_toolkit/boost/math/tools/test.hpp (original)
+++ sandbox/math_toolkit/boost/math/tools/test.hpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -75,9 +75,9 @@
if((a != 0) && (b != 0))
{
// TODO: use isfinite:
- if(b > max_val)
+ if(fabs(b) >= max_val)
{
- if(a > max_val)
+ if(fabs(a) >= max_val)
return 0; // one infinity is as good as another!
}
// If the result is denormalised, treat all denorms as equivalent:
Modified: sandbox/math_toolkit/boost/math/tools/toms748_solve.hpp
==============================================================================
--- sandbox/math_toolkit/boost/math/tools/toms748_solve.hpp (original)
+++ sandbox/math_toolkit/boost/math/tools/toms748_solve.hpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -494,7 +494,7 @@
// Zero is to the right of b, so walk upwards
// until we find it:
//
- while(sign(fb) == sign(fa))
+ while((boost::math::sign)(fb) == (boost::math::sign)(fa))
{
if(count == 0)
policies::raise_evaluation_error(function, "Unable to bracket root, last nearest value was %1%", b, pol);
@@ -521,7 +521,7 @@
// Zero is to the left of a, so walk downwards
// until we find it:
//
- while(sign(fb) == sign(fa))
+ while((boost::math::sign)(fb) == (boost::math::sign)(fa))
{
if(fabs(a) < tools::min_value<T>())
{
Added: sandbox/math_toolkit/boost/math/tools/workaround.hpp
==============================================================================
--- (empty file)
+++ sandbox/math_toolkit/boost/math/tools/workaround.hpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -0,0 +1,33 @@
+// Copyright (c) 2006-7 John Maddock
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+#ifndef BOOST_MATH_TOOLS_WORHAROUND_HPP
+#define BOOST_MATH_TOOLS_WORHAROUND_HPP
+
+#include <boost/math/tools/config.hpp>
+
+namespace boost{ namespace math{ namespace tools{
+//
+// We call this short forwarding function so that we can work around a bug
+// on Darwin that causes std::fmod to return a NaN. The test case is:
+// std::fmod(1185.0L, 1.5L);
+//
+template <class T>
+inline T fmod_workaround(T a, T b)
+{
+ BOOST_MATH_STD_USING
+ return fmod(a, b);
+}
+#if (defined(macintosh) || defined(__APPLE__) || defined(__APPLE_CC__)) && ((LDBL_MANT_DIG == 106) || (__LDBL_MANT_DIG__ == 106))
+template <>
+inline long double fmod_workaround(long double a, long double b)
+{
+ return ::fmodl(a, b);
+}
+#endif
+
+}}} // namespaces
+
+#endif // BOOST_MATH_TOOLS_WORHAROUND_HPP
Modified: sandbox/math_toolkit/libs/math/doc/sf_and_dist/background.qbk
==============================================================================
--- sandbox/math_toolkit/libs/math/doc/sf_and_dist/background.qbk (original)
+++ sandbox/math_toolkit/libs/math/doc/sf_and_dist/background.qbk 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -75,5 +75,11 @@
[endsect]
+[/
+ Copyright 2006 John Maddock and Paul A. Bristow.
+ Distributed under the Boost Software License, Version 1.0.
+ (See accompanying file LICENSE_1_0.txt or copy at
+ http://www.boost.org/LICENSE_1_0.txt).
+]
Modified: sandbox/math_toolkit/libs/math/doc/sf_and_dist/bessel_ik.qbk
==============================================================================
--- sandbox/math_toolkit/libs/math/doc/sf_and_dist/bessel_ik.qbk (original)
+++ sandbox/math_toolkit/libs/math/doc/sf_and_dist/bessel_ik.qbk 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -189,3 +189,9 @@
[endsect]
+[/
+ Copyright 2006 John Maddock, Paul A. Bristow and Xiaogang Zhang.
+ Distributed under the Boost Software License, Version 1.0.
+ (See accompanying file LICENSE_1_0.txt or copy at
+ http://www.boost.org/LICENSE_1_0.txt).
+]
Modified: sandbox/math_toolkit/libs/math/doc/sf_and_dist/bessel_introduction.qbk
==============================================================================
--- sandbox/math_toolkit/libs/math/doc/sf_and_dist/bessel_introduction.qbk (original)
+++ sandbox/math_toolkit/libs/math/doc/sf_and_dist/bessel_introduction.qbk 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -116,3 +116,9 @@
[endsect]
+[/
+ Copyright 2006 John Maddock, Paul A. Bristow and Xiaogang Zhang.
+ Distributed under the Boost Software License, Version 1.0.
+ (See accompanying file LICENSE_1_0.txt or copy at
+ http://www.boost.org/LICENSE_1_0.txt).
+]
Modified: sandbox/math_toolkit/libs/math/doc/sf_and_dist/bessel_jy.qbk
==============================================================================
--- sandbox/math_toolkit/libs/math/doc/sf_and_dist/bessel_jy.qbk (original)
+++ sandbox/math_toolkit/libs/math/doc/sf_and_dist/bessel_jy.qbk 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -54,7 +54,7 @@
[h4 Testing]
There are two sets of test values: spot values calculated using
-[@http//:functions.wolfram.com functions.wolfram.com],
+[@http://functions.wolfram.com functions.wolfram.com],
and a much larger set of tests computed using
a simplified version of this implementation
(with all the special case handling removed).
@@ -129,7 +129,7 @@
some remarkably inaccurate results with some of the test data (no significant figures
correct), and even GSL performs badly with some inputs to J[sub v]. Note that
by way of double-checking these results, the worst performing __cephes and GSL cases
-were recomputed using [@http//:functions.wolfram.com functions.wolfram.com],
+were recomputed using [@http://functions.wolfram.com functions.wolfram.com],
and the result checked against our test data: no errors in the test data were found.
[h4 Implementation]
@@ -253,3 +253,9 @@
[endsect]
+[/
+ Copyright 2006 John Maddock, Paul A. Bristow and Xiaogang Zhang.
+ Distributed under the Boost Software License, Version 1.0.
+ (See accompanying file LICENSE_1_0.txt or copy at
+ http://www.boost.org/LICENSE_1_0.txt).
+]
Modified: sandbox/math_toolkit/libs/math/doc/sf_and_dist/bessel_spherical.qbk
==============================================================================
--- sandbox/math_toolkit/libs/math/doc/sf_and_dist/bessel_spherical.qbk (original)
+++ sandbox/math_toolkit/libs/math/doc/sf_and_dist/bessel_spherical.qbk 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -79,3 +79,9 @@
[endsect]
+[/
+ Copyright 2006 John Maddock, Paul A. Bristow and Xiaogang Zhang.
+ Distributed under the Boost Software License, Version 1.0.
+ (See accompanying file LICENSE_1_0.txt or copy at
+ http://www.boost.org/LICENSE_1_0.txt).
+]
Modified: sandbox/math_toolkit/libs/math/doc/sf_and_dist/concepts.qbk
==============================================================================
--- sandbox/math_toolkit/libs/math/doc/sf_and_dist/concepts.qbk (original)
+++ sandbox/math_toolkit/libs/math/doc/sf_and_dist/concepts.qbk 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -16,7 +16,7 @@
Finally there is a high precision __lanczos suitable for use with `boost::math::ntl::RR`,
used at 1000-bit precision in
-[@../tools/ntl_rr_lanczos.hpp libs/math/tools/ntl_rr_lanczos.hpp].
+[@../../../tools/ntl_rr_lanczos.hpp libs/math/tools/ntl_rr_lanczos.hpp].
The approximation has a theoretical precision of > 90 decimal digits,
and an experimental precision of > 100 decimal digits. To use that
approximation, just include that header before any of the special
@@ -116,7 +116,7 @@
# The function `epsilon` can be synthesised from the others, so no
explicit specialisation is required provided the precision
of RealType does not vary at runtime (see the header
-[@../../../../../boost/math/tools/ntl.hpp boost/math/tools/ntl.hpp]
+[@../../../../../boost/math/bindings/rr.hpp boost/math/bindings/rr.hpp]
for an example where the precision does vary at runtime).
# The functions `digits`, `max_value` and `min_value`, all get synthesised
automatically from `std::numeric_limits`. However, if `numeric_limits`
@@ -185,7 +185,7 @@
You may be able to adapt an existing approximation from
[@../../../../../boost/math/special_functions/lanczos.hpp
boost/math/special_functions/lanczos.hpp] or
-[@../tools/ntl_rr_lanczos.hpp libs/math/tools/ntl_rr_lanczos.hpp]:
+[@../../../tools/ntl_rr_lanczos.hpp libs/math/tools/ntl_rr_lanczos.hpp]:
you will need change
static_cast's to lexical_cast's, and the constants to /strings/
(in order to ensure the coefficients aren't truncated to long double)
@@ -280,7 +280,7 @@
been brought into the current scope with a using declaration.
There is a test program
-[@../../../teststd_real_concept_check.cpp libs/math/test/std_real_concept_check.cpp]
+[@../../../test/std_real_concept_check.cpp libs/math/test/std_real_concept_check.cpp]
that instantiates every template in this library with type
`std_real_concept` to verify it's usage of standard library functions.
@@ -335,7 +335,7 @@
for distribution types.
The test program
-[@../../../test/distribution_concept_check.cpp distribution_concept_check.cpp]
+[@../../../test/compile_test/distribution_concept_check.cpp distribution_concept_check.cpp]
is responsible for using `DistributionConcept` to verify that all the
distributions in this library conform to the
[link math_toolkit.using_udt.dist_concept Distribution concept].
Modified: sandbox/math_toolkit/libs/math/doc/sf_and_dist/contact_info.qbk
==============================================================================
--- sandbox/math_toolkit/libs/math/doc/sf_and_dist/contact_info.qbk (original)
+++ sandbox/math_toolkit/libs/math/doc/sf_and_dist/contact_info.qbk 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -15,3 +15,11 @@
pbristow - at - hetp.u-net.com.
[endsect]
+
+[/
+ Copyright 2006 John Maddock and Paul A. Bristow.
+ Distributed under the Boost Software License, Version 1.0.
+ (See accompanying file LICENSE_1_0.txt or copy at
+ http://www.boost.org/LICENSE_1_0.txt).
+]
+
Modified: sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/bernoulli.qbk
==============================================================================
--- sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/bernoulli.qbk (original)
+++ sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/bernoulli.qbk 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -109,3 +109,10 @@
[endsect][/section:bernoulli_dist bernoulli]
+[/
+ Copyright 2006 John Maddock and Paul A. Bristow.
+ Distributed under the Boost Software License, Version 1.0.
+ (See accompanying file LICENSE_1_0.txt or copy at
+ http://www.boost.org/LICENSE_1_0.txt).
+]
+
Modified: sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/binomial_example.qbk
==============================================================================
--- sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/binomial_example.qbk (original)
+++ sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/binomial_example.qbk 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -322,3 +322,11 @@
[endsect] [/section:binom_size_eg Estimating Sample Sizes for a Binomial Distribution.]
[endsect][/section:binom_eg Binomial Distribution]
+
+[/
+ Copyright 2006 John Maddock and Paul A. Bristow.
+ Distributed under the Boost Software License, Version 1.0.
+ (See accompanying file LICENSE_1_0.txt or copy at
+ http://www.boost.org/LICENSE_1_0.txt).
+]
+
Modified: sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/chi_squared_examples.qbk
==============================================================================
--- sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/chi_squared_examples.qbk (original)
+++ sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/chi_squared_examples.qbk 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -178,7 +178,7 @@
process to an established one.
The code for this example is contained in
-[@../../../chi_square_std_dev_test.cpp chi_square_std_dev_test.cpp], and
+[@../../../example/chi_square_std_dev_test.cpp chi_square_std_dev_test.cpp], and
we'll begin by defining the procedure that will print out the test
statistics:
@@ -372,7 +372,7 @@
note that the method used works on variance, and not standard deviation
as is usual for the Chi Squared Test.
-The code for this example is located in [@../../../chi_square_std_dev_test.cpp
+The code for this example is located in [@../../../example/chi_square_std_dev_test.cpp
chi_square_std_dev_test.cpp].
We begin by defining a procedure to print out the sample sizes required
@@ -490,3 +490,11 @@
[endsect][/section:chi_sq_size Estimating the Required Sample Sizes for a Chi-Square Test for the Standard Deviation]
[endsect][/section:cs_eg Chi Squared Distribution]
+
+[/
+ Copyright 2006 John Maddock and Paul A. Bristow.
+ Distributed under the Boost Software License, Version 1.0.
+ (See accompanying file LICENSE_1_0.txt or copy at
+ http://www.boost.org/LICENSE_1_0.txt).
+]
+
Modified: sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/distribution_construction.qbk
==============================================================================
--- sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/distribution_construction.qbk (original)
+++ sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/distribution_construction.qbk 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,4 +1,4 @@
-[section:distribution_construction_eg Distribution Construction Example]
+[section:dist_construct_eg Distribution Construction Example]
See [@../../../example/distribution_construction.cpp distribution_construction.cpp] for full source code.
@@ -6,4 +6,12 @@
[distribution_construction1]
[distribution_construction2]
-[endsect] [/section:distribution_construction_eg Distribution Construction Example]
+[endsect] [/section:dist_construct_eg Distribution Construction Example]
+
+[/
+ Copyright 2006 John Maddock and Paul A. Bristow.
+ Distributed under the Boost Software License, Version 1.0.
+ (See accompanying file LICENSE_1_0.txt or copy at
+ http://www.boost.org/LICENSE_1_0.txt).
+]
+
Modified: sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/f_dist_example.qbk
==============================================================================
--- sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/f_dist_example.qbk (original)
+++ sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/f_dist_example.qbk 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -13,7 +13,7 @@
NIST Ceramics Division in 1996 in connection with a NIST/industry
ceramics consortium for strength optimization of ceramic strength.
-The example program is [@../example/f_test.cpp f_test.cpp],
+The example program is [@../../../example/f_test.cpp f_test.cpp],
program output has been deliberately made as similar as possible
to the DATAPLOT output in the corresponding
[@http://www.itl.nist.gov/div898/handbook/eda/section3/eda359.htm
@@ -210,3 +210,11 @@
for the better in our standard deviation.
[endsect][/section:f_eg F Distribution]
+
+[/
+ Copyright 2006 John Maddock and Paul A. Bristow.
+ Distributed under the Boost Software License, Version 1.0.
+ (See accompanying file LICENSE_1_0.txt or copy at
+ http://www.boost.org/LICENSE_1_0.txt).
+]
+
Modified: sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/find_location_and_scale.qbk
==============================================================================
--- sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/find_location_and_scale.qbk (original)
+++ sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/find_location_and_scale.qbk 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -30,3 +30,10 @@
+[/
+ Copyright 2006 John Maddock and Paul A. Bristow.
+ Distributed under the Boost Software License, Version 1.0.
+ (See accompanying file LICENSE_1_0.txt or copy at
+ http://www.boost.org/LICENSE_1_0.txt).
+]
+
Modified: sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/gamma.qbk
==============================================================================
--- sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/gamma.qbk (original)
+++ sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/gamma.qbk 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -129,3 +129,10 @@
[endsect][/section:normal_dist Normal]
+[/
+ Copyright 2006 John Maddock and Paul A. Bristow.
+ Distributed under the Boost Software License, Version 1.0.
+ (See accompanying file LICENSE_1_0.txt or copy at
+ http://www.boost.org/LICENSE_1_0.txt).
+]
+
Modified: sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/lognormal.qbk
==============================================================================
--- sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/lognormal.qbk (original)
+++ sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/lognormal.qbk 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -110,3 +110,10 @@
[endsect][/section:normal_dist Normal]
+[/
+ Copyright 2006 John Maddock and Paul A. Bristow.
+ Distributed under the Boost Software License, Version 1.0.
+ (See accompanying file LICENSE_1_0.txt or copy at
+ http://www.boost.org/LICENSE_1_0.txt).
+]
+
Modified: sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/nag_library.qbk
==============================================================================
--- sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/nag_library.qbk (original)
+++ sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/nag_library.qbk 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -51,3 +51,10 @@
[endsect] [/section:nag_library Comparison with C, R, FORTRAN-style Free Functions]
+[/
+ Copyright 2006 John Maddock and Paul A. Bristow.
+ Distributed under the Boost Software License, Version 1.0.
+ (See accompanying file LICENSE_1_0.txt or copy at
+ http://www.boost.org/LICENSE_1_0.txt).
+]
+
Modified: sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/negative_binomial_example.qbk
==============================================================================
--- sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/negative_binomial_example.qbk (original)
+++ sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/negative_binomial_example.qbk 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -182,3 +182,11 @@
[endsect] [/section:negative_binomial_example1 Negative Binomial example 2.]
[endsect] [/section:neg_binom_eg Negative Binomial Distribution Examples]
+
+[/
+ Copyright 2006 John Maddock and Paul A. Bristow.
+ Distributed under the Boost Software License, Version 1.0.
+ (See accompanying file LICENSE_1_0.txt or copy at
+ http://www.boost.org/LICENSE_1_0.txt).
+]
+
Modified: sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/normal_example.qbk
==============================================================================
--- sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/normal_example.qbk (original)
+++ sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/normal_example.qbk 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -27,3 +27,10 @@
[endsect] [/section:normal_misc Some Miscellaneous Examples of the Normal Distribution]
[endsect] [/section:normal_example Normal Distribution Examples]
+[/
+ Copyright 2006 John Maddock and Paul A. Bristow.
+ Distributed under the Boost Software License, Version 1.0.
+ (See accompanying file LICENSE_1_0.txt or copy at
+ http://www.boost.org/LICENSE_1_0.txt).
+]
+
Modified: sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/pareto.qbk
==============================================================================
--- sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/pareto.qbk (original)
+++ sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/pareto.qbk 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -105,3 +105,10 @@
[endsect][/section:pareto pareto]
+[/
+ Copyright 2006 John Maddock and Paul A. Bristow.
+ Distributed under the Boost Software License, Version 1.0.
+ (See accompanying file LICENSE_1_0.txt or copy at
+ http://www.boost.org/LICENSE_1_0.txt).
+]
+
Modified: sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/rayleigh.qbk
==============================================================================
--- sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/rayleigh.qbk (original)
+++ sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/rayleigh.qbk 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -110,3 +110,10 @@
[endsect][/section:Rayleigh Rayleigh]
+[/
+ Copyright 2006 John Maddock and Paul A. Bristow.
+ Distributed under the Boost Software License, Version 1.0.
+ (See accompanying file LICENSE_1_0.txt or copy at
+ http://www.boost.org/LICENSE_1_0.txt).
+]
+
Modified: sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/students_t_examples.qbk
==============================================================================
--- sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/students_t_examples.qbk (original)
+++ sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/students_t_examples.qbk 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -773,3 +773,10 @@
[endsect][/section:st_eg Student's t]
+[/
+ Copyright 2006 John Maddock and Paul A. Bristow.
+ Distributed under the Boost Software License, Version 1.0.
+ (See accompanying file LICENSE_1_0.txt or copy at
+ http://www.boost.org/LICENSE_1_0.txt).
+]
+
Modified: sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/triangular.qbk
==============================================================================
--- sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/triangular.qbk (original)
+++ sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/triangular.qbk 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -154,9 +154,15 @@
* Evans, M.; Hastings, N.; and Peacock, B. "Triangular Distribution." Ch. 40 in Statistical Distributions, 3rd ed. New York: Wiley, pp. 187-188, 2000, ISBN - 0471371246]
* [@http://www.brighton-webs.co.uk/distributions/triangular.asp Brighton Webs Ltd. BW D-Calc 1.0 Distribution Calculator]
* [@http://www.worldscibooks.com/mathematics/etextbook/5720/5720_chap1.pdf The Triangular Distribution including its history.]
-* [@www.measurement.sk/2002/S1/Wimmer2.pdf Gejza Wimmer, Viktor Witkovsky and Tomas Duby,
+* [@http://www.measurement.sk/2002/S1/Wimmer2.pdf Gejza Wimmer, Viktor Witkovsky and Tomas Duby,
Measurement Science Review, Volume 2, Section 1, 2002, Proper Rounding Of The Measurement Results Under The Assumption Of Triangular Distribution.]
[endsect][/section:triangular_dist triangular]
+[/
+ Copyright 2006 John Maddock and Paul A. Bristow.
+ Distributed under the Boost Software License, Version 1.0.
+ (See accompanying file LICENSE_1_0.txt or copy at
+ http://www.boost.org/LICENSE_1_0.txt).
+]
Modified: sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/uniform.qbk
==============================================================================
--- sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/uniform.qbk (original)
+++ sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/uniform.qbk 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -125,3 +125,10 @@
[endsect][/section:uniform_dist Uniform]
+[/
+ Copyright 2006 John Maddock and Paul A. Bristow.
+ Distributed under the Boost Software License, Version 1.0.
+ (See accompanying file LICENSE_1_0.txt or copy at
+ http://www.boost.org/LICENSE_1_0.txt).
+]
+
Modified: sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/weibull.qbk
==============================================================================
--- sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/weibull.qbk (original)
+++ sandbox/math_toolkit/libs/math/doc/sf_and_dist/distributions/weibull.qbk 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -119,3 +119,9 @@
[endsect][/section:weibull Weibull]
+[/
+ Copyright 2006 John Maddock and Paul A. Bristow.
+ Distributed under the Boost Software License, Version 1.0.
+ (See accompanying file LICENSE_1_0.txt or copy at
+ http://www.boost.org/LICENSE_1_0.txt).
+]
Modified: sandbox/math_toolkit/libs/math/doc/sf_and_dist/ellint_legendre.qbk
==============================================================================
--- sandbox/math_toolkit/libs/math/doc/sf_and_dist/ellint_legendre.qbk (original)
+++ sandbox/math_toolkit/libs/math/doc/sf_and_dist/ellint_legendre.qbk 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -188,7 +188,7 @@
[heading Testing]
The tests use a mixture of spot test values calculated using the online
-calculator at [@functions.wolfram.com
+calculator at [http://@functions.wolfram.com
functions.wolfram.com], and random test data generated using
NTL::RR at 1000-bit precision and this implementation.
@@ -296,7 +296,7 @@
[heading Testing]
The tests use a mixture of spot test values calculated using the online
-calculator at [@functions.wolfram.com
+calculator at [@http://functions.wolfram.com
functions.wolfram.com], and random test data generated using
NTL::RR at 1000-bit precision and this implementation.
Modified: sandbox/math_toolkit/libs/math/doc/sf_and_dist/error_handling.qbk
==============================================================================
--- sandbox/math_toolkit/libs/math/doc/sf_and_dist/error_handling.qbk (original)
+++ sandbox/math_toolkit/libs/math/doc/sf_and_dist/error_handling.qbk 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,6 +1,6 @@
[section:error_handling Error Handling]
-[def __format [@../../../libs/format/index.html Boost.Format]]
+[def __format [@../../../../format/index.html Boost.Format]]
[heading Quick Reference]
@@ -44,7 +44,7 @@
appropriate result]]
[[ignore_error][Ignores the error and simply the returns the most appropriate result.]]
[[user_error][Calls a
- [link math_toolkit.policy.pol_tutorial.user_defined_error_policies user-supplied error handler].]]
+ [link math_toolkit.policy.pol_tutorial.user_def_err_pol user-supplied error handler].]]
]
The following tables show all the permutations of errors and actions,
@@ -56,7 +56,7 @@
[[errno_on_error][Sets `::errno` to `EDOM` and returns `std::numeric_limits<T>::quiet_NaN()`]]
[[ignore_error][Returns `std::numeric_limits<T>::quiet_NaN()`]]
[[user_error][Returns the result of `boost::math::policies::user_domain_error`:
- [link math_toolkit.policy.pol_tutorial.user_defined_error_policies
+ [link math_toolkit.policy.pol_tutorial.user_def_err_pol
this function must be defined by the user].]]
]
@@ -66,7 +66,7 @@
[[errno_on_error][Sets `::errno` to `EDOM` and returns `std::numeric_limits<T>::quiet_NaN()`]]
[[ignore_error][Returns `std::numeric_limits<T>::quiet_NaN()`]]
[[user_error][Returns the result of `boost::math::policies::user_pole_error`:
- [link math_toolkit.policy.pol_tutorial.user_defined_error_policies
+ [link math_toolkit.policy.pol_tutorial.user_def_err_pol
this function must be defined by the user].]]
]
@@ -76,7 +76,7 @@
[[errno_on_error][Sets `::errno` to `ERANGE` and returns `std::numeric_limits<T>::infinity()`]]
[[ignore_error][Returns `std::numeric_limits<T>::infinity()`]]
[[user_error][Returns the result of `boost::math::policies::user_overflow_error`:
- [link math_toolkit.policy.pol_tutorial.user_defined_error_policies
+ [link math_toolkit.policy.pol_tutorial.user_def_err_pol
this function must be defined by the user].]]
]
@@ -86,7 +86,7 @@
[[errno_on_error][Sets `::errno` to `ERANGE` and returns 0.]]
[[ignore_error][[*Returns 0]]]
[[user_error][Returns the result of `boost::math::policies::user_underflow_error`:
- [link math_toolkit.policy.pol_tutorial.user_defined_error_policies
+ [link math_toolkit.policy.pol_tutorial.user_def_err_pol
this function must be defined by the user].]]
]
@@ -96,7 +96,7 @@
[[errno_on_error][Sets `::errno` to `ERANGE` and returns the denormalised value.]]
[[ignore_error][[*Returns the denormalised value.]]]
[[user_error][Returns the result of `boost::math::policies::user_denorm_error`:
- [link math_toolkit.policy.pol_tutorial.user_defined_error_policies
+ [link math_toolkit.policy.pol_tutorial.user_def_err_pol
this function must be defined by the user].]]
]
@@ -106,7 +106,7 @@
[[errno_on_error][Sets `::errno` to `EDOM` and returns `std::numeric_limits<T>::infinity()`.]]
[[ignore_error][Returns `std::numeric_limits<T>::infinity()`.]]
[[user_error][Returns the result of `boost::math::policies::user_evaluation_error`:
- [link math_toolkit.policy.pol_tutorial.user_defined_error_policies
+ [link math_toolkit.policy.pol_tutorial.user_def_err_pol
this function must be defined by the user].]]
]
@@ -159,7 +159,7 @@
This behaviour is chosen to assist compatibility with the behaviour of
['ISO/IEC 9899:1999 Programming languages - C]
and with the
-[@www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1836.pdf Draft Technical Report on C++ Library Extensions, 2005-06-24, section 5.2.1, paragraph 6]:
+[@http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1836.pdf Draft Technical Report on C++ Library Extensions, 2005-06-24, section 5.2.1, paragraph 6]:
[:['"Each of the functions declared above shall return a NaN (Not a Number)
if any argument value is a NaN, but it shall not report a domain error.
Modified: sandbox/math_toolkit/libs/math/doc/sf_and_dist/implementation.qbk
==============================================================================
--- sandbox/math_toolkit/libs/math/doc/sf_and_dist/implementation.qbk (original)
+++ sandbox/math_toolkit/libs/math/doc/sf_and_dist/implementation.qbk 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -124,7 +124,7 @@
This implementation is believed to follow these proposals and to assist compatibility with
['ISO/IEC 9899:1999 Programming languages - C]
and with the
-[@www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1836.pdf Draft Technical Report on C++ Library Extensions, 2005-06-24, section 5.2.1, paragraph 5].
+[@http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1836.pdf Draft Technical Report on C++ Library Extensions, 2005-06-24, section 5.2.1, paragraph 5].
[link math_toolkit.main_overview.error_handling See also domain_error].
See __policy_ref for details of the error handling policies that should allow
Modified: sandbox/math_toolkit/libs/math/doc/sf_and_dist/math.qbk
==============================================================================
--- sandbox/math_toolkit/libs/math/doc/sf_and_dist/math.qbk (original)
+++ sandbox/math_toolkit/libs/math/doc/sf_and_dist/math.qbk 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -206,7 +206,7 @@
[def __math_discrete [link math_toolkit.policy.pol_ref.discrete_quant_ref discrete functions]]
[def __error_policy [link math_toolkit.policy.pol_ref.error_handling_policies error handling policies]]
[def __changing_policy_defaults [link math_toolkit.policy.pol_ref.policy_defaults changing policies defaults]]
-[def __user_error_handling [link math_toolkit.policy.pol_tutorial.user_defined_error_policies user error handling]]
+[def __user_error_handling [link math_toolkit.policy.pol_tutorial.user_def_err_pol user error handling]]
[def __usual_accessors __cdf, __pdf, __quantile, __hazard,
__chf, __mean, __median, __mode, __variance, __sd, __skewness,
Modified: sandbox/math_toolkit/libs/math/doc/sf_and_dist/overview.qbk
==============================================================================
--- sandbox/math_toolkit/libs/math/doc/sf_and_dist/overview.qbk (original)
+++ sandbox/math_toolkit/libs/math/doc/sf_and_dist/overview.qbk 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -81,3 +81,10 @@
external graphing application.
[endsect] [/section:intro Introduction]
+
+[/
+ Copyright 2006 John Maddock and Paul A. Bristow.
+ Distributed under the Boost Software License, Version 1.0.
+ (See accompanying file LICENSE_1_0.txt or copy at
+ http://www.boost.org/LICENSE_1_0.txt).
+]
Modified: sandbox/math_toolkit/libs/math/doc/sf_and_dist/performance.qbk
==============================================================================
--- sandbox/math_toolkit/libs/math/doc/sf_and_dist/performance.qbk (original)
+++ sandbox/math_toolkit/libs/math/doc/sf_and_dist/performance.qbk 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -361,12 +361,9 @@
[endsect]
-
-
-
-
-
-
-
-
-
+[/
+ Copyright 2006 John Maddock and Paul A. Bristow.
+ Distributed under the Boost Software License, Version 1.0.
+ (See accompanying file LICENSE_1_0.txt or copy at
+ http://www.boost.org/LICENSE_1_0.txt).
+]
Modified: sandbox/math_toolkit/libs/math/doc/sf_and_dist/policy.qbk
==============================================================================
--- sandbox/math_toolkit/libs/math/doc/sf_and_dist/policy.qbk (original)
+++ sandbox/math_toolkit/libs/math/doc/sf_and_dist/policy.qbk 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -113,7 +113,7 @@
should be replaced with the value of ['val].
There is more information on user-defined error handlers in
-the [link math_toolkit.policy.pol_tutorial.user_defined_error_policies
+the [link math_toolkit.policy.pol_tutorial.user_def_err_pol
tutorial here].
[h4 Kinds of Error Raised]
Modified: sandbox/math_toolkit/libs/math/doc/sf_and_dist/policy_tutorial.qbk
==============================================================================
--- sandbox/math_toolkit/libs/math/doc/sf_and_dist/policy_tutorial.qbk (original)
+++ sandbox/math_toolkit/libs/math/doc/sf_and_dist/policy_tutorial.qbk 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -320,7 +320,7 @@
[endsect][/section:namespace_policies Setting Policies at Namespace or Translation Unit Scope]
-[section:user_defined_error_policies Calling User Defined Error Handlers]
+[section:user_def_err_pol Calling User Defined Error Handlers]
[import ../../example/policy_eg_8.cpp]
@@ -330,7 +330,7 @@
[policy_eg_9]
-[endsect][/section:user_defined_error_policies Calling User Defined Error Handlers]
+[endsect][/section:user_def_err_pol Calling User Defined Error Handlers]
[section:understand_dis_quant Understanding Quantiles of Discrete Distributions]
Modified: sandbox/math_toolkit/libs/math/doc/sf_and_dist/references.qbk
==============================================================================
--- sandbox/math_toolkit/libs/math/doc/sf_and_dist/references.qbk (original)
+++ sandbox/math_toolkit/libs/math/doc/sf_and_dist/references.qbk 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -34,7 +34,7 @@
[@http://bh0.physics.ubc.ca/People/matt/Doc/ThesesOthers/Phd/pugh.pdf pugh.pdf (application/pdf Object)]
Pugh Msc Thesis on the Lanczzos approximation to the gamma function.
-[@www.open-std.org/jtc1/sc22/wg21/docs/papers/2003 N1514, 03-0097, A Proposal to Add Mathematical Special Functions to the C++ Standard Library (version 2), Walter E. Brown]
+[@http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2003 N1514, 03-0097, A Proposal to Add Mathematical Special Functions to the C++ Standard Library (version 2), Walter E. Brown]
[h4 Calculators* that we found (and used to cross-check - as far as their widely-varying accuracy allowed).]
Modified: sandbox/math_toolkit/libs/math/doc/sf_and_dist/remez.qbk
==============================================================================
--- sandbox/math_toolkit/libs/math/doc/sf_and_dist/remez.qbk (original)
+++ sandbox/math_toolkit/libs/math/doc/sf_and_dist/remez.qbk 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -368,4 +368,10 @@
[endsect][/section:remez The Remez Method]
+[/
+ Copyright 2006 John Maddock and Paul A. Bristow.
+ Distributed under the Boost Software License, Version 1.0.
+ (See accompanying file LICENSE_1_0.txt or copy at
+ http://www.boost.org/LICENSE_1_0.txt).
+]
Modified: sandbox/math_toolkit/libs/math/doc/sf_and_dist/result_type_calc.qbk
==============================================================================
--- sandbox/math_toolkit/libs/math/doc/sf_and_dist/result_type_calc.qbk (original)
+++ sandbox/math_toolkit/libs/math/doc/sf_and_dist/result_type_calc.qbk 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -77,3 +77,9 @@
[endsect]
+[/
+ Copyright 2006 John Maddock and Paul A. Bristow.
+ Distributed under the Boost Software License, Version 1.0.
+ (See accompanying file LICENSE_1_0.txt or copy at
+ http://www.boost.org/LICENSE_1_0.txt).
+]
Modified: sandbox/math_toolkit/libs/math/doc/sf_and_dist/roadmap.qbk
==============================================================================
--- sandbox/math_toolkit/libs/math/doc/sf_and_dist/roadmap.qbk (original)
+++ sandbox/math_toolkit/libs/math/doc/sf_and_dist/roadmap.qbk 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -57,6 +57,11 @@
on error rates.
* Provide sufficient docs for people to be able to find their way around the library.
+SVN Revisions:
+
+Sandbox revision merged to trunk: 39833.
+Trunk revision: 39833.
+
]
[/
Copyright 2006 John Maddock and Paul A. Bristow.
Modified: sandbox/math_toolkit/libs/math/doc/sf_and_dist/thread_safety.qbk
==============================================================================
--- sandbox/math_toolkit/libs/math/doc/sf_and_dist/thread_safety.qbk (original)
+++ sandbox/math_toolkit/libs/math/doc/sf_and_dist/thread_safety.qbk 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -21,3 +21,10 @@
This limitation may be addressed in a future release.
[endsect] [/section:threads Thread Safety]
+
+[/
+ Copyright 2006 John Maddock and Paul A. Bristow.
+ Distributed under the Boost Software License, Version 1.0.
+ (See accompanying file LICENSE_1_0.txt or copy at
+ http://www.boost.org/LICENSE_1_0.txt).
+]
Modified: sandbox/math_toolkit/libs/math/example/c_error_policy_example.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/example/c_error_policy_example.cpp (original)
+++ sandbox/math_toolkit/libs/math/example/c_error_policy_example.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -39,8 +39,8 @@
// std
#include <iostream>
- using std::cout;
- using std::endl;
+ using std::cout;
+ using std::endl;
int main()
{
Modified: sandbox/math_toolkit/libs/math/example/error_handling_example.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/example/error_handling_example.cpp (original)
+++ sandbox/math_toolkit/libs/math/example/error_handling_example.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -48,15 +48,15 @@
// Boost
#include <boost/math/distributions/students_t.hpp>
- using boost::math::students_t; // Probability of students_t(df, t).
+ using boost::math::students_t; // Probability of students_t(df, t).
// std
#include <iostream>
- using std::cout;
- using std::endl;
+ using std::cout;
+ using std::endl;
#include <stdexcept>
- using std::exception;
+ using std::exception;
/*`
Modified: sandbox/math_toolkit/libs/math/example/error_policies_example.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/example/error_policies_example.cpp (original)
+++ sandbox/math_toolkit/libs/math/example/error_policies_example.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -12,8 +12,8 @@
using boost::math::normal_distribution;
#include <boost/math/distributions/students_t.hpp>
- using boost::math::students_t; // Probability of students_t(df, t).
- using boost::math::students_t_distribution;
+ using boost::math::students_t; // Probability of students_t(df, t).
+ using boost::math::students_t_distribution;
// using namespace boost::math;
//.\error_policy_normal.cpp(30) : error C2872: 'policy' : ambiguous symbol
@@ -26,8 +26,8 @@
// std
#include <iostream>
- using std::cout;
- using std::endl;
+ using std::cout;
+ using std::endl;
using boost::math::policies::policy;
// Possible errors
Modified: sandbox/math_toolkit/libs/math/example/error_policy_example.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/example/error_policy_example.cpp (original)
+++ sandbox/math_toolkit/libs/math/example/error_policy_example.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -23,11 +23,11 @@
// std
#include <iostream>
- using std::cout;
- using std::endl;
+ using std::cout;
+ using std::endl;
#include <stdexcept>
- using std::exception;
+ using std::exception;
using boost::math::policies::policy;
using boost::math::policies::domain_error;
@@ -43,7 +43,7 @@
int main()
{ // Example of error handling of bad argument(s) to a distribution.
- cout << "Example error handling using Student's t function. " << endl;
+ cout << "Example error handling using Student's t function. " << endl;
double degrees_of_freedom = -1; double t = -1.; // Two 'bad' arguments!
@@ -71,7 +71,7 @@
"\n""Message from thrown exception was:\n " << e.what() << std::endl;
}
- return 0;
+ return 0;
} // int main()
/*
Modified: sandbox/math_toolkit/libs/math/example/neg_binomial_sample_sizes.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/example/neg_binomial_sample_sizes.cpp (original)
+++ sandbox/math_toolkit/libs/math/example/neg_binomial_sample_sizes.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -90,12 +90,12 @@
int main()
{
- find_number_of_trials(5, 0.5);
- find_number_of_trials(50, 0.5);
- find_number_of_trials(500, 0.5);
- find_number_of_trials(50, 0.1);
- find_number_of_trials(500, 0.1);
- find_number_of_trials(5, 0.9);
+ find_number_of_trials(5, 0.5);
+ find_number_of_trials(50, 0.5);
+ find_number_of_trials(500, 0.5);
+ find_number_of_trials(50, 0.1);
+ find_number_of_trials(500, 0.1);
+ find_number_of_trials(5, 0.9);
return 0;
} // int main()
Modified: sandbox/math_toolkit/libs/math/example/negative_binomial_example1.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/example/negative_binomial_example1.cpp (original)
+++ sandbox/math_toolkit/libs/math/example/negative_binomial_example1.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -426,7 +426,7 @@
*/
//] [/ negative_binomial_eg1_2]
}
- return 0;
+ return 0;
} // int main()
Modified: sandbox/math_toolkit/libs/math/example/normal_misc_examples.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/example/normal_misc_examples.cpp (original)
+++ sandbox/math_toolkit/libs/math/example/normal_misc_examples.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -74,7 +74,7 @@
/*`And all this you can do with a nanoscopic amount of work compared to
the team of *human computers* toiling with Milton Abramovitz and Irene Stegen
-at the US National Bureau of Standards (now [@www.nist.gov NIST]).
+at the US National Bureau of Standards (now [@http://www.nist.gov NIST]).
Starting in 1938, their "Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables",
was eventually published in 1964, and has been reprinted numerous times since.
(A major replacement is planned at [@http://dlmf.nist.gov Digital Library of Mathematical Functions]).
Modified: sandbox/math_toolkit/libs/math/example/students_t_example1.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/example/students_t_example1.cpp (original)
+++ sandbox/math_toolkit/libs/math/example/students_t_example1.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -43,46 +43,46 @@
// The Students't distribution function is described at
// http://en.wikipedia.org/wiki/Student%27s_t_distribution
#include <boost/math/distributions/students_t.hpp>
- using boost::math::students_t; // Probability of students_t(df, t).
+ using boost::math::students_t; // Probability of students_t(df, t).
#include <iostream>
- using std::cout; using std::endl;
+ using std::cout; using std::endl;
#include <iomanip>
- using std::setprecision;
+ using std::setprecision;
#include <cmath>
- using std::sqrt;
+ using std::sqrt;
int main()
{
- cout << "Example 1 using Student's t function. " << endl;
+ cout << "Example 1 using Student's t function. " << endl;
- // Example/test using tabulated value
+ // Example/test using tabulated value
// (deliberately coded as naively as possible).
- // Null hypothesis is that there is no difference (greater or less)
+ // Null hypothesis is that there is no difference (greater or less)
// between measured and standard.
- double degrees_of_freedom = values-1; // 3-1 = 2
+ double degrees_of_freedom = values-1; // 3-1 = 2
cout << "Measurement 1 = " << value[0] << ", measurement 2 = " << value[1] << ", measurement 3 = " << value[2] << endl;
- double mean = (value[0] + value[1] + value[2]) / static_cast<double>(values);
+ double mean = (value[0] + value[1] + value[2]) / static_cast<double>(values);
cout << "Standard = " << standard << ", mean = " << mean << ", (mean - standard) = " << mean - standard << endl;
- double sd = sqrt(((value[0] - mean) * (value[0] - mean) + (value[1] - mean) * (value[1] - mean) + (value[2] - mean) * (value[2] - mean))/ static_cast<double>(values-1));
- cout << "Standard deviation = " << sd << endl;
- if (sd == 0.)
- {
- cout << "Measured mean is identical to SRM value," << endl;
- cout << "so probability of no difference between measured and standard (the 'null hypothesis') is unity." << endl;
- return 0;
- }
-
- double t = (mean - standard) * std::sqrt(static_cast<double>(values)) / sd;
- cout << "Student's t = " << t << endl;
- cout.precision(2); // Useful accuracy is only a few decimal digits.
- cout << "Probability of Student's t is " << cdf(students_t(degrees_of_freedom), std::abs(t)) << endl;
+ double sd = sqrt(((value[0] - mean) * (value[0] - mean) + (value[1] - mean) * (value[1] - mean) + (value[2] - mean) * (value[2] - mean))/ static_cast<double>(values-1));
+ cout << "Standard deviation = " << sd << endl;
+ if (sd == 0.)
+ {
+ cout << "Measured mean is identical to SRM value," << endl;
+ cout << "so probability of no difference between measured and standard (the 'null hypothesis') is unity." << endl;
+ return 0;
+ }
+
+ double t = (mean - standard) * std::sqrt(static_cast<double>(values)) / sd;
+ cout << "Student's t = " << t << endl;
+ cout.precision(2); // Useful accuracy is only a few decimal digits.
+ cout << "Probability of Student's t is " << cdf(students_t(degrees_of_freedom), std::abs(t)) << endl;
// 0.91, is 1 tailed.
- // So there is insufficient evidence of a difference to meet a 95% (1 in 20) criterion.
+ // So there is insufficient evidence of a difference to meet a 95% (1 in 20) criterion.
- return 0;
+ return 0;
} // int main()
/*
Modified: sandbox/math_toolkit/libs/math/example/students_t_example2.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/example/students_t_example2.cpp (original)
+++ sandbox/math_toolkit/libs/math/example/students_t_example2.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -30,16 +30,16 @@
// http://en.wikipedia.org/wiki/Student%27s_t_distribution
#include <boost/math/distributions/students_t.hpp>
- using boost::math::students_t; // Probability of students_t(df, t).
+ using boost::math::students_t; // Probability of students_t(df, t).
#include <iostream>
- using std::cout;
- using std::endl;
+ using std::cout;
+ using std::endl;
#include <iomanip>
- using std::setprecision;
- using std::setw;
+ using std::setprecision;
+ using std::setw;
#include <cmath>
- using std::sqrt;
+ using std::sqrt;
// This example of a one-sided test is from:
//
@@ -58,39 +58,39 @@
int main()
{
- cout << "Example2 using Student's t function. ";
+ cout << "Example2 using Student's t function. ";
#if defined(__FILE__) && defined(__TIMESTAMP__)
- cout << " " << __FILE__ << ' ' << __TIMESTAMP__ << ' '<< _MSC_FULL_VER;
+ cout << " " << __FILE__ << ' ' << __TIMESTAMP__ << ' '<< _MSC_FULL_VER;
#endif
- cout << endl;
+ cout << endl;
- double sum = 0.;
- for (int value = 0; value < values; value++)
- { // Echo data and calculate mean.
- sum += data[value];
- cout << setw(4) << value << ' ' << setw(14) << data[value] << endl;
- }
- double mean = sum /static_cast<double>(values);
- cout << "Mean = " << mean << endl; // 25.2283
-
- double sd = 0.;
- for (int value = 0; value < values; value++)
- { // Calculate standard deviation.
- sd +=(data[value] - mean) * (data[value] - mean);
- }
- int degrees_of_freedom = values - 1; // Use the n-1 formula.
- sd /= degrees_of_freedom; // == variance.
+ double sum = 0.;
+ for (int value = 0; value < values; value++)
+ { // Echo data and calculate mean.
+ sum += data[value];
+ cout << setw(4) << value << ' ' << setw(14) << data[value] << endl;
+ }
+ double mean = sum /static_cast<double>(values);
+ cout << "Mean = " << mean << endl; // 25.2283
+
+ double sd = 0.;
+ for (int value = 0; value < values; value++)
+ { // Calculate standard deviation.
+ sd +=(data[value] - mean) * (data[value] - mean);
+ }
+ int degrees_of_freedom = values - 1; // Use the n-1 formula.
+ sd /= degrees_of_freedom; // == variance.
sd= sqrt(sd);
- cout << "Standard deviation = " << sd<< endl; // = 0.238279
+ cout << "Standard deviation = " << sd<< endl; // = 0.238279
- double t = (mean - reference) * sqrt(static_cast<double>(values))/ sd; //
- cout << "Student's t = " << t << ", with " << degrees_of_freedom << " degrees of freedom." << endl; // = 2.34725
+ double t = (mean - reference) * sqrt(static_cast<double>(values))/ sd; //
+ cout << "Student's t = " << t << ", with " << degrees_of_freedom << " degrees of freedom." << endl; // = 2.34725
- cout << "Probability of positive bias is " << cdf(students_t(degrees_of_freedom), t) << "."<< endl; // = 0.967108.
- // A 1-sided test because only testing for a positive bias.
- // If > 0.95 then greater than 1 in 20 conventional (arbitrary) requirement.
+ cout << "Probability of positive bias is " << cdf(students_t(degrees_of_freedom), t) << "."<< endl; // = 0.967108.
+ // A 1-sided test because only testing for a positive bias.
+ // If > 0.95 then greater than 1 in 20 conventional (arbitrary) requirement.
- return 0;
+ return 0;
} // int main()
/*
Modified: sandbox/math_toolkit/libs/math/example/students_t_example3.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/example/students_t_example3.cpp (original)
+++ sandbox/math_toolkit/libs/math/example/students_t_example3.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -30,14 +30,14 @@
// http://en.wikipedia.org/wiki/Student%27s_t_distribution
#include <boost/math/distributions/students_t.hpp>
- using boost::math::students_t; // Probability of students_t(df, t).
+ using boost::math::students_t; // Probability of students_t(df, t).
#include <iostream>
- using std::cout; using std::endl;
+ using std::cout; using std::endl;
#include <iomanip>
- using std::setprecision; using std::setw;
+ using std::setprecision; using std::setw;
#include <cmath>
- using std::sqrt;
+ using std::sqrt;
// This example of a two-sided test is from:
// B. M. Smith & M. B. Griffiths, Analyst, 1982, 107, 253,
@@ -64,38 +64,38 @@
int main()
{
- cout << "Example3 using Student's t function. " << endl;
- float mean_diff = 0.f;
- cout << "\n""Portion wet_oxidation Direct_extraction difference" << endl;
- for (int portion = 0; portion < portions; portion++)
- { // Echo data and differences.
- diffs[portion] = data[portion][0] - data[portion][1];
- mean_diff += diffs[portion];
- cout << setw(4) << portion << ' ' << setw(14) << data[portion][0] << ' ' << setw(18)<< data[portion][1] << ' ' << setw(9) << diffs[portion] << endl;
- }
- mean_diff /= portions;
- cout << "Mean difference = " << mean_diff << endl; // -1.75
-
- float sd_diffs = 0.f;
- for (int portion = 0; portion < portions; portion++)
- { // Calculate standard deviation of differences.
- sd_diffs +=(diffs[portion] - mean_diff) * (diffs[portion] - mean_diff);
- }
- int degrees_of_freedom = portions-1; // Use the n-1 formula.
- sd_diffs /= degrees_of_freedom;
- sd_diffs = sqrt(sd_diffs);
- cout << "Standard deviation of differences = " << sd_diffs << endl; // 4.99166
- // Standard deviation of differences = 4.99166
- double t = mean_diff * sqrt(static_cast<double>(portions))/ sd_diffs; // -0.70117
- cout << "Student's t = " << t << ", if " << degrees_of_freedom << " degrees of freedom." << endl;
- // Student's t = -0.70117, if 3 degrees of freedom.
- cout << "Probability of the means being different is "
+ cout << "Example3 using Student's t function. " << endl;
+ float mean_diff = 0.f;
+ cout << "\n""Portion wet_oxidation Direct_extraction difference" << endl;
+ for (int portion = 0; portion < portions; portion++)
+ { // Echo data and differences.
+ diffs[portion] = data[portion][0] - data[portion][1];
+ mean_diff += diffs[portion];
+ cout << setw(4) << portion << ' ' << setw(14) << data[portion][0] << ' ' << setw(18)<< data[portion][1] << ' ' << setw(9) << diffs[portion] << endl;
+ }
+ mean_diff /= portions;
+ cout << "Mean difference = " << mean_diff << endl; // -1.75
+
+ float sd_diffs = 0.f;
+ for (int portion = 0; portion < portions; portion++)
+ { // Calculate standard deviation of differences.
+ sd_diffs +=(diffs[portion] - mean_diff) * (diffs[portion] - mean_diff);
+ }
+ int degrees_of_freedom = portions-1; // Use the n-1 formula.
+ sd_diffs /= degrees_of_freedom;
+ sd_diffs = sqrt(sd_diffs);
+ cout << "Standard deviation of differences = " << sd_diffs << endl; // 4.99166
+ // Standard deviation of differences = 4.99166
+ double t = mean_diff * sqrt(static_cast<double>(portions))/ sd_diffs; // -0.70117
+ cout << "Student's t = " << t << ", if " << degrees_of_freedom << " degrees of freedom." << endl;
+ // Student's t = -0.70117, if 3 degrees of freedom.
+ cout << "Probability of the means being different is "
<< 2.F * cdf(students_t(degrees_of_freedom), t) << "."<< endl; // 0.266846 * 2 = 0.533692
- // Double the probability because using a 'two-sided test' because
- // mean for 'Wet oxidation' could be either
- // greater OR LESS THAN for 'Direct extraction'.
+ // Double the probability because using a 'two-sided test' because
+ // mean for 'Wet oxidation' could be either
+ // greater OR LESS THAN for 'Direct extraction'.
- return 0;
+ return 0;
} // int main()
/*
Modified: sandbox/math_toolkit/libs/math/minimax/f.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/minimax/f.cpp (original)
+++ sandbox/math_toolkit/libs/math/minimax/f.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -8,12 +8,7 @@
#include "../tools/ntl_rr_digamma.hpp"
#include <boost/math/bindings/rr.hpp>
#include <boost/math/tools/polynomial.hpp>
-#include <boost/math/special_functions/log1p.hpp>
-#include <boost/math/special_functions/expm1.hpp>
-#include <boost/math/special_functions/gamma.hpp>
-#include <boost/math/special_functions/erf.hpp>
-#include <boost/math/special_functions/ellint_1.hpp>
-#include <boost/math/special_functions/ellint_2.hpp>
+#include <boost/math/special_functions.hpp>
#include <cmath>
@@ -210,7 +205,7 @@
boost::math::ntl::RR k = sqrt(1 - mp);
static const boost::math::ntl::RR l4 = log(boost::math::ntl::RR(4));
boost::math::ntl::RR p2 = boost::math::constants::pi<boost::math::ntl::RR>() / 2;
- return boost::math::ellint_1(k) / (l4 - log(mp));
+ return (boost::math::ellint_1(k) + 1) / (1 + l4 - log(mp));
}
case 15:
// E(k)
@@ -219,6 +214,17 @@
boost::math::ntl::RR z = 1 - x * log(x);
return boost::math::ellint_2(sqrt(1-x)) / z;
}
+ case 16:
+ // Bessel I0(x) over [0,16]:
+ {
+ return boost::math::cyl_bessel_i(0, sqrt(x));
+ }
+ case 17:
+ // Bessel I0(x) over [16,INF]
+ {
+ boost::math::ntl::RR z = 1 / (boost::math::ntl::RR(1)/16 - x);
+ return boost::math::cyl_bessel_i(0, z) * sqrt(z) / exp(z);
+ }
}
return 0;
}
Modified: sandbox/math_toolkit/libs/math/minimax/main.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/minimax/main.cpp (original)
+++ sandbox/math_toolkit/libs/math/minimax/main.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -89,7 +89,8 @@
//
started = true;
}
- for(unsigned i = 0; i < count; ++i)
+ unsigned i;
+ for(i = 0; i < count; ++i)
{
std::cout << "Stepping..." << std::endl;
p_remez->set_brake(brake);
@@ -125,7 +126,8 @@
boost::numeric::ublas::vector<boost::math::ntl::RR> v = p_remez->zero_points();
std::cout << " Zeros = {\n";
- for(unsigned i = 0; i < v.size(); ++i)
+ unsigned i;
+ for(i = 0; i < v.size(); ++i)
{
std::cout << " " << v[i] << std::endl;
}
@@ -133,7 +135,7 @@
v = p_remez->chebyshev_points();
std::cout << " Chebeshev Control Points = {\n";
- for(unsigned i = 0; i < v.size(); ++i)
+ for(i = 0; i < v.size(); ++i)
{
std::cout << " " << v[i] << std::endl;
}
@@ -143,14 +145,14 @@
std::cout << "Y offset: " << y_offset << std::endl;
std::cout << "P = {";
- for(unsigned i = 0; i < n.size(); ++i)
+ for(i = 0; i < n.size(); ++i)
{
std::cout << " " << n[i] << std::endl;
}
std::cout << " }\n";
std::cout << "Q = {";
- for(unsigned i = 0; i < d.size(); ++i)
+ for(i = 0; i < d.size(); ++i)
{
std::cout << " " << d[i] << std::endl;
}
@@ -216,7 +218,8 @@
//
std::cout << "Starting tests at " << name << " precision...\n";
std::cout << "Absissa Error\n";
- for(unsigned i = 0; i < zeros.size(); ++i)
+ unsigned i;
+ for(i = 0; i < zeros.size(); ++i)
{
boost::math::ntl::RR true_result = the_function(zeros[i]);
T absissa = boost::math::tools::real_cast<T>(zeros[i]);
@@ -238,7 +241,7 @@
//
// Do the tests at the Chebeshev control points:
//
- for(unsigned i = 0; i < cheb.size(); ++i)
+ for(i = 0; i < cheb.size(); ++i)
{
boost::math::ntl::RR true_result = the_function(cheb[i]);
T absissa = boost::math::tools::real_cast<T>(cheb[i]);
@@ -381,6 +384,38 @@
}
}
+void graph_poly(const char*, const char*)
+{
+ int i = 50;
+ boost::math::ntl::RR::SetPrecision(working_precision);
+ if(started)
+ {
+ //
+ // We want to test the approximation at fixed precision:
+ // either float, double or long double. Begin by getting the
+ // polynomials:
+ //
+ boost::math::tools::polynomial<boost::math::ntl::RR> n, d;
+ n = p_remez->numerator();
+ d = p_remez->denominator();
+
+ boost::math::ntl::RR max_error(0);
+ boost::math::ntl::RR step = (b - a) / i;
+
+ std::cout << "Evaluating Numerator...\n";
+ boost::math::ntl::RR val;
+ for(val = a; val <= b; val += step)
+ std::cout << n.evaluate(val) << std::endl;
+ std::cout << "Evaluating Denominator...\n";
+ for(val = a; val <= b; val += step)
+ std::cout << d.evaluate(val) << std::endl;
+ }
+ else
+ {
+ std::cout << "Nothing to test: try converging an approximation first!!!" << std::endl;
+ }
+}
+
int test_main(int, char* [])
{
std::string line;
@@ -425,6 +460,8 @@
||
str_p("step")[&step]
||
+ str_p("poly")[&graph_poly]
+ ||
str_p("info")[&show]
||
str_p("graph") && uint_p[&do_graph]
Modified: sandbox/math_toolkit/libs/math/test/Jamfile.v2
==============================================================================
--- sandbox/math_toolkit/libs/math/test/Jamfile.v2 (original)
+++ sandbox/math_toolkit/libs/math/test/Jamfile.v2 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,8 +1,9 @@
+# Copyright Daryle Walker, Hubert Holin, John Maddock and Paul A. Bristow 2006 - 2007
+# Distributed under the Boost Software License, Version 1.0.
+# (See accompanying file LICENSE_1_0.txt or copy at
+# http://www.boost.org/LICENSE_1_0.txt.
# \math_toolkit\libs\math\test\jamfile.v2
# Runs all math toolkit tests, functions & distributions.
-# Copyright 2007 John Maddock and Paul A. Bristow.
-# Distributed under the Boost Software License, Version 1.0.
-# (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
# bring in the rules for testing
import testing ;
@@ -32,6 +33,8 @@
<include>../../..
<source>/boost/regex//boost_regex
<link>shared:<define>BOOST_REGEX_DYN_LINK=1
+ # Sunpro has problems building regex as a shared lib:
+ <toolset>sun:<link>static
<define>BOOST_ALL_NO_LIB=1
;
@@ -43,7 +46,30 @@
run test_constants.cpp ;
run test_beta.cpp ;
run test_beta_dist.cpp ;
-run test_binomial.cpp ;
+run test_binomial.cpp
+ : # command line
+ : # input files
+ : # requirements
+ <define>TEST_FLOAT
+ : test_binomial_float ;
+run test_binomial.cpp
+ : # command line
+ : # input files
+ : # requirements
+ <define>TEST_DOUBLE
+ : test_binomial_double ;
+run test_binomial.cpp
+ : # command line
+ : # input files
+ : # requirements
+ <define>TEST_LDOUBLE
+ : test_binomial_long_double ;
+run test_binomial.cpp
+ : # command line
+ : # input files
+ : # requirements
+ <define>TEST_REAL_CONCEPT
+ : test_binomial_real_concept ;
run test_binomial_coeff.cpp ;
run test_carlson.cpp ;
run test_cauchy.cpp ;
@@ -66,21 +92,182 @@
run test_gamma.cpp ;
run test_gamma_dist.cpp ;
run test_hermite.cpp ;
-run test_ibeta.cpp ;
-run test_ibeta_inv.cpp ;
-run test_ibeta_inv_ab.cpp ;
+run test_ibeta.cpp
+ : # command line
+ : # input files
+ : # requirements
+ <define>TEST_FLOAT
+ : test_ibeta_float ;
+run test_ibeta.cpp
+ : # command line
+ : # input files
+ : # requirements
+ <define>TEST_DOUBLE
+ : test_ibeta_double ;
+run test_ibeta.cpp
+ : # command line
+ : # input files
+ : # requirements
+ <define>TEST_LDOUBLE
+ : test_ibeta_long_double ;
+run test_ibeta.cpp
+ : # command line
+ : # input files
+ : # requirements
+ <define>TEST_REAL_CONCEPT
+ : test_ibeta_real_concept ;
+run test_ibeta_inv.cpp
+ : # command line
+ : # input files
+ : # requirements
+ <define>TEST_FLOAT
+ : test_ibeta_inv_float ;
+run test_ibeta_inv.cpp
+ : # command line
+ : # input files
+ : # requirements
+ <define>TEST_DOUBLE
+ : test_ibeta_inv_double ;
+run test_ibeta_inv.cpp
+ : # command line
+ : # input files
+ : # requirements
+ <define>TEST_LDOUBLE
+ : test_ibeta_inv_long_double ;
+run test_ibeta_inv.cpp
+ : # command line
+ : # input files
+ : # requirements
+ <define>TEST_REAL_CONCEPT
+ : test_ibeta_inv_real_concept ;
+run test_ibeta_inv_ab.cpp
+ : # command line
+ : # input files
+ : # requirements
+ <define>TEST_FLOAT
+ : test_ibeta_inv_ab_float ;
+run test_ibeta_inv_ab.cpp
+ : # command line
+ : # input files
+ : # requirements
+ <define>TEST_DOUBLE
+ : test_ibeta_inv_ab_double ;
+run test_ibeta_inv_ab.cpp
+ : # command line
+ : # input files
+ : # requirements
+ <define>TEST_LDOUBLE
+ : test_ibeta_inv_ab_long_double ;
+run test_ibeta_inv_ab.cpp
+ : # command line
+ : # input files
+ : # requirements
+ <define>TEST_REAL_CONCEPT
+ : test_ibeta_inv_ab_real_concept ;
run test_igamma.cpp ;
-run test_igamma_inv.cpp ;
-run test_igamma_inva.cpp ;
+run test_igamma_inv.cpp
+ : # command line
+ : # input files
+ : # requirements
+ <define>TEST_FLOAT
+ : test_igamma_inv_float ;
+run test_igamma_inv.cpp
+ : # command line
+ : # input files
+ : # requirements
+ <define>TEST_DOUBLE
+ : test_igamma_inv_double ;
+run test_igamma_inv.cpp
+ : # command line
+ : # input files
+ : # requirements
+ <define>TEST_LDOUBLE
+ : test_igamma_inv_long_double ;
+run test_igamma_inv.cpp
+ : # command line
+ : # input files
+ : # requirements
+ <define>TEST_REAL_CONCEPT
+ : test_igamma_inv_real_concept ;
+run test_igamma_inva.cpp
+ : # command line
+ : # input files
+ : # requirements
+ <define>TEST_FLOAT
+ : test_igamma_inva_float ;
+run test_igamma_inva.cpp
+ : # command line
+ : # input files
+ : # requirements
+ <define>TEST_DOUBLE
+ : test_igamma_inva_double ;
+run test_igamma_inva.cpp
+ : # command line
+ : # input files
+ : # requirements
+ <define>TEST_LDOUBLE
+ : test_igamma_inva_long_double ;
+run test_igamma_inva.cpp
+ : # command line
+ : # input files
+ : # requirements
+ <define>TEST_REAL_CONCEPT
+ : test_igamma_inva_real_concept ;
run test_instantiate1.cpp test_instantiate2.cpp ;
run test_laguerre.cpp ;
run test_legendre.cpp ;
run test_lognormal.cpp ;
run test_minima.cpp ;
-run test_negative_binomial.cpp ;
+run test_negative_binomial.cpp
+ : # command line
+ : # input files
+ : # requirements
+ <define>TEST_FLOAT
+ : test_negative_binomial_float ;
+run test_negative_binomial.cpp
+ : # command line
+ : # input files
+ : # requirements
+ <define>TEST_DOUBLE
+ : test_negative_binomial_double ;
+run test_negative_binomial.cpp
+ : # command line
+ : # input files
+ : # requirements
+ <define>TEST_LDOUBLE
+ : test_negative_binomial_long_double ;
+run test_negative_binomial.cpp
+ : # command line
+ : # input files
+ : # requirements
+ <define>TEST_REAL_CONCEPT
+ : test_negative_binomial_real_concept ;
run test_normal.cpp ;
run test_pareto.cpp ;
-run test_poisson.cpp ;
+run test_poisson.cpp
+ : # command line
+ : # input files
+ : # requirements
+ <define>TEST_FLOAT
+ : test_poisson_float ;
+run test_poisson.cpp
+ : # command line
+ : # input files
+ : # requirements
+ <define>TEST_DOUBLE
+ : test_poisson_double ;
+run test_poisson.cpp
+ : # command line
+ : # input files
+ : # requirements
+ <define>TEST_LDOUBLE
+ : test_poisson_long_double ;
+run test_poisson.cpp
+ : # command line
+ : # input files
+ : # requirements
+ <define>TEST_REAL_CONCEPT
+ : test_poisson_real_concept ;
run test_rayleigh.cpp ;
run test_rationals.cpp
@@ -129,7 +316,7 @@
compile compile_test/dist_chi_squared_incl_test.cpp ;
compile compile_test/dist_complement_incl_test.cpp ;
compile compile_test/dist_exponential_incl_test.cpp ;
-compile compile_test/dist_extreme_value_incl_test.cpp ;
+compile compile_test/dist_extreme_val_incl_test.cpp ;
compile compile_test/dist_fisher_f_incl_test.cpp ;
compile compile_test/dist_gamma_incl_test.cpp ;
compile compile_test/dist_lognormal_incl_test.cpp ;
@@ -189,11 +376,7 @@
compile compile_test/tools_stats_inc_test.cpp ;
compile compile_test/tools_test_data_inc_test.cpp ;
compile compile_test/tools_test_inc_test.cpp ;
-compile compile_test/tools_toms748_solve_inc_test.cpp ;
-
-
-
-
+compile compile_test/tools_toms748_inc_test.cpp ;
Modified: sandbox/math_toolkit/libs/math/test/assoc_legendre_p.ipp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/assoc_legendre_p.ipp (original)
+++ sandbox/math_toolkit/libs/math/test/assoc_legendre_p.ipp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,3 +1,8 @@
+// (C) Copyright John Maddock 2006-7.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
#define SC_(x) static_cast<T>(BOOST_JOIN(x, L))
static const boost::array<boost::array<T, 4>, 400> assoc_legendre_p = {
SC_(3.755727291107177734375), SC_(-3), SC_(0.264718532562255859375), SC_(0.018682285998021253444483874168352748715136623066073),
Modified: sandbox/math_toolkit/libs/math/test/bessel_k_data.ipp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/bessel_k_data.ipp (original)
+++ sandbox/math_toolkit/libs/math/test/bessel_k_data.ipp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -14,9 +14,9 @@
SC_(-0.8049192047119140625e2), SC_(0.1185395751953125e4), SC_(0.8632633219300624004437758135158135952472e-515),
SC_(-0.8049192047119140625e2), SC_(0.353451806640625e4), SC_(0.5013665804582944405266048580134316878986e-1536),
SC_(-0.8049192047119140625e2), SC_(0.80715478515625e4), SC_(0.7765547631230743133384730763696548377855e-3507),
- SC_(-0.8049192047119140625e2), SC_(0.1622925e5), SC_(0.639546878366615050472401588575857541732e-7050),
- SC_(-0.8049192047119140625e2), SC_(0.3206622265625e5), SC_(0.5074028894875745794984647078151040612894e-13928),
- SC_(-0.8049192047119140625e2), SC_(0.3636794921875e5), SC_(0.2862328185162412476566225413964872968853e-15796),
+ SC_(-0.8049192047119140625e2), SC_(0.1622925e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.639546878366615050472401588575857541732e-7050)),
+ SC_(-0.8049192047119140625e2), SC_(0.3206622265625e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.5074028894875745794984647078151040612894e-13928)),
+ SC_(-0.8049192047119140625e2), SC_(0.3636794921875e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.2862328185162412476566225413964872968853e-15796)),
SC_(-0.7460263824462890625e2), SC_(0.24750102996826171875e2), SC_(0.1194046640827563151857444163209777353211e25),
SC_(-0.7460263824462890625e2), SC_(0.637722015380859375e2), SC_(0.5818966684329205041972653154218173748165e-11),
SC_(-0.7460263824462890625e2), SC_(0.1252804412841796875e3), SC_(0.9892143938422535628101195141323126645363e-46),
@@ -26,9 +26,9 @@
SC_(-0.7460263824462890625e2), SC_(0.1185395751953125e4), SC_(0.5875055967970574458131259176159286617499e-515),
SC_(-0.7460263824462890625e2), SC_(0.353451806640625e4), SC_(0.4406079158432466047722722836894011978239e-1536),
SC_(-0.7460263824462890625e2), SC_(0.80715478515625e4), SC_(0.7338395057162425548486505792810413989371e-3507),
- SC_(-0.7460263824462890625e2), SC_(0.1622925e5), SC_(0.6218012346099611746045494400088987852165e-7050),
- SC_(-0.7460263824462890625e2), SC_(0.3206622265625e5), SC_(0.5002276251033884106325883264873018499132e-13928),
- SC_(-0.7460263824462890625e2), SC_(0.3636794921875e5), SC_(0.2826609186886966995318007844162294906315e-15796),
+ SC_(-0.7460263824462890625e2), SC_(0.1622925e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.6218012346099611746045494400088987852165e-7050)),
+ SC_(-0.7460263824462890625e2), SC_(0.3206622265625e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.5002276251033884106325883264873018499132e-13928)),
+ SC_(-0.7460263824462890625e2), SC_(0.3636794921875e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.2826609186886966995318007844162294906315e-15796)),
SC_(-0.7290460205078125e2), SC_(0.24750102996826171875e2), SC_(0.5561803915497248563365929946842781443078e23),
SC_(-0.7290460205078125e2), SC_(0.637722015380859375e2), SC_(0.1094524924593545154904194423989731358977e-11),
SC_(-0.7290460205078125e2), SC_(0.1252804412841796875e3), SC_(0.3839300658689373815830761148374331937154e-46),
@@ -38,9 +38,9 @@
SC_(-0.7290460205078125e2), SC_(0.1185395751953125e4), SC_(0.5286617461619307606407976695028744909355e-515),
SC_(-0.7290460205078125e2), SC_(0.353451806640625e4), SC_(0.4252727041870810007272294050962600690759e-1536),
SC_(-0.7290460205078125e2), SC_(0.80715478515625e4), SC_(0.7225421446583687935214716001980501582795e-3507),
- SC_(-0.7290460205078125e2), SC_(0.1622925e5), SC_(0.617021607511078284203431245617539588877e-7050),
- SC_(-0.7290460205078125e2), SC_(0.3206622265625e5), SC_(0.4982778020141303245214047263053056397026e-13928),
- SC_(-0.7290460205078125e2), SC_(0.3636794921875e5), SC_(0.281689238316161921546343371679087454574e-15796),
+ SC_(-0.7290460205078125e2), SC_(0.1622925e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.617021607511078284203431245617539588877e-7050)),
+ SC_(-0.7290460205078125e2), SC_(0.3206622265625e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.4982778020141303245214047263053056397026e-13928)),
+ SC_(-0.7290460205078125e2), SC_(0.3636794921875e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.281689238316161921546343371679087454574e-15796)),
SC_(-0.62323604583740234375e2), SC_(0.24750102996826171875e2), SC_(0.6745183967776568226882524708487938056875e15),
SC_(-0.62323604583740234375e2), SC_(0.637722015380859375e2), SC_(0.6545311734942178902723924532558287624952e-16),
SC_(-0.62323604583740234375e2), SC_(0.1252804412841796875e3), SC_(0.1656532226161521639805764466363495194113e-48),
@@ -50,9 +50,9 @@
SC_(-0.62323604583740234375e2), SC_(0.1185395751953125e4), SC_(0.2892810675468518815348991889357281331268e-515),
SC_(-0.62323604583740234375e2), SC_(0.353451806640625e4), SC_(0.3473597010045323910900283230401929551928e-1536),
SC_(-0.62323604583740234375e2), SC_(0.80715478515625e4), SC_(0.6612598699249681198531835080793951126635e-3507),
- SC_(-0.62323604583740234375e2), SC_(0.1622925e5), SC_(0.5904134813790360951037473338098849774904e-7050),
- SC_(-0.62323604583740234375e2), SC_(0.3206622265625e5), SC_(0.4872840764596854116092324404256445242957e-13928),
- SC_(-0.62323604583740234375e2), SC_(0.3636794921875e5), SC_(0.2762021177708928645685587252784589095343e-15796),
+ SC_(-0.62323604583740234375e2), SC_(0.1622925e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.5904134813790360951037473338098849774904e-7050)),
+ SC_(-0.62323604583740234375e2), SC_(0.3206622265625e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.4872840764596854116092324404256445242957e-13928)),
+ SC_(-0.62323604583740234375e2), SC_(0.3636794921875e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.2762021177708928645685587252784589095343e-15796)),
SC_(-0.5579319000244140625e2), SC_(0.24750102996826171875e2), SC_(0.2000280553692923364816391845858003081304e11),
SC_(-0.5579319000244140625e2), SC_(0.637722015380859375e2), SC_(0.3011072877774196098095590001850230113398e-18),
SC_(-0.5579319000244140625e2), SC_(0.1252804412841796875e3), SC_(0.8546927999408637677019436633377190577324e-50),
@@ -62,9 +62,9 @@
SC_(-0.5579319000244140625e2), SC_(0.1185395751953125e4), SC_(0.2089958153703015756026346516755670166549e-515),
SC_(-0.5579319000244140625e2), SC_(0.353451806640625e4), SC_(0.3114579751849795632507912984614279046035e-1536),
SC_(-0.5579319000244140625e2), SC_(0.80715478515625e4), SC_(0.6304085854717380067005364169553964460527e-3507),
- SC_(-0.5579319000244140625e2), SC_(0.1622925e5), SC_(0.5765486071511390988466247681614919123209e-7050),
- SC_(-0.5579319000244140625e2), SC_(0.3206622265625e5), SC_(0.4814584754866145181310357527683878612407e-13928),
- SC_(-0.5579319000244140625e2), SC_(0.3636794921875e5), SC_(0.2732885595625837213661882188978422888301e-15796),
+ SC_(-0.5579319000244140625e2), SC_(0.1622925e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.5765486071511390988466247681614919123209e-7050)),
+ SC_(-0.5579319000244140625e2), SC_(0.3206622265625e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.4814584754866145181310357527683878612407e-13928)),
+ SC_(-0.5579319000244140625e2), SC_(0.3636794921875e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.2732885595625837213661882188978422888301e-15796)),
SC_(-0.4430035400390625e2), SC_(0.95070552825927734375e1), SC_(0.5693602607646284460254541471864922205948e23),
SC_(-0.4430035400390625e2), SC_(0.24750102996826171875e2), SC_(0.1242729664484783369574386233140179346878e4),
SC_(-0.4430035400390625e2), SC_(0.637722015380859375e2), SC_(0.7993412663367930219134100562570886747324e-22),
@@ -75,9 +75,9 @@
SC_(-0.4430035400390625e2), SC_(0.1185395751953125e4), SC_(0.1286946967513954764039399072385367798007e-515),
SC_(-0.4430035400390625e2), SC_(0.353451806640625e4), SC_(0.2646904138441718084112297837143320157831e-1536),
SC_(-0.4430035400390625e2), SC_(0.80715478515625e4), SC_(0.5870517224916429591472211129863301372511e-3507),
- SC_(-0.4430035400390625e2), SC_(0.1622925e5), SC_(0.556473689966344568142116011084377141557e-7050),
- SC_(-0.4430035400390625e2), SC_(0.3206622265625e5), SC_(0.4728995700926201307193816855831797459788e-13928),
- SC_(-0.4430035400390625e2), SC_(0.3636794921875e5), SC_(0.2690004084585417033992798959421396256472e-15796),
+ SC_(-0.4430035400390625e2), SC_(0.1622925e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.556473689966344568142116011084377141557e-7050)),
+ SC_(-0.4430035400390625e2), SC_(0.3206622265625e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.4728995700926201307193816855831797459788e-13928)),
+ SC_(-0.4430035400390625e2), SC_(0.3636794921875e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.2690004084585417033992798959421396256472e-15796)),
SC_(-0.383665924072265625e2), SC_(0.51139926910400390625e1), SC_(0.4971541960447850485036217351908812317262e28),
SC_(-0.383665924072265625e2), SC_(0.95070552825927734375e1), SC_(0.1514361321039985388396503732421720671137e18),
SC_(-0.383665924072265625e2), SC_(0.24750102996826171875e2), SC_(0.6394950974987836910026204697203193967018e0),
@@ -89,9 +89,9 @@
SC_(-0.383665924072265625e2), SC_(0.1185395751953125e4), SC_(0.1046548965046943506923715763697928376188e-515),
SC_(-0.383665924072265625e2), SC_(0.353451806640625e4), SC_(0.2469489195756011361369232839149459989988e-1536),
SC_(-0.383665924072265625e2), SC_(0.80715478515625e4), SC_(0.5694829422897774445672362912138934152265e-3507),
- SC_(-0.383665924072265625e2), SC_(0.1622925e5), SC_(0.5481275253120409890933948754020554435422e-7050),
- SC_(-0.383665924072265625e2), SC_(0.3206622265625e5), SC_(0.4692963862579519130682539614682894698339e-13928),
- SC_(-0.383665924072265625e2), SC_(0.3636794921875e5), SC_(0.2671924165871110012794803086242495185922e-15796),
+ SC_(-0.383665924072265625e2), SC_(0.1622925e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.5481275253120409890933948754020554435422e-7050)),
+ SC_(-0.383665924072265625e2), SC_(0.3206622265625e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.4692963862579519130682539614682894698339e-13928)),
+ SC_(-0.383665924072265625e2), SC_(0.3636794921875e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.2671924165871110012794803086242495185922e-15796)),
SC_(0.93762989044189453125e1), SC_(0.7444499991834163665771484375e-2), SC_(0.2721057737406919258362851434733030661109e28),
SC_(0.93762989044189453125e1), SC_(0.1433600485324859619140625e-1), SC_(0.5838623563730079614571930542897504652141e25),
SC_(0.93762989044189453125e1), SC_(0.1760916970670223236083984375e-1), SC_(0.8489946048751590475608166482859224225092e24),
@@ -113,9 +113,9 @@
SC_(0.93762989044189453125e1), SC_(0.1185395751953125e4), SC_(0.5839106645002418157495951205762502056769e-516),
SC_(0.93762989044189453125e1), SC_(0.353451806640625e4), SC_(0.2030427297652053795158460484630149203489e-1536),
SC_(0.93762989044189453125e1), SC_(0.80715478515625e4), SC_(0.5226939353263804188411440085354658326468e-3507),
- SC_(0.93762989044189453125e1), SC_(0.1622925e5), SC_(0.5252465465326302525711470608778783375618e-7050),
- SC_(0.93762989044189453125e1), SC_(0.3206622265625e5), SC_(0.4592768866982000517622013128091807640282e-13928),
- SC_(0.93762989044189453125e1), SC_(0.3636794921875e5), SC_(0.2621561909115651489224577641835193518283e-15796),
+ SC_(0.93762989044189453125e1), SC_(0.1622925e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.5252465465326302525711470608778783375618e-7050)),
+ SC_(0.93762989044189453125e1), SC_(0.3206622265625e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.4592768866982000517622013128091807640282e-13928)),
+ SC_(0.93762989044189453125e1), SC_(0.3636794921875e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.2621561909115651489224577641835193518283e-15796)),
SC_(0.944411754608154296875e1), SC_(0.7444499991834163665771484375e-2), SC_(0.4612303621288630783177800069821634006522e28),
SC_(0.944411754608154296875e1), SC_(0.1433600485324859619140625e-1), SC_(0.9466510890632728074237180634479345051875e25),
SC_(0.944411754608154296875e1), SC_(0.1760916970670223236083984375e-1), SC_(0.1357461344862089559034023564527191961687e25),
@@ -137,9 +137,9 @@
SC_(0.944411754608154296875e1), SC_(0.1185395751953125e4), SC_(0.5842249762482709543785194262081511657188e-516),
SC_(0.944411754608154296875e1), SC_(0.353451806640625e4), SC_(0.2030793889519787363418582358670409448464e-1536),
SC_(0.944411754608154296875e1), SC_(0.80715478515625e4), SC_(0.5227352618739306325665664939206185443367e-3507),
- SC_(0.944411754608154296875e1), SC_(0.1622925e5), SC_(0.5252672007246779268718011077113001418501e-7050),
- SC_(0.944411754608154296875e1), SC_(0.3206622265625e5), SC_(0.459286027254970380991295408755149756266e-13928),
- SC_(0.944411754608154296875e1), SC_(0.3636794921875e5), SC_(0.2621607912254129949405484094002130635557e-15796),
+ SC_(0.944411754608154296875e1), SC_(0.1622925e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.5252672007246779268718011077113001418501e-7050)),
+ SC_(0.944411754608154296875e1), SC_(0.3206622265625e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.459286027254970380991295408755149756266e-13928)),
+ SC_(0.944411754608154296875e1), SC_(0.3636794921875e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.2621607912254129949405484094002130635557e-15796)),
SC_(0.264718532562255859375e2), SC_(0.30944411754608154296875e1), SC_(0.3138027209961995689508888198752860190762e21),
SC_(0.264718532562255859375e2), SC_(0.51139926910400390625e1), SC_(0.4476324433882455541710673350842360857005e15),
SC_(0.264718532562255859375e2), SC_(0.95070552825927734375e1), SC_(0.1797701745980331951453531906793951728351e8),
@@ -152,9 +152,9 @@
SC_(0.264718532562255859375e2), SC_(0.1185395751953125e4), SC_(0.7560629628467314221548665586213495324071e-516),
SC_(0.264718532562255859375e2), SC_(0.353451806640625e4), SC_(0.2214280876600389182130706966921584688308e-1536),
SC_(0.264718532562255859375e2), SC_(0.80715478515625e4), SC_(0.5429172542806217828545213979048536079656e-3507),
- SC_(0.264718532562255859375e2), SC_(0.1622925e5), SC_(0.5352575470018113610063179994677083114284e-7050),
- SC_(0.264718532562255859375e2), SC_(0.3206622265625e5), SC_(0.4636866635489855424809660555450541152793e-13928),
- SC_(0.264718532562255859375e2), SC_(0.3636794921875e5), SC_(0.2643743165267396396035797763057882346377e-15796),
+ SC_(0.264718532562255859375e2), SC_(0.1622925e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.5352575470018113610063179994677083114284e-7050)),
+ SC_(0.264718532562255859375e2), SC_(0.3206622265625e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.4636866635489855424809660555450541152793e-13928)),
+ SC_(0.264718532562255859375e2), SC_(0.3636794921875e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.2643743165267396396035797763057882346377e-15796)),
SC_(0.62944732666015625e2), SC_(0.24750102996826171875e2), SC_(0.1881615957650121835951151459881112433642e16),
SC_(0.62944732666015625e2), SC_(0.637722015380859375e2), SC_(0.1119984019082018571198103341652740655437e-15),
SC_(0.62944732666015625e2), SC_(0.1252804412841796875e3), SC_(0.2231352378794206033018221030703217338878e-48),
@@ -164,9 +164,9 @@
SC_(0.62944732666015625e2), SC_(0.1185395751953125e4), SC_(0.2989238946471756510957437745632191274437e-515),
SC_(0.62944732666015625e2), SC_(0.353451806640625e4), SC_(0.3512034003208095136837320409364102048508e-1536),
SC_(0.62944732666015625e2), SC_(0.80715478515625e4), SC_(0.6644545217571422485174738283493212729231e-3507),
- SC_(0.62944732666015625e2), SC_(0.1622925e5), SC_(0.5918304376897943519364581212285760132986e-7050),
- SC_(0.62944732666015625e2), SC_(0.3206622265625e5), SC_(0.4878756153781530982084716360839760780792e-13928),
- SC_(0.62944732666015625e2), SC_(0.3636794921875e5), SC_(0.2764977329940568590368972098475304997089e-15796),
+ SC_(0.62944732666015625e2), SC_(0.1622925e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.5918304376897943519364581212285760132986e-7050)),
+ SC_(0.62944732666015625e2), SC_(0.3206622265625e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.4878756153781530982084716360839760780792e-13928)),
+ SC_(0.62944732666015625e2), SC_(0.3636794921875e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.2764977329940568590368972098475304997089e-15796)),
SC_(0.67001708984375e2), SC_(0.24750102996826171875e2), SC_(0.1757647753992712633411465211149383976276e19),
SC_(0.67001708984375e2), SC_(0.637722015380859375e2), SC_(0.4154340476824965842042958242696691352995e-14),
SC_(0.67001708984375e2), SC_(0.1252804412841796875e3), SC_(0.1670237943823919787558085338623229345138e-47),
@@ -176,9 +176,9 @@
SC_(0.67001708984375e2), SC_(0.1185395751953125e4), SC_(0.3732889925210086644082342106707283321478e-515),
SC_(0.67001708984375e2), SC_(0.353451806640625e4), SC_(0.3783910172802151361859098458404374020052e-1536),
SC_(0.67001708984375e2), SC_(0.80715478515625e4), SC_(0.6865103783696347817927096681584785305085e-3507),
- SC_(0.67001708984375e2), SC_(0.1622925e5), SC_(0.6015210836405717718928078795712448330673e-7050),
- SC_(0.67001708984375e2), SC_(0.3206622265625e5), SC_(0.4919025754419690182073132779957366712633e-13928),
- SC_(0.67001708984375e2), SC_(0.3636794921875e5), SC_(0.2785090394166165242891428442540272849689e-15796),
+ SC_(0.67001708984375e2), SC_(0.1622925e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.6015210836405717718928078795712448330673e-7050)),
+ SC_(0.67001708984375e2), SC_(0.3206622265625e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.4919025754419690182073132779957366712633e-13928)),
+ SC_(0.67001708984375e2), SC_(0.3636794921875e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.2785090394166165242891428442540272849689e-15796)),
SC_(0.8115838623046875e2), SC_(0.24750102996826171875e2), SC_(0.2324073088339678621147409396324732999963e30),
SC_(0.8115838623046875e2), SC_(0.637722015380859375e2), SC_(0.4837827210750428522126700812080085686173e-8),
SC_(0.8115838623046875e2), SC_(0.1252804412841796875e3), SC_(0.4594264686055687077550409988148757821966e-44),
@@ -188,9 +188,9 @@
SC_(0.8115838623046875e2), SC_(0.1185395751953125e4), SC_(0.9033480738287476948124079020084554369235e-515),
SC_(0.8115838623046875e2), SC_(0.353451806640625e4), SC_(0.509064318997321343171662382751489914207e-1536),
SC_(0.8115838623046875e2), SC_(0.80715478515625e4), SC_(0.7817541885759932491771910816986777412753e-3507),
- SC_(0.8115838623046875e2), SC_(0.1622925e5), SC_(0.641673078077478782785017874716473833835e-7050),
- SC_(0.8115838623046875e2), SC_(0.3206622265625e5), SC_(0.5082559642711766692197944021073471381169e-13928),
- SC_(0.8115838623046875e2), SC_(0.3636794921875e5), SC_(0.2866570865715865919392615432142045181677e-15796),
+ SC_(0.8115838623046875e2), SC_(0.1622925e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.641673078077478782785017874716473833835e-7050)),
+ SC_(0.8115838623046875e2), SC_(0.3206622265625e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.5082559642711766692197944021073471381169e-13928)),
+ SC_(0.8115838623046875e2), SC_(0.3636794921875e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.2866570865715865919392615432142045181677e-15796)),
SC_(0.826751708984375e2), SC_(0.637722015380859375e2), SC_(0.2433991751428157267576270898319088542731e-7),
SC_(0.826751708984375e2), SC_(0.1252804412841796875e3), SC_(0.1163543281808651892214225743779071494397e-43),
SC_(0.826751708984375e2), SC_(0.25554705810546875e3), SC_(0.4566929184599502585539208159658295553088e-106),
@@ -199,9 +199,9 @@
SC_(0.826751708984375e2), SC_(0.1185395751953125e4), SC_(0.1003047492936821319442367382054853866129e-514),
SC_(0.826751708984375e2), SC_(0.353451806640625e4), SC_(0.5272736092096344411527859246178125271135e-1536),
SC_(0.826751708984375e2), SC_(0.80715478515625e4), SC_(0.7938803272826403099037784228659554176949e-3507),
- SC_(0.826751708984375e2), SC_(0.1622925e5), SC_(0.6466043665396298360019348958169487245916e-7050),
- SC_(0.826751708984375e2), SC_(0.3206622265625e5), SC_(0.5102291405695378889093263053607260918263e-13928),
- SC_(0.826751708984375e2), SC_(0.3636794921875e5), SC_(0.2876381032836693648306723630952201558894e-15796),
+ SC_(0.826751708984375e2), SC_(0.1622925e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.6466043665396298360019348958169487245916e-7050)),
+ SC_(0.826751708984375e2), SC_(0.3206622265625e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.5102291405695378889093263053607260918263e-13928)),
+ SC_(0.826751708984375e2), SC_(0.3636794921875e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.2876381032836693648306723630952201558894e-15796)),
SC_(0.9150136566162109375e2), SC_(0.637722015380859375e2), SC_(0.4529077292464217597597948585815203283964e-3),
SC_(0.9150136566162109375e2), SC_(0.1252804412841796875e3), SC_(0.350642591754902750250314160055299520222e-41),
SC_(0.9150136566162109375e2), SC_(0.25554705810546875e3), SC_(0.8700616972854344814927244483121769950875e-105),
@@ -210,9 +210,9 @@
SC_(0.9150136566162109375e2), SC_(0.1185395751953125e4), SC_(0.1916743519112958612938166592106183128909e-514),
SC_(0.9150136566162109375e2), SC_(0.353451806640625e4), SC_(0.6553297924375392696631080233904592409428e-1536),
SC_(0.9150136566162109375e2), SC_(0.80715478515625e4), SC_(0.8731920655533864492797505716863887075778e-3507),
- SC_(0.9150136566162109375e2), SC_(0.1622925e5), SC_(0.6779648490610206356859880361410662474219e-7050),
- SC_(0.9150136566162109375e2), SC_(0.3206622265625e5), SC_(0.5226073790697475866503341992543667357366e-13928),
- SC_(0.9150136566162109375e2), SC_(0.3636794921875e5), SC_(0.2937821135047504313538653046960400698576e-15796),
+ SC_(0.9150136566162109375e2), SC_(0.1622925e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.6779648490610206356859880361410662474219e-7050)),
+ SC_(0.9150136566162109375e2), SC_(0.3206622265625e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.5226073790697475866503341992543667357366e-13928)),
+ SC_(0.9150136566162109375e2), SC_(0.3636794921875e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.2937821135047504313538653046960400698576e-15796)),
SC_(0.9297769927978515625e2), SC_(0.637722015380859375e2), SC_(0.2514159824708407029519182952938261461039e-2),
SC_(0.9297769927978515625e2), SC_(0.1252804412841796875e3), SC_(0.9571910315928452948496436653664936091399e-41),
SC_(0.9297769927978515625e2), SC_(0.25554705810546875e3), SC_(0.1464962376552961548773813405449012101125e-104),
@@ -221,9 +221,9 @@
SC_(0.9297769927978515625e2), SC_(0.1185395751953125e4), SC_(0.2149730062284109979164130574050367445585e-514),
SC_(0.9297769927978515625e2), SC_(0.353451806640625e4), SC_(0.6810640416069074949832134642840700061677e-1536),
SC_(0.9297769927978515625e2), SC_(0.80715478515625e4), SC_(0.8880475416546418613925474382495752636196e-3507),
- SC_(0.9297769927978515625e2), SC_(0.1622925e5), SC_(0.6836772391670514269657537156841197891453e-7050),
- SC_(0.9297769927978515625e2), SC_(0.3206622265625e5), SC_(0.5248314285242353145777820274280636896797e-13928),
- SC_(0.9297769927978515625e2), SC_(0.3636794921875e5), SC_(0.2948841983584072578394887812793739973464e-15796),
+ SC_(0.9297769927978515625e2), SC_(0.1622925e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.6836772391670514269657537156841197891453e-7050)),
+ SC_(0.9297769927978515625e2), SC_(0.3206622265625e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.5248314285242353145777820274280636896797e-13928)),
+ SC_(0.9297769927978515625e2), SC_(0.3636794921875e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.2948841983584072578394887812793739973464e-15796)),
SC_(0.935389862060546875e2), SC_(0.637722015380859375e2), SC_(0.4848538332206214872114685461457208526682e-2),
SC_(0.935389862060546875e2), SC_(0.1252804412841796875e3), SC_(0.1407357631531569552447817697356939114967e-40),
SC_(0.935389862060546875e2), SC_(0.25554705810546875e3), SC_(0.1789644517979726575647466756527040582949e-104),
@@ -232,9 +232,9 @@
SC_(0.935389862060546875e2), SC_(0.1185395751953125e4), SC_(0.2246641303550294973758291904185796545436e-514),
SC_(0.935389862060546875e2), SC_(0.353451806640625e4), SC_(0.6912227290322635031334137954308461354241e-1536),
SC_(0.935389862060546875e2), SC_(0.80715478515625e4), SC_(0.893824833574208599253272536219631346374e-3507),
- SC_(0.935389862060546875e2), SC_(0.1622925e5), SC_(0.6858858035128739755837136827347333728619e-7050),
- SC_(0.935389862060546875e2), SC_(0.3206622265625e5), SC_(0.5256888449089264657997112108384303458607e-13928),
- SC_(0.935389862060546875e2), SC_(0.3636794921875e5), SC_(0.2953089268910496653492909777451085521704e-15796),
+ SC_(0.935389862060546875e2), SC_(0.1622925e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.6858858035128739755837136827347333728619e-7050)),
+ SC_(0.935389862060546875e2), SC_(0.3206622265625e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.5256888449089264657997112108384303458607e-13928)),
+ SC_(0.935389862060546875e2), SC_(0.3636794921875e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.2953089268910496653492909777451085521704e-15796)),
SC_(0.937735595703125e2), SC_(0.637722015380859375e2), SC_(0.6385107666034147877046020721409920794724e-2),
SC_(0.937735595703125e2), SC_(0.1252804412841796875e3), SC_(0.1654344599410448916584423239120073465608e-40),
SC_(0.937735595703125e2), SC_(0.25554705810546875e3), SC_(0.1946478889917254423807361997687268337342e-104),
@@ -243,9 +243,9 @@
SC_(0.937735595703125e2), SC_(0.1185395751953125e4), SC_(0.2288605393501964892215062020117435573162e-514),
SC_(0.937735595703125e2), SC_(0.353451806640625e4), SC_(0.6955313792142442148137724010444647419301e-1536),
SC_(0.937735595703125e2), SC_(0.80715478515625e4), SC_(0.8962607682372740535877231935882633914515e-3507),
- SC_(0.937735595703125e2), SC_(0.1622925e5), SC_(0.6868148706801060740839033435132304040165e-7050),
- SC_(0.937735595703125e2), SC_(0.3206622265625e5), SC_(0.526049123050695967902464958981106803334e-13928),
- SC_(0.937735595703125e2), SC_(0.3636794921875e5), SC_(0.295487369292694824273684043549849890813e-15796),
+ SC_(0.937735595703125e2), SC_(0.1622925e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.6868148706801060740839033435132304040165e-7050)),
+ SC_(0.937735595703125e2), SC_(0.3206622265625e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.526049123050695967902464958981106803334e-13928)),
+ SC_(0.937735595703125e2), SC_(0.3636794921875e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.295487369292694824273684043549849890813e-15796)),
SC_(0.98576263427734375e2), SC_(0.637722015380859375e2), SC_(0.1990227834888151454373307286008775674612e1),
SC_(0.98576263427734375e2), SC_(0.1252804412841796875e3), SC_(0.4894424029224796393682491693146694616972e-39),
SC_(0.98576263427734375e2), SC_(0.25554705810546875e3), SC_(0.1136170375675789312265821779116321329958e-103),
@@ -254,9 +254,9 @@
SC_(0.98576263427734375e2), SC_(0.1185395751953125e4), SC_(0.3377080491094056336148164895290399079231e-514),
SC_(0.98576263427734375e2), SC_(0.353451806640625e4), SC_(0.7926042309665472483589245698365986058321e-1536),
SC_(0.98576263427734375e2), SC_(0.80715478515625e4), SC_(0.9490411542227230445519501560068255751126e-3507),
- SC_(0.98576263427734375e2), SC_(0.1622925e5), SC_(0.706642352671901713112325219552778166628e-7050),
- SC_(0.98576263427734375e2), SC_(0.3206622265625e5), SC_(0.5336813326314223870941968492332354768707e-13928),
- SC_(0.98576263427734375e2), SC_(0.3636794921875e5), SC_(0.2992641523816122158711374925214774085881e-15796),
+ SC_(0.98576263427734375e2), SC_(0.1622925e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.706642352671901713112325219552778166628e-7050)),
+ SC_(0.98576263427734375e2), SC_(0.3206622265625e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.5336813326314223870941968492332354768707e-13928)),
+ SC_(0.98576263427734375e2), SC_(0.3636794921875e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.2992641523816122158711374925214774085881e-15796)),
SC_(0.99292266845703125e2), SC_(0.637722015380859375e2), SC_(0.4765079470941391660151554471287672030993e1),
SC_(0.99292266845703125e2), SC_(0.1252804412841796875e3), SC_(0.8211475782164329588746473557436288828796e-39),
SC_(0.99292266845703125e2), SC_(0.25554705810546875e3), SC_(0.1488689678947819908654123225405437300755e-103),
@@ -265,9 +265,9 @@
SC_(0.99292266845703125e2), SC_(0.1185395751953125e4), SC_(0.3584703400837929375694495921804618033184e-514),
SC_(0.99292266845703125e2), SC_(0.353451806640625e4), SC_(0.8086451033245101399967163404205099861285e-1536),
SC_(0.99292266845703125e2), SC_(0.80715478515625e4), SC_(0.9574060247932829286311891259694070669118e-3507),
- SC_(0.99292266845703125e2), SC_(0.1622925e5), SC_(0.7097333247638353953239893327006028051669e-7050),
- SC_(0.99292266845703125e2), SC_(0.3206622265625e5), SC_(0.5348615672629262632704311334792898428533e-13928),
- SC_(0.99292266845703125e2), SC_(0.3636794921875e5), SC_(0.299847616599843593158654409241939580736e-15796)
+ SC_(0.99292266845703125e2), SC_(0.1622925e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.7097333247638353953239893327006028051669e-7050)),
+ SC_(0.99292266845703125e2), SC_(0.3206622265625e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.5348615672629262632704311334792898428533e-13928)),
+ SC_(0.99292266845703125e2), SC_(0.3636794921875e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.299847616599843593158654409241939580736e-15796))
};
#undef SC_
Modified: sandbox/math_toolkit/libs/math/test/bessel_k_int_data.ipp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/bessel_k_int_data.ipp (original)
+++ sandbox/math_toolkit/libs/math/test/bessel_k_int_data.ipp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -28,9 +28,9 @@
SC_(0), SC_(0.1185395751953125e4), SC_(0.5626632279469502957817365401058836530616e-516),
SC_(0), SC_(0.353451806640625e4), SC_(0.2005335541692877275070776095045572408221e-1536),
SC_(0), SC_(0.80715478515625e4), SC_(0.5198552672839385593247348234265735246569e-3507),
- SC_(0), SC_(0.1622925e5), SC_(0.5238258665687646932029547633274667132227e-7050),
- SC_(0), SC_(0.3206622265625e5), SC_(0.4586477351514513511787402593637142120047e-13928),
- SC_(0), SC_(0.3636794921875e5), SC_(0.261839521735852199886433084148333502408e-15796),
+ SC_(0), SC_(0.1622925e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.5238258665687646932029547633274667132227e-7050)),
+ SC_(0), SC_(0.3206622265625e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.4586477351514513511787402593637142120047e-13928)),
+ SC_(0), SC_(0.3636794921875e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.261839521735852199886433084148333502408e-15796)),
SC_(0.1e1), SC_(0.177219114266335964202880859375e-2), SC_(0.5642670589050394493876757991354791444425e3),
SC_(0.1e1), SC_(0.22177286446094512939453125e-2), SC_(0.4509043336519153776882032141395071321111e3),
SC_(0.1e1), SC_(0.7444499991834163665771484375e-2), SC_(0.134306823034307382114643500755390513023e3),
@@ -54,9 +54,9 @@
SC_(0.1e1), SC_(0.1185395751953125e4), SC_(0.5629005093195648507075346585433996324305e-516),
SC_(0.1e1), SC_(0.353451806640625e4), SC_(0.2005619200413067947685927551685795058075e-1536),
SC_(0.1e1), SC_(0.80715478515625e4), SC_(0.5198874692343800657182245260803672831532e-3507),
- SC_(0.1e1), SC_(0.1622925e5), SC_(0.5238420046465533380647381293479454296805e-7050),
- SC_(0.1e1), SC_(0.3206622265625e5), SC_(0.4586548866666827230215894859840049327748e-13928),
- SC_(0.1e1), SC_(0.3636794921875e5), SC_(0.2618431215775737825097728016673681678693e-15796),
+ SC_(0.1e1), SC_(0.1622925e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.5238420046465533380647381293479454296805e-7050)),
+ SC_(0.1e1), SC_(0.3206622265625e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.4586548866666827230215894859840049327748e-13928)),
+ SC_(0.1e1), SC_(0.3636794921875e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.2618431215775737825097728016673681678693e-15796)),
SC_(0.4e1), SC_(0.177219114266335964202880859375e-2), SC_(0.4866299979081122714121229096210700191518e13),
SC_(0.4e1), SC_(0.22177286446094512939453125e-2), SC_(0.1984300471606527742059001282352526315267e13),
SC_(0.4e1), SC_(0.7444499991834163665771484375e-2), SC_(0.1562777308081462787649352118638441640974e11),
@@ -80,9 +80,9 @@
SC_(0.4e1), SC_(0.1185395751953125e4), SC_(0.5664717578847921482243142747309256970705e-516),
SC_(0.4e1), SC_(0.353451806640625e4), SC_(0.2009878898832100717589398352424725806132e-1536),
SC_(0.4e1), SC_(0.80715478515625e4), SC_(0.5203707379166988887861124229263216602351e-3507),
- SC_(0.4e1), SC_(0.1622925e5), SC_(0.5240841354827504548639257799260351864794e-7050),
- SC_(0.4e1), SC_(0.3206622265625e5), SC_(0.4587621727772824151475167382626737854669e-13928),
- SC_(0.4e1), SC_(0.3636794921875e5), SC_(0.2618971251427177592957235690575280827847e-15796),
+ SC_(0.4e1), SC_(0.1622925e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.5240841354827504548639257799260351864794e-7050)),
+ SC_(0.4e1), SC_(0.3206622265625e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.4587621727772824151475167382626737854669e-13928)),
+ SC_(0.4e1), SC_(0.3636794921875e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.2618971251427177592957235690575280827847e-15796)),
SC_(0.7e1), SC_(0.177219114266335964202880859375e-2), SC_(0.8393410852610954393527641216972580532522e24),
SC_(0.7e1), SC_(0.22177286446094512939453125e-2), SC_(0.1746439477339240202017380879835593298264e24),
SC_(0.7e1), SC_(0.7444499991834163665771484375e-2), SC_(0.3636325329423526419455515218262149164257e20),
@@ -106,9 +106,9 @@
SC_(0.7e1), SC_(0.1185395751953125e4), SC_(0.5744084382473215145583083888149374566061e-516),
SC_(0.7e1), SC_(0.353451806640625e4), SC_(0.2019282105175847423689110847031244713335e-1536),
SC_(0.7e1), SC_(0.80715478515625e4), SC_(0.5214355108270690028322792158847712991209e-3507),
- SC_(0.7e1), SC_(0.1622925e5), SC_(0.5246172173384328966498809821165883204056e-7050),
- SC_(0.7e1), SC_(0.3206622265625e5), SC_(0.4589982905651508483373540209643329865296e-13928),
- SC_(0.7e1), SC_(0.3636794921875e5), SC_(0.262015972194351617452666405333559675244e-15796),
+ SC_(0.7e1), SC_(0.1622925e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.5246172173384328966498809821165883204056e-7050)),
+ SC_(0.7e1), SC_(0.3206622265625e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.4589982905651508483373540209643329865296e-13928)),
+ SC_(0.7e1), SC_(0.3636794921875e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.262015972194351617452666405333559675244e-15796)),
SC_(0.1e2), SC_(0.7444499991834163665771484375e-2), SC_(0.3553669112260589679559369394169552207558e30),
SC_(0.1e2), SC_(0.1433600485324859619140625e-1), SC_(0.5066979194966296085342168261220876180382e27),
SC_(0.1e2), SC_(0.1760916970670223236083984375e-1), SC_(0.6480976752277127998631768393896823291736e26),
@@ -130,9 +130,9 @@
SC_(0.1e2), SC_(0.1185395751953125e4), SC_(0.586893431857951347227749283812742380563e-516),
SC_(0.1e2), SC_(0.353451806640625e4), SC_(0.2033900929893989288120221591878316666532e-1536),
SC_(0.1e2), SC_(0.80715478515625e4), SC_(0.5230853557909669671253778230080315788384e-3507),
- SC_(0.1e2), SC_(0.1622925e5), SC_(0.5254421378336957273402254351232818867248e-7050),
- SC_(0.1e2), SC_(0.3206622265625e5), SC_(0.4593634389285012411677313330998673022044e-13928),
- SC_(0.1e2), SC_(0.3636794921875e5), SC_(0.2621997509993104596265028007664067440518e-15796),
+ SC_(0.1e2), SC_(0.1622925e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.5254421378336957273402254351232818867248e-7050)),
+ SC_(0.1e2), SC_(0.3206622265625e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.4593634389285012411677313330998673022044e-13928)),
+ SC_(0.1e2), SC_(0.3636794921875e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.2621997509993104596265028007664067440518e-15796)),
SC_(0.13e2), SC_(0.6152711808681488037109375e-1), SC_(0.1083420896102934209934115685271226154021e29),
SC_(0.13e2), SC_(0.11958599090576171875e0), SC_(0.1917447750081714212558490604491870597354e25),
SC_(0.13e2), SC_(0.15262925624847412109375e0), SC_(0.8038868021916654814587066747745710652867e23),
@@ -151,9 +151,9 @@
SC_(0.13e2), SC_(0.1185395751953125e4), SC_(0.6042178020632144064714108224311774903492e-516),
SC_(0.13e2), SC_(0.353451806640625e4), SC_(0.2053847923636589340983297552611107216238e-1536),
SC_(0.13e2), SC_(0.80715478515625e4), SC_(0.5253258106648653014772606538228525344948e-3507),
- SC_(0.13e2), SC_(0.1622925e5), SC_(0.5265602717055656306785745402150322892879e-7050),
- SC_(0.13e2), SC_(0.3206622265625e5), SC_(0.4598579255911157275391585056728721716762e-13928),
- SC_(0.13e2), SC_(0.3636794921875e5), SC_(0.262448598101299579741117867864106374998e-15796),
+ SC_(0.13e2), SC_(0.1622925e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.5265602717055656306785745402150322892879e-7050)),
+ SC_(0.13e2), SC_(0.3206622265625e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.4598579255911157275391585056728721716762e-13928)),
+ SC_(0.13e2), SC_(0.3636794921875e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.262448598101299579741117867864106374998e-15796)),
SC_(0.16e2), SC_(0.15262925624847412109375e0), SC_(0.4938286945300390946800057834907625530461e30),
SC_(0.16e2), SC_(0.408089816570281982421875e0), SC_(0.7221910587714053614294800190891382604706e23),
SC_(0.16e2), SC_(0.6540834903717041015625e0), SC_(0.3790728103951616879677403904143882209845e20),
@@ -170,9 +170,9 @@
SC_(0.16e2), SC_(0.1185395751953125e4), SC_(0.6267921275265713176373898233864223423493e-516),
SC_(0.16e2), SC_(0.353451806640625e4), SC_(0.2079277522540840435616081751154561226651e-1536),
SC_(0.16e2), SC_(0.80715478515625e4), SC_(0.5281644143269290804699816737306754893525e-3507),
- SC_(0.16e2), SC_(0.1622925e5), SC_(0.5279734846269774507137982122183578716906e-7050),
- SC_(0.16e2), SC_(0.3206622265625e5), SC_(0.4604821675345979003854650884049215110996e-13928),
- SC_(0.16e2), SC_(0.3636794921875e5), SC_(0.2627626984899885735887234170335932793558e-15796),
+ SC_(0.16e2), SC_(0.1622925e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.5279734846269774507137982122183578716906e-7050)),
+ SC_(0.16e2), SC_(0.3206622265625e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.4604821675345979003854650884049215110996e-13928)),
+ SC_(0.16e2), SC_(0.3636794921875e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.2627626984899885735887234170335932793558e-15796)),
SC_(0.19e2), SC_(0.408089816570281982421875e0), SC_(0.4164061026825297491148153141912721107722e29),
SC_(0.19e2), SC_(0.6540834903717041015625e0), SC_(0.5312149012796560969562933465014179856392e25),
SC_(0.19e2), SC_(0.1097540378570556640625e1), SC_(0.2815975836985008873103308168929822944327e21),
@@ -188,9 +188,9 @@
SC_(0.19e2), SC_(0.1185395751953125e4), SC_(0.6551627490387305422139410554400797766277e-516),
SC_(0.19e2), SC_(0.353451806640625e4), SC_(0.2110388042455500963599125331602819247229e-1536),
SC_(0.19e2), SC_(0.80715478515625e4), SC_(0.5316107489696805817894855741449691118523e-3507),
- SC_(0.19e2), SC_(0.1622925e5), SC_(0.5296841383959242087228030140304235898501e-7050),
- SC_(0.19e2), SC_(0.3206622265625e5), SC_(0.4612366915844621095505284507922443014777e-13928),
- SC_(0.19e2), SC_(0.3636794921875e5), SC_(0.263142285830226183225076299008451154768e-15796),
+ SC_(0.19e2), SC_(0.1622925e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.5296841383959242087228030140304235898501e-7050)),
+ SC_(0.19e2), SC_(0.3206622265625e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.4612366915844621095505284507922443014777e-13928)),
+ SC_(0.19e2), SC_(0.3636794921875e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.263142285830226183225076299008451154768e-15796)),
SC_(0.22e2), SC_(0.1097540378570556640625e1), SC_(0.1363003388493700601216340546122016964692e26),
SC_(0.22e2), SC_(0.30944411754608154296875e1), SC_(0.154098133448113782071643725924230801023e16),
SC_(0.22e2), SC_(0.51139926910400390625e1), SC_(0.2009401025366327094151993104161788468592e11),
@@ -204,9 +204,9 @@
SC_(0.22e2), SC_(0.1185395751953125e4), SC_(0.690033831413657158885992262195107209443e-516),
SC_(0.22e2), SC_(0.353451806640625e4), SC_(0.2147424258180187733063949241373893460545e-1536),
SC_(0.22e2), SC_(0.80715478515625e4), SC_(0.5356764940269015086023336440354606728087e-3507),
- SC_(0.22e2), SC_(0.1622925e5), SC_(0.5316950975149900813875721833489941300947e-7050),
- SC_(0.22e2), SC_(0.3206622265625e5), SC_(0.4621221351512128995193460546474354537115e-13928),
- SC_(0.22e2), SC_(0.3636794921875e5), SC_(0.2635876427517735221275210029856471898722e-15796),
+ SC_(0.22e2), SC_(0.1622925e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.5316950975149900813875721833489941300947e-7050)),
+ SC_(0.22e2), SC_(0.3206622265625e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.4621221351512128995193460546474354537115e-13928)),
+ SC_(0.22e2), SC_(0.3636794921875e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.2635876427517735221275210029856471898722e-15796)),
SC_(0.25e2), SC_(0.30944411754608154296875e1), SC_(0.5124414377836332997128321016932385071037e19),
SC_(0.25e2), SC_(0.51139926910400390625e1), SC_(0.1516348961613243378986004924208793378214e14),
SC_(0.25e2), SC_(0.95070552825927734375e1), SC_(0.1463234253390806624112966887873959971233e7),
@@ -219,9 +219,9 @@
SC_(0.25e2), SC_(0.1185395751953125e4), SC_(0.7322964891826955653271546226503782002346e-516),
SC_(0.25e2), SC_(0.353451806640625e4), SC_(0.2190680614711407877661687663478874228865e-1536),
SC_(0.25e2), SC_(0.80715478515625e4), SC_(0.540375492159789413152113464539956894375e-3507),
- SC_(0.25e2), SC_(0.1622925e5), SC_(0.5340097371869314934260450597251845025579e-7050),
- SC_(0.25e2), SC_(0.3206622265625e5), SC_(0.4631392471278741610272692105394268251102e-13928),
- SC_(0.25e2), SC_(0.3636794921875e5), SC_(0.2640991012000586747759705721429447267374e-15796),
+ SC_(0.25e2), SC_(0.1622925e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.5340097371869314934260450597251845025579e-7050)),
+ SC_(0.25e2), SC_(0.3206622265625e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.4631392471278741610272692105394268251102e-13928)),
+ SC_(0.25e2), SC_(0.3636794921875e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.2640991012000586747759705721429447267374e-15796)),
SC_(0.28e2), SC_(0.30944411754608154296875e1), SC_(0.2454990660613704575310526628033402392743e23),
SC_(0.28e2), SC_(0.51139926910400390625e1), SC_(0.1639932683217203236875473578868075473357e17),
SC_(0.28e2), SC_(0.95070552825927734375e1), SC_(0.2640289814156717285146398752180020136988e9),
@@ -234,9 +234,9 @@
SC_(0.28e2), SC_(0.1185395751953125e4), SC_(0.7830666627994873419887796221376303084348e-516),
SC_(0.28e2), SC_(0.353451806640625e4), SC_(0.2240505129503384289100743163081097090796e-1536),
SC_(0.28e2), SC_(0.80715478515625e4), SC_(0.545723827824440126457849797127688848512e-3507),
- SC_(0.28e2), SC_(0.1622925e5), SC_(0.5366319527575558839162183821505900036109e-7050),
- SC_(0.28e2), SC_(0.3206622265625e5), SC_(0.4642888889457374552089218805904169520701e-13928),
- SC_(0.28e2), SC_(0.3636794921875e5), SC_(0.2646770428485621338192274145251868595147e-15796),
+ SC_(0.28e2), SC_(0.1622925e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.5366319527575558839162183821505900036109e-7050)),
+ SC_(0.28e2), SC_(0.3206622265625e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.4642888889457374552089218805904169520701e-13928)),
+ SC_(0.28e2), SC_(0.3636794921875e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.2646770428485621338192274145251868595147e-15796)),
SC_(0.31e2), SC_(0.30944411754608154296875e1), SC_(0.1628932708409575730419267561000492140589e27),
SC_(0.31e2), SC_(0.51139926910400390625e1), SC_(0.2447361910481591579571497585668547323946e20),
SC_(0.31e2), SC_(0.95070552825927734375e1), SC_(0.6488217504914699872909898484402174229942e11),
@@ -249,9 +249,9 @@
SC_(0.31e2), SC_(0.1185395751953125e4), SC_(0.8437339956894185946885168627747104414597e-516),
SC_(0.31e2), SC_(0.353451806640625e4), SC_(0.2297304058162664000801774532441891487107e-1536),
SC_(0.31e2), SC_(0.80715478515625e4), SC_(0.5517399190450953326108602755590633200343e-3507),
- SC_(0.31e2), SC_(0.1622925e5), SC_(0.5395661706428891649746508777630616770672e-7050),
- SC_(0.31e2), SC_(0.3206622265625e5), SC_(0.4655720357904133390898485411309960205861e-13928),
- SC_(0.31e2), SC_(0.3636794921875e5), SC_(0.265321899573550369144774901462370895652e-15796),
+ SC_(0.31e2), SC_(0.1622925e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.5395661706428891649746508777630616770672e-7050)),
+ SC_(0.31e2), SC_(0.3206622265625e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.4655720357904133390898485411309960205861e-13928)),
+ SC_(0.31e2), SC_(0.3636794921875e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.265321899573550369144774901462370895652e-15796)),
SC_(0.34e2), SC_(0.51139926910400390625e1), SC_(0.4887088419644645368260815870435027797406e23),
SC_(0.34e2), SC_(0.95070552825927734375e1), SC_(0.2112656718901935346201941347252542378941e14),
SC_(0.34e2), SC_(0.24750102996826171875e2), SC_(0.3970887365216683380607479457956643717073e-2),
@@ -263,9 +263,9 @@
SC_(0.34e2), SC_(0.1185395751953125e4), SC_(0.9160246977951776790315282650922051285968e-516),
SC_(0.34e2), SC_(0.353451806640625e4), SC_(0.2361547411134811710896829034902271115585e-1536),
SC_(0.34e2), SC_(0.80715478515625e4), SC_(0.5584446231263440827429886485888847485203e-3507),
- SC_(0.34e2), SC_(0.1622925e5), SC_(0.5428173607835506848491134855123714452313e-7050),
- SC_(0.34e2), SC_(0.3206622265625e5), SC_(0.4669897779805891799705998126652967732775e-13928),
- SC_(0.34e2), SC_(0.3636794921875e5), SC_(0.2660341539919842585511498286326720170637e-15796),
+ SC_(0.34e2), SC_(0.1622925e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.5428173607835506848491134855123714452313e-7050)),
+ SC_(0.34e2), SC_(0.3206622265625e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.4669897779805891799705998126652967732775e-13928)),
+ SC_(0.34e2), SC_(0.3636794921875e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.2660341539919842585511498286326720170637e-15796)),
SC_(0.37e2), SC_(0.51139926910400390625e1), SC_(0.1272972151896897826158274128583844120665e27),
SC_(0.37e2), SC_(0.95070552825927734375e1), SC_(0.8906476725223650919563577369009773338755e16),
SC_(0.37e2), SC_(0.24750102996826171875e2), SC_(0.1244083237827760336698682724048883714384e0),
@@ -277,9 +277,9 @@
SC_(0.37e2), SC_(0.1185395751953125e4), SC_(0.1002082350358535312449713140689845232144e-515),
SC_(0.37e2), SC_(0.353451806640625e4), SC_(0.24337754261932268167781383948202245203e-1536),
SC_(0.37e2), SC_(0.80715478515625e4), SC_(0.5658613571537489375270717392106841872519e-3507),
- SC_(0.37e2), SC_(0.1622925e5), SC_(0.5463910506753990628094528712757348439213e-7050),
- SC_(0.37e2), SC_(0.3206622265625e5), SC_(0.4685433225122227131121313342266088755841e-13928),
- SC_(0.37e2), SC_(0.3636794921875e5), SC_(0.2668143400635403962854802667482407460168e-15796),
+ SC_(0.37e2), SC_(0.1622925e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.5463910506753990628094528712757348439213e-7050)),
+ SC_(0.37e2), SC_(0.3206622265625e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.4685433225122227131121313342266088755841e-13928)),
+ SC_(0.37e2), SC_(0.3636794921875e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.2668143400635403962854802667482407460168e-15796)),
SC_(0.4e2), SC_(0.51139926910400390625e1), SC_(0.4233526621241393414692668844551104005827e30),
SC_(0.4e2), SC_(0.95070552825927734375e1), SC_(0.4766171624124769142545027018778135740885e19),
SC_(0.4e2), SC_(0.24750102996826171875e2), SC_(0.4775404961093391264918951179312101480207e1),
@@ -291,9 +291,9 @@
SC_(0.4e2), SC_(0.1185395751953125e4), SC_(0.1104571893928413137785528611522740784998e-515),
SC_(0.4e2), SC_(0.353451806640625e4), SC_(0.2514606121350613728401996284399725441789e-1536),
SC_(0.4e2), SC_(0.80715478515625e4), SC_(0.5740162342574260629793695263133161311679e-3507),
- SC_(0.4e2), SC_(0.1622925e5), SC_(0.550293341031905346615098885552944484108e-7050),
- SC_(0.4e2), SC_(0.3206622265625e5), SC_(0.4702339947712333105841647963051289505599e-13928),
- SC_(0.4e2), SC_(0.3636794921875e5), SC_(0.267663043757796685478543436488906145159e-15796),
+ SC_(0.4e2), SC_(0.1622925e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.550293341031905346615098885552944484108e-7050)),
+ SC_(0.4e2), SC_(0.3206622265625e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.4702339947712333105841647963051289505599e-13928)),
+ SC_(0.4e2), SC_(0.3636794921875e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.267663043757796685478543436488906145159e-15796)),
SC_(0.43e2), SC_(0.95070552825927734375e1), SC_(0.3182839111836206795432282087846430344793e22),
SC_(0.43e2), SC_(0.24750102996826171875e2), SC_(0.222166790779622513904265491366185119783e3),
SC_(0.43e2), SC_(0.637722015380859375e2), SC_(0.3494683971717078896526073657684663026344e-22),
@@ -304,9 +304,9 @@
SC_(0.43e2), SC_(0.1185395751953125e4), SC_(0.1226813762536213360641692402203393421902e-515),
SC_(0.43e2), SC_(0.353451806640625e4), SC_(0.2604744075705526360896827212663194081844e-1536),
SC_(0.43e2), SC_(0.80715478515625e4), SC_(0.5829382167482993254759548308025590017295e-3507),
- SC_(0.43e2), SC_(0.1622925e5), SC_(0.5545309231403848597473015547909532316757e-7050),
- SC_(0.43e2), SC_(0.3206622265625e5), SC_(0.4720632404180934492767700130411170770692e-13928),
- SC_(0.43e2), SC_(0.3636794921875e5), SC_(0.2685809037877493712736261189745151268036e-15796),
+ SC_(0.43e2), SC_(0.1622925e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.5545309231403848597473015547909532316757e-7050)),
+ SC_(0.43e2), SC_(0.3206622265625e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.4720632404180934492767700130411170770692e-13928)),
+ SC_(0.43e2), SC_(0.3636794921875e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.2685809037877493712736261189745151268036e-15796)),
SC_(0.46e2), SC_(0.95070552825927734375e1), SC_(0.2613341661852173290163593295155286429179e25),
SC_(0.46e2), SC_(0.24750102996826171875e2), SC_(0.1240356498190349854695380927506887128504e5),
SC_(0.46e2), SC_(0.637722015380859375e2), SC_(0.2435594999948560729028252282438959684734e-21),
@@ -317,9 +317,9 @@
SC_(0.46e2), SC_(0.1185395751953125e4), SC_(0.1372957440742858143071942753527722395892e-515),
SC_(0.46e2), SC_(0.353451806640625e4), SC_(0.2704990612325371082658423752252872015539e-1536),
SC_(0.46e2), SC_(0.80715478515625e4), SC_(0.5926592873835553214540488168663074957806e-3507),
- SC_(0.46e2), SC_(0.1622925e5), SC_(0.5591110979812109106321381410172006791395e-7050),
- SC_(0.46e2), SC_(0.3206622265625e5), SC_(0.4740326274480720773200693383939904110369e-13928),
- SC_(0.46e2), SC_(0.3636794921875e5), SC_(0.269568612410947047471656632057047862977e-15796),
+ SC_(0.46e2), SC_(0.1622925e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.5591110979812109106321381410172006791395e-7050)),
+ SC_(0.46e2), SC_(0.3206622265625e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.4740326274480720773200693383939904110369e-13928)),
+ SC_(0.46e2), SC_(0.3636794921875e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.269568612410947047471656632057047862977e-15796)),
SC_(0.49e2), SC_(0.95070552825927734375e1), SC_(0.2604110632578045074747155850476866625948e28),
SC_(0.49e2), SC_(0.24750102996826171875e2), SC_(0.8234824069434699773771302493843594365029e6),
SC_(0.49e2), SC_(0.637722015380859375e2), SC_(0.1902868412813550491062018165813668118658e-20),
@@ -330,9 +330,9 @@
SC_(0.49e2), SC_(0.1185395751953125e4), SC_(0.1548206847091165496863608044251602051314e-515),
SC_(0.49e2), SC_(0.353451806640625e4), SC_(0.2816255588282019933434542273145935388214e-1536),
SC_(0.49e2), SC_(0.80715478515625e4), SC_(0.6032146401778819934332757713494281444621e-3507),
- SC_(0.49e2), SC_(0.1622925e5), SC_(0.5640417971864792607466646129595328587678e-7050),
- SC_(0.49e2), SC_(0.3206622265625e5), SC_(0.4761438484312403920622455773313824083129e-13928),
- SC_(0.49e2), SC_(0.3636794921875e5), SC_(0.2706269162996484422890605196489233046553e-15796),
+ SC_(0.49e2), SC_(0.1622925e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.5640417971864792607466646129595328587678e-7050)),
+ SC_(0.49e2), SC_(0.3206622265625e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.4761438484312403920622455773313824083129e-13928)),
+ SC_(0.49e2), SC_(0.3636794921875e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.2706269162996484422890605196489233046553e-15796)),
SC_(0.52e2), SC_(0.24750102996826171875e2), SC_(0.6447123396076953125856501527046675224103e8),
SC_(0.52e2), SC_(0.637722015380859375e2), SC_(0.1662393009289908212041057469690821898544e-19),
SC_(0.52e2), SC_(0.1252804412841796875e3), SC_(0.176081332172933452583858832905441988789e-50),
@@ -342,9 +342,9 @@
SC_(0.52e2), SC_(0.1185395751953125e4), SC_(0.1759114193755329124346838916667484326051e-515),
SC_(0.52e2), SC_(0.353451806640625e4), SC_(0.2939571033262660416184655688725890023946e-1536),
SC_(0.52e2), SC_(0.80715478515625e4), SC_(0.6146428923521813401837376358389093626766e-3507),
- SC_(0.52e2), SC_(0.1622925e5), SC_(0.5693316059223311384546703599902546300788e-7050),
- SC_(0.52e2), SC_(0.3206622265625e5), SC_(0.4783987229367199009175316527221338478209e-13928),
- SC_(0.52e2), SC_(0.3636794921875e5), SC_(0.2717566174815352378101961453286298212542e-15796),
+ SC_(0.52e2), SC_(0.1622925e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.5693316059223311384546703599902546300788e-7050)),
+ SC_(0.52e2), SC_(0.3206622265625e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.4783987229367199009175316527221338478209e-13928)),
+ SC_(0.52e2), SC_(0.3636794921875e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.2717566174815352378101961453286298212542e-15796)),
SC_(0.55e2), SC_(0.24750102996826171875e2), SC_(0.5906592594836486211372993494032070575815e10),
SC_(0.55e2), SC_(0.637722015380859375e2), SC_(0.1619944303887765571629298426907679553596e-18),
SC_(0.55e2), SC_(0.1252804412841796875e3), SC_(0.608927899095778107216501890100327844068e-50),
@@ -354,9 +354,9 @@
SC_(0.55e2), SC_(0.1185395751953125e4), SC_(0.20139647659877449929188123350177500281e-515),
SC_(0.55e2), SC_(0.353451806640625e4), SC_(0.3076106920808888200634769834560394968754e-1536),
SC_(0.55e2), SC_(0.80715478515625e4), SC_(0.6269863192036053706431959465256415089858e-3507),
- SC_(0.55e2), SC_(0.1622925e5), SC_(0.574989787787316356628191218017765776562e-7050),
- SC_(0.55e2), SC_(0.3206622265625e5), SC_(0.4807992001460335134677650774814753867241e-13928),
- SC_(0.55e2), SC_(0.3636794921875e5), SC_(0.2729585743526390911413799190493994340307e-15796),
+ SC_(0.55e2), SC_(0.1622925e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.574989787787316356628191218017765776562e-7050)),
+ SC_(0.55e2), SC_(0.3206622265625e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.4807992001460335134677650774814753867241e-13928)),
+ SC_(0.55e2), SC_(0.3636794921875e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.2729585743526390911413799190493994340307e-15796)),
SC_(0.58e2), SC_(0.24750102996826171875e2), SC_(0.6287635183148587835682696418458586125518e12),
SC_(0.58e2), SC_(0.637722015380859375e2), SC_(0.1756460447184133594481790032905120322521e-17),
SC_(0.58e2), SC_(0.1252804412841796875e3), SC_(0.2248613108673335230509488256563758753961e-49),
@@ -366,9 +366,9 @@
SC_(0.58e2), SC_(0.1185395751953125e4), SC_(0.2323283007326067132383472547365484174206e-515),
SC_(0.58e2), SC_(0.353451806640625e4), SC_(0.3227189406425111978444678851933447583123e-1536),
SC_(0.58e2), SC_(0.80715478515625e4), SC_(0.6402911138921955267414762206159896491641e-3507),
- SC_(0.58e2), SC_(0.1622925e5), SC_(0.5810263118278312048425620492975372174571e-7050),
- SC_(0.58e2), SC_(0.3206622265625e5), SC_(0.4833473616608138200363301333135367985947e-13928),
- SC_(0.58e2), SC_(0.3636794921875e5), SC_(0.2742337027642737009466482947735690427217e-15796),
+ SC_(0.58e2), SC_(0.1622925e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.5810263118278312048425620492975372174571e-7050)),
+ SC_(0.58e2), SC_(0.3206622265625e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.4833473616608138200363301333135367985947e-13928)),
+ SC_(0.58e2), SC_(0.3636794921875e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.2742337027642737009466482947735690427217e-15796)),
SC_(0.61e2), SC_(0.24750102996826171875e2), SC_(0.7726373728796904279575416594682658176479e14),
SC_(0.61e2), SC_(0.637722015380859375e2), SC_(0.2113943823625618827883205381971301797016e-16),
SC_(0.61e2), SC_(0.1252804412841796875e3), SC_(0.8861536583313896744581182392356177857871e-49),
@@ -378,9 +378,9 @@
SC_(0.61e2), SC_(0.1185395751953125e4), SC_(0.270050123497330419186945911647084594198e-515),
SC_(0.61e2), SC_(0.353451806640625e4), SC_(0.3394321926021289374115139121770929447286e-1536),
SC_(0.61e2), SC_(0.80715478515625e4), SC_(0.6546076743725850744311026044349057058217e-3507),
- SC_(0.61e2), SC_(0.1622925e5), SC_(0.5874518817808457402027581610496686283433e-7050),
- SC_(0.61e2), SC_(0.3206622265625e5), SC_(0.4860454245105296988781115294196285058127e-13928),
- SC_(0.61e2), SC_(0.3636794921875e5), SC_(0.2755829771858985092011731285441871079278e-15796),
+ SC_(0.61e2), SC_(0.1622925e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.5874518817808457402027581610496686283433e-7050)),
+ SC_(0.61e2), SC_(0.3206622265625e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.4860454245105296988781115294196285058127e-13928)),
+ SC_(0.61e2), SC_(0.3636794921875e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.2755829771858985092011731285441871079278e-15796)),
SC_(0.64e2), SC_(0.24750102996826171875e2), SC_(0.1089372884592778724010939074780808093656e17),
SC_(0.64e2), SC_(0.637722015380859375e2), SC_(0.2817266049671112872402662968245886024951e-15),
SC_(0.64e2), SC_(0.1252804412841796875e3), SC_(0.3724702135364801690887458310736954249975e-48),
@@ -390,9 +390,9 @@
SC_(0.64e2), SC_(0.1185395751953125e4), SC_(0.3162847444927986736836816083125075670015e-515),
SC_(0.64e2), SC_(0.353451806640625e4), SC_(0.357920961818962588991163894939852397169e-1536),
SC_(0.64e2), SC_(0.80715478515625e4), SC_(0.669990919956916384927021910729947711597e-3507),
- SC_(0.64e2), SC_(0.1622925e5), SC_(0.5942779676638927496437891727345757504507e-7050),
- SC_(0.64e2), SC_(0.3206622265625e5), SC_(0.4888957443663140543644871361643761747612e-13928),
- SC_(0.64e2), SC_(0.3636794921875e5), SC_(0.2770074319459807641783655781741093857784e-15796),
+ SC_(0.64e2), SC_(0.1622925e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.5942779676638927496437891727345757504507e-7050)),
+ SC_(0.64e2), SC_(0.3206622265625e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.4888957443663140543644871361643761747612e-13928)),
+ SC_(0.64e2), SC_(0.3636794921875e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.2770074319459807641783655781741093857784e-15796)),
SC_(0.67e2), SC_(0.24750102996826171875e2), SC_(0.1752503956367793335591698780066945162812e19),
SC_(0.67e2), SC_(0.637722015380859375e2), SC_(0.4147864732836980467101348321415022034012e-14),
SC_(0.67e2), SC_(0.1252804412841796875e3), SC_(0.1668781473640989763113617951611659640503e-47),
@@ -402,9 +402,9 @@
SC_(0.67e2), SC_(0.1185395751953125e4), SC_(0.3732529706926917583477299343548737282551e-515),
SC_(0.67e2), SC_(0.353451806640625e4), SC_(0.3783787616795079157142852699862298530265e-1536),
SC_(0.67e2), SC_(0.80715478515625e4), SC_(0.6865006402804243398070353234801672966588e-3507),
- SC_(0.67e2), SC_(0.1622925e5), SC_(0.6015168398426805542472282512313488150136e-7050),
- SC_(0.67e2), SC_(0.3206622265625e5), SC_(0.4919008189674129617858770677394899509167e-13928),
- SC_(0.67e2), SC_(0.3636794921875e5), SC_(0.2785081625530675286577295403413443334166e-15796),
+ SC_(0.67e2), SC_(0.1622925e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.6015168398426805542472282512313488150136e-7050)),
+ SC_(0.67e2), SC_(0.3206622265625e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.4919008189674129617858770677394899509167e-13928)),
+ SC_(0.67e2), SC_(0.3636794921875e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.2785081625530675286577295403413443334166e-15796)),
SC_(0.7e2), SC_(0.24750102996826171875e2), SC_(0.3200133529232737321115234201266326454559e21),
SC_(0.7e2), SC_(0.637722015380859375e2), SC_(0.6731146076014642148395421819876868378567e-13),
SC_(0.7e2), SC_(0.1252804412841796875e3), SC_(0.7964621054909191295512910144858209516278e-47),
@@ -414,9 +414,9 @@
SC_(0.7e2), SC_(0.1185395751953125e4), SC_(0.4438324037790869017660048341591393207415e-515),
SC_(0.7e2), SC_(0.353451806640625e4), SC_(0.4010253858858078283335826255416157967798e-1536),
SC_(0.7e2), SC_(0.80715478515625e4), SC_(0.7042018797575106309572625922749346299401e-3507),
- SC_(0.7e2), SC_(0.1622925e5), SC_(0.6091816057177725949783663850061790717355e-7050),
- SC_(0.7e2), SC_(0.3206622265625e5), SC_(0.4950632917672309705754397226621067105838e-13928),
- SC_(0.7e2), SC_(0.3636794921875e5), SC_(0.2800863270994291420518570661218980325799e-15796),
+ SC_(0.7e2), SC_(0.1622925e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.6091816057177725949783663850061790717355e-7050)),
+ SC_(0.7e2), SC_(0.3206622265625e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.4950632917672309705754397226621067105838e-13928)),
+ SC_(0.7e2), SC_(0.3636794921875e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.2800863270994291420518570661218980325799e-15796)),
SC_(0.73e2), SC_(0.24750102996826171875e2), SC_(0.6600974229573307442059086118768767449093e23),
SC_(0.73e2), SC_(0.637722015380859375e2), SC_(0.1201297498924823083105718685052381246325e-11),
SC_(0.73e2), SC_(0.1252804412841796875e3), SC_(0.4046845520756788077228347262642337964193e-46),
@@ -426,9 +426,9 @@
SC_(0.73e2), SC_(0.1185395751953125e4), SC_(0.5317713886826713534838432572251814525015e-515),
SC_(0.73e2), SC_(0.353451806640625e4), SC_(0.4261107169830410931379086346743264316689e-1536),
SC_(0.73e2), SC_(0.80715478515625e4), SC_(0.7231653609674731879282356274318541000741e-3507),
- SC_(0.73e2), SC_(0.1622925e5), SC_(0.6172862491836114717204373678657121117295e-7050),
- SC_(0.73e2), SC_(0.3206622265625e5), SC_(0.4983859558064200409817902804417896457076e-13928),
- SC_(0.73e2), SC_(0.3636794921875e5), SC_(0.2817431477497909957363236959638032643128e-15796),
+ SC_(0.73e2), SC_(0.1622925e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.6172862491836114717204373678657121117295e-7050)),
+ SC_(0.73e2), SC_(0.3206622265625e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.4983859558064200409817902804417896457076e-13928)),
+ SC_(0.73e2), SC_(0.3636794921875e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.2817431477497909957363236959638032643128e-15796)),
SC_(0.76e2), SC_(0.24750102996826171875e2), SC_(0.1531183321100941817299267523275491292448e26),
SC_(0.76e2), SC_(0.637722015380859375e2), SC_(0.2352685186849495712347188367635010810633e-10),
SC_(0.76e2), SC_(0.1252804412841796875e3), SC_(0.2187653883215974720282435704263980509287e-45),
@@ -438,9 +438,9 @@
SC_(0.76e2), SC_(0.1185395751953125e4), SC_(0.6419787531456505117374325893361016267861e-515),
SC_(0.76e2), SC_(0.353451806640625e4), SC_(0.4539191527866687375064734054902878636098e-1536),
SC_(0.76e2), SC_(0.80715478515625e4), SC_(0.7434679507997340046976676659450109196349e-3507),
- SC_(0.76e2), SC_(0.1622925e5), SC_(0.625845673025821801704758202141407507098e-7050),
- SC_(0.76e2), SC_(0.3206622265625e5), SC_(0.5018717578209518619159368787008041682897e-13928),
- SC_(0.76e2), SC_(0.3636794921875e5), SC_(0.2834799123178316316921082908434236819708e-15796),
+ SC_(0.76e2), SC_(0.1622925e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.625845673025821801704758202141407507098e-7050)),
+ SC_(0.76e2), SC_(0.3206622265625e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.5018717578209518619159368787008041682897e-13928)),
+ SC_(0.76e2), SC_(0.3636794921875e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.2834799123178316316921082908434236819708e-15796)),
SC_(0.79e2), SC_(0.24750102996826171875e2), SC_(0.3977450254611439907015094861072686143365e28),
SC_(0.79e2), SC_(0.637722015380859375e2), SC_(0.5045557998916834451345285819041530054045e-9),
SC_(0.79e2), SC_(0.1252804412841796875e3), SC_(0.1257398100175037281002031105345426585638e-44),
@@ -450,9 +450,9 @@
SC_(0.79e2), SC_(0.1185395751953125e4), SC_(0.7809182105858958259760323416560481270815e-515),
SC_(0.79e2), SC_(0.353451806640625e4), SC_(0.4847747575121366789595217747585489900848e-1536),
SC_(0.79e2), SC_(0.80715478515625e4), SC_(0.7651931736233482793339884190747843802592e-3507),
- SC_(0.79e2), SC_(0.1622925e5), SC_(0.634875744436278296417277623731115109911e-7050),
- SC_(0.79e2), SC_(0.3206622265625e5), SC_(0.5055238025936264849903127242851811532009e-13928),
- SC_(0.79e2), SC_(0.3636794921875e5), SC_(0.2852979759332925163346706705764848988845e-15796),
+ SC_(0.79e2), SC_(0.1622925e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.634875744436278296417277623731115109911e-7050)),
+ SC_(0.79e2), SC_(0.3206622265625e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.5055238025936264849903127242851811532009e-13928)),
+ SC_(0.79e2), SC_(0.3636794921875e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.2852979759332925163346706705764848988845e-15796)),
SC_(0.82e2), SC_(0.637722015380859375e2), SC_(0.1182479183003843898967122682220895379283e-7),
SC_(0.82e2), SC_(0.1252804412841796875e3), SC_(0.7679246824874028855732984729868233341459e-44),
SC_(0.82e2), SC_(0.25554705810546875e3), SC_(0.3688731597877386657104803215785579078246e-106),
@@ -461,9 +461,9 @@
SC_(0.82e2), SC_(0.1185395751953125e4), SC_(0.95714803641107768131549467236444623187e-515),
SC_(0.82e2), SC_(0.353451806640625e4), SC_(0.5190472642970221025902053308995793605448e-1536),
SC_(0.82e2), SC_(0.80715478515625e4), SC_(0.7884317762303207970574981219562166816935e-3507),
- SC_(0.82e2), SC_(0.1622925e5), SC_(0.6443933438399520983914837847908697932304e-7050),
- SC_(0.82e2), SC_(0.3206622265625e5), SC_(0.5093453575580057440764704712908558993787e-13928),
- SC_(0.82e2), SC_(0.3636794921875e5), SC_(0.2871987628027187822900488209818201448873e-15796),
+ SC_(0.82e2), SC_(0.1622925e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.6443933438399520983914837847908697932304e-7050)),
+ SC_(0.82e2), SC_(0.3206622265625e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.5093453575580057440764704712908558993787e-13928)),
+ SC_(0.82e2), SC_(0.3636794921875e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.2871987628027187822900488209818201448873e-15796)),
SC_(0.85e2), SC_(0.637722015380859375e2), SC_(0.3022386458998828808890958658069437125556e-6),
SC_(0.85e2), SC_(0.1252804412841796875e3), SC_(0.4980051147455231361906632503761840466974e-43),
SC_(0.85e2), SC_(0.25554705810546875e3), SC_(0.9651821409596944246819658023453058852567e-106),
@@ -472,9 +472,9 @@
SC_(0.85e2), SC_(0.1185395751953125e4), SC_(0.1182063426653318577358697854155415902088e-514),
SC_(0.85e2), SC_(0.353451806640625e4), SC_(0.5571590796064834896786127413958385484532e-1536),
SC_(0.85e2), SC_(0.80715478515625e4), SC_(0.8132823498430510533405211338608503625054e-3507),
- SC_(0.85e2), SC_(0.1622925e5), SC_(0.6544164172431353956246831844735505709742e-7050),
- SC_(0.85e2), SC_(0.3206622265625e5), SC_(0.5133398576643193156132512241768029727037e-13928),
- SC_(0.85e2), SC_(0.3636794921875e5), SC_(0.2891837680670311977658996166762631480513e-15796),
+ SC_(0.85e2), SC_(0.1622925e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.6544164172431353956246831844735505709742e-7050)),
+ SC_(0.85e2), SC_(0.3206622265625e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.5133398576643193156132512241768029727037e-13928)),
+ SC_(0.85e2), SC_(0.3636794921875e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.2891837680670311977658996166762631480513e-15796)),
SC_(0.88e2), SC_(0.637722015380859375e2), SC_(0.8408884745537773166223428345981835442608e-5),
SC_(0.88e2), SC_(0.1252804412841796875e3), SC_(0.3427163660301187722220573043617848517407e-42),
SC_(0.88e2), SC_(0.25554705810546875e3), SC_(0.2611158848229128475717621937789423053511e-105),
@@ -483,9 +483,9 @@
SC_(0.88e2), SC_(0.1185395751953125e4), SC_(0.1470923110114575284128795225669870357461e-514),
SC_(0.88e2), SC_(0.353451806640625e4), SC_(0.5995934685429881061512313674772217021537e-1536),
SC_(0.88e2), SC_(0.80715478515625e4), SC_(0.839852015080128730529999326058629197173e-3507),
- SC_(0.88e2), SC_(0.1622925e5), SC_(0.664964032329384431282211022073156371507e-7050),
- SC_(0.88e2), SC_(0.3206622265625e5), SC_(0.5175109105174760942763088943597648303892e-13928),
- SC_(0.88e2), SC_(0.3636794921875e5), SC_(0.2912545597593180629046239733714231938561e-15796)
+ SC_(0.88e2), SC_(0.1622925e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.664964032329384431282211022073156371507e-7050)),
+ SC_(0.88e2), SC_(0.3206622265625e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.5175109105174760942763088943597648303892e-13928)),
+ SC_(0.88e2), SC_(0.3636794921875e5), SC_(BOOST_MATH_SMALL_CONSTANT(0.2912545597593180629046239733714231938561e-15796))
};
#undef SC_
Modified: sandbox/math_toolkit/libs/math/test/binomial_data.ipp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/binomial_data.ipp (original)
+++ sandbox/math_toolkit/libs/math/test/binomial_data.ipp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,3 +1,8 @@
+// (C) Copyright John Maddock 2006-7.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
#define SC_(x) static_cast<T>(BOOST_JOIN(x, L))
static const boost::array<boost::array<T, 3>, 159> binomial_data = { {
{ SC_(0.15e2), SC_(0.15e2), SC_(0.1e1) },
Modified: sandbox/math_toolkit/libs/math/test/binomial_large_data.ipp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/binomial_large_data.ipp (original)
+++ sandbox/math_toolkit/libs/math/test/binomial_large_data.ipp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,3 +1,8 @@
+// (C) Copyright John Maddock 2006-7.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
#define SC_(x) static_cast<T>(BOOST_JOIN(x, L))
static const boost::array<boost::array<T, 3>, 230> binomial_large_data = { {
{ SC_(0.174e3), SC_(0.4e1), SC_(0.36890001e8) },
Modified: sandbox/math_toolkit/libs/math/test/binomial_quantile.ipp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/binomial_quantile.ipp (original)
+++ sandbox/math_toolkit/libs/math/test/binomial_quantile.ipp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,3 +1,8 @@
+// (C) Copyright John Maddock 2006-7.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
#define SC_(x) static_cast<T>(BOOST_JOIN(x, L))
static const boost::array<boost::array<T, 5>, 4032> binomial_quantile_data = {{
{ SC_(2), SC_(0.12698681652545928955078125), SC_(0.12698681652545928955078125), SC_(0), SC_(0.28467385230321224203411154382440248724380832183117) },
Modified: sandbox/math_toolkit/libs/math/test/cbrt_data.ipp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/cbrt_data.ipp (original)
+++ sandbox/math_toolkit/libs/math/test/cbrt_data.ipp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,3 +1,8 @@
+// (C) Copyright John Maddock 2006-7.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
#define SC_(x) static_cast<T>(BOOST_JOIN(x, L))
static const boost::array<boost::array<T, 2>, 85> cbrt_data = { {
{ SC_(0.266297021326439287136622624529991298914e-12), SC_(0.1888421455001568264216782004847867296461e-37) },
Deleted: sandbox/math_toolkit/libs/math/test/compile_test/dist_extreme_value_incl_test.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/compile_test/dist_extreme_value_incl_test.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
+++ (empty file)
@@ -1,23 +0,0 @@
-// Copyright John Maddock 2006.
-// Use, modification and distribution are subject to the
-// Boost Software License, Version 1.0. (See accompanying file
-// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
-//
-// Basic sanity check that header <boost/math/distributions/extreme_value.hpp>
-// #includes all the files that it needs to.
-//
-#include <boost/math/distributions/extreme_value.hpp>
-//
-// Note this header includes no other headers, this is
-// important if this test is to be meaningful:
-//
-#include "test_compile_result.hpp"
-
-void check()
-{
- TEST_DIST_FUNC(extreme_value)
-}
-
-template class boost::math::extreme_value_distribution<float, boost::math::policies::policy<> >;
-template class boost::math::extreme_value_distribution<double, boost::math::policies::policy<> >;
-template class boost::math::extreme_value_distribution<long double, boost::math::policies::policy<> >;
Modified: sandbox/math_toolkit/libs/math/test/compile_test/sf_fpclassify_incl_test.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/compile_test/sf_fpclassify_incl_test.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/compile_test/sf_fpclassify_incl_test.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -13,6 +13,8 @@
//
#include "test_compile_result.hpp"
+inline void check_result_imp(bool, bool){}
+
void check()
{
check_result<int>(boost::math::fpclassify<float>(f));
Modified: sandbox/math_toolkit/libs/math/test/compile_test/sf_sph_harm_incl_test.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/compile_test/sf_sph_harm_incl_test.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/compile_test/sf_sph_harm_incl_test.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -13,6 +13,11 @@
//
#include "test_compile_result.hpp"
+inline void check_result_imp(std::complex<float>, std::complex<float>){}
+inline void check_result_imp(std::complex<double>, std::complex<double>){}
+inline void check_result_imp(std::complex<long double>, std::complex<long double>){}
+
+
void check()
{
check_result<std::complex<float> >(boost::math::spherical_harmonic<float>(u, i, f, f));
Modified: sandbox/math_toolkit/libs/math/test/compile_test/test_compile_result.hpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/compile_test/test_compile_result.hpp (original)
+++ sandbox/math_toolkit/libs/math/test/compile_test/test_compile_result.hpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -15,8 +15,13 @@
static const unsigned u = 0;
static const int i = 0;
-template <class T>
-inline void check_result_imp(T, T){}
+//template <class T>
+//inline void check_result_imp(T, T){}
+
+inline void check_result_imp(float, float){}
+inline void check_result_imp(double, double){}
+inline void check_result_imp(long double, long double){}
+inline void check_result_imp(int, int){}
template <class T1, class T2>
inline void check_result_imp(T1, T2)
@@ -105,10 +110,11 @@
check_result<value_type>(chf(dist, li));
}
private:
+ static Distribution* get_object_p();
static Distribution& get_object()
{
// will never get called:
- return * reinterpret_cast<Distribution*>(0);
+ return *get_object_p();
}
}; // struct DistributionConcept
Modified: sandbox/math_toolkit/libs/math/test/compile_test/tools_roots_inc_test.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/compile_test/tools_roots_inc_test.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/compile_test/tools_roots_inc_test.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -13,6 +13,10 @@
//
#include "test_compile_result.hpp"
+inline void check_result_imp(std::pair<float, float>, std::pair<float, float>){}
+inline void check_result_imp(std::pair<double, double>, std::pair<double, double>){}
+inline void check_result_imp(std::pair<long double, long double>, std::pair<long double, long double>){}
+
void check()
{
typedef double (*F)(double);
Modified: sandbox/math_toolkit/libs/math/test/compile_test/tools_test_inc_test.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/compile_test/tools_test_inc_test.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/compile_test/tools_test_inc_test.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -14,6 +14,9 @@
//
#include "test_compile_result.hpp"
+inline void check_result_imp(boost::math::tools::test_result<double>, boost::math::tools::test_result<double>){}
+
+
void check()
{
check_result<float>(boost::math::tools::relative_error<float>(f, f));
Deleted: sandbox/math_toolkit/libs/math/test/compile_test/tools_toms748_solve_inc_test.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/compile_test/tools_toms748_solve_inc_test.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
+++ (empty file)
@@ -1,18 +0,0 @@
-// Copyright John Maddock 2006.
-// Use, modification and distribution are subject to the
-// Boost Software License, Version 1.0. (See accompanying file
-// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
-//
-// Basic sanity check that header <boost/math/tools/toms748_solve.hpp>
-// #includes all the files that it needs to.
-//
-#include <boost/math/tools/toms748_solve.hpp>
-
-#define T double
-#define Tol boost::math::tools::eps_tolerance<double>
-
-typedef T (*F)(T);
-
-template std::pair<T, T> boost::math::tools::toms748_solve<F, T, Tol >(F, const T&, const T&, const T&, const T&, Tol, boost::uintmax_t&);
-template std::pair<T, T> boost::math::tools::toms748_solve<F, T, Tol>(F f, const T& ax, const T& bx, Tol tol, boost::uintmax_t& max_iter);
-template std::pair<T, T> boost::math::tools::bracket_and_solve_root<F, T, Tol>(F f, const T& guess, const T& factor, bool rising, Tol tol, boost::uintmax_t& max_iter);
Modified: sandbox/math_toolkit/libs/math/test/digamma_data.ipp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/digamma_data.ipp (original)
+++ sandbox/math_toolkit/libs/math/test/digamma_data.ipp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,3 +1,8 @@
+// (C) Copyright John Maddock 2006-7.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
#define SC_(x) static_cast<T>(BOOST_JOIN(x, L))
static const boost::array<boost::array<T, 2>, 500> digamma_data = { {
{ SC_(2.818432331085205078125), SC_(0.8484115700906551606307984398000472347785) },
Modified: sandbox/math_toolkit/libs/math/test/digamma_neg_data.ipp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/digamma_neg_data.ipp (original)
+++ sandbox/math_toolkit/libs/math/test/digamma_neg_data.ipp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,3 +1,8 @@
+// (C) Copyright John Maddock 2006-7.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
#define SC_(x) static_cast<T>(BOOST_JOIN(x, L))
static const boost::array<boost::array<T, 2>, 200> digamma_neg_data = { {
{ SC_(-99.7181549072265625), SC_(2.03892909952497242038694056382195623059) },
Modified: sandbox/math_toolkit/libs/math/test/digamma_root_data.ipp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/digamma_root_data.ipp (original)
+++ sandbox/math_toolkit/libs/math/test/digamma_root_data.ipp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,3 +1,8 @@
+// (C) Copyright John Maddock 2006-7.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
#define SC_(x) static_cast<T>(BOOST_JOIN(x, L))
static const boost::array<boost::array<T, 2>, 200> digamma_root_data = { {
{ SC_(1.39999997615814208984375), SC_(-0.06138456903152256550686860248931989075643) },
Modified: sandbox/math_toolkit/libs/math/test/digamma_small_data.ipp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/digamma_small_data.ipp (original)
+++ sandbox/math_toolkit/libs/math/test/digamma_small_data.ipp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,3 +1,8 @@
+// (C) Copyright John Maddock 2006-7.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
#define SC_(x) static_cast<T>(BOOST_JOIN(x, L))
static const boost::array<boost::array<T, 2>, 33> digamma_small_data = { {
{ SC_(0.1690093176520690576580818742513656616211e-8), SC_(-591683355.0172646248558707395909205014789) },
Modified: sandbox/math_toolkit/libs/math/test/ellint_k_data.ipp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/ellint_k_data.ipp (original)
+++ sandbox/math_toolkit/libs/math/test/ellint_k_data.ipp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,3 +1,8 @@
+// (C) Copyright John Maddock 2006-7.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
#define SC_(x) static_cast<T>(BOOST_JOIN(x, L))
static const boost::array<boost::array<T, 2>, 100> ellint_k_data = {
SC_(-0.99042308330535888671875e0), SC_(0.3377711175347896212115917173531827081735908096628e1),
Modified: sandbox/math_toolkit/libs/math/test/erf_data.ipp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/erf_data.ipp (original)
+++ sandbox/math_toolkit/libs/math/test/erf_data.ipp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,3 +1,8 @@
+// (C) Copyright John Maddock 2006-7.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
#define SC_(x) static_cast<T>(BOOST_JOIN(x, L))
static const boost::array<boost::array<T, 3>, 500> erf_data = { {
{ SC_(-7.954905033111572265625), SC_(-0.9999999999999999999999999999768236114552), SC_(1.999999999999999999999999999976823611455) },
Modified: sandbox/math_toolkit/libs/math/test/erf_inv_data.ipp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/erf_inv_data.ipp (original)
+++ sandbox/math_toolkit/libs/math/test/erf_inv_data.ipp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,3 +1,8 @@
+// (C) Copyright John Maddock 2006-7.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
#define SC_(x) static_cast<T>(BOOST_JOIN(x, L))
static const boost::array<boost::array<T, 2>, 100> erf_inv_data = { {
{ SC_(-0.990433037281036376953125), SC_(-1.832184533179510927322805923563700329767) },
Modified: sandbox/math_toolkit/libs/math/test/erf_large_data.ipp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/erf_large_data.ipp (original)
+++ sandbox/math_toolkit/libs/math/test/erf_large_data.ipp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,3 +1,8 @@
+// (C) Copyright John Maddock 2006-7.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
#define SC_(x) static_cast<T>(BOOST_JOIN(x, L))
static const boost::array<boost::array<T, 3>, 300> erf_large_data = { {
{ SC_(8.2311115264892578125), SC_(0.9999999999999999999999999999997436415644), SC_(0.2563584356432915693836191701249115171878e-30) },
Modified: sandbox/math_toolkit/libs/math/test/erfc_inv_big_data.ipp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/erfc_inv_big_data.ipp (original)
+++ sandbox/math_toolkit/libs/math/test/erfc_inv_big_data.ipp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,3 +1,8 @@
+// (C) Copyright John Maddock 2006-7.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
#define SC_(x) static_cast<T>(BOOST_JOIN(x, L))
static const boost::array<boost::array<T, 2>, 200> erfc_inv_big_data = { {
{ SC_(0.5460825444184401149953083908674803067585e-4312), SC_(99.62016927389407649911084501709563799849) },
Modified: sandbox/math_toolkit/libs/math/test/erfc_inv_data.ipp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/erfc_inv_data.ipp (original)
+++ sandbox/math_toolkit/libs/math/test/erfc_inv_data.ipp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,3 +1,8 @@
+// (C) Copyright John Maddock 2006-7.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
#define SC_(x) static_cast<T>(BOOST_JOIN(x, L))
static const boost::array<boost::array<T, 2>, 100> erfc_inv_data = { {
{ SC_(0.00956696830689907073974609375), SC_(1.832184391051582711731256541599359331735) },
Modified: sandbox/math_toolkit/libs/math/test/gamma_inv_big_data.ipp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/gamma_inv_big_data.ipp (original)
+++ sandbox/math_toolkit/libs/math/test/gamma_inv_big_data.ipp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,3 +1,8 @@
+// (C) Copyright John Maddock 2006-7.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
#define SC_(x) static_cast<T>(BOOST_JOIN(x, L))
static const boost::array<boost::array<T, 4>, 130> gamma_inv_big_data = { {
{ SC_(464.56927490234375), SC_(0.12698681652545928955078125), SC_(440.0905015614498663381793089656310373835539712118699915057655756381750702144551901256933419148259778), SC_(489.2489328115381710888005650788332818303123263238882523231037266766796974176786885492715539575179927) },
Modified: sandbox/math_toolkit/libs/math/test/gamma_inv_data.ipp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/gamma_inv_data.ipp (original)
+++ sandbox/math_toolkit/libs/math/test/gamma_inv_data.ipp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,3 +1,8 @@
+// (C) Copyright John Maddock 2006-7.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
#define SC_(x) static_cast<T>(BOOST_JOIN(x, L))
static const boost::array<boost::array<T, 4>, 200> gamma_inv_data = { {
{ SC_(9.754039764404296875), SC_(0.12698681652545928955078125), SC_(6.349849983781954486964960115093039567468747967664820851534065876063014180392060424555352423162443804), SC_(13.35954665556050630769710564071384909890705633863167415813992116806093647564994418684947673739937248) },
Modified: sandbox/math_toolkit/libs/math/test/gamma_inv_small_data.ipp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/gamma_inv_small_data.ipp (original)
+++ sandbox/math_toolkit/libs/math/test/gamma_inv_small_data.ipp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,85 +1,90 @@
+// (C) Copyright John Maddock 2006-7.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
#define SC_(x) static_cast<T>(BOOST_JOIN(x, L))
static const boost::array<boost::array<T, 4>, 229> gamma_inv_small_data = { {
- { SC_(0.1730655412757187150418758392333984375e-5), SC_(0.12698681652545928955078125), SC_(0.2239623606222809074122747811596115646210220735131141509259977248899758059576948436798908594057794725e-517862), SC_(0.4348301951174619607003912855228982264838968134589390827069898370149065135278987288014463439625604227e-34079) },
- { SC_(0.1730655412757187150418758392333984375e-5), SC_(0.135477006435394287109375), SC_(0.9832661142546970309065948494116195914044751609094617663675341704778529043412686011701793912754530322e-501622), SC_(0.174464879621346471044494182889773112103066192989857880445657763562407515813032064473382568887549155e-36531) },
- { SC_(0.1730655412757187150418758392333984375e-5), SC_(0.22103404998779296875), SC_(0.8367188988033804556441828789142666841098768711906267440588049611090664598162301930590308375972597743e-378782), SC_(0.258455732678645501224573885451125893770282157149004436646252270592694652815341234774299743101856032e-62682) },
- { SC_(0.1730655412757187150418758392333984375e-5), SC_(0.308167040348052978515625), SC_(0.2205873777306860224249147129964654825654772808335654855092638386176586877302351181235652317545193535e-295387), SC_(0.8841860184607764624716199689352601821223421516721282102648409952215997935928956722103353938434066324e-92450) },
- { SC_(0.1730655412757187150418758392333984375e-5), SC_(0.6323592662811279296875), SC_(0.3493006236342872627718268547235558974110453236408370553242260146873678814721124761086879547194341511e-115006), SC_(0.4608598583105815395151633406100700185774288566360162761619249236808047706604292396779780216945145655e-251105) },
- { SC_(0.1730655412757187150418758392333984375e-5), SC_(0.814723670482635498046875), SC_(0.1307814977375223234061697346935750965506413900088172878810937417241710162327371948752530053786611785e-51419), SC_(0.3622247004413029118815942894731774856416774764001901351075227450895011592470141353244995696694896319e-423065) },
- { SC_(0.1730655412757187150418758392333984375e-5), SC_(0.835008561611175537109375), SC_(0.3407200009988954922968231040073535782592944660979975072820794043769535120578823528671413904276314187e-45248), SC_(0.40372680297867266879468280760885460454290870234025769400910020388606341293084660523346882864736631e-452163) },
- { SC_(0.1730655412757187150418758392333984375e-5), SC_(0.905791938304901123046875), SC_(0.1289547938840298804104533289571370292449761595410863583261482629787772675014213604864800473713128265e-24829), SC_(0.4473385981314550569653428208559396173592281928696895222750064028650962596615670418178431916147100131e-592788) },
- { SC_(0.1730655412757187150418758392333984375e-5), SC_(0.9133758544921875), SC_(0.2660916718277898648353162270511365962890563186837505224306478516822433113175485818467727525519960066e-22737), SC_(0.6065564736497368801762295026989180367578487822196046971460097223432141011146248705024295896736469553e-613849) },
- { SC_(0.1730655412757187150418758392333984375e-5), SC_(0.968867778778076171875), SC_(0.1473132778697774093465699897329346789995005439716750867355563556776005696738800270428366009192934656e-7936), SC_(0.6008673144885279892931053509531579477623416731984800692761855880946172764550286223383877167245766902e-870647) },
- { SC_(0.216575062950141727924346923828125e-5), SC_(0.12698681652545928955078125), SC_(0.8500545195325853360129687030255002945655259106744411868936199400386357779413785394252606937409149347e-413825), SC_(0.1168004659330719336985231445704960139768804061229080049955849277439667205757483213992057220049540351e-27232) },
- { SC_(0.216575062950141727924346923828125e-5), SC_(0.135477006435394287109375), SC_(0.7202712693841376368216354323694296792211539722228687704587193232171864702453427173668794173358037833e-400847), SC_(0.2252614264634486253201447701279415032436991420138140648287940022937659078016357382571415445200213866e-29192) },
- { SC_(0.216575062950141727924346923828125e-5), SC_(0.22103404998779296875), SC_(0.3000327882810984063485886505392286395644270610646887344028999837107973933925695988567563167728045096e-302685), SC_(0.1498490062697145666757563645833685565995577423177516513148297134617720423214544808430852418820345691e-50089) },
- { SC_(0.216575062950141727924346923828125e-5), SC_(0.308167040348052978515625), SC_(0.1307004433406758598014428627573055623164994782163856086219980606033295840179348304515381612579150121e-236044), SC_(0.8660761056125063203743178336674650301770491595301193399539391174485981887085468404902606561784465577e-73877) },
- { SC_(0.216575062950141727924346923828125e-5), SC_(0.6323592662811279296875), SC_(0.1183316844216403526657583856991948601012391672622156410900987978451851712537691445331530312832797228e-91901), SC_(0.1591103740030003499118723418460479045052885251014777131066205491018123438721843692240137750119143378e-200658) },
- { SC_(0.216575062950141727924346923828125e-5), SC_(0.814723670482635498046875), SC_(0.1674134325233505112606127764095613275142520744956844047709789044616079191515075547796473275770297974e-41089), SC_(0.3612384181299129469928622773435995792869558303198558837492185251476669534034831500723829680749590518e-338072) },
- { SC_(0.216575062950141727924346923828125e-5), SC_(0.835008561611175537109375), SC_(0.6513834432351054603935790801928696636769937839154029815627322893900997971153735962011923847861105547e-36158), SC_(0.2131860779789139256037424176809792095632204680337931857718865949785434825481960848149849797507583928e-361324) },
- { SC_(0.216575062950141727924346923828125e-5), SC_(0.905791938304901123046875), SC_(0.2178005192333624215784803979717837598562757410620706503281900091107825680350931337396209745019443998e-19841), SC_(0.4588085686858952503042372234625485480201105499533793863948812241019952913466033029898154440318470087e-473698) },
- { SC_(0.216575062950141727924346923828125e-5), SC_(0.9133758544921875), SC_(0.2044546663391562477705354540370760821409485274148331480980359986548683615601729039239239614213065235e-18169), SC_(0.7629190706250225994074616748192014275571599576934851198947217095948168969106405661485602778753139218e-490528) },
- { SC_(0.216575062950141727924346923828125e-5), SC_(0.968867778778076171875), SC_(0.4096487433832820170639333743831954761351590021205697452562807451168473548459292965564190974788844749e-6342), SC_(0.1297397706877886168379273776356177633807822967666079798581567618567115144239687805362946264983224597e-695735) },
- { SC_(0.72700195232755504548549652099609375e-5), SC_(0.12698681652545928955078125), SC_(0.460289138417023240211835453578728773675893958998560741266616339802513531273727174963248143404409346e-123279), SC_(0.1227830593913913689043483463822718345251662053270570059659747620207531684387617971000150489495390622e-8112) },
- { SC_(0.72700195232755504548549652099609375e-5), SC_(0.135477006435394287109375), SC_(0.6439991263768059081770908658752929598087302065287439367522303278837306676039083594400840449710127147e-119413), SC_(0.1936099411280065786600982265792717722767945024296565235561154800531592756609798398701501116557434413e-8696) },
- { SC_(0.72700195232755504548549652099609375e-5), SC_(0.22103404998779296875), SC_(0.2064880008938546016135832883384716687050715182089334885089172611730709160883330305789994119189833204e-90170), SC_(0.9636789658116208361662045675832611481515953065813422246552622845538828381107902733604814371406262203e-14922) },
- { SC_(0.72700195232755504548549652099609375e-5), SC_(0.308167040348052978515625), SC_(0.4672763627314931787409452529965189883928299396526058431027743531008131781333308125789010166445570443e-70318), SC_(0.5333958645484846264899444976530540348886306684971665853490471154195979393073606296468477524956455995e-22008) },
- { SC_(0.72700195232755504548549652099609375e-5), SC_(0.6323592662811279296875), SC_(0.1232079542911688319553284787645084489874316487664902104337227730213965329139279051931070447347538552e-27377), SC_(0.1745508475051527213009559427098382072109145551947732820968960362083588524860039683359355038443208669e-59776) },
- { SC_(0.72700195232755504548549652099609375e-5), SC_(0.814723670482635498046875), SC_(0.1296871584563229453031476552376127081733495432987283917208707733104304941994062901047954719016264728e-12240), SC_(0.3119684049016554066402196968135164105103042293007478934952055073327703314807997817770702753165916888e-100712) },
- { SC_(0.72700195232755504548549652099609375e-5), SC_(0.835008561611175537109375), SC_(0.1744156521766280393141688111513263176846896834358940986864024481897475752003777342235119371016119832e-10771), SC_(0.414282922235332770074768291902894089464647802773088955269313913489638472173573774702189380297337679e-107639) },
- { SC_(0.72700195232755504548549652099609375e-5), SC_(0.905791938304901123046875), SC_(0.9134084128666229552771771583922013819958821761786059137020004689307969234520514787745058008336030516e-5911), SC_(0.2085723217142930347094312090575084590094262400334108078273206186864903163220911787400224976002324296e-141115) },
- { SC_(0.72700195232755504548549652099609375e-5), SC_(0.9133758544921875), SC_(0.1106626349398291975361851522331692345605272541414957089479290323484012747768775482956833740133997023e-5412), SC_(0.5019947814569084821972649400070925089480757099017899755164384177383260941610254064551897764836241042e-146129) },
- { SC_(0.72700195232755504548549652099609375e-5), SC_(0.968867778778076171875), SC_(0.2608738285704836848239817641016769732591640383513307387951906227411127886545943640386587729196529798e-1889), SC_(0.9391569555686887348572282531856270103209070385690661485800330330324704801693506326997201625650584228e-207261) },
- { SC_(0.14000004739500582218170166015625e-4), SC_(0.12698681652545928955078125), SC_(0.339390501360481883384596846727229310838380493148059239101677398294559127652204528478268766605745691e-64017), SC_(0.8930970995970272744149034236099991596203915342210295009610487968429898591362281212215882612432334172e-4213) },
- { SC_(0.14000004739500582218170166015625e-4), SC_(0.135477006435394287109375), SC_(0.1478165479650781320569422389970436453616410129224510514070984667774343182955852078638154528221379033e-62009), SC_(0.6166505887233514954458318978151305493474273629828733433707686152568316580969117228752011354754100409e-4516) },
- { SC_(0.14000004739500582218170166015625e-4), SC_(0.22103404998779296875), SC_(0.2636223483866300712285073854631877501273640030610221560132162856371236675991856524728587705746297074e-46824), SC_(0.1179070268459566531464548375815239425103518998753490696351340626821057948491563316259813424943317095e-7748) },
- { SC_(0.14000004739500582218170166015625e-4), SC_(0.308167040348052978515625), SC_(0.3085719676015113786900559879398114388323199985826467699671192420873003184123044267039751593375655573e-36515), SC_(0.1866107010075390801548946745085437000221498205178902450996305353941274930070444383308861599008651802e-11428) },
- { SC_(0.14000004739500582218170166015625e-4), SC_(0.6323592662811279296875), SC_(0.7743073115105881135630532411055705358953657608902295030130428779685124579667759424182550282392251774e-14217), SC_(0.3891618185709909838836983643181316431906213234898591756880393231944196898745253316876972214816450983e-31041) },
- { SC_(0.14000004739500582218170166015625e-4), SC_(0.814723670482635498046875), SC_(0.222216709392403859077345757164648641055669472167062646627925353942822049167347003774956605136793258e-6356), SC_(0.1553098038974094715628835971928945389167186664370201233578708844500900929376674522237036066734443409e-52298) },
- { SC_(0.14000004739500582218170166015625e-4), SC_(0.835008561611175537109375), SC_(0.1762412434192703586953808931252239830607212327509661647619944439092944014510892565024867820443452495e-5593), SC_(0.1427522693565869357184324274786304328120490007393000466898389151996230157936654133010870707870098114e-55895) },
- { SC_(0.14000004739500582218170166015625e-4), SC_(0.905791938304901123046875), SC_(0.2259490828022611962651286035615477033923299926896382236832176774513532167028895827574135582466792268e-3069), SC_(0.2241017130581831897730462424904751051004418852587147386250684104551402650352326106103864234388080914e-73279) },
- { SC_(0.14000004739500582218170166015625e-4), SC_(0.9133758544921875), SC_(0.1005028821672110309415483560972173499716663965719086172500020531716576068606833471119991129664424692e-2810), SC_(0.6979771306818377405428798318204058016896524472057195949985191958384843690760804078528960881333370124e-75883) },
- { SC_(0.14000004739500582218170166015625e-4), SC_(0.968867778778076171875), SC_(0.4399884537105952873524158618429125109607698051551640190711957784190261472987797258480803340986411014e-981), SC_(0.8636123050850289155805959438262889417641775752173387265269754240416817175647540561424609415147039372e-107628) },
- { SC_(0.17196454791701398789882659912109375e-4), SC_(0.12698681652545928955078125), SC_(0.8931367727030424252994406039858535255018561374129051577258665728233205820316949561800237503288164831e-52118), SC_(0.104535845548742628763976899233973069829736957363121321494519130075530673267495622335035426409117717e-3429) },
- { SC_(0.17196454791701398789882659912109375e-4), SC_(0.135477006435394287109375), SC_(0.2589093342255974756648686300693355584048765521630894862720053856422193831195464113676002513110719721e-50483), SC_(0.16198355017053579069996072009618961612118734166699913346916923061929129768370182367736118778593987e-3676) },
- { SC_(0.17196454791701398789882659912109375e-4), SC_(0.22103404998779296875), SC_(0.1131654056362539852227074104110635132727613506886451792169695589196046225490082242712248876956203819e-38120), SC_(0.2418895718086420844325145820876239350943692602292988120400434717351012753484624854522329731793070942e-6308) },
- { SC_(0.17196454791701398789882659912109375e-4), SC_(0.308167040348052978515625), SC_(0.7737905254468185735537123684595618067772979718013636259212988387325859473074990334198003279697030936e-29728), SC_(0.3789484131191558145146646615273547527416033448113469449596149406457540248009040893261262302435368351e-9304) },
- { SC_(0.17196454791701398789882659912109375e-4), SC_(0.6323592662811279296875), SC_(0.3137871276904600122078241916282438984659729219024238596335891667491938041450321977041506616782238e-11574), SC_(0.2965711263826589720683465047050190541366519308458462201756314491278502965590196986656248475977616153e-25271) },
- { SC_(0.17196454791701398789882659912109375e-4), SC_(0.814723670482635498046875), SC_(0.7326832021626652729926634452678165177166851058442304763758241120359336029481475591271983428389901225e-5175), SC_(0.2318348542835619519901827000824812239793449432180459609887843839490589299765256524982276851927704163e-42577) },
- { SC_(0.17196454791701398789882659912109375e-4), SC_(0.835008561611175537109375), SC_(0.9072264440263374752486629470877711396201875705326118961327802635563036219892924006850270554141376785e-4554), SC_(0.8711416684170844816954635283039605021423223228389166020499752751997518422712015098390278042969483672e-45506) },
- { SC_(0.17196454791701398789882659912109375e-4), SC_(0.905791938304901123046875), SC_(0.7733918387072244011789525914900951463450874222624581078251551054909444827960192900592203159773605989e-2499), SC_(0.2571614323671499433984893431798511621767008667253572255135699548767389412223368502318608579885806739e-59658) },
- { SC_(0.17196454791701398789882659912109375e-4), SC_(0.9133758544921875), SC_(0.2880392224683552008509186538991920740926457663134606188864795658000814467352709744686493645033034548e-2288), SC_(0.6907597702339754306046761268666758595826983111062588436918559231568829549328274669882079071902690878e-61778) },
- { SC_(0.17196454791701398789882659912109375e-4), SC_(0.968867778778076171875), SC_(0.1022975882773694387190778303740674368993455977250017664945426765113234255858470803315310166922905371e-798), SC_(0.4221221067519434825549040047213825597247842932163338061854159935919427768014137623800912125956789909e-87622) },
- { SC_(0.60085076256655156612396240234375e-4), SC_(0.12698681652545928955078125), SC_(0.3495586827191531770535231367080732953937412615151725020717996080086485589322652358680193672275949898e-14916), SC_(0.1427408156921550203964733950491640458157220298138194009074319242547971197914912790465510416201935332e-981) },
- { SC_(0.60085076256655156612396240234375e-4), SC_(0.135477006435394287109375), SC_(0.2135466730997637347930895979558997098695943227325314240670753140974513599520909745766884732886655805e-14448), SC_(0.3289650507739338949969385888328899090131305388988539989881991832060549330782773650444691368664734468e-1052) },
- { SC_(0.60085076256655156612396240234375e-4), SC_(0.22103404998779296875), SC_(0.345959891505994573920146532876979428616649904934071674464948074830873268130904440040136502276139602e-10910), SC_(0.1922865381371752376627657245783892335772421066560217575311011311368498385558583990275666613793226423e-1805) },
- { SC_(0.60085076256655156612396240234375e-4), SC_(0.308167040348052978515625), SC_(0.3829822614343259616831020022328609580180989772106774197697228391575249415735806534706101978431990667e-8508), SC_(0.7572927936365265126558450099180450202432844005568818989453609586651932854239926958201865023965242319e-2663) },
- { SC_(0.60085076256655156612396240234375e-4), SC_(0.6323592662811279296875), SC_(0.1505939828418726687381398631458743669409627162041838070367135649373806227725011954989680487803891401e-3312), SC_(0.1162084281422969377226523082569747326821725361483871487282780438115902733161392316080316605540230283e-7232) },
- { SC_(0.60085076256655156612396240234375e-4), SC_(0.814723670482635498046875), SC_(0.4878605561199170254993555550797777052716601720140458448451172217585515433949731427090377765716097212e-1481), SC_(0.1063915552171246679201552775630173002963289477510275148968381199465573516908634786030473651045783934e-12185) },
- { SC_(0.60085076256655156612396240234375e-4), SC_(0.835008561611175537109375), SC_(0.2793510340491223179257861943279119048708385675764655558162807552719005454520920320041493548667648507e-1303), SC_(0.8062724058997189528788123299280499937216685401578538979985976698039322816246111574568131825618363452e-13024) },
- { SC_(0.60085076256655156612396240234375e-4), SC_(0.905791938304901123046875), SC_(0.3723369364599241695177888518370141855064474706077264974725355828069490776654597120310317692557528914e-715), SC_(0.2675898630365685302839648550793845147075820261853792964188019963414156834541244282744703718483685635e-17074) },
- { SC_(0.60085076256655156612396240234375e-4), SC_(0.9133758544921875), SC_(0.686661318428780198379649389187459622222641698815843660306340661130449872396450257428209063508091594e-655), SC_(0.6346671704911213035096115747653835531630846832152154403390282927003498855267031866758008107863915401e-17681) },
- { SC_(0.60085076256655156612396240234375e-4), SC_(0.968867778778076171875), SC_(0.1408309142624800225107896427273371067150419787065439439024094472721083328341474031598813748773825589e-228), SC_(0.1389798156337807295947127479191824417596961602671849528553981940395023410910494839804442748480910921e-25077) },
- { SC_(0.000116783194243907928466796875), SC_(0.12698681652545928955078125), SC_(0.2217067042070261656114441331372031056796482747774007544530459644859070550516331388940310599871235441e-7674), SC_(0.5221646641482264704755333400660433306534344743849778997838663392671213632920091372806932416847456426e-505) },
- { SC_(0.000116783194243907928466796875), SC_(0.135477006435394287109375), SC_(0.105233435264908696721158867206120047209589060765634758100281587073699030442056794890590820165442202e-7433), SC_(0.2370236641827873916593769301860779629219958726808667166915237399481829007502028048228683540298377156e-541) },
- { SC_(0.000116783194243907928466796875), SC_(0.22103404998779296875), SC_(0.2720692749476253433194485594804086624863867951230595896914130979792434561231106235256886587990710606e-5613), SC_(0.684727384218509774616151552639132642516873634348657590026321675141070778694592753558587501067032324e-929) },
+ { SC_(0.1730655412757187150418758392333984375e-5), SC_(0.12698681652545928955078125), SC_(BOOST_MATH_SMALL_CONSTANT(0.2239623606222809074122747811596115646210220735131141509259977248899758059576948436798908594057794725e-517862)), SC_(BOOST_MATH_SMALL_CONSTANT(0.4348301951174619607003912855228982264838968134589390827069898370149065135278987288014463439625604227e-34079)) },
+ { SC_(0.1730655412757187150418758392333984375e-5), SC_(0.135477006435394287109375), SC_(BOOST_MATH_SMALL_CONSTANT(0.9832661142546970309065948494116195914044751609094617663675341704778529043412686011701793912754530322e-501622)), SC_(BOOST_MATH_SMALL_CONSTANT(0.174464879621346471044494182889773112103066192989857880445657763562407515813032064473382568887549155e-36531)) },
+ { SC_(0.1730655412757187150418758392333984375e-5), SC_(0.22103404998779296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.8367188988033804556441828789142666841098768711906267440588049611090664598162301930590308375972597743e-378782)), SC_(BOOST_MATH_SMALL_CONSTANT(0.258455732678645501224573885451125893770282157149004436646252270592694652815341234774299743101856032e-62682)) },
+ { SC_(0.1730655412757187150418758392333984375e-5), SC_(0.308167040348052978515625), SC_(BOOST_MATH_SMALL_CONSTANT(0.2205873777306860224249147129964654825654772808335654855092638386176586877302351181235652317545193535e-295387)), SC_(BOOST_MATH_SMALL_CONSTANT(0.8841860184607764624716199689352601821223421516721282102648409952215997935928956722103353938434066324e-92450)) },
+ { SC_(0.1730655412757187150418758392333984375e-5), SC_(0.6323592662811279296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.3493006236342872627718268547235558974110453236408370553242260146873678814721124761086879547194341511e-115006)), SC_(BOOST_MATH_SMALL_CONSTANT(0.4608598583105815395151633406100700185774288566360162761619249236808047706604292396779780216945145655e-251105)) },
+ { SC_(0.1730655412757187150418758392333984375e-5), SC_(0.814723670482635498046875), SC_(BOOST_MATH_SMALL_CONSTANT(0.1307814977375223234061697346935750965506413900088172878810937417241710162327371948752530053786611785e-51419)), SC_(BOOST_MATH_SMALL_CONSTANT(0.3622247004413029118815942894731774856416774764001901351075227450895011592470141353244995696694896319e-423065)) },
+ { SC_(0.1730655412757187150418758392333984375e-5), SC_(0.835008561611175537109375), SC_(BOOST_MATH_SMALL_CONSTANT(0.3407200009988954922968231040073535782592944660979975072820794043769535120578823528671413904276314187e-45248)), SC_(BOOST_MATH_SMALL_CONSTANT(0.40372680297867266879468280760885460454290870234025769400910020388606341293084660523346882864736631e-452163)) },
+ { SC_(0.1730655412757187150418758392333984375e-5), SC_(0.905791938304901123046875), SC_(BOOST_MATH_SMALL_CONSTANT(0.1289547938840298804104533289571370292449761595410863583261482629787772675014213604864800473713128265e-24829)), SC_(BOOST_MATH_SMALL_CONSTANT(0.4473385981314550569653428208559396173592281928696895222750064028650962596615670418178431916147100131e-592788)) },
+ { SC_(0.1730655412757187150418758392333984375e-5), SC_(0.9133758544921875), SC_(BOOST_MATH_SMALL_CONSTANT(0.2660916718277898648353162270511365962890563186837505224306478516822433113175485818467727525519960066e-22737)), SC_(BOOST_MATH_SMALL_CONSTANT(0.6065564736497368801762295026989180367578487822196046971460097223432141011146248705024295896736469553e-613849)) },
+ { SC_(0.1730655412757187150418758392333984375e-5), SC_(0.968867778778076171875), SC_(BOOST_MATH_SMALL_CONSTANT(0.1473132778697774093465699897329346789995005439716750867355563556776005696738800270428366009192934656e-7936)), SC_(BOOST_MATH_SMALL_CONSTANT(0.6008673144885279892931053509531579477623416731984800692761855880946172764550286223383877167245766902e-870647)) },
+ { SC_(0.216575062950141727924346923828125e-5), SC_(0.12698681652545928955078125), SC_(BOOST_MATH_SMALL_CONSTANT(0.8500545195325853360129687030255002945655259106744411868936199400386357779413785394252606937409149347e-413825)), SC_(BOOST_MATH_SMALL_CONSTANT(0.1168004659330719336985231445704960139768804061229080049955849277439667205757483213992057220049540351e-27232)) },
+ { SC_(0.216575062950141727924346923828125e-5), SC_(0.135477006435394287109375), SC_(BOOST_MATH_SMALL_CONSTANT(0.7202712693841376368216354323694296792211539722228687704587193232171864702453427173668794173358037833e-400847)), SC_(BOOST_MATH_SMALL_CONSTANT(0.2252614264634486253201447701279415032436991420138140648287940022937659078016357382571415445200213866e-29192)) },
+ { SC_(0.216575062950141727924346923828125e-5), SC_(0.22103404998779296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.3000327882810984063485886505392286395644270610646887344028999837107973933925695988567563167728045096e-302685)), SC_(BOOST_MATH_SMALL_CONSTANT(0.1498490062697145666757563645833685565995577423177516513148297134617720423214544808430852418820345691e-50089)) },
+ { SC_(0.216575062950141727924346923828125e-5), SC_(0.308167040348052978515625), SC_(BOOST_MATH_SMALL_CONSTANT(0.1307004433406758598014428627573055623164994782163856086219980606033295840179348304515381612579150121e-236044)), SC_(BOOST_MATH_SMALL_CONSTANT(0.8660761056125063203743178336674650301770491595301193399539391174485981887085468404902606561784465577e-73877)) },
+ { SC_(0.216575062950141727924346923828125e-5), SC_(0.6323592662811279296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.1183316844216403526657583856991948601012391672622156410900987978451851712537691445331530312832797228e-91901)), SC_(BOOST_MATH_SMALL_CONSTANT(0.1591103740030003499118723418460479045052885251014777131066205491018123438721843692240137750119143378e-200658)) },
+ { SC_(0.216575062950141727924346923828125e-5), SC_(0.814723670482635498046875), SC_(BOOST_MATH_SMALL_CONSTANT(0.1674134325233505112606127764095613275142520744956844047709789044616079191515075547796473275770297974e-41089)), SC_(BOOST_MATH_SMALL_CONSTANT(0.3612384181299129469928622773435995792869558303198558837492185251476669534034831500723829680749590518e-338072)) },
+ { SC_(0.216575062950141727924346923828125e-5), SC_(0.835008561611175537109375), SC_(BOOST_MATH_SMALL_CONSTANT(0.6513834432351054603935790801928696636769937839154029815627322893900997971153735962011923847861105547e-36158)), SC_(BOOST_MATH_SMALL_CONSTANT(0.2131860779789139256037424176809792095632204680337931857718865949785434825481960848149849797507583928e-361324)) },
+ { SC_(0.216575062950141727924346923828125e-5), SC_(0.905791938304901123046875), SC_(BOOST_MATH_SMALL_CONSTANT(0.2178005192333624215784803979717837598562757410620706503281900091107825680350931337396209745019443998e-19841)), SC_(BOOST_MATH_SMALL_CONSTANT(0.4588085686858952503042372234625485480201105499533793863948812241019952913466033029898154440318470087e-473698)) },
+ { SC_(0.216575062950141727924346923828125e-5), SC_(0.9133758544921875), SC_(BOOST_MATH_SMALL_CONSTANT(0.2044546663391562477705354540370760821409485274148331480980359986548683615601729039239239614213065235e-18169)), SC_(BOOST_MATH_SMALL_CONSTANT(0.7629190706250225994074616748192014275571599576934851198947217095948168969106405661485602778753139218e-490528)) },
+ { SC_(0.216575062950141727924346923828125e-5), SC_(0.968867778778076171875), SC_(BOOST_MATH_SMALL_CONSTANT(0.4096487433832820170639333743831954761351590021205697452562807451168473548459292965564190974788844749e-6342)), SC_(BOOST_MATH_SMALL_CONSTANT(0.1297397706877886168379273776356177633807822967666079798581567618567115144239687805362946264983224597e-695735)) },
+ { SC_(0.72700195232755504548549652099609375e-5), SC_(0.12698681652545928955078125), SC_(BOOST_MATH_SMALL_CONSTANT(0.460289138417023240211835453578728773675893958998560741266616339802513531273727174963248143404409346e-123279)), SC_(BOOST_MATH_SMALL_CONSTANT(0.1227830593913913689043483463822718345251662053270570059659747620207531684387617971000150489495390622e-8112)) },
+ { SC_(0.72700195232755504548549652099609375e-5), SC_(0.135477006435394287109375), SC_(BOOST_MATH_SMALL_CONSTANT(0.6439991263768059081770908658752929598087302065287439367522303278837306676039083594400840449710127147e-119413)), SC_(BOOST_MATH_SMALL_CONSTANT(0.1936099411280065786600982265792717722767945024296565235561154800531592756609798398701501116557434413e-8696)) },
+ { SC_(0.72700195232755504548549652099609375e-5), SC_(0.22103404998779296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.2064880008938546016135832883384716687050715182089334885089172611730709160883330305789994119189833204e-90170)), SC_(BOOST_MATH_SMALL_CONSTANT(0.9636789658116208361662045675832611481515953065813422246552622845538828381107902733604814371406262203e-14922)) },
+ { SC_(0.72700195232755504548549652099609375e-5), SC_(0.308167040348052978515625), SC_(BOOST_MATH_SMALL_CONSTANT(0.4672763627314931787409452529965189883928299396526058431027743531008131781333308125789010166445570443e-70318)), SC_(BOOST_MATH_SMALL_CONSTANT(0.5333958645484846264899444976530540348886306684971665853490471154195979393073606296468477524956455995e-22008)) },
+ { SC_(0.72700195232755504548549652099609375e-5), SC_(0.6323592662811279296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.1232079542911688319553284787645084489874316487664902104337227730213965329139279051931070447347538552e-27377)), SC_(BOOST_MATH_SMALL_CONSTANT(0.1745508475051527213009559427098382072109145551947732820968960362083588524860039683359355038443208669e-59776)) },
+ { SC_(0.72700195232755504548549652099609375e-5), SC_(0.814723670482635498046875), SC_(BOOST_MATH_SMALL_CONSTANT(0.1296871584563229453031476552376127081733495432987283917208707733104304941994062901047954719016264728e-12240)), SC_(BOOST_MATH_SMALL_CONSTANT(0.3119684049016554066402196968135164105103042293007478934952055073327703314807997817770702753165916888e-100712)) },
+ { SC_(0.72700195232755504548549652099609375e-5), SC_(0.835008561611175537109375), SC_(BOOST_MATH_SMALL_CONSTANT(0.1744156521766280393141688111513263176846896834358940986864024481897475752003777342235119371016119832e-10771)), SC_(BOOST_MATH_SMALL_CONSTANT(0.414282922235332770074768291902894089464647802773088955269313913489638472173573774702189380297337679e-107639)) },
+ { SC_(0.72700195232755504548549652099609375e-5), SC_(0.905791938304901123046875), SC_(BOOST_MATH_SMALL_CONSTANT(0.9134084128666229552771771583922013819958821761786059137020004689307969234520514787745058008336030516e-5911)), SC_(BOOST_MATH_SMALL_CONSTANT(0.2085723217142930347094312090575084590094262400334108078273206186864903163220911787400224976002324296e-141115)) },
+ { SC_(0.72700195232755504548549652099609375e-5), SC_(0.9133758544921875), SC_(BOOST_MATH_SMALL_CONSTANT(0.1106626349398291975361851522331692345605272541414957089479290323484012747768775482956833740133997023e-5412)), SC_(BOOST_MATH_SMALL_CONSTANT(0.5019947814569084821972649400070925089480757099017899755164384177383260941610254064551897764836241042e-146129)) },
+ { SC_(0.72700195232755504548549652099609375e-5), SC_(0.968867778778076171875), SC_(0.2608738285704836848239817641016769732591640383513307387951906227411127886545943640386587729196529798e-1889), SC_(BOOST_MATH_SMALL_CONSTANT(0.9391569555686887348572282531856270103209070385690661485800330330324704801693506326997201625650584228e-207261)) },
+ { SC_(0.14000004739500582218170166015625e-4), SC_(0.12698681652545928955078125), SC_(BOOST_MATH_SMALL_CONSTANT(0.339390501360481883384596846727229310838380493148059239101677398294559127652204528478268766605745691e-64017)), SC_(0.8930970995970272744149034236099991596203915342210295009610487968429898591362281212215882612432334172e-4213) },
+ { SC_(0.14000004739500582218170166015625e-4), SC_(0.135477006435394287109375), SC_(BOOST_MATH_SMALL_CONSTANT(0.1478165479650781320569422389970436453616410129224510514070984667774343182955852078638154528221379033e-62009)), SC_(0.6166505887233514954458318978151305493474273629828733433707686152568316580969117228752011354754100409e-4516) },
+ { SC_(0.14000004739500582218170166015625e-4), SC_(0.22103404998779296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.2636223483866300712285073854631877501273640030610221560132162856371236675991856524728587705746297074e-46824)), SC_(BOOST_MATH_SMALL_CONSTANT(0.1179070268459566531464548375815239425103518998753490696351340626821057948491563316259813424943317095e-7748)) },
+ { SC_(0.14000004739500582218170166015625e-4), SC_(0.308167040348052978515625), SC_(BOOST_MATH_SMALL_CONSTANT(0.3085719676015113786900559879398114388323199985826467699671192420873003184123044267039751593375655573e-36515)), SC_(BOOST_MATH_SMALL_CONSTANT(0.1866107010075390801548946745085437000221498205178902450996305353941274930070444383308861599008651802e-11428)) },
+ { SC_(0.14000004739500582218170166015625e-4), SC_(0.6323592662811279296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.7743073115105881135630532411055705358953657608902295030130428779685124579667759424182550282392251774e-14217)), SC_(BOOST_MATH_SMALL_CONSTANT(0.3891618185709909838836983643181316431906213234898591756880393231944196898745253316876972214816450983e-31041)) },
+ { SC_(0.14000004739500582218170166015625e-4), SC_(0.814723670482635498046875), SC_(BOOST_MATH_SMALL_CONSTANT(0.222216709392403859077345757164648641055669472167062646627925353942822049167347003774956605136793258e-6356)), SC_(BOOST_MATH_SMALL_CONSTANT(0.1553098038974094715628835971928945389167186664370201233578708844500900929376674522237036066734443409e-52298)) },
+ { SC_(0.14000004739500582218170166015625e-4), SC_(0.835008561611175537109375), SC_(BOOST_MATH_SMALL_CONSTANT(0.1762412434192703586953808931252239830607212327509661647619944439092944014510892565024867820443452495e-5593)), SC_(BOOST_MATH_SMALL_CONSTANT(0.1427522693565869357184324274786304328120490007393000466898389151996230157936654133010870707870098114e-55895)) },
+ { SC_(0.14000004739500582218170166015625e-4), SC_(0.905791938304901123046875), SC_(0.2259490828022611962651286035615477033923299926896382236832176774513532167028895827574135582466792268e-3069), SC_(BOOST_MATH_SMALL_CONSTANT(0.2241017130581831897730462424904751051004418852587147386250684104551402650352326106103864234388080914e-73279)) },
+ { SC_(0.14000004739500582218170166015625e-4), SC_(0.9133758544921875), SC_(0.1005028821672110309415483560972173499716663965719086172500020531716576068606833471119991129664424692e-2810), SC_(BOOST_MATH_SMALL_CONSTANT(0.6979771306818377405428798318204058016896524472057195949985191958384843690760804078528960881333370124e-75883)) },
+ { SC_(0.14000004739500582218170166015625e-4), SC_(0.968867778778076171875), SC_(0.4399884537105952873524158618429125109607698051551640190711957784190261472987797258480803340986411014e-981), SC_(BOOST_MATH_SMALL_CONSTANT(0.8636123050850289155805959438262889417641775752173387265269754240416817175647540561424609415147039372e-107628)) },
+ { SC_(0.17196454791701398789882659912109375e-4), SC_(0.12698681652545928955078125), SC_(BOOST_MATH_SMALL_CONSTANT(0.8931367727030424252994406039858535255018561374129051577258665728233205820316949561800237503288164831e-52118)), SC_(0.104535845548742628763976899233973069829736957363121321494519130075530673267495622335035426409117717e-3429) },
+ { SC_(0.17196454791701398789882659912109375e-4), SC_(0.135477006435394287109375), SC_(BOOST_MATH_SMALL_CONSTANT(0.2589093342255974756648686300693355584048765521630894862720053856422193831195464113676002513110719721e-50483)), SC_(0.16198355017053579069996072009618961612118734166699913346916923061929129768370182367736118778593987e-3676) },
+ { SC_(0.17196454791701398789882659912109375e-4), SC_(0.22103404998779296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.1131654056362539852227074104110635132727613506886451792169695589196046225490082242712248876956203819e-38120)), SC_(BOOST_MATH_SMALL_CONSTANT(0.2418895718086420844325145820876239350943692602292988120400434717351012753484624854522329731793070942e-6308)) },
+ { SC_(0.17196454791701398789882659912109375e-4), SC_(0.308167040348052978515625), SC_(BOOST_MATH_SMALL_CONSTANT(0.7737905254468185735537123684595618067772979718013636259212988387325859473074990334198003279697030936e-29728)), SC_(BOOST_MATH_SMALL_CONSTANT(0.3789484131191558145146646615273547527416033448113469449596149406457540248009040893261262302435368351e-9304)) },
+ { SC_(0.17196454791701398789882659912109375e-4), SC_(0.6323592662811279296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.3137871276904600122078241916282438984659729219024238596335891667491938041450321977041506616782238e-11574)), SC_(BOOST_MATH_SMALL_CONSTANT(0.2965711263826589720683465047050190541366519308458462201756314491278502965590196986656248475977616153e-25271)) },
+ { SC_(0.17196454791701398789882659912109375e-4), SC_(0.814723670482635498046875), SC_(BOOST_MATH_SMALL_CONSTANT(0.7326832021626652729926634452678165177166851058442304763758241120359336029481475591271983428389901225e-5175)), SC_(BOOST_MATH_SMALL_CONSTANT(0.2318348542835619519901827000824812239793449432180459609887843839490589299765256524982276851927704163e-42577)) },
+ { SC_(0.17196454791701398789882659912109375e-4), SC_(0.835008561611175537109375), SC_(0.9072264440263374752486629470877711396201875705326118961327802635563036219892924006850270554141376785e-4554), SC_(BOOST_MATH_SMALL_CONSTANT(0.8711416684170844816954635283039605021423223228389166020499752751997518422712015098390278042969483672e-45506)) },
+ { SC_(0.17196454791701398789882659912109375e-4), SC_(0.905791938304901123046875), SC_(0.7733918387072244011789525914900951463450874222624581078251551054909444827960192900592203159773605989e-2499), SC_(BOOST_MATH_SMALL_CONSTANT(0.2571614323671499433984893431798511621767008667253572255135699548767389412223368502318608579885806739e-59658)) },
+ { SC_(0.17196454791701398789882659912109375e-4), SC_(0.9133758544921875), SC_(0.2880392224683552008509186538991920740926457663134606188864795658000814467352709744686493645033034548e-2288), SC_(BOOST_MATH_SMALL_CONSTANT(0.6907597702339754306046761268666758595826983111062588436918559231568829549328274669882079071902690878e-61778)) },
+ { SC_(0.17196454791701398789882659912109375e-4), SC_(0.968867778778076171875), SC_(0.1022975882773694387190778303740674368993455977250017664945426765113234255858470803315310166922905371e-798), SC_(BOOST_MATH_SMALL_CONSTANT(0.4221221067519434825549040047213825597247842932163338061854159935919427768014137623800912125956789909e-87622)) },
+ { SC_(0.60085076256655156612396240234375e-4), SC_(0.12698681652545928955078125), SC_(BOOST_MATH_SMALL_CONSTANT(0.3495586827191531770535231367080732953937412615151725020717996080086485589322652358680193672275949898e-14916)), SC_(0.1427408156921550203964733950491640458157220298138194009074319242547971197914912790465510416201935332e-981) },
+ { SC_(0.60085076256655156612396240234375e-4), SC_(0.135477006435394287109375), SC_(BOOST_MATH_SMALL_CONSTANT(0.2135466730997637347930895979558997098695943227325314240670753140974513599520909745766884732886655805e-14448)), SC_(0.3289650507739338949969385888328899090131305388988539989881991832060549330782773650444691368664734468e-1052) },
+ { SC_(0.60085076256655156612396240234375e-4), SC_(0.22103404998779296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.345959891505994573920146532876979428616649904934071674464948074830873268130904440040136502276139602e-10910)), SC_(0.1922865381371752376627657245783892335772421066560217575311011311368498385558583990275666613793226423e-1805) },
+ { SC_(0.60085076256655156612396240234375e-4), SC_(0.308167040348052978515625), SC_(BOOST_MATH_SMALL_CONSTANT(0.3829822614343259616831020022328609580180989772106774197697228391575249415735806534706101978431990667e-8508)), SC_(0.7572927936365265126558450099180450202432844005568818989453609586651932854239926958201865023965242319e-2663) },
+ { SC_(0.60085076256655156612396240234375e-4), SC_(0.6323592662811279296875), SC_(0.1505939828418726687381398631458743669409627162041838070367135649373806227725011954989680487803891401e-3312), SC_(BOOST_MATH_SMALL_CONSTANT(0.1162084281422969377226523082569747326821725361483871487282780438115902733161392316080316605540230283e-7232)) },
+ { SC_(0.60085076256655156612396240234375e-4), SC_(0.814723670482635498046875), SC_(0.4878605561199170254993555550797777052716601720140458448451172217585515433949731427090377765716097212e-1481), SC_(BOOST_MATH_SMALL_CONSTANT(0.1063915552171246679201552775630173002963289477510275148968381199465573516908634786030473651045783934e-12185)) },
+ { SC_(0.60085076256655156612396240234375e-4), SC_(0.835008561611175537109375), SC_(0.2793510340491223179257861943279119048708385675764655558162807552719005454520920320041493548667648507e-1303), SC_(BOOST_MATH_SMALL_CONSTANT(0.8062724058997189528788123299280499937216685401578538979985976698039322816246111574568131825618363452e-13024)) },
+ { SC_(0.60085076256655156612396240234375e-4), SC_(0.905791938304901123046875), SC_(0.3723369364599241695177888518370141855064474706077264974725355828069490776654597120310317692557528914e-715), SC_(BOOST_MATH_SMALL_CONSTANT(0.2675898630365685302839648550793845147075820261853792964188019963414156834541244282744703718483685635e-17074)) },
+ { SC_(0.60085076256655156612396240234375e-4), SC_(0.9133758544921875), SC_(0.686661318428780198379649389187459622222641698815843660306340661130449872396450257428209063508091594e-655), SC_(BOOST_MATH_SMALL_CONSTANT(0.6346671704911213035096115747653835531630846832152154403390282927003498855267031866758008107863915401e-17681)) },
+ { SC_(0.60085076256655156612396240234375e-4), SC_(0.968867778778076171875), SC_(0.1408309142624800225107896427273371067150419787065439439024094472721083328341474031598813748773825589e-228), SC_(BOOST_MATH_SMALL_CONSTANT(0.1389798156337807295947127479191824417596961602671849528553981940395023410910494839804442748480910921e-25077)) },
+ { SC_(0.000116783194243907928466796875), SC_(0.12698681652545928955078125), SC_(BOOST_MATH_SMALL_CONSTANT(0.2217067042070261656114441331372031056796482747774007544530459644859070550516331388940310599871235441e-7674)), SC_(0.5221646641482264704755333400660433306534344743849778997838663392671213632920091372806932416847456426e-505) },
+ { SC_(0.000116783194243907928466796875), SC_(0.135477006435394287109375), SC_(BOOST_MATH_SMALL_CONSTANT(0.105233435264908696721158867206120047209589060765634758100281587073699030442056794890590820165442202e-7433)), SC_(0.2370236641827873916593769301860779629219958726808667166915237399481829007502028048228683540298377156e-541) },
+ { SC_(0.000116783194243907928466796875), SC_(0.22103404998779296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.2720692749476253433194485594804086624863867951230595896914130979792434561231106235256886587990710606e-5613)), SC_(0.684727384218509774616151552639132642516873634348657590026321675141070778694592753558587501067032324e-929) },
{ SC_(0.000116783194243907928466796875), SC_(0.308167040348052978515625), SC_(0.1945012262728113947174092742153820077658597862905731912818669165842855882338833757206696600313843808e-4377), SC_(0.5010782163204587164990362139900406618666271013083021513642451903006783829276845763652918240207035204e-1370) },
{ SC_(0.000116783194243907928466796875), SC_(0.6323592662811279296875), SC_(0.2678076814684253388207891549015203441815387696909210275114031463037462825184779525302927782878112018e-1704), SC_(0.3355699609556020763761818703516660718965707115611808065243164333646480380401408451621152937718649945e-3721) },
- { SC_(0.000116783194243907928466796875), SC_(0.814723670482635498046875), SC_(0.5519443694295817358667560227277734050233658512973422585235619565148594801790465772880702625518466729e-762), SC_(0.1521784147836719873429974745180948701783240959166067438690358394858795409898569420554712263193503787e-6269) },
- { SC_(0.000116783194243907928466796875), SC_(0.835008561611175537109375), SC_(0.157942290116999715496899441614386437418372850300529884937353323341838987405061685005424700586694651e-670), SC_(0.9300638747707064248838234333003135359793243459187200542535851863926418832283653872151990341768442837e-6701) },
- { SC_(0.000116783194243907928466796875), SC_(0.905791938304901123046875), SC_(0.6156292720469250152191172977847735846672093818556639529154131998043270417507793402988855017473876543e-368), SC_(0.9835608551327350462842211000204483083175377942415395254552324222852108420746589293651996143411926356e-8785) },
- { SC_(0.000116783194243907928466796875), SC_(0.9133758544921875), SC_(0.6253743527010208852460893728919175814204088534982411548439945271078509605242716100053403273517595345e-337), SC_(0.7649623463360145768926462776036988864408675923758317376955853151958300585672667306524247171463173293e-9097) },
- { SC_(0.000116783194243907928466796875), SC_(0.968867778778076171875), SC_(0.1361725185925066404699231307445713287240077451502469225873588813126039928575926034147580871482594361e-117), SC_(0.1970152731145422501566851277990128812683805989338922500352787857395891626410876936571713429989797078e-12902) },
- { SC_(0.000149052008055150508880615234375), SC_(0.12698681652545928955078125), SC_(0.6389419951365505168213742535607083801424774564325987934934320986183843469503298391268834096210384788e-6013), SC_(0.1132257114686176234011736341834046927596967272385604144092389093309188024362428818319072190846006759e-395) },
- { SC_(0.000149052008055150508880615234375), SC_(0.135477006435394287109375), SC_(0.2381927813471867112836439772059583211544291930893077773183488576064825635114446625206544102956590674e-5824), SC_(0.3792814100179551144868861498633247032095979823165205190557116303390384013164367512797566918532298706e-424) },
+ { SC_(0.000116783194243907928466796875), SC_(0.814723670482635498046875), SC_(0.5519443694295817358667560227277734050233658512973422585235619565148594801790465772880702625518466729e-762), SC_(BOOST_MATH_SMALL_CONSTANT(0.1521784147836719873429974745180948701783240959166067438690358394858795409898569420554712263193503787e-6269)) },
+ { SC_(0.000116783194243907928466796875), SC_(0.835008561611175537109375), SC_(0.157942290116999715496899441614386437418372850300529884937353323341838987405061685005424700586694651e-670), SC_(BOOST_MATH_SMALL_CONSTANT(0.9300638747707064248838234333003135359793243459187200542535851863926418832283653872151990341768442837e-6701)) },
+ { SC_(0.000116783194243907928466796875), SC_(0.905791938304901123046875), SC_(0.6156292720469250152191172977847735846672093818556639529154131998043270417507793402988855017473876543e-368), SC_(BOOST_MATH_SMALL_CONSTANT(0.9835608551327350462842211000204483083175377942415395254552324222852108420746589293651996143411926356e-8785)) },
+ { SC_(0.000116783194243907928466796875), SC_(0.9133758544921875), SC_(0.6253743527010208852460893728919175814204088534982411548439945271078509605242716100053403273517595345e-337), SC_(BOOST_MATH_SMALL_CONSTANT(0.7649623463360145768926462776036988864408675923758317376955853151958300585672667306524247171463173293e-9097)) },
+ { SC_(0.000116783194243907928466796875), SC_(0.968867778778076171875), SC_(0.1361725185925066404699231307445713287240077451502469225873588813126039928575926034147580871482594361e-117), SC_(BOOST_MATH_SMALL_CONSTANT(0.1970152731145422501566851277990128812683805989338922500352787857395891626410876936571713429989797078e-12902)) },
+ { SC_(0.000149052008055150508880615234375), SC_(0.12698681652545928955078125), SC_(BOOST_MATH_SMALL_CONSTANT(0.6389419951365505168213742535607083801424774564325987934934320986183843469503298391268834096210384788e-6013)), SC_(0.1132257114686176234011736341834046927596967272385604144092389093309188024362428818319072190846006759e-395) },
+ { SC_(0.000149052008055150508880615234375), SC_(0.135477006435394287109375), SC_(BOOST_MATH_SMALL_CONSTANT(0.2381927813471867112836439772059583211544291930893077773183488576064825635114446625206544102956590674e-5824)), SC_(0.3792814100179551144868861498633247032095979823165205190557116303390384013164367512797566918532298706e-424) },
{ SC_(0.000149052008055150508880615234375), SC_(0.22103404998779296875), SC_(0.480502281371541323510453286429380108383847434196562929430889417823667454309781431802390267860464642e-4398), SC_(0.869923210970446775403812791329035518913267972514758421741352735004103670263658218621055807149889839e-728) },
{ SC_(0.000149052008055150508880615234375), SC_(0.308167040348052978515625), SC_(0.9579390051284372806338599117207986988623456690676593707891369126675631673683496595535062285698484254e-3430), SC_(0.2027352139344072302169602968458387297725861222591064073568084413094637648206161549322711611266665852e-1073) },
{ SC_(0.000149052008055150508880615234375), SC_(0.6323592662811279296875), SC_(0.252715079209943016894239891780405650507203415479186589329662192446200300419348083258509471825568878e-1335), SC_(0.1403081619061688835919802963399237605442962090617704076725629642161530595967917719397788786896506275e-2915) },
{ SC_(0.000149052008055150508880615234375), SC_(0.814723670482635498046875), SC_(0.5148574706569430386641987063601033253830428118093670131363449532199675730799583712667871199946857343e-597), SC_(0.319031006547729922943758015717164739726038835119416722315254234904437269217055210321155694677845045e-4912) },
- { SC_(0.000149052008055150508880615234375), SC_(0.835008561611175537109375), SC_(0.2336232060636468680298763086592315128520864805577827877335195943286399564396468640251084171088188349e-525), SC_(0.4416237396840875270455255045802517084401101447247106118309253277459771697052944520730353485873255011e-5250) },
- { SC_(0.000149052008055150508880615234375), SC_(0.905791938304901123046875), SC_(0.2820619087618214712586580492879138245117856541724464329377249767437182870498139716594924089127883574e-288), SC_(0.686841976395102755795354846511530418971756957162735766100482927595263735008547634284729277201118786e-6883) },
- { SC_(0.000149052008055150508880615234375), SC_(0.9133758544921875), SC_(0.5551180136919825874947373282742567924663694577557624395315113366298468961803654270194668889810023739e-264), SC_(0.198311682935662628620401335083784485107643910427839233819119308115206998402883037266058134006220653e-7127) },
- { SC_(0.000149052008055150508880615234375), SC_(0.968867778778076171875), SC_(0.3954218544494374628285692941954536478743569125315731147622958212628060558583646866269887091192423723e-92), SC_(0.3927403032923167204720626686805690283947153220433473944029398069872610810854541045510542047794087263e-10109) },
+ { SC_(0.000149052008055150508880615234375), SC_(0.835008561611175537109375), SC_(0.2336232060636468680298763086592315128520864805577827877335195943286399564396468640251084171088188349e-525), SC_(BOOST_MATH_SMALL_CONSTANT(0.4416237396840875270455255045802517084401101447247106118309253277459771697052944520730353485873255011e-5250)) },
+ { SC_(0.000149052008055150508880615234375), SC_(0.905791938304901123046875), SC_(0.2820619087618214712586580492879138245117856541724464329377249767437182870498139716594924089127883574e-288), SC_(BOOST_MATH_SMALL_CONSTANT(0.686841976395102755795354846511530418971756957162735766100482927595263735008547634284729277201118786e-6883)) },
+ { SC_(0.000149052008055150508880615234375), SC_(0.9133758544921875), SC_(0.5551180136919825874947373282742567924663694577557624395315113366298468961803654270194668889810023739e-264), SC_(BOOST_MATH_SMALL_CONSTANT(0.198311682935662628620401335083784485107643910427839233819119308115206998402883037266058134006220653e-7127)) },
+ { SC_(0.000149052008055150508880615234375), SC_(0.968867778778076171875), SC_(0.3954218544494374628285692941954536478743569125315731147622958212628060558583646866269887091192423723e-92), SC_(BOOST_MATH_SMALL_CONSTANT(0.3927403032923167204720626686805690283947153220433473944029398069872610810854541045510542047794087263e-10109)) },
{ SC_(0.0003985252114944159984588623046875), SC_(0.12698681652545928955078125), SC_(0.7152190427298601594571159938212251086727382665743757471985690406777609605559890885949770886823916422e-2249), SC_(0.5699249277609096543624494507830937487962804479457359767676834065232598749036497233458920062585731546e-148) },
{ SC_(0.0003985252114944159984588623046875), SC_(0.135477006435394287109375), SC_(0.2409135648458346302800756296889879854959535365354709895644810074566687455139859746087284776201028457e-2178), SC_(0.1276198129287563187800451501928656024314768400617821939379735513033808929977111820512238247732326539e-158) },
{ SC_(0.0003985252114944159984588623046875), SC_(0.22103404998779296875), SC_(0.6802256292332066376146874410039580432569421387156606795388161811485643529868965898859950121665320351e-1645), SC_(0.3483577767702590198649809139957360887592650219312098941409457297880080360156436690426366723037964841e-272) },
Modified: sandbox/math_toolkit/libs/math/test/handle_test_result.hpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/handle_test_result.hpp (original)
+++ sandbox/math_toolkit/libs/math/test/handle_test_result.hpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,4 +1,7 @@
-
+// (C) Copyright John Maddock 2006-7.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_HANDLE_TEST_RESULT
#define BOOST_MATH_HANDLE_TEST_RESULT
@@ -131,7 +134,11 @@
{
if(i)
std::cout << ", ";
+#if defined(__SGI_STL_PORT)
+ std::cout << boost::math::tools::real_cast<double>(worst[i]);
+#else
std::cout << worst[i];
+#endif
}
std::cout << " }";
}
Modified: sandbox/math_toolkit/libs/math/test/hermite.ipp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/hermite.ipp (original)
+++ sandbox/math_toolkit/libs/math/test/hermite.ipp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,3 +1,8 @@
+// (C) Copyright John Maddock 2006-7.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
#define SC_(x) static_cast<T>(BOOST_JOIN(x, L))
static const boost::array<boost::array<T, 3>, 420> hermite = {
SC_(0.8e1), SC_(-0.804919189453125e3), SC_(0.45107507538695517471998224862706929168983312035236e26),
Modified: sandbox/math_toolkit/libs/math/test/hypot_test.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/hypot_test.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/hypot_test.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -116,6 +116,7 @@
int test_main(int, char* [])
{
+ BOOST_MATH_CONTROL_FP;
test_boundaries();
test_spots();
return 0;
Modified: sandbox/math_toolkit/libs/math/test/ibeta_int_data.ipp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/ibeta_int_data.ipp (original)
+++ sandbox/math_toolkit/libs/math/test/ibeta_int_data.ipp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,3 +1,8 @@
+// (C) Copyright John Maddock 2006-7.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
#define SC_(x) static_cast<T>(BOOST_JOIN(x, L))
static const boost::array<boost::array<T, 7>, 1000> ibeta_int_data = { {
{ SC_(1), SC_(1), SC_(0.12707412242889404296875), SC_(0.12707412242889404296875), SC_(0.87292587757110595703125), SC_(0.12707412242889404296875), SC_(0.87292587757110595703125) },
Modified: sandbox/math_toolkit/libs/math/test/ibeta_inv_data.ipp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/ibeta_inv_data.ipp (original)
+++ sandbox/math_toolkit/libs/math/test/ibeta_inv_data.ipp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,149 +1,154 @@
+// (C) Copyright John Maddock 2006-7.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
#define SC_(x) static_cast<T>(BOOST_JOIN(x, L))
static const boost::array<boost::array<T, 5>, 1210> ibeta_inv_data = { {
- { SC_(0.104760829344741068780422210693359375e-4), SC_(39078.1875), SC_(0.913384497165679931640625), SC_(0.2135769916611873809373928693612157637794870746322109915739746618652569766882593624385400901395922558e-3760), SC_(0.6169146818683135737866366973021696361959736535710675458813428774517757535576031054239811928697394346e-101417) },
- { SC_(0.1127331415773369371891021728515625e-4), SC_(0.0226620174944400787353515625), SC_(0.1355634629726409912109375), SC_(0.6398069040886718270700942839013650119743974939592699138527850527236181568779785317811717302449254101e-76964), SC_(0.1123304116325227195797533167182832111272986902383876280357481893374380043283848201429836361152904889e-5592) },
- { SC_(0.113778432933031581342220306396484375e-4), SC_(0.03654421865940093994140625), SC_(0.9688708782196044921875), SC_(0.5825356514402150924555439351704966386176716144780670249830283141506929468296452211723778443894234951e-1195), SC_(0.1299246431009640780314778465681510321819328250560790012308930348335051591055920757982605267188242976e-132423) },
- { SC_(0.1142846667789854109287261962890625e-4), SC_(0.00244517601095139980316162109375), SC_(0.1355634629726409912109375), SC_(0.9626654068785645417511885142439608103434581112273323673426712424844243107090177710187642425011765594e-75761), SC_(0.1968131210354581442057523237500619235039616488884597039029510000400233015927645935497663749543679489e-5358) },
- { SC_(0.1184685606858693063259124755859375e-4), SC_(0.015964560210704803466796875), SC_(0.3082362115383148193359375), SC_(0.3589991782488314563613963926946558354830549116688735009134661806895352582322279412078679966549495e-43116), SC_(0.8498116607235052405320447197085177573554285064950351753253894145078534997511294854886147550142192844e-13482) },
- { SC_(0.1215800511999987065792083740234375e-4), SC_(24110.49609375), SC_(0.1355634629726409912109375), SC_(0.6446009470761694712696178802124602151206198100070272397820841954953457589393814080011513726764543968e-71386), SC_(0.4411620506592737532109016496457382048657857194340645526246628280311812592288988016544405559990034441e-5208) },
- { SC_(0.130341722979210317134857177734375e-4), SC_(26168.341796875), SC_(0.12707412242889404296875), SC_(0.2166416563492047698893468112939141389204329099488114879770220649554966170201180232315257069497901648e-68742), SC_(0.1077379305584195394942430687801727576986179591753422104711707268006164084179781893335299072659829737e-4532) },
- { SC_(0.13885271982871927320957183837890625e-4), SC_(0.04976274073123931884765625), SC_(0.632396042346954345703125), SC_(0.1505435304898114171757823372486217209606557096566030133214604079062750941794084777046798389177683298e-14323), SC_(0.8191336340381130196534918861139224810035912334983040442057176348873687528604185195239248980481620309e-31292) },
- { SC_(0.139016165121574886143207550048828125e-4), SC_(0.3188882328686304390430450439453125e-4), SC_(0.81474220752716064453125), SC_(1), SC_(0.4280498729519778987331529352631079454822421273284878121766790306889766290450686026189682387674704682e-41368) },
- { SC_(0.14759907571715302765369415283203125e-4), SC_(2.8241312503814697265625), SC_(0.632396042346954345703125), SC_(0.149627207977763220942721958324439773028753443201215406980939699041850526798527355589362837986915531e-13483), SC_(0.2558857410093259430689102879079456979338542212672378310349005537672813392923619357148699354237694984e-29446) },
- { SC_(0.150794721776037476956844329833984375e-4), SC_(0.4875471131526865065097808837890625e-4), SC_(0.221111953258514404296875), SC_(0.1196552230711909114279654256938815998740725267957310722981422063213023453615282876024769302334980208e-35700), SC_(1) },
- { SC_(0.1519624856882728636264801025390625e-4), SC_(16177.537109375), SC_(0.81474220752716064453125), SC_(0.1452425209503955537338422359333948812006899768260140476005442384340571893909020382026092251217563149e-5859), SC_(0.1118345883008806780173762266422459055560035027762640953226900168492818873939725415273834608038325661e-48188) },
- { SC_(0.1554497794131748378276824951171875e-4), SC_(40.46924591064453125), SC_(0.905801355838775634765625), SC_(0.1263629472761081761336139611957096532344967812079201565462877028056022440086149370452532349289977537e-2765), SC_(0.9919220074175430612528899218323716721906730140324380689847652631919111677660506550414306011565356188e-66001) },
- { SC_(0.15675454051233828067779541015625e-4), SC_(0.000101913392427377402782440185546875), SC_(0.81474220752716064453125), SC_(0.2853716542422836893914328033448649871440784183324642438029547731008406102487895766538278835997616547e-1712), SC_(0.2298245136733929898089558753739834100156855492642462724846011273903684294484329372722305239196215964e-42747) },
- { SC_(0.15971760149113833904266357421875e-4), SC_(19.206241607666015625), SC_(0.913384497165679931640625), SC_(0.9582815834618172404720774906601516866545834853534306710079796796969465944037138120013655983754855937e-2465), SC_(0.6326194310940251351062236483308143964837777396539364617390517845304796920345734401134182052813379253e-66519) },
- { SC_(0.16304524251609109342098236083984375e-4), SC_(0.00039033559733070433139801025390625), SC_(0.12707412242889404296875), SC_(0.2749781704753392658488528370082054060663950436757594599541089373221441866088075915394337505609699445e-53860), SC_(0.9828097758952314597050411618472387868890317665219757564769723884179197098195673563971975573178259902e-2530) },
- { SC_(0.16487292668898589909076690673828125e-4), SC_(470997.15625), SC_(0.12707412242889404296875), SC_(0.4541512737936566032722209936653561647042510033334139786119604257285077373847313505998057776219766456e-54347), SC_(0.1549128670548823853403220618952571853257756905438794574182300339725200919598045497915626657567121817e-3585) },
- { SC_(0.165044693858362734317779541015625e-4), SC_(3.57584381103515625), SC_(0.3082362115383148193359375), SC_(0.794238046161941112343749823902683082201010853905108950104923153872086335073632221934630976272829339e-30969), SC_(0.2292466372763638638323475388751441681337812313997406078153894115038015753694828319985703460438800914e-9697) },
- { SC_(0.166259487741626799106597900390625e-4), SC_(147818.875), SC_(0.632396042346954345703125), SC_(0.4840219552903389147605728190427790980761548760276021823940610272825144416373810916979400186204380198e-11975), SC_(0.3355691678737767782891887487339395952689357895271229870171944057769814627603827220615993999615612822e-26146) },
- { SC_(0.16847467122715897858142852783203125e-4), SC_(0.002207652665674686431884765625), SC_(0.9688708782196044921875), SC_(0.5906847920417500109372659805901565510642317169243157405152707420759307862602125145324167267749837092e-619), SC_(0.170124244972649861948335303360579678196382235848312316943910825664898769097190318119987719590491326e-89243) },
- { SC_(0.1747490387060679495334625244140625e-4), SC_(0.26349246501922607421875), SC_(0.632396042346954345703125), SC_(0.12843516647174278387874388748896407588386560678553377934101747757777562235501611818724095565006393e-11386), SC_(0.2536225597635438964484652244350105224785079947699063064898395295623461960169137518050619029664249122e-24869) },
- { SC_(0.17863809262053109705448150634765625e-4), SC_(439.38714599609375), SC_(0.8350250720977783203125), SC_(0.8244670330185256737263969143826902858678798594720040631958052373536602436314305948340758463250207469e-4386), SC_(0.7352777980091604256079199692103097168555239346683458759313911552620269891691410672306190764078484364e-43811) },
- { SC_(0.1895247623906470835208892822265625e-4), SC_(1.07109558582305908203125), SC_(0.9688708782196044921875), SC_(0.1958346418095304122274704022704012284830310878577730588329056279113401343952355448951150975955101985e-724), SC_(0.1204102194190057648286366185479451893365394896311826527650411245123421846075536145059629401728008699e-79505) },
- { SC_(0.19740999050554819405078887939453125e-4), SC_(105.41565704345703125), SC_(0.3082362115383148193359375), SC_(0.4171715706701289778828007890899248697163485933652243450349057614457988149098646573044273964497613009e-25893), SC_(0.4289676998659303218462202648585110823764351223533266318047234914191374259260207999216104631145461676e-8109) },
- { SC_(0.2004335328820161521434783935546875e-4), SC_(482.00701904296875), SC_(0.905801355838775634765625), SC_(0.2300786867506388908353022364598233237429971469616025799538393909707204968894677299870201252175165343e-2146), SC_(0.1799474819364733378341626493308533546950444872243502571473922786173950526564225295056238004071701751e-51189) },
- { SC_(0.2017128645093180239200592041015625e-4), SC_(232.9792938232421875), SC_(0.1355634629726409912109375), SC_(0.9782152059532611372922752218945140821311267421642771819909290848934391306656384389032421044430100903e-43027), SC_(0.7953007761061898269032745221331387025438802327808884652857398546810598867143141546217396350761801352e-3139) },
- { SC_(0.20203804524498991668224334716796875e-4), SC_(42.8336334228515625), SC_(0.1355634629726409912109375), SC_(0.9505827239534352483275638000309426098918435445176677914029048966050973796738555346371505206583029493e-42957), SC_(0.4879738324842388808208264019692856316850110596695651192968764647838931697912322372907706638620027653e-3133) },
- { SC_(0.20300331016187556087970733642578125e-4), SC_(42.38938140869140625), SC_(0.9688708782196044921875), SC_(0.3816869308438157775438575701400816009072542007939410749970155744055876159478755860836778076571703486e-678), SC_(0.127201723496121023828113564898347237146568849457350377769280925620763942807444814392111020123066826e-74228) },
- { SC_(0.2051885167020373046398162841796875e-4), SC_(236087.890625), SC_(0.8350250720977783203125), SC_(0.2236779936126539857160222845963337050945115341054176739161533824043234207571359913112629207518401323e-3821), SC_(0.5187557340526034705800892748375743405416818891180832866460176073642680219205270491482771189624680261e-38145) },
- { SC_(0.21041001673438586294651031494140625e-4), SC_(3.8230969905853271484375), SC_(0.12707412242889404296875), SC_(0.2611050064285175125482131273698210462799115955403897510685180499383028995007734375008754345306902882e-42581), SC_(0.1263421304086059092982729044494063450981720138268968234081464502945179653799025464601347361390558349e-2805) },
- { SC_(0.2107691761921159923076629638671875e-4), SC_(0.04489715397357940673828125), SC_(0.221111953258514404296875), SC_(0.3900373750276575859585149320905549732932763658865496075030893208483961831557459599669540245248710031e-31085), SC_(0.4404830308340426746130675276769279825579374873733567061860857053216363945038073562970896042079876724e-5139) },
- { SC_(0.21139929231139831244945526123046875e-4), SC_(0.17535277947899885475635528564453125e-4), SC_(0.8350250720977783203125), SC_(1), SC_(0.473270793701914810977987563126323761517466803284082613651628762799832085337970872475482395336393227e-20769) },
- { SC_(0.21433561414596624672412872314453125e-4), SC_(3719.279052734375), SC_(0.81474220752716064453125), SC_(0.5697755869431091234460288256178201914669184558313577703589192769624449530099467135008330171347109014e-4155), SC_(0.5052326319604125969261540109121341746553338155418535572465629231132318093045693841291017785062704029e-34166) },
- { SC_(0.22448601157520897686481475830078125e-4), SC_(445071.28125), SC_(0.221111953258514404296875), SC_(0.1154051199795256693167224940027851782575716013364780412354086379221856337304339043125449929568329416e-29200), SC_(0.5317196597832401400329618898138594703102901476369725585493922299078299104951909429878615105121363765e-4840) },
- { SC_(0.22683978386339731514453887939453125e-4), SC_(0.0405500046908855438232421875), SC_(0.905801355838775634765625), SC_(0.3320529691129112781183346091758024243131258015814127148220088686655475575144026542984765934147092121e-1883), SC_(0.3063046523049329771837110182553346515767597472422624500690020343432489716503981152245110195835717713e-45217) },
- { SC_(0.234849067055620253086090087890625e-4), SC_(25542.79296875), SC_(0.9688708782196044921875), SC_(0.3441730180671123519495976583198624119926731047061369849411568660575245402127433117800519623117640306e-589), SC_(0.3751784934105693320455113760515845925736447146431148474482569436486280690421206833759119870649005669e-64166) },
- { SC_(0.23615430109202861785888671875e-4), SC_(4.50702953338623046875), SC_(0.905801355838775634765625), SC_(0.4988379611542168986414874238506419923844468056925819195174874699047526593073353049454994954833639083e-1820), SC_(0.7341840761161541739065036501325419142613794847229658509278972834999220997543398966712274676180693554e-43445) },
- { SC_(0.2399934965069405734539031982421875e-4), SC_(462.945892333984375), SC_(0.81474220752716064453125), SC_(0.3110095684445031013162420462860776918422474101001024588575132091902755892192793640381029649700096935e-3710), SC_(0.8797682788975050110209751601822341604088251725221823097384363697152422631690456231980809725272529829e-30513) },
- { SC_(0.24066381229204125702381134033203125e-4), SC_(1270.3814697265625), SC_(0.12707412242889404296875), SC_(0.4576190191092904160454048722884335228372052972542105302690069527168297955063547521360024576623301653e-37231), SC_(0.1420858306336174465235602280120246573601819672841164112725840259803341782460177715076940711063890289e-2455) },
- { SC_(0.25217834263457916676998138427734375e-4), SC_(1832.2723388671875), SC_(0.913384497165679931640625), SC_(0.1686620810515798084807520522209297815900439981037687996482171429286465763028158287049421053915524687e-1563), SC_(0.2500645969247788958633246925374597812716157867336745565308065217364621462118518662925089351446878108e-42132) },
- { SC_(0.252623358392156660556793212890625e-4), SC_(0.18408362567424774169921875), SC_(0.1355634629726409912109375), SC_(0.2743427505483676484256175431234170641774606693989735069168855839327638237012878361548973902795998892e-34351), SC_(0.7031666053222338307595293315449316865297838014279428098534333754498580394690990873394128824939905225e-2502) },
- { SC_(0.2568908166722394526004791259765625e-4), SC_(0.0026883506216108798980712890625), SC_(0.905801355838775634765625), SC_(0.1578875734130016176302992983732961079346954066547091801166809994581467564455851791032398832398018025e-1511), SC_(0.2341259619261955766782778385507062619379614455720724579754306604198840826735605051621159618286928358e-39776) },
- { SC_(0.26870451620197854936122894287109375e-4), SC_(0.000144985810038633644580841064453125), SC_(0.8350250720977783203125), SC_(0.9888337425304244712013096232948525191068632527405749434176388147263952275675242673761059158623788143e-166), SC_(0.5413087344681832213235005061729244935796516193762206919387843998935430650190903037264031499756215662e-26376) },
- { SC_(0.27549775040824897587299346923828125e-4), SC_(0.1503586471080780029296875), SC_(0.12707412242889404296875), SC_(0.8181540477895649748762420463171081554083663224695416509954885206095656839589686087124835665442879842e-32518), SC_(0.2462322550135262716431415588537906535110788732273365839795667016396525276471877892724411526414976991e-2139) },
- { SC_(0.2782344745355658233165740966796875e-4), SC_(0.295027554035186767578125), SC_(0.8350250720977783203125), SC_(0.1278292308361380656193177947071432183369866616602705655667678332292163066466318520326718174045292449e-2812), SC_(0.3860943098799782356408940219712438194770816672701033543757478725092151765852410278931715506024795017e-28125) },
- { SC_(0.28775624741683714091777801513671875e-4), SC_(25491.8359375), SC_(0.905801355838775634765625), SC_(0.1473261355137398155011141009775050446169103918759589552951768300766343955675642581210849928901748107e-1497), SC_(0.5217155068967073959232563103611620257843968467713802555935398994953775819903315697408459540543981014e-35658) },
- { SC_(0.2893155397032387554645538330078125e-4), SC_(494.983856201171875), SC_(0.9688708782196044921875), SC_(0.2214048516998759629744858269037850383644604658166103544023139293349638862809561382032391592312324544e-477), SC_(0.2322977714184520269211746119681752807171971177273511871734584204282302240392088583619323923321396253e-52085) },
- { SC_(0.29415024982881732285022735595703125e-4), SC_(0.00041924233664758503437042236328125), SC_(0.3082362115383148193359375), SC_(0.1405534159248066997103271948013564698708179432152430515950232282291382253871954661868456467068231098e-16374), SC_(0.222065748504377622879286572762480656498910969018522808743848314373828884496856282233576890159533318e-4439) },
- { SC_(0.29590575650217942893505096435546875e-4), SC_(0.283195674419403076171875), SC_(0.81474220752716064453125), SC_(0.2154808290713006032100156759319481127361319809621867304793677964782374968778883573291545611646288826e-3005), SC_(0.1603552053591524426177949971495129448566287164068848498039592571954479687286433631543286779538761406e-24743) },
- { SC_(0.299345629173330962657928466796875e-4), SC_(4.095668792724609375), SC_(0.81474220752716064453125), SC_(0.5196055449684084143516386383118687306867205699439977606524188083826834727571742938138760636632194297e-2973), SC_(0.2437053630285360958851482887590704784303383342870823574692973085259514678816776828062492453198275383e-24461) },
- { SC_(0.30238283216021955013275146484375e-4), SC_(47.60295867919921875), SC_(0.221111953258514404296875), SC_(0.9321887064205378872229585244564413110885910626258126088306621014298436870871951071821387187442611514e-21676), SC_(0.1213736685648309514074587400458688769158875012929347831971984355375331163800085456183839159724919364e-3590) },
- { SC_(0.3114132778136990964412689208984375e-4), SC_(348144), SC_(0.3082362115383148193359375), SC_(0.2564169166061677471672615381864930435296242794719327337679452161494929456649170217667065978734305135e-16418), SC_(0.9688429129424356903276490372990977877118692169687936851001252857728923160632456013823032483855292724e-5145) },
- { SC_(0.31231902539730072021484375e-4), SC_(33712.953125), SC_(0.221111953258514404296875), SC_(0.4571522067098797040562684640899168266975097279621382775130725293419218412779615105191774966472576827e-20989), SC_(0.2573106672840410380822917482839769800185745410605353368659945769528618592560687539288531970023811281e-3479) },
- { SC_(0.3187526090187020599842071533203125e-4), SC_(0.4971525049768388271331787109375e-4), SC_(0.905801355838775634765625), SC_(1), SC_(0.1507883810128888762679504360131900432849506796036146018007903657943596818799705890814512754055586328e-25436) },
- { SC_(0.3188861956004984676837921142578125e-4), SC_(16.32230377197265625), SC_(0.8350250720977783203125), SC_(0.1298262616465282715767271924980895028143644766095820511831644360803801759867912414728771230391885871e-2456), SC_(0.2767627169830641075284656055027015246053535193598921144000819790157135165458466893549180906222486659e-24542) },
- { SC_(0.319889441016130149364471435546875e-4), SC_(3931.19482421875), SC_(0.3082362115383148193359375), SC_(0.1773634713777084083511430573444851801451064251531875439312779096503415074392671715708488636019680445e-15981), SC_(0.1283323919641290075624851616052156931984540392148494145568105633891913544783329965742528684079350212e-5006) },
- { SC_(0.32712865504436194896697998046875e-4), SC_(3109.48583984375), SC_(0.9688708782196044921875), SC_(0.2623647149797575492783687118935843357045992324891910436571331718223281336138205915531066599158735727e-423), SC_(0.7171758557203420523043470585211560466194322904609620567954214024282315826385950612765018545398284663e-46066) },
- { SC_(0.3275294511695392429828643798828125e-4), SC_(25796.328125), SC_(0.8350250720977783203125), SC_(0.4992053462405342599776391467632566097299408028157087143908341093542047028790242197689077688285241312e-2395), SC_(0.7099977617736449666482713375435273015460103288886378949522985793917134341210311928525086779798465597e-23898) },
- { SC_(0.334105643560178577899932861328125e-4), SC_(3378.014404296875), SC_(0.221111953258514404296875), SC_(0.1088187624965955505094982973627684721756921175095612110902472707075526924705943037821545606017059404e-19619), SC_(0.9949684623152091367973910379436120989665211279519935888679097781126341226534544073475151448383513498e-3252) },
- { SC_(0.334107098751701414585113525390625e-4), SC_(4.2327022552490234375), SC_(0.913384497165679931640625), SC_(0.3302140511476925970089440183947851498874384393056499070340845152546754963722596856715560438763361651e-1178), SC_(0.721550812904941692732465523570115185441213777345946152740589938570407974601225828291058986399431556e-31799) },
- { SC_(0.3407927579246461391448974609375e-4), SC_(288782.71875), SC_(0.81474220752716064453125), SC_(0.2109135641523372669140280248988840170444293913802157477372092130970432429572818868611883540911372329e-2616), SC_(0.2514162921223999573731802340282039350295774045119788634791113912254748615048375244034258269581906402e-21491) },
- { SC_(0.346417873515747487545013427734375e-4), SC_(411.559112548828125), SC_(0.913384497165679931640625), SC_(0.2133153834019422416023619900569771678826523672291925027801753594912575501262851665014411694977703309e-1138), SC_(0.7010688922326638480573085051240538425179556810481349439133974938599939875403662654291337206727144197e-30671) },
+ { SC_(0.104760829344741068780422210693359375e-4), SC_(39078.1875), SC_(0.913384497165679931640625), SC_(0.2135769916611873809373928693612157637794870746322109915739746618652569766882593624385400901395922558e-3760), SC_(BOOST_MATH_SMALL_CONSTANT(0.6169146818683135737866366973021696361959736535710675458813428774517757535576031054239811928697394346e-101417)) },
+ { SC_(0.1127331415773369371891021728515625e-4), SC_(0.0226620174944400787353515625), SC_(0.1355634629726409912109375), SC_(BOOST_MATH_SMALL_CONSTANT(0.6398069040886718270700942839013650119743974939592699138527850527236181568779785317811717302449254101e-76964)), SC_(BOOST_MATH_SMALL_CONSTANT(0.1123304116325227195797533167182832111272986902383876280357481893374380043283848201429836361152904889e-5592)) },
+ { SC_(0.113778432933031581342220306396484375e-4), SC_(0.03654421865940093994140625), SC_(0.9688708782196044921875), SC_(0.5825356514402150924555439351704966386176716144780670249830283141506929468296452211723778443894234951e-1195), SC_(BOOST_MATH_SMALL_CONSTANT(0.1299246431009640780314778465681510321819328250560790012308930348335051591055920757982605267188242976e-132423)) },
+ { SC_(0.1142846667789854109287261962890625e-4), SC_(0.00244517601095139980316162109375), SC_(0.1355634629726409912109375), SC_(BOOST_MATH_SMALL_CONSTANT(0.9626654068785645417511885142439608103434581112273323673426712424844243107090177710187642425011765594e-75761)), SC_(BOOST_MATH_SMALL_CONSTANT(0.1968131210354581442057523237500619235039616488884597039029510000400233015927645935497663749543679489e-5358)) },
+ { SC_(0.1184685606858693063259124755859375e-4), SC_(0.015964560210704803466796875), SC_(0.3082362115383148193359375), SC_(BOOST_MATH_SMALL_CONSTANT(0.3589991782488314563613963926946558354830549116688735009134661806895352582322279412078679966549495e-43116)), SC_(BOOST_MATH_SMALL_CONSTANT(0.8498116607235052405320447197085177573554285064950351753253894145078534997511294854886147550142192844e-13482)) },
+ { SC_(0.1215800511999987065792083740234375e-4), SC_(24110.49609375), SC_(0.1355634629726409912109375), SC_(BOOST_MATH_SMALL_CONSTANT(0.6446009470761694712696178802124602151206198100070272397820841954953457589393814080011513726764543968e-71386)), SC_(BOOST_MATH_SMALL_CONSTANT(0.4411620506592737532109016496457382048657857194340645526246628280311812592288988016544405559990034441e-5208)) },
+ { SC_(0.130341722979210317134857177734375e-4), SC_(26168.341796875), SC_(0.12707412242889404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.2166416563492047698893468112939141389204329099488114879770220649554966170201180232315257069497901648e-68742)), SC_(0.1077379305584195394942430687801727576986179591753422104711707268006164084179781893335299072659829737e-4532) },
+ { SC_(0.13885271982871927320957183837890625e-4), SC_(0.04976274073123931884765625), SC_(0.632396042346954345703125), SC_(BOOST_MATH_SMALL_CONSTANT(0.1505435304898114171757823372486217209606557096566030133214604079062750941794084777046798389177683298e-14323)), SC_(BOOST_MATH_SMALL_CONSTANT(0.8191336340381130196534918861139224810035912334983040442057176348873687528604185195239248980481620309e-31292)) },
+ { SC_(0.139016165121574886143207550048828125e-4), SC_(0.3188882328686304390430450439453125e-4), SC_(0.81474220752716064453125), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.4280498729519778987331529352631079454822421273284878121766790306889766290450686026189682387674704682e-41368)) },
+ { SC_(0.14759907571715302765369415283203125e-4), SC_(2.8241312503814697265625), SC_(0.632396042346954345703125), SC_(BOOST_MATH_SMALL_CONSTANT(0.149627207977763220942721958324439773028753443201215406980939699041850526798527355589362837986915531e-13483)), SC_(BOOST_MATH_SMALL_CONSTANT(0.2558857410093259430689102879079456979338542212672378310349005537672813392923619357148699354237694984e-29446)) },
+ { SC_(0.150794721776037476956844329833984375e-4), SC_(0.4875471131526865065097808837890625e-4), SC_(0.221111953258514404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.1196552230711909114279654256938815998740725267957310722981422063213023453615282876024769302334980208e-35700)), SC_(1) },
+ { SC_(0.1519624856882728636264801025390625e-4), SC_(16177.537109375), SC_(0.81474220752716064453125), SC_(BOOST_MATH_SMALL_CONSTANT(0.1452425209503955537338422359333948812006899768260140476005442384340571893909020382026092251217563149e-5859)), SC_(BOOST_MATH_SMALL_CONSTANT(0.1118345883008806780173762266422459055560035027762640953226900168492818873939725415273834608038325661e-48188)) },
+ { SC_(0.1554497794131748378276824951171875e-4), SC_(40.46924591064453125), SC_(0.905801355838775634765625), SC_(0.1263629472761081761336139611957096532344967812079201565462877028056022440086149370452532349289977537e-2765), SC_(BOOST_MATH_SMALL_CONSTANT(0.9919220074175430612528899218323716721906730140324380689847652631919111677660506550414306011565356188e-66001)) },
+ { SC_(0.15675454051233828067779541015625e-4), SC_(0.000101913392427377402782440185546875), SC_(0.81474220752716064453125), SC_(0.2853716542422836893914328033448649871440784183324642438029547731008406102487895766538278835997616547e-1712), SC_(BOOST_MATH_SMALL_CONSTANT(0.2298245136733929898089558753739834100156855492642462724846011273903684294484329372722305239196215964e-42747)) },
+ { SC_(0.15971760149113833904266357421875e-4), SC_(19.206241607666015625), SC_(0.913384497165679931640625), SC_(0.9582815834618172404720774906601516866545834853534306710079796796969465944037138120013655983754855937e-2465), SC_(BOOST_MATH_SMALL_CONSTANT(0.6326194310940251351062236483308143964837777396539364617390517845304796920345734401134182052813379253e-66519)) },
+ { SC_(0.16304524251609109342098236083984375e-4), SC_(0.00039033559733070433139801025390625), SC_(0.12707412242889404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.2749781704753392658488528370082054060663950436757594599541089373221441866088075915394337505609699445e-53860)), SC_(0.9828097758952314597050411618472387868890317665219757564769723884179197098195673563971975573178259902e-2530) },
+ { SC_(0.16487292668898589909076690673828125e-4), SC_(470997.15625), SC_(0.12707412242889404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.4541512737936566032722209936653561647042510033334139786119604257285077373847313505998057776219766456e-54347)), SC_(0.1549128670548823853403220618952571853257756905438794574182300339725200919598045497915626657567121817e-3585) },
+ { SC_(0.165044693858362734317779541015625e-4), SC_(3.57584381103515625), SC_(0.3082362115383148193359375), SC_(BOOST_MATH_SMALL_CONSTANT(0.794238046161941112343749823902683082201010853905108950104923153872086335073632221934630976272829339e-30969)), SC_(BOOST_MATH_SMALL_CONSTANT(0.2292466372763638638323475388751441681337812313997406078153894115038015753694828319985703460438800914e-9697)) },
+ { SC_(0.166259487741626799106597900390625e-4), SC_(147818.875), SC_(0.632396042346954345703125), SC_(BOOST_MATH_SMALL_CONSTANT(0.4840219552903389147605728190427790980761548760276021823940610272825144416373810916979400186204380198e-11975)), SC_(BOOST_MATH_SMALL_CONSTANT(0.3355691678737767782891887487339395952689357895271229870171944057769814627603827220615993999615612822e-26146)) },
+ { SC_(0.16847467122715897858142852783203125e-4), SC_(0.002207652665674686431884765625), SC_(0.9688708782196044921875), SC_(0.5906847920417500109372659805901565510642317169243157405152707420759307862602125145324167267749837092e-619), SC_(BOOST_MATH_SMALL_CONSTANT(0.170124244972649861948335303360579678196382235848312316943910825664898769097190318119987719590491326e-89243)) },
+ { SC_(0.1747490387060679495334625244140625e-4), SC_(0.26349246501922607421875), SC_(0.632396042346954345703125), SC_(BOOST_MATH_SMALL_CONSTANT(0.12843516647174278387874388748896407588386560678553377934101747757777562235501611818724095565006393e-11386)), SC_(BOOST_MATH_SMALL_CONSTANT(0.2536225597635438964484652244350105224785079947699063064898395295623461960169137518050619029664249122e-24869)) },
+ { SC_(0.17863809262053109705448150634765625e-4), SC_(439.38714599609375), SC_(0.8350250720977783203125), SC_(0.8244670330185256737263969143826902858678798594720040631958052373536602436314305948340758463250207469e-4386), SC_(BOOST_MATH_SMALL_CONSTANT(0.7352777980091604256079199692103097168555239346683458759313911552620269891691410672306190764078484364e-43811)) },
+ { SC_(0.1895247623906470835208892822265625e-4), SC_(1.07109558582305908203125), SC_(0.9688708782196044921875), SC_(0.1958346418095304122274704022704012284830310878577730588329056279113401343952355448951150975955101985e-724), SC_(BOOST_MATH_SMALL_CONSTANT(0.1204102194190057648286366185479451893365394896311826527650411245123421846075536145059629401728008699e-79505)) },
+ { SC_(0.19740999050554819405078887939453125e-4), SC_(105.41565704345703125), SC_(0.3082362115383148193359375), SC_(BOOST_MATH_SMALL_CONSTANT(0.4171715706701289778828007890899248697163485933652243450349057614457988149098646573044273964497613009e-25893)), SC_(BOOST_MATH_SMALL_CONSTANT(0.4289676998659303218462202648585110823764351223533266318047234914191374259260207999216104631145461676e-8109)) },
+ { SC_(0.2004335328820161521434783935546875e-4), SC_(482.00701904296875), SC_(0.905801355838775634765625), SC_(0.2300786867506388908353022364598233237429971469616025799538393909707204968894677299870201252175165343e-2146), SC_(BOOST_MATH_SMALL_CONSTANT(0.1799474819364733378341626493308533546950444872243502571473922786173950526564225295056238004071701751e-51189)) },
+ { SC_(0.2017128645093180239200592041015625e-4), SC_(232.9792938232421875), SC_(0.1355634629726409912109375), SC_(BOOST_MATH_SMALL_CONSTANT(0.9782152059532611372922752218945140821311267421642771819909290848934391306656384389032421044430100903e-43027)), SC_(0.7953007761061898269032745221331387025438802327808884652857398546810598867143141546217396350761801352e-3139) },
+ { SC_(0.20203804524498991668224334716796875e-4), SC_(42.8336334228515625), SC_(0.1355634629726409912109375), SC_(BOOST_MATH_SMALL_CONSTANT(0.9505827239534352483275638000309426098918435445176677914029048966050973796738555346371505206583029493e-42957)), SC_(0.4879738324842388808208264019692856316850110596695651192968764647838931697912322372907706638620027653e-3133) },
+ { SC_(0.20300331016187556087970733642578125e-4), SC_(42.38938140869140625), SC_(0.9688708782196044921875), SC_(0.3816869308438157775438575701400816009072542007939410749970155744055876159478755860836778076571703486e-678), SC_(BOOST_MATH_SMALL_CONSTANT(0.127201723496121023828113564898347237146568849457350377769280925620763942807444814392111020123066826e-74228)) },
+ { SC_(0.2051885167020373046398162841796875e-4), SC_(236087.890625), SC_(0.8350250720977783203125), SC_(0.2236779936126539857160222845963337050945115341054176739161533824043234207571359913112629207518401323e-3821), SC_(BOOST_MATH_SMALL_CONSTANT(0.5187557340526034705800892748375743405416818891180832866460176073642680219205270491482771189624680261e-38145)) },
+ { SC_(0.21041001673438586294651031494140625e-4), SC_(3.8230969905853271484375), SC_(0.12707412242889404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.2611050064285175125482131273698210462799115955403897510685180499383028995007734375008754345306902882e-42581)), SC_(0.1263421304086059092982729044494063450981720138268968234081464502945179653799025464601347361390558349e-2805) },
+ { SC_(0.2107691761921159923076629638671875e-4), SC_(0.04489715397357940673828125), SC_(0.221111953258514404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.3900373750276575859585149320905549732932763658865496075030893208483961831557459599669540245248710031e-31085)), SC_(BOOST_MATH_SMALL_CONSTANT(0.4404830308340426746130675276769279825579374873733567061860857053216363945038073562970896042079876724e-5139)) },
+ { SC_(0.21139929231139831244945526123046875e-4), SC_(0.17535277947899885475635528564453125e-4), SC_(0.8350250720977783203125), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.473270793701914810977987563126323761517466803284082613651628762799832085337970872475482395336393227e-20769)) },
+ { SC_(0.21433561414596624672412872314453125e-4), SC_(3719.279052734375), SC_(0.81474220752716064453125), SC_(0.5697755869431091234460288256178201914669184558313577703589192769624449530099467135008330171347109014e-4155), SC_(BOOST_MATH_SMALL_CONSTANT(0.5052326319604125969261540109121341746553338155418535572465629231132318093045693841291017785062704029e-34166)) },
+ { SC_(0.22448601157520897686481475830078125e-4), SC_(445071.28125), SC_(0.221111953258514404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.1154051199795256693167224940027851782575716013364780412354086379221856337304339043125449929568329416e-29200)), SC_(0.5317196597832401400329618898138594703102901476369725585493922299078299104951909429878615105121363765e-4840) },
+ { SC_(0.22683978386339731514453887939453125e-4), SC_(0.0405500046908855438232421875), SC_(0.905801355838775634765625), SC_(0.3320529691129112781183346091758024243131258015814127148220088686655475575144026542984765934147092121e-1883), SC_(BOOST_MATH_SMALL_CONSTANT(0.3063046523049329771837110182553346515767597472422624500690020343432489716503981152245110195835717713e-45217)) },
+ { SC_(0.234849067055620253086090087890625e-4), SC_(25542.79296875), SC_(0.9688708782196044921875), SC_(0.3441730180671123519495976583198624119926731047061369849411568660575245402127433117800519623117640306e-589), SC_(BOOST_MATH_SMALL_CONSTANT(0.3751784934105693320455113760515845925736447146431148474482569436486280690421206833759119870649005669e-64166)) },
+ { SC_(0.23615430109202861785888671875e-4), SC_(4.50702953338623046875), SC_(0.905801355838775634765625), SC_(0.4988379611542168986414874238506419923844468056925819195174874699047526593073353049454994954833639083e-1820), SC_(BOOST_MATH_SMALL_CONSTANT(0.7341840761161541739065036501325419142613794847229658509278972834999220997543398966712274676180693554e-43445)) },
+ { SC_(0.2399934965069405734539031982421875e-4), SC_(462.945892333984375), SC_(0.81474220752716064453125), SC_(0.3110095684445031013162420462860776918422474101001024588575132091902755892192793640381029649700096935e-3710), SC_(BOOST_MATH_SMALL_CONSTANT(0.8797682788975050110209751601822341604088251725221823097384363697152422631690456231980809725272529829e-30513)) },
+ { SC_(0.24066381229204125702381134033203125e-4), SC_(1270.3814697265625), SC_(0.12707412242889404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.4576190191092904160454048722884335228372052972542105302690069527168297955063547521360024576623301653e-37231)), SC_(0.1420858306336174465235602280120246573601819672841164112725840259803341782460177715076940711063890289e-2455) },
+ { SC_(0.25217834263457916676998138427734375e-4), SC_(1832.2723388671875), SC_(0.913384497165679931640625), SC_(0.1686620810515798084807520522209297815900439981037687996482171429286465763028158287049421053915524687e-1563), SC_(BOOST_MATH_SMALL_CONSTANT(0.2500645969247788958633246925374597812716157867336745565308065217364621462118518662925089351446878108e-42132)) },
+ { SC_(0.252623358392156660556793212890625e-4), SC_(0.18408362567424774169921875), SC_(0.1355634629726409912109375), SC_(BOOST_MATH_SMALL_CONSTANT(0.2743427505483676484256175431234170641774606693989735069168855839327638237012878361548973902795998892e-34351)), SC_(0.7031666053222338307595293315449316865297838014279428098534333754498580394690990873394128824939905225e-2502) },
+ { SC_(0.2568908166722394526004791259765625e-4), SC_(0.0026883506216108798980712890625), SC_(0.905801355838775634765625), SC_(0.1578875734130016176302992983732961079346954066547091801166809994581467564455851791032398832398018025e-1511), SC_(BOOST_MATH_SMALL_CONSTANT(0.2341259619261955766782778385507062619379614455720724579754306604198840826735605051621159618286928358e-39776)) },
+ { SC_(0.26870451620197854936122894287109375e-4), SC_(0.000144985810038633644580841064453125), SC_(0.8350250720977783203125), SC_(0.9888337425304244712013096232948525191068632527405749434176388147263952275675242673761059158623788143e-166), SC_(BOOST_MATH_SMALL_CONSTANT(0.5413087344681832213235005061729244935796516193762206919387843998935430650190903037264031499756215662e-26376)) },
+ { SC_(0.27549775040824897587299346923828125e-4), SC_(0.1503586471080780029296875), SC_(0.12707412242889404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.8181540477895649748762420463171081554083663224695416509954885206095656839589686087124835665442879842e-32518)), SC_(0.2462322550135262716431415588537906535110788732273365839795667016396525276471877892724411526414976991e-2139) },
+ { SC_(0.2782344745355658233165740966796875e-4), SC_(0.295027554035186767578125), SC_(0.8350250720977783203125), SC_(0.1278292308361380656193177947071432183369866616602705655667678332292163066466318520326718174045292449e-2812), SC_(BOOST_MATH_SMALL_CONSTANT(0.3860943098799782356408940219712438194770816672701033543757478725092151765852410278931715506024795017e-28125)) },
+ { SC_(0.28775624741683714091777801513671875e-4), SC_(25491.8359375), SC_(0.905801355838775634765625), SC_(0.1473261355137398155011141009775050446169103918759589552951768300766343955675642581210849928901748107e-1497), SC_(BOOST_MATH_SMALL_CONSTANT(0.5217155068967073959232563103611620257843968467713802555935398994953775819903315697408459540543981014e-35658)) },
+ { SC_(0.2893155397032387554645538330078125e-4), SC_(494.983856201171875), SC_(0.9688708782196044921875), SC_(0.2214048516998759629744858269037850383644604658166103544023139293349638862809561382032391592312324544e-477), SC_(BOOST_MATH_SMALL_CONSTANT(0.2322977714184520269211746119681752807171971177273511871734584204282302240392088583619323923321396253e-52085)) },
+ { SC_(0.29415024982881732285022735595703125e-4), SC_(0.00041924233664758503437042236328125), SC_(0.3082362115383148193359375), SC_(BOOST_MATH_SMALL_CONSTANT(0.1405534159248066997103271948013564698708179432152430515950232282291382253871954661868456467068231098e-16374)), SC_(0.222065748504377622879286572762480656498910969018522808743848314373828884496856282233576890159533318e-4439) },
+ { SC_(0.29590575650217942893505096435546875e-4), SC_(0.283195674419403076171875), SC_(0.81474220752716064453125), SC_(0.2154808290713006032100156759319481127361319809621867304793677964782374968778883573291545611646288826e-3005), SC_(BOOST_MATH_SMALL_CONSTANT(0.1603552053591524426177949971495129448566287164068848498039592571954479687286433631543286779538761406e-24743)) },
+ { SC_(0.299345629173330962657928466796875e-4), SC_(4.095668792724609375), SC_(0.81474220752716064453125), SC_(0.5196055449684084143516386383118687306867205699439977606524188083826834727571742938138760636632194297e-2973), SC_(BOOST_MATH_SMALL_CONSTANT(0.2437053630285360958851482887590704784303383342870823574692973085259514678816776828062492453198275383e-24461)) },
+ { SC_(0.30238283216021955013275146484375e-4), SC_(47.60295867919921875), SC_(0.221111953258514404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.9321887064205378872229585244564413110885910626258126088306621014298436870871951071821387187442611514e-21676)), SC_(0.1213736685648309514074587400458688769158875012929347831971984355375331163800085456183839159724919364e-3590) },
+ { SC_(0.3114132778136990964412689208984375e-4), SC_(348144), SC_(0.3082362115383148193359375), SC_(BOOST_MATH_SMALL_CONSTANT(0.2564169166061677471672615381864930435296242794719327337679452161494929456649170217667065978734305135e-16418)), SC_(BOOST_MATH_SMALL_CONSTANT(0.9688429129424356903276490372990977877118692169687936851001252857728923160632456013823032483855292724e-5145)) },
+ { SC_(0.31231902539730072021484375e-4), SC_(33712.953125), SC_(0.221111953258514404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.4571522067098797040562684640899168266975097279621382775130725293419218412779615105191774966472576827e-20989)), SC_(0.2573106672840410380822917482839769800185745410605353368659945769528618592560687539288531970023811281e-3479) },
+ { SC_(0.3187526090187020599842071533203125e-4), SC_(0.4971525049768388271331787109375e-4), SC_(0.905801355838775634765625), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.1507883810128888762679504360131900432849506796036146018007903657943596818799705890814512754055586328e-25436)) },
+ { SC_(0.3188861956004984676837921142578125e-4), SC_(16.32230377197265625), SC_(0.8350250720977783203125), SC_(0.1298262616465282715767271924980895028143644766095820511831644360803801759867912414728771230391885871e-2456), SC_(BOOST_MATH_SMALL_CONSTANT(0.2767627169830641075284656055027015246053535193598921144000819790157135165458466893549180906222486659e-24542)) },
+ { SC_(0.319889441016130149364471435546875e-4), SC_(3931.19482421875), SC_(0.3082362115383148193359375), SC_(BOOST_MATH_SMALL_CONSTANT(0.1773634713777084083511430573444851801451064251531875439312779096503415074392671715708488636019680445e-15981)), SC_(BOOST_MATH_SMALL_CONSTANT(0.1283323919641290075624851616052156931984540392148494145568105633891913544783329965742528684079350212e-5006)) },
+ { SC_(0.32712865504436194896697998046875e-4), SC_(3109.48583984375), SC_(0.9688708782196044921875), SC_(0.2623647149797575492783687118935843357045992324891910436571331718223281336138205915531066599158735727e-423), SC_(BOOST_MATH_SMALL_CONSTANT(0.7171758557203420523043470585211560466194322904609620567954214024282315826385950612765018545398284663e-46066)) },
+ { SC_(0.3275294511695392429828643798828125e-4), SC_(25796.328125), SC_(0.8350250720977783203125), SC_(0.4992053462405342599776391467632566097299408028157087143908341093542047028790242197689077688285241312e-2395), SC_(BOOST_MATH_SMALL_CONSTANT(0.7099977617736449666482713375435273015460103288886378949522985793917134341210311928525086779798465597e-23898)) },
+ { SC_(0.334105643560178577899932861328125e-4), SC_(3378.014404296875), SC_(0.221111953258514404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.1088187624965955505094982973627684721756921175095612110902472707075526924705943037821545606017059404e-19619)), SC_(0.9949684623152091367973910379436120989665211279519935888679097781126341226534544073475151448383513498e-3252) },
+ { SC_(0.334107098751701414585113525390625e-4), SC_(4.2327022552490234375), SC_(0.913384497165679931640625), SC_(0.3302140511476925970089440183947851498874384393056499070340845152546754963722596856715560438763361651e-1178), SC_(BOOST_MATH_SMALL_CONSTANT(0.721550812904941692732465523570115185441213777345946152740589938570407974601225828291058986399431556e-31799)) },
+ { SC_(0.3407927579246461391448974609375e-4), SC_(288782.71875), SC_(0.81474220752716064453125), SC_(0.2109135641523372669140280248988840170444293913802157477372092130970432429572818868611883540911372329e-2616), SC_(BOOST_MATH_SMALL_CONSTANT(0.2514162921223999573731802340282039350295774045119788634791113912254748615048375244034258269581906402e-21491)) },
+ { SC_(0.346417873515747487545013427734375e-4), SC_(411.559112548828125), SC_(0.913384497165679931640625), SC_(0.2133153834019422416023619900569771678826523672291925027801753594912575501262851665014411694977703309e-1138), SC_(BOOST_MATH_SMALL_CONSTANT(0.7010688922326638480573085051240538425179556810481349439133974938599939875403662654291337206727144197e-30671)) },
{ SC_(0.3529437162796966731548309326171875e-4), SC_(0.22326681573758833110332489013671875e-4), SC_(0.632396042346954345703125), SC_(1), SC_(0.1679136383980843511637249694083361811044488550810665223615625087133701364929659445973904964914972386e-647) },
- { SC_(0.358525212504900991916656494140625e-4), SC_(0.4175899922847747802734375), SC_(0.905801355838775634765625), SC_(0.2343697173729498422189297849832239496833304472905684856323496553026475588814733191639300150358207883e-1197), SC_(0.6596727681214564022871450491580307900624839348498222377460976652541927290888421159671849121886582417e-28615) },
- { SC_(0.3616316462284885346889495849609375e-4), SC_(311936.78125), SC_(0.905801355838775634765625), SC_(0.1293118466016912108455958416176646899851260448619891462678002770480373451658206363414469153521598654e-1193), SC_(0.119999815388237949074063308456434021313213735248807878200422481001986161451626398456876580517384044e-28375) },
- { SC_(0.362039208994247019290924072265625e-4), SC_(3.842815399169921875), SC_(0.221111953258514404296875), SC_(0.3544734526213706099454685135575417560703279572478093675779813090605397694571956765464491678916570822e-18103), SC_(0.4180206241677413514841559660483820475430290709184922818176636477679167481907369958639649743608398598e-2998) },
- { SC_(0.3621911673690192401409149169921875e-4), SC_(0.001695460639894008636474609375), SC_(0.913384497165679931640625), SC_(0.1288280457224668780743816372420978938285421765081656239836959964838944253041009430275132356668406226e-832), SC_(0.5697362458132279589783413883108821219398435118946284545945562849097738681418558423708732106133995706e-29079) },
- { SC_(0.36229626857675611972808837890625e-4), SC_(0.004191714338958263397216796875), SC_(0.12707412242889404296875), SC_(0.3940400839080479567586394155768258914791983335204978210406036543210500908187185259963745776884174156e-24626), SC_(0.1080292882256422099552040843840157970507678744503491295903443423718104140719602323148254017180211606e-1525) },
- { SC_(0.3714940612553618848323822021484375e-4), SC_(0.00259495410136878490447998046875), SC_(0.632396042346954345703125), SC_(0.1356989835799972192597273298949967565671434897149949467453728471572063953543506772625236862729694821e-5190), SC_(0.8561254770485099992034032886831374398058297406377657980857486120910212835422396954987295313640453016e-11533) },
- { SC_(0.3718810694408603012561798095703125e-4), SC_(1.01127374172210693359375), SC_(0.1355634629726409912109375), SC_(0.1077735820964225917380470071662590042583243093922642245930134842359049963955754289626778087872649737e-23336), SC_(0.5313597812912107703638905071150951907554665070138144057144001779439358176605035994445262936046356265e-1701) },
- { SC_(0.3756858131964690983295440673828125e-4), SC_(386440.28125), SC_(0.913384497165679931640625), SC_(0.6938348459489127956412976095546426355497874607824619462541175972265423708569533419804404918656180059e-1053), SC_(0.1249757466297388786057324955033321582981458421926062580808076861019234345529522100086401227723745064e-28284) },
- { SC_(0.3779314647545106709003448486328125e-4), SC_(0.015007309615612030029296875), SC_(0.8350250720977783203125), SC_(0.118810205222776899417803687178012075409991919564610841348835150094825747873487115628586985816217759e-2042), SC_(0.810187046258777287646336537968837529857752705285400756632676692894477095757522513711438063422526438e-20678) },
- { SC_(0.3796306918957270681858062744140625e-4), SC_(26.5066623687744140625), SC_(0.3082362115383148193359375), SC_(0.6598965623874491832972190274659900750010182028314223382636015593020450025268000629719755111735890524e-13465), SC_(0.3989359837027342169859807648389591498610396713277327250235582229672408997817051079102203736651445381e-4217) },
- { SC_(0.382418438675813376903533935546875e-4), SC_(0.041891194880008697509765625), SC_(0.12707412242889404296875), SC_(0.9873323811638740353410732589920679289192321776712090313263010195106904399487210480324540942232188904e-23418), SC_(0.8491512042328636035595900109307950549910858021615642828214730768092395164321337952830436535923471749e-1533) },
- { SC_(0.3837459371425211429595947265625e-4), SC_(0.468349933624267578125), SC_(0.913384497165679931640625), SC_(0.2241235540048448638458579583517893589998982524673312917609725284970663516122466297631156386453714775e-1024), SC_(0.3769155004866211354850679924222766333317426620770543639710709283784973890926589758868109311853381624e-27684) },
- { SC_(0.3972529884777031838893890380859375e-4), SC_(0.00289903464727103710174560546875), SC_(0.8350250720977783203125), SC_(0.5483575678917936436949935196603432950338084509938853676999723995665568731766873108531873188494847588e-1822), SC_(0.8848369790249811078099793860211098854547582799501395652527369169917918737958891179693704276411854277e-19551) },
- { SC_(0.3992606434621848165988922119140625e-4), SC_(495351.78125), SC_(0.9688708782196044921875), SC_(0.1164534821982592030672927656096508086827152784596402335692547063157800378222976279629261862316799955e-349), SC_(0.2929244484399204867185089747049556705503127694304187981003530977961498473815862621862143844671370993e-37746) },
- { SC_(0.4005068331025540828704833984375e-4), SC_(42.8498382568359375), SC_(0.12707412242889404296875), SC_(0.7859204786488360510684191057998450107874559758216638101868641977764555934670971577857405050244603552e-22372), SC_(0.2654442262986538279189732464500107656586452857842403732824436935911339751157770521150566856758628307e-1475) },
- { SC_(0.401491633965633809566497802734375e-4), SC_(3246.22998046875), SC_(0.905801355838775634765625), SC_(0.112977412882178900134385777413607284643461048436540236745690012152735459343115315544141992726099701e-1073), SC_(0.4424172903643803288578143023108364330817321606229579227313357011187183345623163738049426663155162042e-25557) },
- { SC_(0.401874640374444425106048583984375e-4), SC_(0.4230124056339263916015625), SC_(0.9688708782196044921875), SC_(0.1100720893157627362937366296851776187134318167340247108911993602928621672418382282695932224468424835e-340), SC_(0.4883930877551489306324687755681617482312232773519412809834786339488860386961069019505126908456950954e-37494) },
- { SC_(0.40288010495714843273162841796875e-4), SC_(2569.28173828125), SC_(0.8350250720977783203125), SC_(0.6627313078473817098675390758464825155439030125385070059490309453377004511869090229363770345790413739e-1947), SC_(0.4478580576144933415867115861353004306483506549857235464354358905466443067939229974382383708020959197e-19428) },
- { SC_(0.40309605537913739681243896484375e-4), SC_(0.0039625889621675014495849609375), SC_(0.81474220752716064453125), SC_(0.4297219759455842553977753641166272093924110867575498015986936377915839627832532881673730650860546229e-2098), SC_(0.1131862219566481176250143724466206130773062564110751371526259863433521485903001058774208214004662327e-18055) },
- { SC_(0.4062067091581411659717559814453125e-4), SC_(0.12048657238483428955078125), SC_(0.221111953258514404296875), SC_(0.1524431223087137054598773090361260966748907707997517149119120417069725647075815285192449448161909435e-16130), SC_(0.718310945278950705305351059214126184320966441965831821856089475048512214946952047110303375327870065e-2668) },
- { SC_(0.4116668787901289761066436767578125e-4), SC_(24253.806640625), SC_(0.3082362115383148193359375), SC_(0.3884884579630244647432121874653720166074946306858397332980485597789894564589091428052418264063418006e-12420), SC_(0.5039422300210376491185072692446958776841122680087188966755831182376679349874392686015199583363438428e-3892) },
- { SC_(0.416882903664372861385345458984375e-4), SC_(0.00045137223787605762481689453125), SC_(0.913384497165679931640625), SC_(0.2941597748347749411754047337807015012576507844430748545298337852169539531016813003685811387576944405e-23), SC_(0.6490759234749804574289194979741186257670139448339576708206530257959728849550179134048101279302420689e-24564) },
- { SC_(0.417713818023912608623504638671875e-4), SC_(274447), SC_(0.1355634629726409912109375), SC_(0.8891395834060674840111369292928696900946762064913008632147212723122733242419191346912504649141260379e-20782), SC_(0.5153076037935924074179248490891634896352435546614761313109653438459835935895159710831917889190593927e-1520) },
- { SC_(0.418079944211058318614959716796875e-4), SC_(0.11457650363445281982421875), SC_(0.3082362115383148193359375), SC_(0.2446650889729255533700789560277005533318807205110375390599135619137953482484990594137550691784617627e-12221), SC_(0.4853460838101037201350937644183993874233733743743725662787994602960719050919207250899540608031639398e-3824) },
- { SC_(0.42011219193227589130401611328125e-4), SC_(0.000218811779632233083248138427734375), SC_(0.632396042346954345703125), SC_(0.3179529997451293102768983483299318098705913075382976031049468527683708052258069951390726888744562447e-2921), SC_(0.1833136034351968298404565348891649429152474775943227473503880078105211588710473018887964387242219035e-8529) },
- { SC_(0.4257139153196476399898529052734375e-4), SC_(219.9326934814453125), SC_(0.221111953258514404296875), SC_(0.239715433935781453113059624532973263096379876488085000296126067107269694939393323284449360105557112e-15397), SC_(0.1451318181094095558388067103539926698250898931142471176273042115024709390909492472743967403267308459e-2551) },
- { SC_(0.4258894841768778860569000244140625e-4), SC_(0.15419080227729864418506622314453125e-4), SC_(0.12707412242889404296875), SC_(0.1830534673552623209868695525333608693870478140986771641343952511061662952704389325698588842694442893e-7525), SC_(1) },
- { SC_(0.429383144364692270755767822265625e-4), SC_(0.0428761281073093414306640625), SC_(0.81474220752716064453125), SC_(0.6670993384074829827824185730735050260592416849695388102678720275285538601446792617170942562110737722e-2062), SC_(0.1503852748893043569070584420804374973503282498107814611717957243181610257848040689066752011011521903e-17042) },
- { SC_(0.4323314715293236076831817626953125e-4), SC_(4174.39013671875), SC_(0.1355634629726409912109375), SC_(0.1741737479435393164070743783516644538515708455721353687328907068917805988236924308779533332447842736e-20077), SC_(0.5500647637598311764868356339788056582397278290971924670228151741233423921688471919435618588405276741e-1467) },
- { SC_(0.43628693674691021442413330078125e-4), SC_(495.40863037109375), SC_(0.12707412242889404296875), SC_(0.2635777732785853666597970569223099981540401902251114779117540286381653810376775458715609675588234809e-20538), SC_(0.164074553389435495570864834112651743836218423938126161793683427926194069848835465073779036174452069e-1355) },
- { SC_(0.4396517397253774106502532958984375e-4), SC_(0.001847697305493056774139404296875), SC_(0.221111953258514404296875), SC_(0.2072584932333773564080754602009290026147836909320390107919267400046227568219163001236961402925266791e-14674), SC_(0.7278393721393212191636655689421757500953426177953531997548969548847209180826615334861392217179462783e-2236) },
- { SC_(0.45636130380444228649139404296875e-4), SC_(26.9266033172607421875), SC_(0.632396042346954345703125), SC_(0.323083658339483384179601029113392314163137312213380465279928094216180094437240628578107487940484812e-4362), SC_(0.5453589185628250950056526063344565014212839206511911193164643251785928220063791558745558710897233194e-9525) },
- { SC_(0.4623167842510156333446502685546875e-4), SC_(0.43400345020927488803863525390625e-4), SC_(0.1355634629726409912109375), SC_(0.8747815788931347648685677846348816901925149746536605658179046750713326074713944693294722365402966867e-11959), SC_(1) },
+ { SC_(0.358525212504900991916656494140625e-4), SC_(0.4175899922847747802734375), SC_(0.905801355838775634765625), SC_(0.2343697173729498422189297849832239496833304472905684856323496553026475588814733191639300150358207883e-1197), SC_(BOOST_MATH_SMALL_CONSTANT(0.6596727681214564022871450491580307900624839348498222377460976652541927290888421159671849121886582417e-28615)) },
+ { SC_(0.3616316462284885346889495849609375e-4), SC_(311936.78125), SC_(0.905801355838775634765625), SC_(0.1293118466016912108455958416176646899851260448619891462678002770480373451658206363414469153521598654e-1193), SC_(BOOST_MATH_SMALL_CONSTANT(0.119999815388237949074063308456434021313213735248807878200422481001986161451626398456876580517384044e-28375)) },
+ { SC_(0.362039208994247019290924072265625e-4), SC_(3.842815399169921875), SC_(0.221111953258514404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.3544734526213706099454685135575417560703279572478093675779813090605397694571956765464491678916570822e-18103)), SC_(0.4180206241677413514841559660483820475430290709184922818176636477679167481907369958639649743608398598e-2998) },
+ { SC_(0.3621911673690192401409149169921875e-4), SC_(0.001695460639894008636474609375), SC_(0.913384497165679931640625), SC_(0.1288280457224668780743816372420978938285421765081656239836959964838944253041009430275132356668406226e-832), SC_(BOOST_MATH_SMALL_CONSTANT(0.5697362458132279589783413883108821219398435118946284545945562849097738681418558423708732106133995706e-29079)) },
+ { SC_(0.36229626857675611972808837890625e-4), SC_(0.004191714338958263397216796875), SC_(0.12707412242889404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.3940400839080479567586394155768258914791983335204978210406036543210500908187185259963745776884174156e-24626)), SC_(0.1080292882256422099552040843840157970507678744503491295903443423718104140719602323148254017180211606e-1525) },
+ { SC_(0.3714940612553618848323822021484375e-4), SC_(0.00259495410136878490447998046875), SC_(0.632396042346954345703125), SC_(BOOST_MATH_SMALL_CONSTANT(0.1356989835799972192597273298949967565671434897149949467453728471572063953543506772625236862729694821e-5190)), SC_(BOOST_MATH_SMALL_CONSTANT(0.8561254770485099992034032886831374398058297406377657980857486120910212835422396954987295313640453016e-11533)) },
+ { SC_(0.3718810694408603012561798095703125e-4), SC_(1.01127374172210693359375), SC_(0.1355634629726409912109375), SC_(BOOST_MATH_SMALL_CONSTANT(0.1077735820964225917380470071662590042583243093922642245930134842359049963955754289626778087872649737e-23336)), SC_(0.5313597812912107703638905071150951907554665070138144057144001779439358176605035994445262936046356265e-1701) },
+ { SC_(0.3756858131964690983295440673828125e-4), SC_(386440.28125), SC_(0.913384497165679931640625), SC_(0.6938348459489127956412976095546426355497874607824619462541175972265423708569533419804404918656180059e-1053), SC_(BOOST_MATH_SMALL_CONSTANT(0.1249757466297388786057324955033321582981458421926062580808076861019234345529522100086401227723745064e-28284)) },
+ { SC_(0.3779314647545106709003448486328125e-4), SC_(0.015007309615612030029296875), SC_(0.8350250720977783203125), SC_(0.118810205222776899417803687178012075409991919564610841348835150094825747873487115628586985816217759e-2042), SC_(BOOST_MATH_SMALL_CONSTANT(0.810187046258777287646336537968837529857752705285400756632676692894477095757522513711438063422526438e-20678)) },
+ { SC_(0.3796306918957270681858062744140625e-4), SC_(26.5066623687744140625), SC_(0.3082362115383148193359375), SC_(BOOST_MATH_SMALL_CONSTANT(0.6598965623874491832972190274659900750010182028314223382636015593020450025268000629719755111735890524e-13465)), SC_(0.3989359837027342169859807648389591498610396713277327250235582229672408997817051079102203736651445381e-4217) },
+ { SC_(0.382418438675813376903533935546875e-4), SC_(0.041891194880008697509765625), SC_(0.12707412242889404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.9873323811638740353410732589920679289192321776712090313263010195106904399487210480324540942232188904e-23418)), SC_(0.8491512042328636035595900109307950549910858021615642828214730768092395164321337952830436535923471749e-1533) },
+ { SC_(0.3837459371425211429595947265625e-4), SC_(0.468349933624267578125), SC_(0.913384497165679931640625), SC_(0.2241235540048448638458579583517893589998982524673312917609725284970663516122466297631156386453714775e-1024), SC_(BOOST_MATH_SMALL_CONSTANT(0.3769155004866211354850679924222766333317426620770543639710709283784973890926589758868109311853381624e-27684)) },
+ { SC_(0.3972529884777031838893890380859375e-4), SC_(0.00289903464727103710174560546875), SC_(0.8350250720977783203125), SC_(0.5483575678917936436949935196603432950338084509938853676999723995665568731766873108531873188494847588e-1822), SC_(BOOST_MATH_SMALL_CONSTANT(0.8848369790249811078099793860211098854547582799501395652527369169917918737958891179693704276411854277e-19551)) },
+ { SC_(0.3992606434621848165988922119140625e-4), SC_(495351.78125), SC_(0.9688708782196044921875), SC_(0.1164534821982592030672927656096508086827152784596402335692547063157800378222976279629261862316799955e-349), SC_(BOOST_MATH_SMALL_CONSTANT(0.2929244484399204867185089747049556705503127694304187981003530977961498473815862621862143844671370993e-37746)) },
+ { SC_(0.4005068331025540828704833984375e-4), SC_(42.8498382568359375), SC_(0.12707412242889404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.7859204786488360510684191057998450107874559758216638101868641977764555934670971577857405050244603552e-22372)), SC_(0.2654442262986538279189732464500107656586452857842403732824436935911339751157770521150566856758628307e-1475) },
+ { SC_(0.401491633965633809566497802734375e-4), SC_(3246.22998046875), SC_(0.905801355838775634765625), SC_(0.112977412882178900134385777413607284643461048436540236745690012152735459343115315544141992726099701e-1073), SC_(BOOST_MATH_SMALL_CONSTANT(0.4424172903643803288578143023108364330817321606229579227313357011187183345623163738049426663155162042e-25557)) },
+ { SC_(0.401874640374444425106048583984375e-4), SC_(0.4230124056339263916015625), SC_(0.9688708782196044921875), SC_(0.1100720893157627362937366296851776187134318167340247108911993602928621672418382282695932224468424835e-340), SC_(BOOST_MATH_SMALL_CONSTANT(0.4883930877551489306324687755681617482312232773519412809834786339488860386961069019505126908456950954e-37494)) },
+ { SC_(0.40288010495714843273162841796875e-4), SC_(2569.28173828125), SC_(0.8350250720977783203125), SC_(0.6627313078473817098675390758464825155439030125385070059490309453377004511869090229363770345790413739e-1947), SC_(BOOST_MATH_SMALL_CONSTANT(0.4478580576144933415867115861353004306483506549857235464354358905466443067939229974382383708020959197e-19428)) },
+ { SC_(0.40309605537913739681243896484375e-4), SC_(0.0039625889621675014495849609375), SC_(0.81474220752716064453125), SC_(0.4297219759455842553977753641166272093924110867575498015986936377915839627832532881673730650860546229e-2098), SC_(BOOST_MATH_SMALL_CONSTANT(0.1131862219566481176250143724466206130773062564110751371526259863433521485903001058774208214004662327e-18055)) },
+ { SC_(0.4062067091581411659717559814453125e-4), SC_(0.12048657238483428955078125), SC_(0.221111953258514404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.1524431223087137054598773090361260966748907707997517149119120417069725647075815285192449448161909435e-16130)), SC_(0.718310945278950705305351059214126184320966441965831821856089475048512214946952047110303375327870065e-2668) },
+ { SC_(0.4116668787901289761066436767578125e-4), SC_(24253.806640625), SC_(0.3082362115383148193359375), SC_(BOOST_MATH_SMALL_CONSTANT(0.3884884579630244647432121874653720166074946306858397332980485597789894564589091428052418264063418006e-12420)), SC_(0.5039422300210376491185072692446958776841122680087188966755831182376679349874392686015199583363438428e-3892) },
+ { SC_(0.416882903664372861385345458984375e-4), SC_(0.00045137223787605762481689453125), SC_(0.913384497165679931640625), SC_(0.2941597748347749411754047337807015012576507844430748545298337852169539531016813003685811387576944405e-23), SC_(BOOST_MATH_SMALL_CONSTANT(0.6490759234749804574289194979741186257670139448339576708206530257959728849550179134048101279302420689e-24564)) },
+ { SC_(0.417713818023912608623504638671875e-4), SC_(274447), SC_(0.1355634629726409912109375), SC_(BOOST_MATH_SMALL_CONSTANT(0.8891395834060674840111369292928696900946762064913008632147212723122733242419191346912504649141260379e-20782)), SC_(0.5153076037935924074179248490891634896352435546614761313109653438459835935895159710831917889190593927e-1520) },
+ { SC_(0.418079944211058318614959716796875e-4), SC_(0.11457650363445281982421875), SC_(0.3082362115383148193359375), SC_(BOOST_MATH_SMALL_CONSTANT(0.2446650889729255533700789560277005533318807205110375390599135619137953482484990594137550691784617627e-12221)), SC_(0.4853460838101037201350937644183993874233733743743725662787994602960719050919207250899540608031639398e-3824) },
+ { SC_(0.42011219193227589130401611328125e-4), SC_(0.000218811779632233083248138427734375), SC_(0.632396042346954345703125), SC_(0.3179529997451293102768983483299318098705913075382976031049468527683708052258069951390726888744562447e-2921), SC_(BOOST_MATH_SMALL_CONSTANT(0.1833136034351968298404565348891649429152474775943227473503880078105211588710473018887964387242219035e-8529)) },
+ { SC_(0.4257139153196476399898529052734375e-4), SC_(219.9326934814453125), SC_(0.221111953258514404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.239715433935781453113059624532973263096379876488085000296126067107269694939393323284449360105557112e-15397)), SC_(0.1451318181094095558388067103539926698250898931142471176273042115024709390909492472743967403267308459e-2551) },
+ { SC_(0.4258894841768778860569000244140625e-4), SC_(0.15419080227729864418506622314453125e-4), SC_(0.12707412242889404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.1830534673552623209868695525333608693870478140986771641343952511061662952704389325698588842694442893e-7525)), SC_(1) },
+ { SC_(0.429383144364692270755767822265625e-4), SC_(0.0428761281073093414306640625), SC_(0.81474220752716064453125), SC_(0.6670993384074829827824185730735050260592416849695388102678720275285538601446792617170942562110737722e-2062), SC_(BOOST_MATH_SMALL_CONSTANT(0.1503852748893043569070584420804374973503282498107814611717957243181610257848040689066752011011521903e-17042)) },
+ { SC_(0.4323314715293236076831817626953125e-4), SC_(4174.39013671875), SC_(0.1355634629726409912109375), SC_(BOOST_MATH_SMALL_CONSTANT(0.1741737479435393164070743783516644538515708455721353687328907068917805988236924308779533332447842736e-20077)), SC_(0.5500647637598311764868356339788056582397278290971924670228151741233423921688471919435618588405276741e-1467) },
+ { SC_(0.43628693674691021442413330078125e-4), SC_(495.40863037109375), SC_(0.12707412242889404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.2635777732785853666597970569223099981540401902251114779117540286381653810376775458715609675588234809e-20538)), SC_(0.164074553389435495570864834112651743836218423938126161793683427926194069848835465073779036174452069e-1355) },
+ { SC_(0.4396517397253774106502532958984375e-4), SC_(0.001847697305493056774139404296875), SC_(0.221111953258514404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.2072584932333773564080754602009290026147836909320390107919267400046227568219163001236961402925266791e-14674)), SC_(0.7278393721393212191636655689421757500953426177953531997548969548847209180826615334861392217179462783e-2236) },
+ { SC_(0.45636130380444228649139404296875e-4), SC_(26.9266033172607421875), SC_(0.632396042346954345703125), SC_(0.323083658339483384179601029113392314163137312213380465279928094216180094437240628578107487940484812e-4362), SC_(BOOST_MATH_SMALL_CONSTANT(0.5453589185628250950056526063344565014212839206511911193164643251785928220063791558745558710897233194e-9525)) },
+ { SC_(0.4623167842510156333446502685546875e-4), SC_(0.43400345020927488803863525390625e-4), SC_(0.1355634629726409912109375), SC_(BOOST_MATH_SMALL_CONSTANT(0.8747815788931347648685677846348816901925149746536605658179046750713326074713944693294722365402966867e-11959)), SC_(1) },
{ SC_(0.4653503492590971291065216064453125e-4), SC_(0.188413614523597061634063720703125e-4), SC_(0.3082362115383148193359375), SC_(1), SC_(1) },
- { SC_(0.4662941864808090031147003173828125e-4), SC_(0.0003559053293429315090179443359375), SC_(0.905801355838775634765625), SC_(1), SC_(0.2278846383149582863330657837021062220741269034971105380714965002593295259446413122677513482369829253e-20855) },
- { SC_(0.466877463622950017452239990234375e-4), SC_(3780.931396484375), SC_(0.632396042346954345703125), SC_(0.3792134529387148669313493271326150806492845076363064844674665222071394519228007370261867998775447123e-4266), SC_(0.1244183253032945566273609797972337616590853930158142929015016671564364271096784974648192559147336436e-9312) },
- { SC_(0.47170542529784142971038818359375e-4), SC_(186.8951263427734375), SC_(0.632396042346954345703125), SC_(0.3266934840647815839338074317916427555204804089933043179563306543980085860044600040331042838063841602e-4221), SC_(0.4802980821004654344184354328412999752992167798802903607491862312198391305372279970831923750822234395e-9216) },
- { SC_(0.4735972834168933331966400146484375e-4), SC_(0.00372543814592063426971435546875), SC_(0.3082362115383148193359375), SC_(0.4203411708941611365307481908812525554332512659659422794425638587632778786194833657777412146496213478e-10676), SC_(0.3545675968378522660735942462974295093159607103287951436777706458954341569448452537406723701671971643e-3263) },
- { SC_(0.47360430471599102020263671875e-4), SC_(48598.65234375), SC_(0.632396042346954345703125), SC_(0.1031727817363177217505517656556272744304502709993537968787178645244928602428924058767552526928075161e-4206), SC_(0.1611856191966404301510900622517923061426474848337196558453979507048007790994379343797797282769258803e-9181) },
- { SC_(0.4800888200406916439533233642578125e-4), SC_(0.029623560607433319091796875), SC_(0.913384497165679931640625), SC_(0.1157704297196141331216759930615622010791536997118194911791694800153490512580102625698468659796212328e-804), SC_(0.198771528236678513687078507418301769671318186775841206361997488563487582517136901311543827876235759e-22114) },
- { SC_(0.4828667806577868759632110595703125e-4), SC_(0.000143944707815535366535186767578125), SC_(0.221111953258514404296875), SC_(0.7495894240132409319745795199641789566690476465611793795414005142859915750552626889750001395354628769e-10971), SC_(1) },
- { SC_(0.4830027683055959641933441162109375e-4), SC_(0.49858455895446240901947021484375e-4), SC_(0.913384497165679931640625), SC_(1), SC_(0.1081870262766115490308798173959278837682400300098825729962424895789956287156042080991887099644208004e-15904) },
- { SC_(0.48371657612733542919158935546875e-4), SC_(33.2382659912109375), SC_(0.81474220752716064453125), SC_(0.5392295180080476545815126479353849047663688066564460469494117659565275079874806508978081193819639046e-1841), SC_(0.6094665583717628530904316743021371250321111097379281222105980449051863532879698461913515793376942782e-15139) },
- { SC_(0.483796975458972156047821044921875e-4), SC_(0.00030146507197059690952301025390625), SC_(0.9688708782196044921875), SC_(1), SC_(0.1211173323113230084605677823903929547322642893402100963874701935994275378520822610889395584474783023e-29809) },
- { SC_(0.48389760195277631282806396484375e-4), SC_(3.295018672943115234375), SC_(0.8350250720977783203125), SC_(0.1512644959704413213389024275500845816126149022418010339140532986481037634186944658282689839722893346e-1618), SC_(0.6736806796167028920949019281678663706552176285176919437958212962773296232922990951215758814014026536e-16173) },
- { SC_(0.4859554246650077402591705322265625e-4), SC_(0.487077995785512030124664306640625e-4), SC_(0.9688708782196044921875), SC_(1), SC_(0.4524908534324837441439801698100149083397057157404919827350847674356499061323376516388426576082523905e-24823) },
- { SC_(0.4882370922132395207881927490234375e-4), SC_(0.0004924438544549047946929931640625), SC_(0.1355634629726409912109375), SC_(0.3646518140646385627314490689610669214632800685344959267311961453988290824656744707768834723394102092e-16934), SC_(0.1161009047612075761242646775509747727341695136708928888262636983566409939790437312422345504636527041e-454) },
+ { SC_(0.4662941864808090031147003173828125e-4), SC_(0.0003559053293429315090179443359375), SC_(0.905801355838775634765625), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.2278846383149582863330657837021062220741269034971105380714965002593295259446413122677513482369829253e-20855)) },
+ { SC_(0.466877463622950017452239990234375e-4), SC_(3780.931396484375), SC_(0.632396042346954345703125), SC_(0.3792134529387148669313493271326150806492845076363064844674665222071394519228007370261867998775447123e-4266), SC_(BOOST_MATH_SMALL_CONSTANT(0.1244183253032945566273609797972337616590853930158142929015016671564364271096784974648192559147336436e-9312)) },
+ { SC_(0.47170542529784142971038818359375e-4), SC_(186.8951263427734375), SC_(0.632396042346954345703125), SC_(0.3266934840647815839338074317916427555204804089933043179563306543980085860044600040331042838063841602e-4221), SC_(BOOST_MATH_SMALL_CONSTANT(0.4802980821004654344184354328412999752992167798802903607491862312198391305372279970831923750822234395e-9216)) },
+ { SC_(0.4735972834168933331966400146484375e-4), SC_(0.00372543814592063426971435546875), SC_(0.3082362115383148193359375), SC_(BOOST_MATH_SMALL_CONSTANT(0.4203411708941611365307481908812525554332512659659422794425638587632778786194833657777412146496213478e-10676)), SC_(0.3545675968378522660735942462974295093159607103287951436777706458954341569448452537406723701671971643e-3263) },
+ { SC_(0.47360430471599102020263671875e-4), SC_(48598.65234375), SC_(0.632396042346954345703125), SC_(0.1031727817363177217505517656556272744304502709993537968787178645244928602428924058767552526928075161e-4206), SC_(BOOST_MATH_SMALL_CONSTANT(0.1611856191966404301510900622517923061426474848337196558453979507048007790994379343797797282769258803e-9181)) },
+ { SC_(0.4800888200406916439533233642578125e-4), SC_(0.029623560607433319091796875), SC_(0.913384497165679931640625), SC_(0.1157704297196141331216759930615622010791536997118194911791694800153490512580102625698468659796212328e-804), SC_(BOOST_MATH_SMALL_CONSTANT(0.198771528236678513687078507418301769671318186775841206361997488563487582517136901311543827876235759e-22114)) },
+ { SC_(0.4828667806577868759632110595703125e-4), SC_(0.000143944707815535366535186767578125), SC_(0.221111953258514404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.7495894240132409319745795199641789566690476465611793795414005142859915750552626889750001395354628769e-10971)), SC_(1) },
+ { SC_(0.4830027683055959641933441162109375e-4), SC_(0.49858455895446240901947021484375e-4), SC_(0.913384497165679931640625), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.1081870262766115490308798173959278837682400300098825729962424895789956287156042080991887099644208004e-15904)) },
+ { SC_(0.48371657612733542919158935546875e-4), SC_(33.2382659912109375), SC_(0.81474220752716064453125), SC_(0.5392295180080476545815126479353849047663688066564460469494117659565275079874806508978081193819639046e-1841), SC_(BOOST_MATH_SMALL_CONSTANT(0.6094665583717628530904316743021371250321111097379281222105980449051863532879698461913515793376942782e-15139)) },
+ { SC_(0.483796975458972156047821044921875e-4), SC_(0.00030146507197059690952301025390625), SC_(0.9688708782196044921875), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.1211173323113230084605677823903929547322642893402100963874701935994275378520822610889395584474783023e-29809)) },
+ { SC_(0.48389760195277631282806396484375e-4), SC_(3.295018672943115234375), SC_(0.8350250720977783203125), SC_(0.1512644959704413213389024275500845816126149022418010339140532986481037634186944658282689839722893346e-1618), SC_(BOOST_MATH_SMALL_CONSTANT(0.6736806796167028920949019281678663706552176285176919437958212962773296232922990951215758814014026536e-16173)) },
+ { SC_(0.4859554246650077402591705322265625e-4), SC_(0.487077995785512030124664306640625e-4), SC_(0.9688708782196044921875), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.4524908534324837441439801698100149083397057157404919827350847674356499061323376516388426576082523905e-24823)) },
+ { SC_(0.4882370922132395207881927490234375e-4), SC_(0.0004924438544549047946929931640625), SC_(0.1355634629726409912109375), SC_(BOOST_MATH_SMALL_CONSTANT(0.3646518140646385627314490689610669214632800685344959267311961453988290824656744707768834723394102092e-16934)), SC_(0.1161009047612075761242646775509747727341695136708928888262636983566409939790437312422345504636527041e-454) },
{ SC_(0.0001018536931951530277729034423828125), SC_(0.000113726928248070180416107177734375), SC_(0.221111953258514404296875), SC_(0.2066954203816580316215441712214424636741228945439188594937361041977961072341864728543389711001325554e-3707), SC_(1) },
{ SC_(0.0001061613802448846399784088134765625), SC_(26.1992549896240234375), SC_(0.3082362115383148193359375), SC_(0.6561769229143689591030927870417351314309952619922160057603842444780352906719559937783245361591823151e-4816), SC_(0.6349202856011439954093262170673225006615982635242278290596467860089210038061365580664316066990041684e-1509) },
{ SC_(0.0001172095144283957779407501220703125), SC_(46.33734893798828125), SC_(0.632396042346954345703125), SC_(0.1517462141090208633893889901779005509855209226707053670733298611559957657254851288574150264553636184e-1699), SC_(0.1068817114613491257306433756926925641068877423362993610036747686945269519827489058223298955708257712e-3709) },
- { SC_(0.00011986176832579076290130615234375), SC_(0.429382145404815673828125), SC_(0.1355634629726409912109375), SC_(0.1946741600808288986054664384925735525358605351070691110016222896001799658815435484280158175061511342e-7239), SC_(0.8756347278664867265476720199557627625281780369452883056692648818089895352084926565564504160356494136e-527) },
- { SC_(0.0001239118282683193683624267578125), SC_(2.7409827709197998046875), SC_(0.9688708782196044921875), SC_(0.3612092388423149995861104392947964360431616042214108514709734050882172964038314449862238141943186574e-111), SC_(0.7386482983728915712656473400428352870944476154256226050553993677753757147996331599078275854660490037e-12161) },
- { SC_(0.000130386673845350742340087890625), SC_(0.0404968559741973876953125), SC_(0.81474220752716064453125), SC_(0.1773260106876984756025313449304379872082783853967079538614627035844230412189487396086941287498508612e-671), SC_(0.7832770003958532273454039144081940444751263099293398656352254531322877271068271591283147178715837703e-5605) },
+ { SC_(0.00011986176832579076290130615234375), SC_(0.429382145404815673828125), SC_(0.1355634629726409912109375), SC_(BOOST_MATH_SMALL_CONSTANT(0.1946741600808288986054664384925735525358605351070691110016222896001799658815435484280158175061511342e-7239)), SC_(0.8756347278664867265476720199557627625281780369452883056692648818089895352084926565564504160356494136e-527) },
+ { SC_(0.0001239118282683193683624267578125), SC_(2.7409827709197998046875), SC_(0.9688708782196044921875), SC_(0.3612092388423149995861104392947964360431616042214108514709734050882172964038314449862238141943186574e-111), SC_(BOOST_MATH_SMALL_CONSTANT(0.7386482983728915712656473400428352870944476154256226050553993677753757147996331599078275854660490037e-12161)) },
+ { SC_(0.000130386673845350742340087890625), SC_(0.0404968559741973876953125), SC_(0.81474220752716064453125), SC_(0.1773260106876984756025313449304379872082783853967079538614627035844230412189487396086941287498508612e-671), SC_(BOOST_MATH_SMALL_CONSTANT(0.7832770003958532273454039144081940444751263099293398656352254531322877271068271591283147178715837703e-5605)) },
{ SC_(0.000131270222482271492481231689453125), SC_(0.4417803938849829137325286865234375e-4), SC_(0.913384497165679931640625), SC_(1), SC_(0.2552140025859397293472505667061728339439104733457842212570630846542138002920485118928974128727523255e-3530) },
- { SC_(0.0001324503100477159023284912109375), SC_(251.767547607421875), SC_(0.9688708782196044921875), SC_(0.4537064445901084811651717843855173961971944783493810912867535459756830764230572425068408950044450515e-106), SC_(0.5718411759415848800487399921739353916100391666058108904922439323670404495330842459664454264197270132e-11379) },
+ { SC_(0.0001324503100477159023284912109375), SC_(251.767547607421875), SC_(0.9688708782196044921875), SC_(0.4537064445901084811651717843855173961971944783493810912867535459756830764230572425068408950044450515e-106), SC_(BOOST_MATH_SMALL_CONSTANT(0.5718411759415848800487399921739353916100391666058108904922439323670404495330842459664454264197270132e-11379)) },
{ SC_(0.0001335285487584769725799560546875), SC_(0.4650310074794106185436248779296875e-4), SC_(0.1355634629726409912109375), SC_(0.1386861059709135063224782373435801185647788993688987597179237811255267983919363186125254219690899373e-2096), SC_(1) },
{ SC_(0.000133774345158599317073822021484375), SC_(0.00023849334684200584888458251953125), SC_(0.8350250720977783203125), SC_(1), SC_(0.3512738536442382533982801612128987500171783187226110529697072136004453295105076465628261914246784663e-4404) },
{ SC_(0.00013858181773684918880462646484375), SC_(1.8936798572540283203125), SC_(0.632396042346954345703125), SC_(0.3494582932926073207268927514383887298030614732620636673718458010010860878919915968471379227812002172e-1436), SC_(0.2511767757063189074291668753082248028396011144842069611283346462421254885712421694124857786158458864e-3136) },
- { SC_(0.000142661112477071583271026611328125), SC_(0.00029941767570562660694122314453125), SC_(0.12707412242889404296875), SC_(0.9230347843647304902714845809226768084901559433590593943965868424691608898561307461463570335248331203e-5094), SC_(1) },
- { SC_(0.000144481091410852968692779541015625), SC_(0.16514885425567626953125), SC_(0.9688708782196044921875), SC_(0.2916808172152941371561907589392678444012691922523666932103740595982202193954671841759133631431519818e-92), SC_(0.1767399381652639845722463679609700453372075076129773918407690123301707895227643938760353681085508816e-10426) },
- { SC_(0.000149327577673830091953277587890625), SC_(0.02011823840439319610595703125), SC_(0.905801355838775634765625), SC_(0.5707652265814761497948122667290630272105804336492195682579100294355459961672140791071880766429409731e-266), SC_(0.9810863833475235469277958389544517047197068113645329771862609657404337986886753563876834604988200819e-6849) },
+ { SC_(0.000142661112477071583271026611328125), SC_(0.00029941767570562660694122314453125), SC_(0.12707412242889404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.9230347843647304902714845809226768084901559433590593943965868424691608898561307461463570335248331203e-5094)), SC_(1) },
+ { SC_(0.000144481091410852968692779541015625), SC_(0.16514885425567626953125), SC_(0.9688708782196044921875), SC_(0.2916808172152941371561907589392678444012691922523666932103740595982202193954671841759133631431519818e-92), SC_(BOOST_MATH_SMALL_CONSTANT(0.1767399381652639845722463679609700453372075076129773918407690123301707895227643938760353681085508816e-10426)) },
+ { SC_(0.000149327577673830091953277587890625), SC_(0.02011823840439319610595703125), SC_(0.905801355838775634765625), SC_(0.5707652265814761497948122667290630272105804336492195682579100294355459961672140791071880766429409731e-266), SC_(BOOST_MATH_SMALL_CONSTANT(0.9810863833475235469277958389544517047197068113645329771862609657404337986886753563876834604988200819e-6849)) },
{ SC_(0.00015278931823559105396270751953125), SC_(2.961205959320068359375), SC_(0.81474220752716064453125), SC_(0.9686336621146354493433474249776172298665280233601677488791828735847807273311033210501894283315401415e-583), SC_(0.958455450908763408676259709003850505127184835507737618299201518879010869739080299459011514685706909e-4793) },
{ SC_(0.0001544274273328483104705810546875), SC_(0.00420844554901123046875), SC_(0.81474220752716064453125), SC_(0.1422532322669166233547198932045080465165903362620672425042182798017888251987764727317957393358226225e-474), SC_(0.6406898334415580088458250645785874360637358207768999598619702089982929269362776370994287852924942151e-4640) },
- { SC_(0.000157981921802274882793426513671875), SC_(0.0037211482413113117218017578125), SC_(0.9688708782196044921875), SC_(0.9999999999999999999999999999999566547630376536143214240420427142438210294188898619193763474238270252), SC_(0.1939835336353642181185006651880056927592761406033161022047725735001855667514649920234337582255840696e-9423) },
+ { SC_(0.000157981921802274882793426513671875), SC_(0.0037211482413113117218017578125), SC_(0.9688708782196044921875), SC_(0.9999999999999999999999999999999566547630376536143214240420427142438210294188898619193763474238270252), SC_(BOOST_MATH_SMALL_CONSTANT(0.1939835336353642181185006651880056927592761406033161022047725735001855667514649920234337582255840696e-9423)) },
{ SC_(0.000158215596457011997699737548828125), SC_(0.0021306932903826236724853515625), SC_(0.632396042346954345703125), SC_(0.585489069408415416859094179428755245059026878022058922110086645292918800665344436651745005494150636e-1061), SC_(0.4013779767791508783705177360072859499767304191374351949246605254518780551957188734709557279955995735e-2550) },
{ SC_(0.000160951211000792682170867919921875), SC_(0.30127601348794996738433837890625e-4), SC_(0.632396042346954345703125), SC_(1), SC_(1) },
{ SC_(0.00016759600839577615261077880859375), SC_(42.365489959716796875), SC_(0.81474220752716064453125), SC_(0.1618938996260777000048394331001333735828473724696664350638506114369038796698616072232027135104079628e-532), SC_(0.1406269609595736906072036049759311881759571600609412613234989755199146208324476469937305493352160618e-4370) },
- { SC_(0.000168283222592435777187347412109375), SC_(195800.984375), SC_(0.905801355838775634765625), SC_(0.1354730836770779887008364134677020378373435913423079679236745608956186958884681592671816839314904849e-260), SC_(0.7218328323442263055653806224369414129100300853748650804831763213770456908980115243842363711809518462e-6102) },
+ { SC_(0.000168283222592435777187347412109375), SC_(195800.984375), SC_(0.905801355838775634765625), SC_(0.1354730836770779887008364134677020378373435913423079679236745608956186958884681592671816839314904849e-260), SC_(BOOST_MATH_SMALL_CONSTANT(0.7218328323442263055653806224369414129100300853748650804831763213770456908980115243842363711809518462e-6102)) },
{ SC_(0.000172738815308548510074615478515625), SC_(0.0049294424243271350860595703125), SC_(0.221111953258514404296875), SC_(0.3114416249143174222707773893716090914119393864104215223191725870977046796409159221692930963037429121e-3707), SC_(0.2136540942872556917617205810810670917004987234999099979812297733739508644811512695176969110791906457e-541) },
{ SC_(0.000173404449014924466609954833984375), SC_(254.2841949462890625), SC_(0.81474220752716064453125), SC_(0.1623807315528767333124878537842720894843097228461791649763010742074974165066564387287453755136810854e-515), SC_(0.5139903302901960528806296251774297557179593757281392427011217512831331097078087743413793585401593293e-4225) },
- { SC_(0.000173563123098574578762054443359375), SC_(0.03019084036350250244140625), SC_(0.913384497165679931640625), SC_(0.4216616538689840580493202765005811219382538532665045593477628254798611397253732194894520035245541872e-212), SC_(0.1519028677028408286426022642796355796371834777163384985260835697794432897435003268723798008701690198e-6106) },
+ { SC_(0.000173563123098574578762054443359375), SC_(0.03019084036350250244140625), SC_(0.913384497165679931640625), SC_(0.4216616538689840580493202765005811219382538532665045593477628254798611397253732194894520035245541872e-212), SC_(BOOST_MATH_SMALL_CONSTANT(0.1519028677028408286426022642796355796371834777163384985260835697794432897435003268723798008701690198e-6106)) },
{ SC_(0.000175581997609697282314300537109375), SC_(424.74957275390625), SC_(0.3082362115383148193359375), SC_(0.1374073145508158420949504228513669911289818766266752735396725961060062755831664433604536360630772639e-2913), SC_(0.4230605089159464618195269490875633033407067783316713382196399536598739632732026878413067460684943756e-914) },
{ SC_(0.0001779057201929390430450439453125), SC_(276489.40625), SC_(0.81474220752716064453125), SC_(0.1433385239986982143091039354417074327444856302734237844209496604209186944824552623394484592702388461e-505), SC_(0.3254393884580671998800374872762169570117335009930005460956811676181892273519631542186785950401027696e-4121) },
{ SC_(0.0001830969122238457202911376953125), SC_(316055.1875), SC_(0.12707412242889404296875), SC_(0.9511278427600094377135118355732841750467670552479250043093395362716056782940829083897373604472037431e-4899), SC_(0.7803532852087708371120942312492910554457076414343654065648757393181828534760153291925458722946512398e-328) },
{ SC_(0.00019036870799027383327484130859375), SC_(159131.59375), SC_(0.8350250720977783203125), SC_(0.1729789634740508820735073120973928406958737581664893798113469681043431248697180368016298098828197989e-416), SC_(0.4700640179418385223918941195224263508328604356844341580801637757202846411167892041465379417600255792e-4116) },
- { SC_(0.00019106571562588214874267578125), SC_(419861.28125), SC_(0.913384497165679931640625), SC_(0.1567576669925923896301071869259641587664399666797404809747965341633674144549694814185182492182916359e-211), SC_(0.5162529790129837326772014329885342018774722215280077618717450046045677991761733763019240992747819678e-5566) },
+ { SC_(0.00019106571562588214874267578125), SC_(419861.28125), SC_(0.913384497165679931640625), SC_(0.1567576669925923896301071869259641587664399666797404809747965341633674144549694814185182492182916359e-211), SC_(BOOST_MATH_SMALL_CONSTANT(0.5162529790129837326772014329885342018774722215280077618717450046045677991761733763019240992747819678e-5566)) },
{ SC_(0.000191590792383067309856414794921875), SC_(0.302199405268765985965728759765625e-4), SC_(0.221111953258514404296875), SC_(1), SC_(1) },
{ SC_(0.000192195278941653668880462646484375), SC_(177798.15625), SC_(0.3082362115383148193359375), SC_(0.138024604883116058538647719161923179568469814011119713441805481258801805364079413951746607008616879e-2664), SC_(0.6214268115306099755428145349231975501766324330655889187286806651500095053563428570653097584629241138e-838) },
{ SC_(0.000193911953829228878021240234375), SC_(32.115245819091796875), SC_(0.12707412242889404296875), SC_(0.7767238465456004634736100276529162725456105769090847581548651993018816232724302032160238139545805979e-4622), SC_(0.7429515026924012391238347914599424230456893918918839669869898430745346529849722172954900298765714898e-306) },
{ SC_(0.000195966451428830623626708984375), SC_(0.011618844233453273773193359375), SC_(0.8350250720977783203125), SC_(0.3146681743113886973623184980536034176049753150695447885790326381828535979784588451753885026920781476e-362), SC_(0.4068109297633604648746720510569521504676502764778768905020644717040368472889628052132454063237971075e-3956) },
- { SC_(0.000195981003344058990478515625), SC_(0.0429041944444179534912109375), SC_(0.9688708782196044921875), SC_(0.9793461126578410718261695906281390846110182632432004412427194576795091500841705229627568129960234386e-60), SC_(0.2513713796751235907828438441697789705001794518265066530445805548152265415098195397202775734780602226e-7678) },
+ { SC_(0.000195981003344058990478515625), SC_(0.0429041944444179534912109375), SC_(0.9688708782196044921875), SC_(0.9793461126578410718261695906281390846110182632432004412427194576795091500841705229627568129960234386e-60), SC_(BOOST_MATH_SMALL_CONSTANT(0.2513713796751235907828438441697789705001794518265066530445805548152265415098195397202775734780602226e-7678)) },
{ SC_(0.000196676512132398784160614013671875), SC_(2.09101200103759765625), SC_(0.221111953258514404296875), SC_(0.1688684004935734129507194618787128291898404263112373618373185703765353001510076185646943439255116478e-3332), SC_(0.5581449070202207791994774311279788564219242110546247774044809308164393769681046251390741382417455546e-552) },
{ SC_(0.000203948162379674613475799560546875), SC_(0.0001180238105007447302341461181640625), SC_(0.913384497165679931640625), SC_(1), SC_(0.7356283444570884230046659312487088392816310786287366174624575321932732040301877371734957580169884699e-3072) },
{ SC_(0.00020552115165628492832183837890625), SC_(0.00138142076320946216583251953125), SC_(0.3082362115383148193359375), SC_(0.1429827774470379632418986529932925878067109333669332533336600330283131861737532258223510587704633786e-2193), SC_(0.2341877068862295533468430869601473825908234773332820544926420092056706340922633328773460900349255528e-485) },
@@ -163,12 +168,12 @@
{ SC_(0.000261564855463802814483642578125), SC_(2.969768047332763671875), SC_(0.3082362115383148193359375), SC_(0.1917257176400386400114840135719818015469831009379409471718670646100779456798733130658135004020055163e-1954), SC_(0.3087647295581909311349470752466052134051176346344512798665157619492425697971635652332575362447818522e-612) },
{ SC_(0.00026690683444030582904815673828125), SC_(0.4926892220973968505859375), SC_(0.12707412242889404296875), SC_(0.7163470255220061959892697761424551497832999779611393880732590164502424545866100604093527599253026298e-3356), SC_(0.303403321416841421491577998091602161311391778650138396443569143991396032274291169527827724536822046e-220) },
{ SC_(0.000272565521299839019775390625), SC_(0.00399976409971714019775390625), SC_(0.12707412242889404296875), SC_(0.9205902969793391804289346438471724242443629260459170090697657561946770872247762543814516427553130581e-3182), SC_(0.3109865592710128973394498068097974142642216304306839600982877100239631214973288312317517622281276627e-111) },
- { SC_(0.00027427947497926652431488037109375), SC_(289206.03125), SC_(0.9688708782196044921875), SC_(0.1639984034231756044229208583485966873535409439402821030525820001328658712135114090265218902644737584e-55), SC_(0.3167971869880607999140021341487256982349274342231617849188200189421432360201900646993311294871619521e-5499) },
+ { SC_(0.00027427947497926652431488037109375), SC_(289206.03125), SC_(0.9688708782196044921875), SC_(0.1639984034231756044229208583485966873535409439402821030525820001328658712135114090265218902644737584e-55), SC_(BOOST_MATH_SMALL_CONSTANT(0.3167971869880607999140021341487256982349274342231617849188200189421432360201900646993311294871619521e-5499)) },
{ SC_(0.00027434344519861042499542236328125), SC_(2954.470947265625), SC_(0.3082362115383148193359375), SC_(0.1683233662674550433059541940673828771613870356265333292320684177950173516769252320642278291684226255e-1866), SC_(0.8216683369359972739531898111268752641450064211916381378045844365485522213413495802691798010671314424e-587) },
{ SC_(0.0002770713181234896183013916015625), SC_(0.341692575602792203426361083984375e-4), SC_(0.9688708782196044921875), SC_(1), SC_(0.2721068366073813159984513012097720958528607157423265246716102639988508670094701055419666722351122037e-1975) },
{ SC_(0.00027871350175701081752777099609375), SC_(4023.159423828125), SC_(0.632396042346954345703125), SC_(0.1291574753786667856129649195734480237580233476870127877698655245849801008629156532133192522949873216e-717), SC_(0.5840888368926630355728100612047316287689787084030763199998369840346014463888646072768489097278115931e-1563) },
{ SC_(0.00028021665639244019985198974609375), SC_(0.38819736801087856292724609375e-4), SC_(0.12707412242889404296875), SC_(0.9999999999999999999999999999999999999999999999999999999999999999999988604475158829819376999429596962), SC_(1) },
- { SC_(0.0002803694806061685085296630859375), SC_(25.140018463134765625), SC_(0.9688708782196044921875), SC_(0.23552480440775539686430622396015067919780844087251368603606276838177295310310060990303562813841002e-50), SC_(0.7995317643685616882578245050132329577447427558080918571872226097378941366069272208478020422926746699e-5376) },
+ { SC_(0.0002803694806061685085296630859375), SC_(25.140018463134765625), SC_(0.9688708782196044921875), SC_(0.23552480440775539686430622396015067919780844087251368603606276838177295310310060990303562813841002e-50), SC_(BOOST_MATH_SMALL_CONSTANT(0.7995317643685616882578245050132329577447427558080918571872226097378941366069272208478020422926746699e-5376)) },
{ SC_(0.0002883693086914718151092529296875), SC_(460073.28125), SC_(0.221111953258514404296875), SC_(0.2233396334407501063829398750137152674191646314810442525057378806386961277867880125954762433466669083e-2278), SC_(0.5577026830875732789213978609737026549387438908077397276340226474934141615055513094301940786850847488e-382) },
{ SC_(0.00029471665038727223873138427734375), SC_(4642.259765625), SC_(0.221111953258514404296875), SC_(0.1964659986388620197949494436175138648990492072207094050745694462963416098007902395754209859034594654e-2227), SC_(0.7044089528885514023477501142531362477457204611307255297966202787746705705009966437731031365498302993e-372) },
{ SC_(0.00029570105834864079952239990234375), SC_(0.3176224529743194580078125), SC_(0.81474220752716064453125), SC_(0.1860550124115277473494932781255212307204352935158359449028966694978708068397626706181905362647786932e-299), SC_(0.8953514270365841014322122635578319704715759052931331999014308297370740627613581765401103299082390701e-2475) },
Modified: sandbox/math_toolkit/libs/math/test/ibeta_inva_data.ipp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/ibeta_inva_data.ipp (original)
+++ sandbox/math_toolkit/libs/math/test/ibeta_inva_data.ipp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,3 +1,8 @@
+// (C) Copyright John Maddock 2006-7.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
#define SC_(x) static_cast<T>(BOOST_JOIN(x, L))
static const boost::array<boost::array<T, 7>, 1100> ibeta_inva_data = { {
{ SC_(0.101913392427377402782440185546875e-4), SC_(0.3082362115383148193359375), SC_(0.1355634629726409912109375), SC_(0.6498233713152427462579302903941895526823485861809005407005756658138299437345439685916818979079350952e-4), SC_(0.1598220360006443400909761969445329244603859759388130816641624923434214075962489978723834186220509792e-5), SC_(0.1598250823507423266003361933591577902014719110010440833489018043541995851576985396009647692344594598e-5), SC_(0.6499023539055942142435327607856798948132754954188633069136984730655318067141056849740949064680308213e-4) },
Modified: sandbox/math_toolkit/libs/math/test/ibeta_large_data.ipp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/ibeta_large_data.ipp (original)
+++ sandbox/math_toolkit/libs/math/test/ibeta_large_data.ipp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -5,7 +5,7 @@
#define SC_(x) static_cast<T>(BOOST_JOIN(x, L))
static const boost::array<boost::array<T, 7>, 1210> ibeta_large_data = { {
- { SC_(0.104760829344741068780422210693359375e-4), SC_(39078.1875), SC_(0.913384497165679931640625), SC_(95444.37547576888548779405522478045372688), SC_(0.4076397251031275963346153642645211144346e-41521), SC_(1), SC_(0.4270966445860582673748568606264586002504e-41526) },
+ { SC_(0.104760829344741068780422210693359375e-4), SC_(39078.1875), SC_(0.913384497165679931640625), SC_(95444.37547576888548779405522478045372688), SC_(BOOST_MATH_SMALL_CONSTANT(0.4076397251031275963346153642645211144346e-41521)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.4270966445860582673748568606264586002504e-41526)) },
{ SC_(0.1127331415773369371891021728515625e-4), SC_(0.0226620174944400787353515625), SC_(0.1355634629726409912109375), SC_(88703.20318198098901713372585734808194292), SC_(45.9460483635769831377505786833842050448), SC_(0.9994822930837981780736860587426162687504), SC_(0.0005177069162018219263139412573837312496096) },
{ SC_(0.113778432933031581342220306396484375e-4), SC_(0.03654421865940093994140625), SC_(0.9688708782196044921875), SC_(87893.29210911967129223056449206866305889), SC_(24.13233514927218107101077084629346084654), SC_(0.999725511349976252733137998478545702411), SC_(0.0002744886500237472668620015214542975889712) },
{ SC_(0.1142846667789854109287261962890625e-4), SC_(0.00244517601095139980316162109375), SC_(0.1355634629726409912109375), SC_(87498.94901523223439182946063290895919618), SC_(410.8174698800966982396187764410683048418), SC_(0.9953268278792474174353255397883295739773), SC_(0.004673172120752582564674460211670426022665) },
@@ -16,14 +16,14 @@
{ SC_(0.139016165121574886143207550048828125e-4), SC_(0.3188882328686304390430450439453125e-4), SC_(0.81474220752716064453125), SC_(71935.56143195648321209894597982190925135), SC_(31357.46843093207518473308985368320533006), SC_(0.6964222225589077802406713530999497187926), SC_(0.3035777774410922197593286469000502812074) },
{ SC_(0.14759907571715302765369415283203125e-4), SC_(2.8241312503814697265625), SC_(0.632396042346954345703125), SC_(67749.64468000029269520566988398084664291), SC_(0.02906706447901268252429885336709779665611), SC_(0.9999995709637719063997441118286889404404), SC_(0.4290362280936002558881713110595595793096e-6) },
{ SC_(0.150794721776037476956844329833984375e-4), SC_(0.4875471131526865065097808837890625e-4), SC_(0.221111953258514404296875), SC_(66314.05927892349341973416366818795267336), SC_(20512.09739510432080805623001488366337009), SC_(0.763756704421306309320206420222803196485), SC_(0.236243295578693690679793579777196803515) },
- { SC_(0.1519624856882728636264801025390625e-4), SC_(16177.537109375), SC_(0.81474220752716064453125), SC_(65795.44709267135893551075697872372424105), SC_(0.2027537374480409874707652773038782413935e-11849), SC_(1), SC_(0.3081577014933374612265415972232266786926e-11854) },
+ { SC_(0.1519624856882728636264801025390625e-4), SC_(16177.537109375), SC_(0.81474220752716064453125), SC_(65795.44709267135893551075697872372424105), SC_(BOOST_MATH_SMALL_CONSTANT(0.2027537374480409874707652773038782413935e-11849)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.3081577014933374612265415972232266786926e-11854)) },
{ SC_(0.1554497794131748378276824951171875e-4), SC_(40.46924591064453125), SC_(0.905801355838775634765625), SC_(64325.19244254056356455961240584532088293), SC_(0.822463871000651749828830546797984530393e-43), SC_(1), SC_(0.1278603047686689558334345413308146407234e-47) },
{ SC_(0.15675454051233828067779541015625e-4), SC_(0.000101913392427377402782440185546875), SC_(0.81474220752716064453125), SC_(63795.48621858577102490380365796969496633), SC_(9810.772055381842015487811747997830665087), SC_(0.8667128001689005026050394523916069667826), SC_(0.1332871998310994973949605476083930332174) },
{ SC_(0.15971760149113833904266357421875e-4), SC_(19.206241607666015625), SC_(0.913384497165679931640625), SC_(62607.00088023805345936256566188949995708), SC_(0.2234001688321881800710378923972526401497e-21), SC_(0.9999999999999999999999999964317062678097), SC_(0.3568293732190334165134476285535997648472e-26) },
{ SC_(0.16304524251609109342098236083984375e-4), SC_(0.00039033559733070433139801025390625), SC_(0.12707412242889404296875), SC_(61330.74255992408673684618143646855164824), SC_(2563.824473817131717490401647850652347432), SC_(0.9598741396516039259205408266092071862094), SC_(0.04012586034839607407945917339079281379055) },
- { SC_(0.16487292668898589909076690673828125e-4), SC_(470997.15625), SC_(0.12707412242889404296875), SC_(60639.13353449960017258664254772876309268), SC_(0.5384739990831595984009356761636892828401e-27804), SC_(1), SC_(0.887997515295636614071071990663640203201e-27809) },
+ { SC_(0.16487292668898589909076690673828125e-4), SC_(470997.15625), SC_(0.12707412242889404296875), SC_(60639.13353449960017258664254772876309268), SC_(BOOST_MATH_SMALL_CONSTANT(0.5384739990831595984009356761636892828401e-27804)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.887997515295636614071071990663640203201e-27809)) },
{ SC_(0.165044693858362734317779541015625e-4), SC_(3.57584381103515625), SC_(0.3082362115383148193359375), SC_(60587.77026541341888225085862457381274413), SC_(0.1732225036748861524733225741802535443988), SC_(0.9999971409740337294746579825837771947623), SC_(0.2859025966270525342017416222805237665672e-5) },
- { SC_(0.166259487741626799106597900390625e-4), SC_(147818.875), SC_(0.632396042346954345703125), SC_(60134.46375982525806101037989862809783137), SC_(0.1037988440880944042360986327562736779854e-64249), SC_(1), SC_(0.1726112408728927999761612396367365655052e-64254) },
+ { SC_(0.166259487741626799106597900390625e-4), SC_(147818.875), SC_(0.632396042346954345703125), SC_(60134.46375982525806101037989862809783137), SC_(BOOST_MATH_SMALL_CONSTANT(0.1037988440880944042360986327562736779854e-64249)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.1726112408728927999761612396367365655052e-64254)) },
{ SC_(0.16847467122715897858142852783203125e-4), SC_(0.002207652665674686431884765625), SC_(0.9688708782196044921875), SC_(59359.52475707738611546412137293027748567), SC_(449.5447623669572666846242510916839845304), SC_(0.9924836690157701392419526809332561139692), SC_(0.007516330984229860758047319066743886030786) },
{ SC_(0.1747490387060679495334625244140625e-4), SC_(0.26349246501922607421875), SC_(0.632396042346954345703125), SC_(57225.14946260528992955268005621257633375), SC_(3.201269200695144242963625771809339374153), SC_(0.9999440614807213732173180138063205712752), SC_(0.5593851927862678268198619367942872477437e-4) },
{ SC_(0.17863809262053109705448150634765625e-4), SC_(439.38714599609375), SC_(0.8350250720977783203125), SC_(55972.44090864893014330138933206516204433), SC_(0.3791074904984294581987640686637822179263e-346), SC_(1), SC_(0.6773109843774015299501716456463481210658e-351) },
@@ -33,14 +33,14 @@
{ SC_(0.2017128645093180239200592041015625e-4), SC_(232.9792938232421875), SC_(0.1355634629726409912109375), SC_(49569.39447695058637088307802861825336459), SC_(0.5613839078401083563926364753233791797764e-16), SC_(0.9999999999999999999988674787865299668824), SC_(0.1132521213470033117556444752410328436421e-20) },
{ SC_(0.20203804524498991668224334716796875e-4), SC_(42.8336334228515625), SC_(0.1355634629726409912109375), SC_(49491.30543730291452299570686539488489706), SC_(0.0002970093232930177329636992017779607619212), SC_(0.9999999939987575820392696584870441824195), SC_(0.6001242417960730341512955817580536150083e-8) },
{ SC_(0.20300331016187556087970733642578125e-4), SC_(42.38938140869140625), SC_(0.9688708782196044921875), SC_(49255.96842848213676438936988840982061108), SC_(0.3254102070311191847990477740588760715854e-65), SC_(1), SC_(0.660651322902325825501909533025783367306e-70) },
- { SC_(0.2051885167020373046398162841796875e-4), SC_(236087.890625), SC_(0.8350250720977783203125), SC_(48722.72335464117531549642945589803667543), SC_(0.3623657681223884685762672034466978337415e-184763), SC_(1), SC_(0.7437305289460397760237525357326064309497e-184768) },
+ { SC_(0.2051885167020373046398162841796875e-4), SC_(236087.890625), SC_(0.8350250720977783203125), SC_(48722.72335464117531549642945589803667543), SC_(BOOST_MATH_SMALL_CONSTANT(0.3623657681223884685762672034466978337415e-184763)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.7437305289460397760237525357326064309497e-184768)) },
{ SC_(0.21041001673438586294651031494140625e-4), SC_(3.8230969905853271484375), SC_(0.12707412242889404296875), SC_(47523.85310963552184634237668034540815544), SC_(0.6195869439847247414271234613685101142876), SC_(0.9999869627813034247834524610650576290292), SC_(0.1303721869657521654753893494237097084781e-4) },
{ SC_(0.2107691761921159923076629638671875e-4), SC_(0.04489715397357940673828125), SC_(0.221111953258514404296875), SC_(47443.99666807844164422517130961809149441), SC_(23.47266252209839487239051712128153957277), SC_(0.999505500022370764381415753210237199735), SC_(0.0004944999776292356185842467897628002650075) },
{ SC_(0.21139929231139831244945526123046875e-4), SC_(0.17535277947899885475635528564453125e-4), SC_(0.8350250720977783203125), SC_(47305.46963235175970278465413513213767625), SC_(57026.27394012006075825157468938510447443), SC_(0.4534139659948462776784686703995923371492), SC_(0.5465860340051537223215313296004076628508) },
{ SC_(0.21433561414596624672412872314453125e-4), SC_(3719.279052734375), SC_(0.81474220752716064453125), SC_(46647.00459679377138587098836772819692673), SC_(0.1495926352972579290785339523472754005755e-2726), SC_(1), SC_(0.3206907637270668567387926794334274553413e-2731) },
- { SC_(0.22448601157520897686481475830078125e-4), SC_(445071.28125), SC_(0.221111953258514404296875), SC_(44532.62436928473062336268384761066982164), SC_(0.4607684427809900763431582243857051777023e-48306), SC_(1), SC_(0.1034676148793947213721892942120911058743e-48310) },
+ { SC_(0.22448601157520897686481475830078125e-4), SC_(445071.28125), SC_(0.221111953258514404296875), SC_(44532.62436928473062336268384761066982164), SC_(BOOST_MATH_SMALL_CONSTANT(0.4607684427809900763431582243857051777023e-48306)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.1034676148793947213721892942120911058743e-48310)) },
{ SC_(0.22683978386339731514453887939453125e-4), SC_(0.0405500046908855438232421875), SC_(0.905801355838775634765625), SC_(44086.07924003136859651634907996836330649), SC_(22.49465708555873548404357783254789649371), SC_(0.9994900162236478687022169258555052598576), SC_(0.0005099837763521312977830741444947401424393) },
- { SC_(0.234849067055620253086090087890625e-4), SC_(25542.79296875), SC_(0.9688708782196044921875), SC_(42569.81566430276714554195940795833966451), SC_(0.7581371473885469585126327225518771230987e-38493), SC_(1), SC_(0.1780926545153655561405185897694774794731e-38497) },
+ { SC_(0.234849067055620253086090087890625e-4), SC_(25542.79296875), SC_(0.9688708782196044921875), SC_(42569.81566430276714554195940795833966451), SC_(BOOST_MATH_SMALL_CONSTANT(0.7581371473885469585126327225518771230987e-38493)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.1780926545153655561405185897694774794731e-38497)) },
{ SC_(0.23615430109202861785888671875e-4), SC_(4.50702953338623046875), SC_(0.905801355838775634765625), SC_(42343.22752013782255946235697838204438231), SC_(0.5715334129764534783145383504186846510886e-5), SC_(0.999999999865023653988705273815604260127), SC_(0.1349763460112947261843957398729530965949e-9) },
{ SC_(0.2399934965069405734539031982421875e-4), SC_(462.945892333984375), SC_(0.81474220752716064453125), SC_(41661.08259105714016534966079504412432568), SC_(0.2775658605653054188832508127259377541357e-341), SC_(1), SC_(0.6662473543711679396846266818523256261124e-346) },
{ SC_(0.24066381229204125702381134033203125e-4), SC_(1270.3814697265625), SC_(0.12707412242889404296875), SC_(41544.01619584179617307996501816686679587), SC_(0.6432823532988754950678493440100093053861e-77), SC_(1), SC_(0.1548435640565879148514421887738552981949e-81) },
@@ -50,38 +50,38 @@
{ SC_(0.26870451620197854936122894287109375e-4), SC_(0.000144985810038633644580841064453125), SC_(0.8350250720977783203125), SC_(37217.22199709670655355686997165747036372), SC_(6895.605189165562504177708220015695722412), SC_(0.8436825379600015811441576566235048540017), SC_(0.1563174620399984188558423433764951459983) },
{ SC_(0.27549775040824897587299346923828125e-4), SC_(0.1503586471080780029296875), SC_(0.12707412242889404296875), SC_(36295.98898214209116290907229901584968788), SC_(8.375418806411123975304744110348984534574), SC_(0.999769299946587350130083574806330185546), SC_(0.0002307000534126498699164251936698144539948) },
{ SC_(0.2782344745355658233165740966796875e-4), SC_(0.295027554035186767578125), SC_(0.8350250720977783203125), SC_(35941.82178311282183858216166056846305608), SC_(2.074584015871362718585422877982321716874), SC_(0.9999422827176363493743336035161848668839), SC_(0.5771728236365062566639648381513311607213e-4) },
- { SC_(0.28775624741683714091777801513671875e-4), SC_(25491.8359375), SC_(0.905801355838775634765625), SC_(34740.91309313126314329366380972784559115), SC_(0.1416279658206675284644779676116805674026e-26157), SC_(1), SC_(0.4076690944794690667194646507475445069595e-26162) },
+ { SC_(0.28775624741683714091777801513671875e-4), SC_(25491.8359375), SC_(0.905801355838775634765625), SC_(34740.91309313126314329366380972784559115), SC_(BOOST_MATH_SMALL_CONSTANT(0.1416279658206675284644779676116805674026e-26157)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.4076690944794690667194646507475445069595e-26162)) },
{ SC_(0.2893155397032387554645538330078125e-4), SC_(494.983856201171875), SC_(0.9688708782196044921875), SC_(34557.55760263256678063136756722525969856), SC_(0.2890949069585648946963256640313804418152e-748), SC_(1), SC_(0.8365605876514313574231285595563498875846e-753) },
{ SC_(0.29415024982881732285022735595703125e-4), SC_(0.00041924233664758503437042236328125), SC_(0.3082362115383148193359375), SC_(33995.42298781772266213120899206663131448), SC_(2386.063098878378675267956366611194207388), SC_(0.9344154580933704966321633296307533232161), SC_(0.06558454190662950336783667036924667678394) },
{ SC_(0.29590575650217942893505096435546875e-4), SC_(0.283195674419403076171875), SC_(0.81474220752716064453125), SC_(33795.39511420584887740898771673983552197), SC_(2.290823897771470125511242490096281441071), SC_(0.9999322195045552279110293804079128871172), SC_(0.6778049544477208897061959208711288282975e-4) },
{ SC_(0.299345629173330962657928466796875e-4), SC_(4.095668792724609375), SC_(0.81474220752716064453125), SC_(33404.33980056291121139398867359007762442), SC_(0.0002879141232846902209324334859829932849643), SC_(0.9999999913809366530785803322881992366014), SC_(0.861906334692141966771180076339861949515e-8) },
{ SC_(0.30238283216021955013275146484375e-4), SC_(47.60295867919921875), SC_(0.221111953258514404296875), SC_(33066.23130522049694371736967150705819949), SC_(0.6066711009943786655226912341571896993929e-6), SC_(0.9999999999816528501423908342357451119694), SC_(0.1834714985760916576425488803055205902901e-10) },
- { SC_(0.3114132778136990964412689208984375e-4), SC_(348144), SC_(0.3082362115383148193359375), SC_(32098.33389035029241397207487302347639031), SC_(0.1762609719892802507741212026091836262589e-55722), SC_(1), SC_(0.5491281030080801389728927665390102499293e-55727) },
+ { SC_(0.3114132778136990964412689208984375e-4), SC_(348144), SC_(0.3082362115383148193359375), SC_(32098.33389035029241397207487302347639031), SC_(BOOST_MATH_SMALL_CONSTANT(0.1762609719892802507741212026091836262589e-55722)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.5491281030080801389728927665390102499293e-55727)) },
{ SC_(0.31231902539730072021484375e-4), SC_(33712.953125), SC_(0.221111953258514404296875), SC_(32007.54161537159159710306959672364944529), SC_(0.2695260440597220947109382805026254025866e-3662), SC_(1), SC_(0.8420704323329926310015340121536534269201e-3667) },
{ SC_(0.3187526090187020599842071533203125e-4), SC_(0.4971525049768388271331787109375e-4), SC_(0.905801355838775634765625), SC_(31374.55539344689310304928706875069870009), SC_(20112.28887924914257320836126084639953446), SC_(0.6093703321041394434571656013777815272162), SC_(0.3906296678958605565428343986222184727838) },
{ SC_(0.3188861956004984676837921142578125e-4), SC_(16.32230377197265625), SC_(0.8350250720977783203125), SC_(31355.81127255330873045397584652154569512), SC_(0.1222074701559891111911389773172013021319e-13), SC_(0.999999999999999999610255754208595422225), SC_(0.3897442457914045777750191938125222519392e-18) },
{ SC_(0.319889441016130149364471435546875e-4), SC_(3931.19482421875), SC_(0.3082362115383148193359375), SC_(31251.94800013161196897912799096276134602), SC_(0.5745864678972875412080359974019879563813e-632), SC_(1), SC_(0.1838562088657218338652843181267156977738e-636) },
{ SC_(0.32712865504436194896697998046875e-4), SC_(3109.48583984375), SC_(0.9688708782196044921875), SC_(30560.39464204411290636833886910765434566), SC_(0.1108549488685000006098886343654101789748e-4688), SC_(1), SC_(0.3627405672176397453051972129897762624733e-4693) },
- { SC_(0.3275294511695392429828643798828125e-4), SC_(25796.328125), SC_(0.8350250720977783203125), SC_(30520.87225244356335157942706699076684673), SC_(0.8381445176678792659668927836693079104497e-20192), SC_(1), SC_(0.2746135532220170098568726383437115956981e-20196) },
+ { SC_(0.3275294511695392429828643798828125e-4), SC_(25796.328125), SC_(0.8350250720977783203125), SC_(30520.87225244356335157942706699076684673), SC_(BOOST_MATH_SMALL_CONSTANT(0.8381445176678792659668927836693079104497e-20192)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.2746135532220170098568726383437115956981e-20196)) },
{ SC_(0.334105643560178577899932861328125e-4), SC_(3378.014404296875), SC_(0.221111953258514404296875), SC_(29921.95193372606848176520231044586993696), SC_(0.3367989592512801451610310755314039758674e-369), SC_(1), SC_(0.1125591538938548898321239668571790685691e-373) },
{ SC_(0.334107098751701414585113525390625e-4), SC_(4.2327022552490234375), SC_(0.913384497165679931640625), SC_(29928.62516317695550339210665359170562499), SC_(0.809428035585891781081852118385381939328e-5), SC_(0.9999999997295472040717495972301680634642), SC_(0.2704527959282504027698319365358097631894e-9) },
- { SC_(0.3407927579246461391448974609375e-4), SC_(288782.71875), SC_(0.81474220752716064453125), SC_(29330.19888791878932947154534551660334586), SC_(0.135184030849881991590274414805713778675e-211458), SC_(1), SC_(0.4609039010150209477801496667289009548031e-211463) },
+ { SC_(0.3407927579246461391448974609375e-4), SC_(288782.71875), SC_(0.81474220752716064453125), SC_(29330.19888791878932947154534551660334586), SC_(BOOST_MATH_SMALL_CONSTANT(0.135184030849881991590274414805713778675e-211458)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.4609039010150209477801496667289009548031e-211463)) },
{ SC_(0.346417873515747487545013427734375e-4), SC_(411.559112548828125), SC_(0.913384497165679931640625), SC_(28860.27563597394879233427806328876239557), SC_(0.1522697740032561870065865846935945974367e-439), SC_(1), SC_(0.527610255438634632761400523758123631574e-444) },
{ SC_(0.3529437162796966731548309326171875e-4), SC_(0.22326681573758833110332489013671875e-4), SC_(0.632396042346954345703125), SC_(28333.67188577703227003090077461249901366), SC_(44788.91695876111389744122818346075462797), SC_(0.3874817937042091089750716503682375456457), SC_(0.6125182062957908910249283496317624543543) },
{ SC_(0.358525212504900991916656494140625e-4), SC_(0.4175899922847747802734375), SC_(0.905801355838775634765625), SC_(27892.98297091729514155146883067834541719), SC_(0.9191818316297753966421503516069036609437), SC_(0.9999670472124482163691157081516938377334), SC_(0.329527875517836308842918483061622666184e-4) },
- { SC_(0.3616316462284885346889495849609375e-4), SC_(311936.78125), SC_(0.905801355838775634765625), SC_(27639.22261434461938975554213848538169757), SC_(0.21872320557191207599327386050169592483e-320038), SC_(1), SC_(0.7913507866114722691803263837905894928814e-320043) },
+ { SC_(0.3616316462284885346889495849609375e-4), SC_(311936.78125), SC_(0.905801355838775634765625), SC_(27639.22261434461938975554213848538169757), SC_(BOOST_MATH_SMALL_CONSTANT(0.21872320557191207599327386050169592483e-320038)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.7913507866114722691803263837905894928814e-320043)) },
{ SC_(0.362039208994247019290924072265625e-4), SC_(3.842815399169921875), SC_(0.221111953258514404296875), SC_(27619.24145744833795205594628565485626954), SC_(0.2885911357778822591534545401320889491212), SC_(0.9999895511931133427608999244407741894681), SC_(0.1044880688665723910007555922581053190729e-4) },
{ SC_(0.3621911673690192401409149169921875e-4), SC_(0.001695460639894008636474609375), SC_(0.913384497165679931640625), SC_(27612.07735758991527179555055475190235649), SC_(587.4590726384651825885815591687179437043), SC_(0.9791677755380141364366349977092058495222), SC_(0.02083222446198586356336500229079415047777) },
{ SC_(0.36229626857675611972808837890625e-4), SC_(0.004191714338958263397216796875), SC_(0.12707412242889404296875), SC_(27599.79194493898806466554839813002500616), SC_(240.4865490349295080263659930502620987497), SC_(0.9913619201371500903163174293666919250546), SC_(0.008638079862849909683682570633308074945419) },
{ SC_(0.3714940612553618848323822021484375e-4), SC_(0.00259495410136878490447998046875), SC_(0.632396042346954345703125), SC_(26918.86986823624863883899272517520565716), SC_(384.8197974694066082527997026471724900083), SC_(0.9859059415712319237580331908573981554027), SC_(0.01409405842876807624196680914260184459732) },
{ SC_(0.3718810694408603012561798095703125e-4), SC_(1.01127374172210693359375), SC_(0.1355634629726409912109375), SC_(26888.31759685705379594950317256428025768), SC_(1.981430989726498944950388740699451364096), SC_(0.9999263142820511371425674052947570323764), SC_(0.7368571794886285743259470524296762357664e-4) },
- { SC_(0.3756858131964690983295440673828125e-4), SC_(386440.28125), SC_(0.913384497165679931640625), SC_(26604.54823315935969085332892717711494674), SC_(0.4065286066478631235489668166780115749874e-410561), SC_(1), SC_(0.152804175844329602500189843747099318363e-410565) },
+ { SC_(0.3756858131964690983295440673828125e-4), SC_(386440.28125), SC_(0.913384497165679931640625), SC_(26604.54823315935969085332892717711494674), SC_(BOOST_MATH_SMALL_CONSTANT(0.4065286066478631235489668166780115749874e-410561)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.152804175844329602500189843747099318363e-410565)) },
{ SC_(0.3779314647545106709003448486328125e-4), SC_(0.015007309615612030029296875), SC_(0.8350250720977783203125), SC_(26461.40422999164437038149048593427607469), SC_(65.02937587019798712765467475392460775433), SC_(0.9975485066392103415098279398679676242021), SC_(0.002451493360789658490172060132032375797861) },
{ SC_(0.3796306918957270681858062744140625e-4), SC_(26.5066623687744140625), SC_(0.3082362115383148193359375), SC_(26337.55438031456065854766964405203660784), SC_(0.650968760775798160106200264618281989814e-5), SC_(0.9999999997528362917775482883034768425904), SC_(0.2471637082224517116965231574095716914252e-9) },
{ SC_(0.382418438675813376903533935546875e-4), SC_(0.041891194880008697509765625), SC_(0.12707412242889404296875), SC_(26147.43384232011674693762277429193851936), SC_(25.73732536299210380242827376122671812981), SC_(0.9990166523881228866321958851431044023592), SC_(0.0009833476118771133678041148568955976407561) },
{ SC_(0.3837459371425211429595947265625e-4), SC_(0.468349933624267578125), SC_(0.913384497165679931640625), SC_(26059.76048433521995668834278068219745685), SC_(0.6987607570621884456957464270944079098916), SC_(0.9999731869361744352453122586012926205363), SC_(0.2681306382556475468774139870737946368093e-4) },
{ SC_(0.3972529884777031838893890380859375e-4), SC_(0.00289903464727103710174560546875), SC_(0.8350250720977783203125), SC_(25174.48903569539400579147933223238025856), SC_(343.3239985735199759551980828118697972407), SC_(0.986545712279008544056699869292160934395), SC_(0.01345428772099145594330013070783906560505) },
- { SC_(0.3992606434621848165988922119140625e-4), SC_(495351.78125), SC_(0.9688708782196044921875), SC_(25032.60889109550663689197939247915216651), SC_(0.696740351458271689129001813176869375763e-746418), SC_(1), SC_(0.2783330952396708475154173721707152958145e-746422) },
+ { SC_(0.3992606434621848165988922119140625e-4), SC_(495351.78125), SC_(0.9688708782196044921875), SC_(25032.60889109550663689197939247915216651), SC_(BOOST_MATH_SMALL_CONSTANT(0.696740351458271689129001813176869375763e-746418)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.2783330952396708475154173721707152958145e-746422)) },
{ SC_(0.4005068331025540828704833984375e-4), SC_(42.8498382568359375), SC_(0.12707412242889404296875), SC_(24964.03974453176254732786393631764995119), SC_(0.0004764518849491958406381833364919699287086), SC_(0.9999999809144721474726734378650429764282), SC_(0.1908552785252732656213495702357176544891e-7) },
{ SC_(0.401491633965633809566497802734375e-4), SC_(3246.22998046875), SC_(0.905801355838775634765625), SC_(24898.4584653078017864790087780927673871), SC_(0.1108057695326287750167782477290997721268e-3333), SC_(1), SC_(0.4450306419050789325668215199282677439922e-3338) },
{ SC_(0.401874640374444425106048583984375e-4), SC_(0.4230124056339263916015625), SC_(0.9688708782196044921875), SC_(24884.65638019556468000577131054549427565), SC_(0.5499362787544073007908815351717741538709), SC_(0.9999779010761751112114263009977381864979), SC_(0.2209892382488878857369900226181350205022e-4) },
@@ -90,7 +90,7 @@
{ SC_(0.4062067091581411659717559814453125e-4), SC_(0.12048657238483428955078125), SC_(0.221111953258514404296875), SC_(24616.71699087330989611384352424571439851), SC_(9.408154880466094757120473718264061713371), SC_(0.9996179604048634374596919774821892391986), SC_(0.0003820395951365625403080225178107608014209) },
{ SC_(0.4116668787901289761066436767578125e-4), SC_(24253.806640625), SC_(0.3082362115383148193359375), SC_(24280.81431332926606221047228474533799192), SC_(0.3121000460868512625690086385758400813897e-3885), SC_(1), SC_(0.1285377179115116903067863941396360394018e-3889) },
{ SC_(0.416882903664372861385345458984375e-4), SC_(0.00045137223787605762481689453125), SC_(0.913384497165679931640625), SC_(23989.904870502330213515101909269354169), SC_(2213.111868591642997977556052058897902679), SC_(0.9155398063273470932413144008298325539327), SC_(0.08446019367265290675868559917016744606727) },
- { SC_(0.417713818023912608623504638671875e-4), SC_(274447), SC_(0.1355634629726409912109375), SC_(23926.73917601287382168657073522639595926), SC_(0.1053243186220253393843550866913641343978e-17367), SC_(1), SC_(0.4401950380585728898409181782487226374213e-17372) },
+ { SC_(0.417713818023912608623504638671875e-4), SC_(274447), SC_(0.1355634629726409912109375), SC_(23926.73917601287382168657073522639595926), SC_(BOOST_MATH_SMALL_CONSTANT(0.1053243186220253393843550866913641343978e-17367)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.4401950380585728898409181782487226374213e-17372)) },
{ SC_(0.418079944211058318614959716796875e-4), SC_(0.11457650363445281982421875), SC_(0.3082362115383148193359375), SC_(23918.0162433633390700257956287535078955), SC_(9.407728093440956133874016879229505002698), SC_(0.9996068223597883536477963324387786099182), SC_(0.0003931776402116463522036675612213900817857) },
{ SC_(0.42011219193227589130401611328125e-4), SC_(0.000218811779632233083248138427734375), SC_(0.632396042346954345703125), SC_(23803.70760352901714607612121091230507105), SC_(4569.595256369948321655519715808656289915), SC_(0.8389473626340370230854972294747071692757), SC_(0.1610526373659629769145027705252928307243) },
{ SC_(0.4257139153196476399898529052734375e-4), SC_(219.9326934814453125), SC_(0.221111953258514404296875), SC_(23483.98585440845061066129375621335062778), SC_(0.2742309436430616964714146372071762250557e-25), SC_(0.9999999999999999999999999999988322640571), SC_(0.1167735942881189541197741014749144791176e-29) },
@@ -106,7 +106,7 @@
{ SC_(0.466877463622950017452239990234375e-4), SC_(3780.931396484375), SC_(0.632396042346954345703125), SC_(21410.08338969725340269900662600119477313), SC_(0.2257391921210343612254294174028316748378e-1646), SC_(1), SC_(0.1054359238178690708697627729079251689545e-1650) },
{ SC_(0.47170542529784142971038818359375e-4), SC_(186.8951263427734375), SC_(0.632396042346954345703125), SC_(21193.86711827442353521289275282851388591), SC_(0.4985855099448642037318909421798173769551e-83), SC_(1), SC_(0.2352498990214761583545264867928475446121e-87) },
{ SC_(0.4735972834168933331966400146484375e-4), SC_(0.00372543814592063426971435546875), SC_(0.3082362115383148193359375), SC_(21114.17609539758913560451160434591780078), SC_(269.2284995693509671127780993439854580164), SC_(0.9874094652058952350894427065438275388296), SC_(0.01259053479410476491055729345617246117038) },
- { SC_(0.47360430471599102020263671875e-4), SC_(48598.65234375), SC_(0.632396042346954345703125), SC_(21103.30748867175501316330739017132629156), SC_(0.3756295693411259570184707878046911501874e-21126), SC_(1), SC_(0.1779955912326841294543708384397391330829e-21130) },
+ { SC_(0.47360430471599102020263671875e-4), SC_(48598.65234375), SC_(0.632396042346954345703125), SC_(21103.30748867175501316330739017132629156), SC_(BOOST_MATH_SMALL_CONSTANT(0.3756295693411259570184707878046911501874e-21126)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.1779955912326841294543708384397391330829e-21130)) },
{ SC_(0.4800888200406916439533233642578125e-4), SC_(0.029623560607433319091796875), SC_(0.913384497165679931640625), SC_(20831.70908451148224093013025807091311149), SC_(31.47906305784045464960320622881661698154), SC_(0.9984911671775577626496515142461326823679), SC_(0.001508832822442237350348485753867317632055) },
{ SC_(0.4828667806577868759632110595703125e-4), SC_(0.000143944707815535366535186767578125), SC_(0.221111953258514404296875), SC_(20708.38659725890917753161481227003835775), SC_(6948.3708462003657583467288361519096977), SC_(0.7487640819642206167429448551580153639244), SC_(0.2512359180357793832570551448419846360756) },
{ SC_(0.4830027683055959641933441162109375e-4), SC_(0.49858455895446240901947021484375e-4), SC_(0.913384497165679931640625), SC_(20706.17047129887892431507203038774212276), SC_(20054.42282583120409517932285215261290946), SC_(0.5079948253048804836573987501458642708508), SC_(0.4920051746951195163426012498541357291492) },
@@ -135,17 +135,17 @@
{ SC_(0.000158215596457011997699737548828125), SC_(0.0021306932903826236724853515625), SC_(0.632396042346954345703125), SC_(6321.029006220338639420486814392216778079), SC_(468.7874392533131252041345405946340481051), SC_(0.930957273584939906869139763616711947603), SC_(0.06904272641506009313086023638328805239701) },
{ SC_(0.000160951211000792682170867919921875), SC_(0.30127601348794996738433837890625e-4), SC_(0.632396042346954345703125), SC_(6213.605202880870319684522296848826470202), SC_(33191.61194034333178935603703855301603968), SC_(0.1576848360027197794266700610327895075738), SC_(0.8423151639972802205733299389672104924262) },
{ SC_(0.00016759600839577615261077880859375), SC_(42.365489959716796875), SC_(0.81474220752716064453125), SC_(5962.419209243696990787532758138575009456), SC_(0.2745901684849735730833116097646148949735e-32), SC_(0.9999999999999999999999999999999999995395), SC_(0.460534824621638706370261627704862425701e-36) },
- { SC_(0.000168283222592435777187347412109375), SC_(195800.984375), SC_(0.905801355838775634765625), SC_(5929.614792333636458838497244984211996004), SC_(0.4831197613058346312798602692403539272976e-200888), SC_(1), SC_(0.814757413804446933868292816740745794065e-200892) },
+ { SC_(0.000168283222592435777187347412109375), SC_(195800.984375), SC_(0.905801355838775634765625), SC_(5929.614792333636458838497244984211996004), SC_(BOOST_MATH_SMALL_CONSTANT(0.4831197613058346312798602692403539272976e-200888)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.814757413804446933868292816740745794065e-200892)) },
{ SC_(0.000172738815308548510074615478515625), SC_(0.0049294424243271350860595703125), SC_(0.221111953258514404296875), SC_(5787.826408666762378346106402064048429964), SC_(204.1147555603997993918196397390832350333), SC_(0.9659351201946045097863972781297349672121), SC_(0.03406487980539549021360272187026503278789) },
{ SC_(0.000173404449014924466609954833984375), SC_(254.2841949462890625), SC_(0.81474220752716064453125), SC_(5760.754405025796286017185717611522877711), SC_(0.309308341870567221840603649252970401078e-188), SC_(1), SC_(0.5369233265711180045878920124653560411787e-192) },
{ SC_(0.000173563123098574578762054443359375), SC_(0.03019084036350250244140625), SC_(0.913384497165679931640625), SC_(5763.820101603284338087718804379332704233), SC_(30.8462262273872423234544825886802406685), SC_(0.9946767899164031704926066210832765036334), SC_(0.005323210083596829507393378916723496366579) },
{ SC_(0.000175581997609697282314300537109375), SC_(424.74957275390625), SC_(0.3082362115383148193359375), SC_(5688.721163726462073502362206742214633907), SC_(0.7994233073263827924032244564721438697512e-70), SC_(1), SC_(0.1405277714126370331640974784771264102987e-73) },
- { SC_(0.0001779057201929390430450439453125), SC_(276489.40625), SC_(0.81474220752716064453125), SC_(5607.863007605415905492639632979871681912), SC_(0.4002198864067135036323444681833070153753e-202457), SC_(1), SC_(0.7136762896381973011352322634945436475998e-202461) },
- { SC_(0.0001830969122238457202911376953125), SC_(316055.1875), SC_(0.12707412242889404296875), SC_(5448.363855012008867050069508711867940505), SC_(0.9706033380826670137569743884892059945736e-18659), SC_(1), SC_(0.17814583678911211117845773161397628964e-18662) },
- { SC_(0.00019036870799027383327484130859375), SC_(159131.59375), SC_(0.8350250720977783203125), SC_(5240.424606587977644850715935961858665052), SC_(0.2224500012712520372183312643665155986136e-124538), SC_(1), SC_(0.4244885061252478631853807266395371322656e-124542) },
- { SC_(0.00019106571562588214874267578125), SC_(419861.28125), SC_(0.913384497165679931640625), SC_(5220.294070692503835759362993222013780906), SC_(0.9049906875539083416221732298640456870193e-446068), SC_(1), SC_(0.1733600972088255957843856613647525229045e-446071) },
+ { SC_(0.0001779057201929390430450439453125), SC_(276489.40625), SC_(0.81474220752716064453125), SC_(5607.863007605415905492639632979871681912), SC_(BOOST_MATH_SMALL_CONSTANT(0.4002198864067135036323444681833070153753e-202457)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.7136762896381973011352322634945436475998e-202461)) },
+ { SC_(0.0001830969122238457202911376953125), SC_(316055.1875), SC_(0.12707412242889404296875), SC_(5448.363855012008867050069508711867940505), SC_(BOOST_MATH_SMALL_CONSTANT(0.9706033380826670137569743884892059945736e-18659)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.17814583678911211117845773161397628964e-18662)) },
+ { SC_(0.00019036870799027383327484130859375), SC_(159131.59375), SC_(0.8350250720977783203125), SC_(5240.424606587977644850715935961858665052), SC_(BOOST_MATH_SMALL_CONSTANT(0.2224500012712520372183312643665155986136e-124538)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.4244885061252478631853807266395371322656e-124542)) },
+ { SC_(0.00019106571562588214874267578125), SC_(419861.28125), SC_(0.913384497165679931640625), SC_(5220.294070692503835759362993222013780906), SC_(BOOST_MATH_SMALL_CONSTANT(0.9049906875539083416221732298640456870193e-446068)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.1733600972088255957843856613647525229045e-446071)) },
{ SC_(0.000191590792383067309856414794921875), SC_(0.302199405268765985965728759765625e-4), SC_(0.221111953258514404296875), SC_(5218.198403960466669221628284729384062189), SC_(33091.99229469319000376077420451715593021), SC_(0.1362091471954967570972452259296608626232), SC_(0.8637908528045032429027547740703391373768) },
- { SC_(0.000192195278941653668880462646484375), SC_(177798.15625), SC_(0.3082362115383148193359375), SC_(5190.391379153075167027803493007631836791), SC_(0.1141146016081000795919967144320131012393e-28459), SC_(1), SC_(0.2198574120372409176371795674206966282075e-28463) },
+ { SC_(0.000192195278941653668880462646484375), SC_(177798.15625), SC_(0.3082362115383148193359375), SC_(5190.391379153075167027803493007631836791), SC_(BOOST_MATH_SMALL_CONSTANT(0.1141146016081000795919967144320131012393e-28459)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.2198574120372409176371795674206966282075e-28463)) },
{ SC_(0.000193911953829228878021240234375), SC_(32.115245819091796875), SC_(0.12707412242889404296875), SC_(5152.947846003342098294718061584450246476), SC_(0.002639498699135445838819091652742231315418), SC_(0.999999487769442659745453026145816785441), SC_(0.512230557340254546973854183214558974377e-6) },
{ SC_(0.000195966451428830623626708984375), SC_(0.011618844233453273773193359375), SC_(0.8350250720977783203125), SC_(5104.503639855632707391854768076715658822), SC_(84.45843463596422207679946774464377889093), SC_(0.9837234434510220864537775748281121571201), SC_(0.01627655654897791354622242517188784287993) },
{ SC_(0.000195981003344058990478515625), SC_(0.0429041944444179534912109375), SC_(0.9688708782196044921875), SC_(5105.664201743881453946730034241174981722), SC_(20.11015895111600867001983475458394989157), SC_(0.9960766593423770419601555094346086588159), SC_(0.003923340657622958039844490565391341184107) },
@@ -153,10 +153,10 @@
{ SC_(0.000203948162379674613475799560546875), SC_(0.0001180238105007447302341461181640625), SC_(0.913384497165679931640625), SC_(4905.561569471299445541907025253345945424), SC_(8470.511202586446201247227543726581950478), SC_(0.3667415431320682499296214543111572259584), SC_(0.6332584568679317500703785456888427740416) },
{ SC_(0.00020552115165628492832183837890625), SC_(0.00138142076320946216583251953125), SC_(0.3082362115383148193359375), SC_(4864.870283621552589600617549642511712112), SC_(724.6987501625367922536917238180934601035), SC_(0.8703480096976417388633162741430148381307), SC_(0.1296519903023582611366837258569851618693) },
{ SC_(0.000218528322875499725341796875), SC_(215.121978759765625), SC_(0.1355634629726409912109375), SC_(4570.123815914933502416775387073811835093), SC_(0.8177025127270565517519048866936017134941e-15), SC_(0.9999999999999999998210765078443824493488), SC_(0.1789234921556175506512002662847620835962e-18) },
- { SC_(0.0002204985357820987701416015625), SC_(107380.34375), SC_(0.1355634629726409912109375), SC_(4523.032636406744668872171043808459678016), SC_(0.1647562629728817439093908329431436142546e-6797), SC_(1), SC_(0.3642606105618770904813216523239665239724e-6801) },
+ { SC_(0.0002204985357820987701416015625), SC_(107380.34375), SC_(0.1355634629726409912109375), SC_(4523.032636406744668872171043808459678016), SC_(BOOST_MATH_SMALL_CONSTANT(0.1647562629728817439093908329431436142546e-6797)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.3642606105618770904813216523239665239724e-6801)) },
{ SC_(0.000222539805690757930278778076171875), SC_(1432.2476806640625), SC_(0.81474220752716064453125), SC_(4485.741270282409935675504946595385781733), SC_(0.1612283750403730679258423751114438195734e-1051), SC_(1), SC_(0.3594241516078848051177543874430077069284e-1055) },
{ SC_(0.000235087776673026382923126220703125), SC_(0.4550904333591461181640625), SC_(0.8350250720977783203125), SC_(4254.333433061065961463490484341133892093), SC_(1.023193488721235218241525045756827448596), SC_(0.9997595516478366624699532523192953225665), SC_(0.0002404483521633375300467476807046774334954) },
- { SC_(0.0002402908285148441791534423828125), SC_(49604.3984375), SC_(0.632396042346954345703125), SC_(4150.250398112142629228158594289025284156), SC_(0.2809555849412092585807767265143871993905e-21563), SC_(1), SC_(0.6769605637987764728357471683016484257431e-21567) },
+ { SC_(0.0002402908285148441791534423828125), SC_(49604.3984375), SC_(0.632396042346954345703125), SC_(4150.250398112142629228158594289025284156), SC_(BOOST_MATH_SMALL_CONSTANT(0.2809555849412092585807767265143871993905e-21563)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.6769605637987764728357471683016484257431e-21567)) },
{ SC_(0.000240380948525853455066680908203125), SC_(0.01798204891383647918701171875), SC_(0.221111953258514404296875), SC_(4158.799612898859404525246505395700079542), SC_(56.84527887576449179974280320693646351955), SC_(0.9865156386899004621823922118833551461494), SC_(0.01348436131009953781760778811664485385065) },
{ SC_(0.000241263434872962534427642822265625), SC_(12.126102447509765625), SC_(0.1355634629726409912109375), SC_(4141.742262758911222245097610877600052319), SC_(0.07515615341279770596981104392508648196893), SC_(0.9999818543055351449214821881784878112583), SC_(0.18145694464855078517811821512188741683e-4) },
{ SC_(0.000247393851168453693389892578125), SC_(237.5718994140625), SC_(0.8350250720977783203125), SC_(4036.096790745714381586806296665342854216), SC_(0.606208749817224680109953757243807964491e-188), SC_(1), SC_(0.1501967820016577897041114220165502307491e-191) },
@@ -168,29 +168,29 @@
{ SC_(0.000261564855463802814483642578125), SC_(2.969768047332763671875), SC_(0.3082362115383148193359375), SC_(3821.405524466826928964942296938639926773), SC_(0.2505263953449591757780672632223011395179), SC_(0.9999344455932164695959214942937015701483), SC_(0.6555440678353040407850570629842985169478e-4) },
{ SC_(0.00026690683444030582904815673828125), SC_(0.4926892220973968505859375), SC_(0.12707412242889404296875), SC_(3744.630999610799179102664201934107067766), SC_(3.417322244783778445441490978156483043996), SC_(0.9990882395446033280373927712026808730813), SC_(0.0009117604553966719626072287973191269187271) },
{ SC_(0.000272565521299839019775390625), SC_(0.00399976409971714019775390625), SC_(0.12707412242889404296875), SC_(3666.915441118759754681231662466320459986), SC_(251.9349129604083041843669622324897005207), SC_(0.9357120353681872816886730014355383410074), SC_(0.06428796463181271831132699856446165899256) },
- { SC_(0.00027427947497926652431488037109375), SC_(289206.03125), SC_(0.9688708782196044921875), SC_(3632.788078545421912405913291645417768756), SC_(0.2102799001769416384757592031219644042906e-435790), SC_(1), SC_(0.5788388852595504947548501030017527205046e-435794) },
+ { SC_(0.00027427947497926652431488037109375), SC_(289206.03125), SC_(0.9688708782196044921875), SC_(3632.788078545421912405913291645417768756), SC_(BOOST_MATH_SMALL_CONSTANT(0.2102799001769416384757592031219644042906e-435790)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.5788388852595504947548501030017527205046e-435794)) },
{ SC_(0.00027434344519861042499542236328125), SC_(2954.470947265625), SC_(0.3082362115383148193359375), SC_(3636.508295700661209639964141212992979246), SC_(0.1585655815345211799992885129986502872445e-475), SC_(1), SC_(0.4360380030536124173269201014387833274522e-479) },
{ SC_(0.0002770713181234896183013916015625), SC_(0.341692575602792203426361083984375e-4), SC_(0.9688708782196044921875), SC_(3612.616345527002166796516337140214888032), SC_(29262.63561079274137388778786727086485259), SC_(0.1098886283921706710241786573420304234281), SC_(0.8901113716078293289758213426579695765719) },
{ SC_(0.00027871350175701081752777099609375), SC_(4023.159423828125), SC_(0.632396042346954345703125), SC_(3579.048017739283881605316170941963833806), SC_(0.1120712826873127698254223263897725146742e-1751), SC_(1), SC_(0.3131315426108837801546009947512560530295e-1755) },
{ SC_(0.00028021665639244019985198974609375), SC_(0.38819736801087856292724609375e-4), SC_(0.12707412242889404296875), SC_(3566.740628995367719834358851359670908542), SC_(25762.01830124904137748808250335197962905), SC_(0.1216123954470256387367677660584358510842), SC_(0.8783876045529743612632322339415641489158) },
{ SC_(0.0002803694806061685085296630859375), SC_(25.140018463134765625), SC_(0.9688708782196044921875), SC_(3562.942591774059668711567414861210623046), SC_(0.5382935653401613794049965988355487897247e-39), SC_(1), SC_(0.1510811784009504217418370693440827162617e-42) },
- { SC_(0.0002883693086914718151092529296875), SC_(460073.28125), SC_(0.221111953258514404296875), SC_(3454.185996240757717347805410673427755317), SC_(0.3609488049862958914998492071737962153408e-49934), SC_(1), SC_(0.1044960535938487025713540225543036817363e-49937) },
+ { SC_(0.0002883693086914718151092529296875), SC_(460073.28125), SC_(0.221111953258514404296875), SC_(3454.185996240757717347805410673427755317), SC_(BOOST_MATH_SMALL_CONSTANT(0.3609488049862958914998492071737962153408e-49934)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.1044960535938487025713540225543036817363e-49937)) },
{ SC_(0.00029471665038727223873138427734375), SC_(4642.259765625), SC_(0.221111953258514404296875), SC_(3384.081751203178175370620299135085565111), SC_(0.1538423775489765357475481074516180071161e-506), SC_(1), SC_(0.4546059724895219723882118449541202246563e-510) },
{ SC_(0.00029570105834864079952239990234375), SC_(0.3176224529743194580078125), SC_(0.81474220752716064453125), SC_(3382.578828730636936095408426359067756467), SC_(1.935221992619980707578905579564134695818), SC_(0.9994282127467585984399348909298228431753), SC_(0.0005717872532414015600651090701771568246996) },
{ SC_(0.00029634564998559653759002685546875), SC_(0.19913904368877410888671875), SC_(0.632396042346954345703125), SC_(3374.738592221403546906618687303557085428), SC_(4.433505765756542858273043071415657657518), SC_(0.9986879905381565479113426540536530533211), SC_(0.001312009461843452088657345946346946678902) },
{ SC_(0.000303403474390506744384765625), SC_(2574.359375), SC_(0.8350250720977783203125), SC_(3287.521806034971802887301527204610384962), SC_(0.1047442076816838732832369224443180558536e-2017), SC_(1), SC_(0.3186114461336887984555451406531853131734e-2021) },
{ SC_(0.00030430863262154161930084228515625), SC_(4480.7470703125), SC_(0.905801355838775634765625), SC_(3277.165341360202837565254801793910487962), SC_(0.2213976574024951929657574974001049932498e-4600), SC_(1), SC_(0.6755767083469858051077185880165399540339e-4604) },
{ SC_(0.00030529979267157614231109619140625), SC_(0.01552005298435688018798828125), SC_(0.3082362115383148193359375), SC_(3274.654322125870601212494443787065254475), SC_(65.22169126633106105574103247333184237395), SC_(0.9804718226051488823874458467991263059976), SC_(0.01952817739485111761255415320087369400238) },
- { SC_(0.00031313023646362125873565673828125), SC_(47957), SC_(0.3082362115383148193359375), SC_(3182.224523010860532469370310063985137153), SC_(0.4869323848916658188091372694151177783149e-7679), SC_(1), SC_(0.1530163510998761729295090649649835593669e-7682) },
+ { SC_(0.00031313023646362125873565673828125), SC_(47957), SC_(0.3082362115383148193359375), SC_(3182.224523010860532469370310063985137153), SC_(BOOST_MATH_SMALL_CONSTANT(0.4869323848916658188091372694151177783149e-7679)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.1530163510998761729295090649649835593669e-7682)) },
{ SC_(0.0003153369762003421783447265625), SC_(0.3186367757734842598438262939453125e-4), SC_(0.8350250720977783203125), SC_(3172.831842932285600026538031157109836735), SC_(31382.0752330794825907395443248734678599), SC_(0.09182000796450948165926037295322936243235), SC_(0.9081799920354905183407396270467706375677) },
{ SC_(0.00031880356254987418651580810546875), SC_(387.38800048828125), SC_(0.12707412242889404296875), SC_(3130.199521661416446995255486905059239462), SC_(0.2724998200174160044620150661637361031001e-24), SC_(0.9999999999999999999999999999129449039489), SC_(0.8705509605112367919854721169070761696175e-28) },
{ SC_(0.00031994408345781266689300537109375), SC_(0.001032375730574131011962890625), SC_(0.913384497165679931640625), SC_(3127.896874011541295607313029565696187665), SC_(966.2866448734111309827638173027792308751), SC_(0.7639855076314267128924605979897220292708), SC_(0.2360144923685732871075394020102779707292) },
- { SC_(0.00032006253604777157306671142578125), SC_(25544.60546875), SC_(0.905801355838775634765625), SC_(3113.682688441297209705041700589809314877), SC_(0.1025783281688806599327078671241459557444e-26211), SC_(1), SC_(0.3294437437368775306821540221261273382728e-26215) },
+ { SC_(0.00032006253604777157306671142578125), SC_(25544.60546875), SC_(0.905801355838775634765625), SC_(3113.682688441297209705041700589809314877), SC_(BOOST_MATH_SMALL_CONSTANT(0.1025783281688806599327078671241459557444e-26211)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.3294437437368775306821540221261273382728e-26215)) },
{ SC_(0.00033008345053531229496002197265625), SC_(4.030014514923095703125), SC_(0.913384497165679931640625), SC_(3027.695874136566107847728245395000749406), SC_(0.139479648999015386391381516849575180088e-4), SC_(0.9999999953932080976845710611394580627781), SC_(0.4606791902315428938860541937221886144335e-8) },
{ SC_(0.00033188183442689478397369384765625), SC_(0.00350953754968941211700439453125), SC_(0.905801355838775634765625), SC_(3015.369155981247271907055083325780561977), SC_(282.6829927870727441056338941058658985682), SC_(0.9142878947827909184252636231795874358471), SC_(0.08571210521720908157473637682041256415287) },
- { SC_(0.00033481788705103099346160888671875), SC_(29065.5234375), SC_(0.9688708782196044921875), SC_(2975.863726169082216793986722632003389703), SC_(0.4535759794105782584597366345081942126175e-43801), SC_(1), SC_(0.1524182627792839465220615780991684493447e-43804) },
+ { SC_(0.00033481788705103099346160888671875), SC_(29065.5234375), SC_(0.9688708782196044921875), SC_(2975.863726169082216793986722632003389703), SC_(BOOST_MATH_SMALL_CONSTANT(0.4535759794105782584597366345081942126175e-43801)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.1524182627792839465220615780991684493447e-43804)) },
{ SC_(0.0003488220390863716602325439453125), SC_(0.02754667215049266815185546875), SC_(0.1355634629726409912109375), SC_(2864.935092454806724311892421987098664245), SC_(38.1132975293663947680462461735658995282), SC_(0.9868712841091931707720919654423078799989), SC_(0.01312871589080682922790803455769212000107) },
- { SC_(0.0003489900263957679271697998046875), SC_(41187.57421875), SC_(0.913384497165679931640625), SC_(2854.230462336243022882038863689073490423), SC_(0.3679302093634662820727270275131856040468e-43762), SC_(1), SC_(0.1289069730768370629823366152554604244725e-43765) },
+ { SC_(0.0003489900263957679271697998046875), SC_(41187.57421875), SC_(0.913384497165679931640625), SC_(2854.230462336243022882038863689073490423), SC_(BOOST_MATH_SMALL_CONSTANT(0.3679302093634662820727270275131856040468e-43762)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.1289069730768370629823366152554604244725e-43765)) },
{ SC_(0.0003502474282868206501007080078125), SC_(426.3076171875), SC_(0.905801355838775634765625), SC_(2848.501239409495981055595161738776652775), SC_(0.1097851165581016728904078837337908787324e-439), SC_(1), SC_(0.3854136169547902386280098239236817602428e-443) },
{ SC_(0.0003577272291295230388641357421875), SC_(31752.21875), SC_(0.12707412242889404296875), SC_(2784.504773532744521809274363546994037008), SC_(0.1968964349841053353157066029235379101063e-1877), SC_(1), SC_(0.7071147331318802709017406374093782540593e-1881) },
{ SC_(0.00035909839789383113384246826171875), SC_(29.733074188232421875), SC_(0.913384497165679931640625), SC_(2780.802578187537810976609822680554063792), SC_(0.9466966087555186266682909543165127593827e-33), SC_(0.9999999999999999999999999999999999996596), SC_(0.3404400643833383421960793256360613832518e-36) },
@@ -202,24 +202,24 @@
{ SC_(0.00041028507985174655914306640625), SC_(2214.455810546875), SC_(0.1355634629726409912109375), SC_(2429.064305994519441738193117470290876888), SC_(0.2625842762445926687666088964797929354078e-142), SC_(1), SC_(0.1081009982307093036612147153031276889652e-145) },
{ SC_(0.0004120909725315868854522705078125), SC_(367.71405029296875), SC_(0.913384497165679931640625), SC_(2420.174473903902857806633347353957408088), SC_(0.6496728701662286052346044917231870062105e-393), SC_(1), SC_(0.2684405100423453896401204773247119627795e-396) },
{ SC_(0.00041210078052245080471038818359375), SC_(4.50945568084716796875), SC_(0.12707412242889404296875), SC_(2424.117403894619977669694751796875692789), SC_(0.5061366211946652295263819390852493512635), SC_(0.9997912514612115868195623051721445151557), SC_(0.0002087485387884131804376948278554848443257) },
- { SC_(0.00041793254786171019077301025390625), SC_(4668.47119140625), SC_(0.9688708782196044921875), SC_(2383.722258071079769629454763425015064461), SC_(0.5463688026886666147824002995784594817501e-7038), SC_(1), SC_(0.2292082480828916039393283409724883460028e-7041) },
+ { SC_(0.00041793254786171019077301025390625), SC_(4668.47119140625), SC_(0.9688708782196044921875), SC_(2383.722258071079769629454763425015064461), SC_(BOOST_MATH_SMALL_CONSTANT(0.5463688026886666147824002995784594817501e-7038)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.2292082480828916039393283409724883460028e-7041)) },
{ SC_(0.000420027412474155426025390625), SC_(0.00036404779530130326747894287109375), SC_(0.9688708782196044921875), SC_(2384.231564515840506117162175742121420846), SC_(2743.456202519181394365317435287217855567), SC_(0.4649720639863515895633703526231003551161), SC_(0.5350279360136484104366296473768996448839) },
{ SC_(0.0004246321623213589191436767578125), SC_(17994.9140625), SC_(0.221111953258514404296875), SC_(2344.627547898256098125532721852248067543), SC_(0.3180733015474547916320064048072348766489e-1956), SC_(1), SC_(0.1356604812702889125683060028507461195511e-1959) },
{ SC_(0.00042692126589827239513397216796875), SC_(0.00024527459754608571529388427734375), SC_(0.632396042346954345703125), SC_(2342.893992061399189259727437078954765507), SC_(4076.52023651885880746294074207107365464), SC_(0.3649700593600052683423340989110598558496), SC_(0.6350299406399947316576659010889401441504) },
{ SC_(0.00042705106898210942745208740234375), SC_(2443.44287109375), SC_(0.913384497165679931640625), SC_(2333.277461493787480390344066682863595571), SC_(0.5332474573974756910385823818234032261756e-2599), SC_(1), SC_(0.2285400970084738037799111507992759078905e-2602) },
{ SC_(0.00042847762233577668666839599609375), SC_(22.90042877197265625), SC_(0.221111953258514404296875), SC_(2330.160471219871088491361081493811799882), SC_(0.0005700639899661150267975099079387186909912), SC_(0.9999997553542524030768794920903804597612), SC_(0.2446457475969231205079096195402388391619e-6) },
{ SC_(0.000430326792411506175994873046875), SC_(0.2849896918633021414279937744140625e-4), SC_(0.81474220752716064453125), SC_(2325.295773305186883745980657749475592263), SC_(35087.50723729603932294663380257741060442), SC_(0.06215240736296329237883350233563708602062), SC_(0.9378475926370367076211664976643629139794) },
- { SC_(0.0004377235309220850467681884765625), SC_(454399.25), SC_(0.632396042346954345703125), SC_(2270.983882694597092822607027073564087212), SC_(0.41735903811534924396720244633094087005e-197496), SC_(1), SC_(0.1837789520637808375875188270585199147772e-197499) },
+ { SC_(0.0004377235309220850467681884765625), SC_(454399.25), SC_(0.632396042346954345703125), SC_(2270.983882694597092822607027073564087212), SC_(BOOST_MATH_SMALL_CONSTANT(0.41735903811534924396720244633094087005e-197496)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.1837789520637808375875188270585199147772e-197499)) },
{ SC_(0.00044121246901340782642364501953125), SC_(0.031357325613498687744140625), SC_(0.12707412242889404296875), SC_(2264.551008840063404666623371407831723918), SC_(33.77007171411169184440381793659063020672), SC_(0.985306634482085072904417030273710660607), SC_(0.014693365517914927095582969726289339393) },
{ SC_(0.00044747791253030300140380859375), SC_(0.0003718078951351344585418701171875), SC_(0.81474220752716064453125), SC_(2236.226718277089743036911311259913705518), SC_(2688.080069522922904007660912092374368351), SC_(0.4541201055582786368165961028461423460782), SC_(0.5458798944417213631834038971538576539218) },
{ SC_(0.000447716913186013698577880859375), SC_(0.00131022813729941844940185546875), SC_(0.8350250720977783203125), SC_(2235.171607174475021181533559243044539962), SC_(761.6055853953372827060617266157216328845), SC_(0.7458584551151628280606321596990124303608), SC_(0.2541415448848371719393678403009875696392) },
- { SC_(0.00045037711970508098602294921875), SC_(10660.8232421875), SC_(0.8350250720977783203125), SC_(2210.532153806107891289496569153621125534), SC_(0.1206505832474931860295852623731075417229e-8346), SC_(1), SC_(0.5457988160894030332567255774440224107433e-8350) },
+ { SC_(0.00045037711970508098602294921875), SC_(10660.8232421875), SC_(0.8350250720977783203125), SC_(2210.532153806107891289496569153621125534), SC_(BOOST_MATH_SMALL_CONSTANT(0.1206505832474931860295852623731075417229e-8346)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.5457988160894030332567255774440224107433e-8350)) },
{ SC_(0.000460021547041833400726318359375), SC_(0.2375358045101165771484375), SC_(0.905801355838775634765625), SC_(2175.238041648735644187860487639011201803), SC_(2.447811582193532553373907277195109839798), SC_(0.9988759574396087339002056496566398076671), SC_(0.001124042560391266099794350343360192332935) },
{ SC_(0.0004610864561982452869415283203125), SC_(0.2207309305667877197265625), SC_(0.221111953258514404296875), SC_(2167.473886629351983032808170495678751964), SC_(5.532500683070298228554305431007140478259), SC_(0.9974539878412815418467482310918660577926), SC_(0.002546012158718458153251768908133942207371) },
{ SC_(0.000464259064756333827972412109375), SC_(0.001531984074972569942474365234375), SC_(0.1355634629726409912109375), SC_(2152.117646884666200073960196407820694935), SC_(654.5971633708985065857497130109313151371), SC_(0.7667746074595678897794541209327724450161), SC_(0.2332253925404321102205458790672275549839) },
{ SC_(0.00046533494605682790279388427734375), SC_(0.3233075040043331682682037353515625e-4), SC_(0.3082362115383148193359375), SC_(2148.181259917978900222556896452313827016), SC_(30931.11351285719300828566689211065659355), SC_(0.06494035845304564942861416504475144721513), SC_(0.9350596415469543505713858349552485527849) },
{ SC_(0.000471754348836839199066162109375), SC_(2833.98779296875), SC_(0.12707412242889404296875), SC_(2111.238317153358003896756528720761672756), SC_(0.1488182277406715504172797814810214922066e-169), SC_(1), SC_(0.7048859739402956270968877726532616479643e-173) },
- { SC_(0.00047560062375850975513458251953125), SC_(19603.037109375), SC_(0.81474220752716064453125), SC_(2092.170212686575096214087634075788007936), SC_(0.9814459051172135904993735187569389742934e-14358), SC_(1), SC_(0.4691042340464879469732504596518886411408e-14361) },
+ { SC_(0.00047560062375850975513458251953125), SC_(19603.037109375), SC_(0.81474220752716064453125), SC_(2092.170212686575096214087634075788007936), SC_(BOOST_MATH_SMALL_CONSTANT(0.9814459051172135904993735187569389742934e-14358)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.4691042340464879469732504596518886411408e-14361)) },
{ SC_(0.0004768202197737991809844970703125), SC_(4.81977367401123046875), SC_(0.8350250720977783203125), SC_(2095.18515800974545939651141116099485538), SC_(0.4066280103382282973903147124636493154344e-4), SC_(0.9999999805922640826282579500754695410751), SC_(0.1940773591737174204992453045892490288306e-7) },
{ SC_(0.00047791490214876830577850341796875), SC_(0.11917771399021148681640625), SC_(0.3082362115383148193359375), SC_(2091.566761906672525335452041944246414406), SC_(9.065521332975766581322942677912211293429), SC_(0.995684384456381537630722352446379570576), SC_(0.004315615543618462369277647553620429423982) },
{ SC_(0.00048245381913147866725921630859375), SC_(3.6078746318817138671875), SC_(0.905801355838775634765625), SC_(2071.02282050938481232080136434279772972), SC_(0.5951445121764384153313490722249785840832e-4), SC_(0.9999999712632574986526118543960442440817), SC_(0.2873674250134738814560395575591831761354e-7) },
@@ -231,20 +231,20 @@
{ SC_(0.001150955446064472198486328125), SC_(0.4535874426364898681640625), SC_(0.12707412242889404296875), SC_(866.855684243827267933107714455579701728), SC_(3.622050917060569664015394421000097533285), SC_(0.9958390079714202952539867788276064104906), SC_(0.00416099202857970474601322117239358950939) },
{ SC_(0.00116972462274134159088134765625), SC_(4487.220703125), SC_(0.221111953258514404296875), SC_(845.9639896981215015789312874369381932995), SC_(0.1063779666391269484543054611732150401814e-489), SC_(1), SC_(0.1257476298454352107021172465546170244079e-492) },
{ SC_(0.001238475437276065349578857421875), SC_(4809.8876953125), SC_(0.12707412242889404296875), SC_(798.4404102135347267583554734446658228025), SC_(0.2088573664802592741195276726261002951534e-286), SC_(1), SC_(0.2615816582033999333902290007214431749988e-289) },
- { SC_(0.0012418846599757671356201171875), SC_(211065.625), SC_(0.632396042346954345703125), SC_(792.4934093883819497798461847348403401357), SC_(0.3715857217027592182907565434204034076818e-91738), SC_(1), SC_(0.4688817816031249765706087431377733825105e-91741) },
+ { SC_(0.0012418846599757671356201171875), SC_(211065.625), SC_(0.632396042346954345703125), SC_(792.4934093883819497798461847348403401357), SC_(BOOST_MATH_SMALL_CONSTANT(0.3715857217027592182907565434204034076818e-91738)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.4688817816031249765706087431377733825105e-91741)) },
{ SC_(0.00128578185103833675384521484375), SC_(4738.4111328125), SC_(0.3082362115383148193359375), SC_(768.7497259471312992013909189845633725619), SC_(0.3083149516572614656818024343993762882429e-761), SC_(1), SC_(0.4010602426913450368564667294554493472522e-764) },
- { SC_(0.001333879190497100353240966796875), SC_(46277.76171875), SC_(0.913384497165679931640625), SC_(738.4595682741381490604572839483104630489), SC_(0.4760816758433140315470190574602976110403e-49170), SC_(1), SC_(0.6446956560614004498713862685655419699461e-49173) },
+ { SC_(0.001333879190497100353240966796875), SC_(46277.76171875), SC_(0.913384497165679931640625), SC_(738.4595682741381490604572839483104630489), SC_(BOOST_MATH_SMALL_CONSTANT(0.4760816758433140315470190574602976110403e-49170)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.6446956560614004498713862685655419699461e-49173)) },
{ SC_(0.001342063187621533870697021484375), SC_(0.0049741393886506557464599609375), SC_(0.12707412242889404296875), SC_(743.1959244878558453841456162423124931873), SC_(202.954935047346035345520597561537300498), SC_(0.7854941069893991630581498347410718336765), SC_(0.2145058930106008369418501652589281663235) },
{ SC_(0.001386920106597244739532470703125), SC_(2158.757568359375), SC_(0.81474220752716064453125), SC_(712.8159877459091673089852757033234802738), SC_(0.1152262625557983164464601153211751891717e-1583), SC_(1), SC_(0.1616493801158566915366164602637515465764e-1586) },
{ SC_(0.00139484903775155544281005859375), SC_(0.406741619110107421875), SC_(0.632396042346954345703125), SC_(716.9970687322662580276185822651018601599), SC_(1.861070463016669614611362269319717106569), SC_(0.997411074088832015598519013857371063956), SC_(0.00258892591116798440148098614262893604403) },
{ SC_(0.001427047536708414554595947265625), SC_(3.0078976154327392578125), SC_(0.12707412242889404296875), SC_(698.4416522699784700368407029156265476697), SC_(0.8052389292592501254860055319140641451921), SC_(0.9988484197221410142868386632542163536932), SC_(0.00115158027785898571316133674578364630679) },
{ SC_(0.00144447688944637775421142578125), SC_(0.3829285924439318478107452392578125e-4), SC_(0.905801355838775634765625), SC_(694.5531721715049157414316486281103107119), SC_(26112.26597142779218826565701649442464771), SC_(0.02590957056303132403077964326929276679704), SC_(0.974090429436968675969220356730707233203) },
{ SC_(0.001469670678488910198211669921875), SC_(0.00022998542408458888530731201171875), SC_(0.81474220752716064453125), SC_(681.9029882237068745571574254101015948808), SC_(4346.620404150712400107828871749266738966), SC_(0.135607003292017896363216853396063797727), SC_(0.864392996707982103636783146603936202273) },
- { SC_(0.001532684080302715301513671875), SC_(13060.16015625), SC_(0.9688708782196044921875), SC_(642.4739939673390065903879830508019993861), SC_(0.2604575679676652000185387046751197315368e-19683), SC_(1), SC_(0.4053978377542016060586253784468846562986e-19686) },
+ { SC_(0.001532684080302715301513671875), SC_(13060.16015625), SC_(0.9688708782196044921875), SC_(642.4739939673390065903879830508019993861), SC_(BOOST_MATH_SMALL_CONSTANT(0.2604575679676652000185387046751197315368e-19683)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.4053978377542016060586253784468846562986e-19686)) },
{ SC_(0.001546212588436901569366455078125), SC_(0.4388438761234283447265625), SC_(0.913384497165679931640625), SC_(647.6636500859710420001838060635189817527), SC_(0.8005234405450714384152145899891401006528), SC_(0.9987655086075278181507533227647548955077), SC_(0.001234491392472181849246677235245104492313) },
{ SC_(0.001599461771547794342041015625), SC_(1780.4295654296875), SC_(0.9688708782196044921875), SC_(617.2018193338968435469389828476195862445), SC_(0.8972675710962492797338106626950543867371e-2686), SC_(1), SC_(0.1453766892755773137132663986139134796046e-2688) },
{ SC_(0.001671708538196980953216552734375), SC_(485.198974609375), SC_(0.81474220752716064453125), SC_(591.4690747200591551150100900999853565481), SC_(0.1344651463466289510213986697745699545973e-357), SC_(1), SC_(0.2273409584605433023016572030651343918317e-360) },
- { SC_(0.00169355445541441440582275390625), SC_(385561.5625), SC_(0.12707412242889404296875), SC_(577.1875596723301316935121874803525601185), SC_(0.2819545160750931987103049585360311608808e-22761), SC_(1), SC_(0.4884972161131799465362637889601809293001e-22764) },
+ { SC_(0.00169355445541441440582275390625), SC_(385561.5625), SC_(0.12707412242889404296875), SC_(577.1875596723301316935121874803525601185), SC_(BOOST_MATH_SMALL_CONSTANT(0.2819545160750931987103049585360311608808e-22761)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.4884972161131799465362637889601809293001e-22764)) },
{ SC_(0.001731689902953803539276123046875), SC_(198.0077056884765625), SC_(0.12707412242889404296875), SC_(571.6386685027893522584576324587060153788), SC_(0.787971814516226550741052893624149874176e-13), SC_(0.9999999999999998621556136886177991962018), SC_(0.1378443863113822008037981580291257606581e-15) },
{ SC_(0.00173926516436040401458740234375), SC_(0.333752905135042965412139892578125e-4), SC_(0.3082362115383148193359375), SC_(574.1469349079614375311988072446327918744), SC_(29963.09162049822007245271293100907523344), SC_(0.01880153419459458396276801883523054498866), SC_(0.9811984658054054160372319811647694550113) },
{ SC_(0.0017912392504513263702392578125), SC_(3.0554368495941162109375), SC_(0.9688708782196044921875), SC_(556.7542411201096097947875983675589227617), SC_(0.834060948041552202288100016197929847781e-5), SC_(0.9999999850192261873270525479907231427017), SC_(0.1498077381267294745200927685729828308752e-7) },
@@ -262,16 +262,16 @@
{ SC_(0.00233665225096046924591064453125), SC_(3.87988376617431640625), SC_(0.905801355838775634765625), SC_(426.1693615792936534606453335142808945757), SC_(0.291370860355069138222087549900934467444e-4), SC_(0.9999999316302703332864236242486086404964), SC_(0.6836972966671357637575139135950356893863e-7) },
{ SC_(0.0023414273746311664581298828125), SC_(0.15162646770477294921875), SC_(0.8350250720977783203125), SC_(428.3189578851107875838432428534412926218), SC_(5.137971347708949215771792948424410154265), SC_(0.9881465239076862789479164536000099760677), SC_(0.0118534760923137210520835463999900239323) },
{ SC_(0.00246974662877619266510009765625), SC_(0.016062967479228973388671875), SC_(0.913384497165679931640625), SC_(407.1830493976956564929063020776892494275), SC_(59.94170443126037209213789060212744913934), SC_(0.8716794519238669414440334800056096450427), SC_(0.1283205480761330585559665199943903549573) },
- { SC_(0.002563751302659511566162109375), SC_(346881.96875), SC_(0.1355634629726409912109375), SC_(376.9468505421772891867303011795099003985), SC_(0.1526762108618082671304981685541855177048e-21950), SC_(1), SC_(0.405033788297231150127593256436643990287e-21953) },
+ { SC_(0.002563751302659511566162109375), SC_(346881.96875), SC_(0.1355634629726409912109375), SC_(376.9468505421772891867303011795099003985), SC_(BOOST_MATH_SMALL_CONSTANT(0.1526762108618082671304981685541855177048e-21950)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.405033788297231150127593256436643990287e-21953)) },
{ SC_(0.00258206087164580821990966796875), SC_(0.035458743572235107421875), SC_(0.905801355838775634765625), SC_(389.4050536513380444462075705806268494174), SC_(26.02338763289848548972683845210583599059), SC_(0.9373577130336792246365028976677251178974), SC_(0.06264228696632077536349710233227488210262) },
- { SC_(0.002597031183540821075439453125), SC_(443239.6875), SC_(0.81474220752716064453125), SC_(371.7146847560071370857526138227373442642), SC_(0.8317828376957235925809370915610552337856e-324556), SC_(1), SC_(0.2237691626957660763285628102201579159915e-324558) },
+ { SC_(0.002597031183540821075439453125), SC_(443239.6875), SC_(0.81474220752716064453125), SC_(371.7146847560071370857526138227373442642), SC_(BOOST_MATH_SMALL_CONSTANT(0.8317828376957235925809370915610552337856e-324556)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.2237691626957660763285628102201579159915e-324558)) },
{ SC_(0.00263487943448126316070556640625), SC_(0.153494547703303396701812744140625e-4), SC_(0.9688708782196044921875), SC_(382.9576369498287876959530556221352464367), SC_(65145.45590204658276263249213907497657163), SC_(0.0058441463216857531973539577971001457265), SC_(0.9941558536783142468026460422028998542735) },
- { SC_(0.00266719772480428218841552734375), SC_(346911.65625), SC_(0.905801355838775634765625), SC_(361.8277327374087690789383627225654385793), SC_(0.4301033964228662860739993977341942313128e-355921), SC_(1), SC_(0.1188696602023614342439206050153540352294e-355923) },
+ { SC_(0.00266719772480428218841552734375), SC_(346911.65625), SC_(0.905801355838775634765625), SC_(361.8277327374087690789383627225654385793), SC_(BOOST_MATH_SMALL_CONSTANT(0.4301033964228662860739993977341942313128e-355921)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.1188696602023614342439206050153540352294e-355923)) },
{ SC_(0.00269666709937155246734619140625), SC_(0.000412763678468763828277587890625), SC_(0.913384497165679931640625), SC_(373.1778411851096713440039645727112970052), SC_(2420.338967675658008549863316157254032731), SC_(0.1335871114150540680718697579133501564323), SC_(0.8664128885849459319281302420866498435677) },
{ SC_(0.0027208295650780200958251953125), SC_(0.35322547773830592632293701171875e-4), SC_(0.221111953258514404296875), SC_(366.277193522541350098831770621351634747), SC_(28311.78187626887319957779121599661218375), SC_(0.01277203567477014095262479480170183963687), SC_(0.9872279643252298590473752051982981603631) },
- { SC_(0.00272956606931984424591064453125), SC_(19772.78515625), SC_(0.8350250720977783203125), SC_(356.0396978354009539538064166896399808086), SC_(0.9020241742296869709062755875164275443572e-15478), SC_(1), SC_(0.2533493258514946679969092434416268747323e-15480) },
+ { SC_(0.00272956606931984424591064453125), SC_(19772.78515625), SC_(0.8350250720977783203125), SC_(356.0396978354009539538064166896399808086), SC_(BOOST_MATH_SMALL_CONSTANT(0.9020241742296869709062755875164275443572e-15478)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.2533493258514946679969092434416268747323e-15480)) },
{ SC_(0.00275547988712787628173828125), SC_(0.3721626490005291998386383056640625e-4), SC_(0.8350250720977783203125), SC_(364.5307529094604948678995366003655869646), SC_(26868.34996677103086213252400124456788182), SC_(0.0133856846310799446265850708719477444261), SC_(0.9866143153689200553734149291280522555739) },
- { SC_(0.0028151907026767730712890625), SC_(27477.31640625), SC_(0.81474220752716064453125), SC_(344.5821321686204748252909961370200655145), SC_(0.1295810546972773481375166603817084134083e-20123), SC_(1), SC_(0.3760527392461172556866211109744018769105e-20126) },
+ { SC_(0.0028151907026767730712890625), SC_(27477.31640625), SC_(0.81474220752716064453125), SC_(344.5821321686204748252909961370200655145), SC_(BOOST_MATH_SMALL_CONSTANT(0.1295810546972773481375166603817084134083e-20123)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.3760527392461172556866211109744018769105e-20126)) },
{ SC_(0.0028353952802717685699462890625), SC_(0.00185509095899760723114013671875), SC_(0.9688708782196044921875), SC_(356.1040183367038867687609162691621768696), SC_(535.6299297943333181238622417787029525964), SC_(0.3993388600748612956692602522580959228826), SC_(0.6006611399251387043307397477419040771174) },
{ SC_(0.00288435374386608600616455078125), SC_(227.292877197265625), SC_(0.9688708782196044921875), SC_(340.7508230138447273892606683780027192615), SC_(0.1460864057696427910239499338148093806251e-344), SC_(1), SC_(0.4287191575285125317552473740924057149251e-347) },
{ SC_(0.00291968858800828456878662109375), SC_(26.0607814788818359375), SC_(0.3082362115383148193359375), SC_(338.7074543170829748623319885868500550544), SC_(0.7770058183815534163008783765245794826343e-5), SC_(0.9999999770596781779301693123298207927688), SC_(0.2294032182206983068767017920723123773662e-7) },
@@ -285,7 +285,7 @@
{ SC_(0.00307437963783740997314453125), SC_(47442.203125), SC_(0.1355634629726409912109375), SC_(314.1223904268485420880421784898991700758), SC_(0.4661768136237720240915215589544819843799e-3005), SC_(1), SC_(0.1484061078837145980648748951899006466344e-3007) },
{ SC_(0.003084543161094188690185546875), SC_(0.01759622059762477874755859375), SC_(0.221111953258514404296875), SC_(322.9349072653367105766494017705421467629), SC_(58.05908350144759010425199254432375827914), SC_(0.8476115505533341366790499411863212066513), SC_(0.1523884494466658633209500588136787933487) },
{ SC_(0.00308659928850829601287841796875), SC_(3668.456298828125), SC_(0.632396042346954345703125), SC_(315.3170414058778588050051523922452679563), SC_(0.1778371467350701582251508756447844775794e-1597), SC_(1), SC_(0.5639947208123051889368889813375583407456e-1600) },
- { SC_(0.0031075035221874713897705078125), SC_(463574.59375), SC_(0.8350250720977783203125), SC_(308.4646032735494517067363328496041155987), SC_(0.1797844067909903582651263410877396839848e-362790), SC_(1), SC_(0.582836425583507789423876789417407161173e-362793) },
+ { SC_(0.0031075035221874713897705078125), SC_(463574.59375), SC_(0.8350250720977783203125), SC_(308.4646032735494517067363328496041155987), SC_(BOOST_MATH_SMALL_CONSTANT(0.1797844067909903582651263410877396839848e-362790)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.582836425583507789423876789417407161173e-362793)) },
{ SC_(0.0031872228719294071197509765625), SC_(0.0190620534121990203857421875), SC_(0.1355634629726409912109375), SC_(311.9022616493719638657150320729604260007), SC_(54.2747395546762176378137852196514113164), SC_(0.8517800425034553034418633348183155902219), SC_(0.1482199574965446965581366651816844097781) },
{ SC_(0.00330688594840466976165771484375), SC_(30.580783843994140625), SC_(0.9688708782196044921875), SC_(298.4468703302791730813913635675715736091), SC_(0.2803251409832261518456329622579776569536e-47), SC_(1), SC_(0.9392798814509315152409941206676649986713e-50) },
{ SC_(0.003314100205898284912109375), SC_(0.00212650909088551998138427734375), SC_(0.905801355838775634765625), SC_(303.9906368171599635083999269918749891773), SC_(467.9957556260882890554503599970169589256), SC_(0.3937771958066054998125263900780659473505), SC_(0.6062228041933945001874736099219340526495) },
@@ -294,10 +294,10 @@
{ SC_(0.003439466468989849090576171875), SC_(47.370025634765625), SC_(0.81474220752716064453125), SC_(286.3543973001909882141877599135861019408), SC_(0.5317440631703433310038774219119571724429e-36), SC_(0.9999999999999999999999999999999999999981), SC_(0.1856943941436685863656041188548565270956e-38) },
{ SC_(0.00347066554240882396697998046875), SC_(28.90100860595703125), SC_(0.8350250720977783203125), SC_(284.2348293012922564216437732094170115324), SC_(0.9928236151090230290780320975099581911317e-24), SC_(0.9999999999999999999999999965070304102084), SC_(0.349296958979160973885270952634051727603e-26) },
{ SC_(0.0034962403587996959686279296875), SC_(0.01680609025061130523681640625), SC_(0.81474220752716064453125), SC_(287.4556524618854262257601300345525805849), SC_(58.03520462211484350304858132426032752853), SC_(0.8320210117513918373203343357281742508238), SC_(0.1679789882486081626796656642718257491762) },
- { SC_(0.003511893562972545623779296875), SC_(306009.46875), SC_(0.9688708782196044921875), SC_(271.8425099127372893881440001524582982557), SC_(0.2098346586792457546028748896273451865186e-461110), SC_(1), SC_(0.7718978858258910883202302938978234471983e-461113) },
- { SC_(0.003595965914428234100341796875), SC_(35727.2421875), SC_(0.3082362115383148193359375), SC_(267.2484485453116977496319346035879242014), SC_(0.123220733069695734857336242073453867289e-5721), SC_(1), SC_(0.4610718368634562424578929197535105547018e-5724) },
+ { SC_(0.003511893562972545623779296875), SC_(306009.46875), SC_(0.9688708782196044921875), SC_(271.8425099127372893881440001524582982557), SC_(BOOST_MATH_SMALL_CONSTANT(0.2098346586792457546028748896273451865186e-461110)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.7718978858258910883202302938978234471983e-461113)) },
+ { SC_(0.003595965914428234100341796875), SC_(35727.2421875), SC_(0.3082362115383148193359375), SC_(267.2484485453116977496319346035879242014), SC_(BOOST_MATH_SMALL_CONSTANT(0.123220733069695734857336242073453867289e-5721)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.4610718368634562424578929197535105547018e-5724)) },
{ SC_(0.00361502938903868198394775390625), SC_(1.00639164447784423828125), SC_(0.1355634629726409912109375), SC_(274.6309212278353425080128018731142847078), SC_(1.981565426188746873660093456168307131028), SC_(0.9928363124522747586721581935139153545555), SC_(0.007163687547725241327841806486084645444541) },
- { SC_(0.0036274394951760768890380859375), SC_(172327.484375), SC_(0.913384497165679931640625), SC_(263.3301748625356454777269224347300828409), SC_(0.2140641630436078755985104352180763998712e-183086), SC_(1), SC_(0.8129116351946914128401510233881952058757e-183089) },
+ { SC_(0.0036274394951760768890380859375), SC_(172327.484375), SC_(0.913384497165679931640625), SC_(263.3301748625356454777269224347300828409), SC_(BOOST_MATH_SMALL_CONSTANT(0.2140641630436078755985104352180763998712e-183086)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.8129116351946914128401510233881952058757e-183089)) },
{ SC_(0.00363842095248401165008544921875), SC_(26888.734375), SC_(0.12707412242889404296875), SC_(264.2792579892578058278858335749316739876), SC_(0.2625023783883669955447912855947339013651e-1590), SC_(1), SC_(0.9932765075306703209197188121942593137623e-1593) },
{ SC_(0.00371654215268790721893310546875), SC_(0.0219620727002620697021484375), SC_(0.8350250720977783203125), SC_(270.6235440389191393343680599718164707064), SC_(43.93534798390533253783375183114130395838), SC_(0.8603271148961277092097871984653584021336), SC_(0.1396728851038722907902128015346415978664) },
{ SC_(0.00371891190297901630401611328125), SC_(0.21678431332111358642578125), SC_(0.905801355838775634765625), SC_(270.3822108409686784182500469315048040357), SC_(2.812915810668042565860828464590581196028), SC_(0.989703638402543992470686047492567774885), SC_(0.01029636159745600752931395250743222511495) },
@@ -312,14 +312,14 @@
{ SC_(0.0039762970991432666778564453125), SC_(37.592052459716796875), SC_(0.1355634629726409912109375), SC_(247.3367820233605475301767964824970133042), SC_(0.0007107334231237934151205769345398144655273), SC_(0.9999971264630557944382455340963720076504), SC_(0.2873536944205561754465903627992349578265e-5) },
{ SC_(0.0041162068955600261688232421875), SC_(2.1463463306427001953125), SC_(0.3082362115383148193359375), SC_(241.4220915300916300953691932959895955989), SC_(0.4343201155688253213834961378974985709908), SC_(0.9982042232719257406771480462898741165473), SC_(0.001795776728074259322851953710125883452674) },
{ SC_(0.0041847354732453823089599609375), SC_(0.3331385552883148193359375), SC_(0.3082362115383148193359375), SC_(238.0257599315494126786014321742223711994), SC_(3.490743363693061305290567907883857475748), SC_(0.9855465638328417124616511464889327225367), SC_(0.01445343616715828753834885351106727746328) },
- { SC_(0.0042013223282992839813232421875), SC_(28909.28515625), SC_(0.632396042346954345703125), SC_(227.4180185431250825583311019533951629295), SC_(0.154444039219970105225464675248506843513e-12568), SC_(1), SC_(0.6791196238950741512067428162651220919711e-12571) },
+ { SC_(0.0042013223282992839813232421875), SC_(28909.28515625), SC_(0.632396042346954345703125), SC_(227.4180185431250825583311019533951629295), SC_(BOOST_MATH_SMALL_CONSTANT(0.154444039219970105225464675248506843513e-12568)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.6791196238950741512067428162651220919711e-12571)) },
{ SC_(0.0042040585540235042572021484375), SC_(0.004051725380122661590576171875), SC_(0.221111953258514404296875), SC_(236.6073390385921364322672554231554985574), SC_(248.0529807507079020399926946536561498738), SC_(0.4881920994511252602745898242826427410612), SC_(0.5118079005488747397254101757173572589388) },
- { SC_(0.0042134574614465236663818359375), SC_(258792.734375), SC_(0.3082362115383148193359375), SC_(224.6488701427391990771119838504413297139), SC_(0.2206824276115503855571645372383063588368e-41422), SC_(1), SC_(0.9823438126856877424580544291022948955495e-41425) },
+ { SC_(0.0042134574614465236663818359375), SC_(258792.734375), SC_(0.3082362115383148193359375), SC_(224.6488701427391990771119838504413297139), SC_(BOOST_MATH_SMALL_CONSTANT(0.2206824276115503855571645372383063588368e-41422)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.9823438126856877424580544291022948955495e-41425)) },
{ SC_(0.0042219576425850391387939453125), SC_(29.536075592041015625), SC_(0.913384497165679931640625), SC_(232.9471648952734556361109119453173366286), SC_(0.1542533613322604488019413446604890225816e-32), SC_(0.9999999999999999999999999999999999933782), SC_(0.6621817501046147319767982459195303414945e-35) },
{ SC_(0.004270188510417938232421875), SC_(1927.554443359375), SC_(0.905801355838775634765625), SC_(226.18399773531284549516645893385992798), SC_(0.1489236244284971002826315484787575770326e-1980), SC_(1), SC_(0.6584180398242491837038013433931894830401e-1983) },
{ SC_(0.0042725945822894573211669921875), SC_(1262.0977783203125), SC_(0.8350250720977783203125), SC_(226.4617086503311279179717694502512535438), SC_(0.1913088965087741355042123383782213408177e-990), SC_(1), SC_(0.8447737043447164123758604932012104601162e-993) },
- { SC_(0.0043012551032006740570068359375), SC_(30236.775390625), SC_(0.905801355838775634765625), SC_(221.8509296407934992626076247854197759141), SC_(0.9568037088440380747994881168949410528981e-31026), SC_(1), SC_(0.4312822625504576421690187492172329467755e-31028) },
- { SC_(0.004325519315898418426513671875), SC_(175633.671875), SC_(0.221111953258514404296875), SC_(218.8761487276503563560687159943414565662), SC_(0.5895749519418378855182936121514390889886e-19065), SC_(1), SC_(0.2693646408569859866252719376075168160127e-19067) },
+ { SC_(0.0043012551032006740570068359375), SC_(30236.775390625), SC_(0.905801355838775634765625), SC_(221.8509296407934992626076247854197759141), SC_(BOOST_MATH_SMALL_CONSTANT(0.9568037088440380747994881168949410528981e-31026)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.4312822625504576421690187492172329467755e-31028)) },
+ { SC_(0.004325519315898418426513671875), SC_(175633.671875), SC_(0.221111953258514404296875), SC_(218.8761487276503563560687159943414565662), SC_(BOOST_MATH_SMALL_CONSTANT(0.5895749519418378855182936121514390889886e-19065)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.2693646408569859866252719376075168160127e-19067)) },
{ SC_(0.00443776883184909820556640625), SC_(34.436649322509765625), SC_(0.905801355838775634765625), SC_(221.2773318443523398630204647384902441298), SC_(0.1492888594965177397706744196539651601244e-36), SC_(0.9999999999999999999999999999999999999993), SC_(0.6746685629846997747027306963470039808401e-39) },
{ SC_(0.00454067252576351165771484375), SC_(0.483688652515411376953125), SC_(0.1355634629726409912109375), SC_(218.3153168844210370175417520624042488847), SC_(3.382264759538559604494704955469664186651), SC_(0.9847437904624039309446363558333050327663), SC_(0.01525620953759606905536364416669496723367) },
{ SC_(0.0045460476540029048919677734375), SC_(300.9449462890625), SC_(0.221111953258514404296875), SC_(213.7813022064452868909326801570865976177), SC_(0.3227929715492706277605621917742581687685e-34), SC_(0.999999999999999999999999999999999999849), SC_(0.1509921439422959745170413628430055157838e-36) },
@@ -340,7 +340,7 @@
{ SC_(0.011304032988846302032470703125), SC_(0.01250172965228557586669921875), SC_(0.12707412242889404296875), SC_(86.55452525913597512910645788840115136069), SC_(81.85992294295806815712701650060841387305), SC_(0.5139376471742628519296990138709223195204), SC_(0.4860623528257371480703009861290776804796) },
{ SC_(0.0113441534340381622314453125), SC_(311.568267822265625), SC_(0.905801355838775634765625), SC_(82.06357322946025559981749842463637118366), SC_(0.782803795459850358127785916565440098974e-322), SC_(1), SC_(0.9538992328192080307496883720122144674341e-324) },
{ SC_(0.01210707984864711761474609375), SC_(0.00047863091458566486835479736328125), SC_(0.221111953258514404296875), SC_(81.34339868853391223538286201827231300729), SC_(2090.524928665945974602738186159976498435), SC_(0.03745319072248596285475895371946612740082), SC_(0.9625468092775140371452410462805338725992) },
- { SC_(0.0127197094261646270751953125), SC_(461789.9375), SC_(0.9688708782196044921875), SC_(66.12132788164299594672500954172495150149), SC_(0.9364481593250719291878011517099647747747e-695846), SC_(1), SC_(0.1416257339842466089474115368029481978682e-695847) },
+ { SC_(0.0127197094261646270751953125), SC_(461789.9375), SC_(0.9688708782196044921875), SC_(66.12132788164299594672500954172495150149), SC_(BOOST_MATH_SMALL_CONSTANT(0.9364481593250719291878011517099647747747e-695846)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.1416257339842466089474115368029481978682e-695847)) },
{ SC_(0.01275224424898624420166015625), SC_(218.467041015625), SC_(0.913384497165679931640625), SC_(72.68661693692461976099341225710200800222), SC_(0.3971318105817831708831072346376447547305e-234), SC_(1), SC_(0.5463616650729567846142053580440966568318e-236) },
{ SC_(0.013632931746542453765869140625), SC_(12715.3935546875), SC_(0.221111953258514404296875), SC_(63.98900337441679303826080321259474819805), SC_(0.4021743596727233669711945434813477418928e-1383), SC_(1), SC_(0.6285054282209921266545872655753585971277e-1385) },
{ SC_(0.01376917399466037750244140625), SC_(410.58148193359375), SC_(0.1355634629726409912109375), SC_(66.33313730298259857653322130873174127017), SC_(0.1818894929654292743718248106882972544963e-27), SC_(0.9999999999999999999999999999972579392388), SC_(0.2742060761194402421981008649460048394723e-29) },
@@ -349,7 +349,7 @@
{ SC_(0.01431076042354106903076171875), SC_(2.4992504119873046875), SC_(0.9688708782196044921875), SC_(68.61710492016970322126199614371659115584), SC_(0.7012636309613990157780059258802336781301e-4), SC_(0.9999989780056808141162183538611423252437), SC_(0.1021994319185883781646138857674756280835e-5) },
{ SC_(0.014824463985860347747802734375), SC_(0.38286387920379638671875), SC_(0.81474220752716064453125), SC_(68.10963743604857726757757409915022637996), SC_(1.447378573532694812428383633394595771425), SC_(0.9791914797878430736779535679470712537945), SC_(0.02080852021215692632204643205292874620548) },
{ SC_(0.01512057520449161529541015625), SC_(0.0045269015245139598846435546875), SC_(0.905801355838775634765625), SC_(68.35700996380495368521452643346801127428), SC_(218.6478262852280572973442797881192642363), SC_(0.2381737215901540929460045012772197673396), SC_(0.7618262784098459070539954987227802326604) },
- { SC_(0.0161462686955928802490234375), SC_(31081.712890625), SC_(0.632396042346954345703125), SC_(51.93206210105480255973064811400686795094), SC_(0.9435669288959732592362662699464427373729e-13513), SC_(1), SC_(0.1816925596098769745444433468593524929453e-13514) },
+ { SC_(0.0161462686955928802490234375), SC_(31081.712890625), SC_(0.632396042346954345703125), SC_(51.93206210105480255973064811400686795094), SC_(BOOST_MATH_SMALL_CONSTANT(0.9435669288959732592362662699464427373729e-13513)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.1816925596098769745444433468593524929453e-13514)) },
{ SC_(0.01625619828701019287109375), SC_(0.0234319157898426055908203125), SC_(0.913384497165679931640625), SC_(63.74680880160488943079204944589970820775), SC_(40.38159452420545542553293035595221543857), SC_(0.6121942406256405639246777015747062202937), SC_(0.3878057593743594360753222984252937797063) },
{ SC_(0.01645939052104949951171875), SC_(29.5273590087890625), SC_(0.913384497165679931640625), SC_(56.94779131906162858369277796095164780241), SC_(0.1574555210382990903562280640914644107276e-32), SC_(0.9999999999999999999999999999999999723509), SC_(0.2764910058690817070374202714873696186641e-34) },
{ SC_(0.01668673567473888397216796875), SC_(0.16884712749742902815341949462890625e-4), SC_(0.632396042346954345703125), SC_(60.45175821265212983145085274083071185428), SC_(59224.61994087775188585379099402587411431), SC_(0.001019679262926144457952937015509715257382), SC_(0.9989803207370738555420470629844902847426) },
@@ -360,14 +360,14 @@
{ SC_(0.017636947333812713623046875), SC_(0.3383924067020416259765625), SC_(0.221111953258514404296875), SC_(55.36493320206828451037648768654366556785), SC_(3.822088511133688011920517500844828920013), SC_(0.9354235371116646113774367970695081980511), SC_(0.0645764628883353886225632029304918019489) },
{ SC_(0.01792473532259464263916015625), SC_(0.4457229442778043448925018310546875e-4), SC_(0.905801355838775634765625), SC_(58.02477425424591799257680088122965272887), SC_(22433.19647744917052681554311666242096818), SC_(0.00257988544085178561421642780244658967612), SC_(0.9974201145591482143857835721975534103239) },
{ SC_(0.019047506153583526611328125), SC_(0.291198313236236572265625), SC_(0.905801355838775634765625), SC_(53.75288387375856676369870717987725563769), SC_(1.764049560934113725136984906846004723634), SC_(0.9682250179936675964372918419102480226956), SC_(0.03177498200633240356270815808975197730438) },
- { SC_(0.01962828077375888824462890625), SC_(266305.03125), SC_(0.632396042346954345703125), SC_(39.43145046709021020530909908321394585192), SC_(0.2111290448479440101170488734157419233744e-115746), SC_(1), SC_(0.5354331183534674278805278800610250514981e-115748) },
+ { SC_(0.01962828077375888824462890625), SC_(266305.03125), SC_(0.632396042346954345703125), SC_(39.43145046709021020530909908321394585192), SC_(BOOST_MATH_SMALL_CONSTANT(0.2111290448479440101170488734157419233744e-115746)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.5354331183534674278805278800610250514981e-115748)) },
{ SC_(0.02007224597036838531494140625), SC_(3.6188943386077880859375), SC_(0.12707412242889404296875), SC_(47.50213838563133912147182892348047784988), SC_(0.6410275772846972029953195540588357296081), SC_(0.9866849725300892924651401131277058855528), SC_(0.01331502746991070753485988687229411444717) },
{ SC_(0.02042911946773529052734375), SC_(36.3684234619140625), SC_(0.3082362115383148193359375), SC_(44.97928431689277334640281609218909306214), SC_(0.1246898290004505980070430865032688069324e-6), SC_(0.9999999972278387584757369003545065374324), SC_(0.2772161241524263099645493462567561193467e-8) },
{ SC_(0.02061123587191104888916015625), SC_(4.98589992523193359375), SC_(0.3082362115383148193359375), SC_(46.41751188885766131910543919599525010038), SC_(0.07736459768351619881850816549081161689262), SC_(0.9983360618732709001455824216111224311826), SC_(0.001663938126729099854417578388877568817449) },
{ SC_(0.02065885998308658599853515625), SC_(12765.6015625), SC_(0.3082362115383148193359375), SC_(39.35863216607121843622315888513904687239), SC_(0.2289782883998965937992770650127766430927e-2046), SC_(1), SC_(0.5817739992430057648123382299173062141794e-2048) },
{ SC_(0.020764775574207305908203125), SC_(0.0004887509276159107685089111328125), SC_(0.632396042346954345703125), SC_(48.67736451129363365158999240294060392189), SC_(2045.478609018724104419608670317961662147), SC_(0.02324438347791284508002932992282891416589), SC_(0.9767556165220871549199706700771710858341) },
- { SC_(0.02124021016061305999755859375), SC_(20481.953125), SC_(0.81474220752716064453125), SC_(37.67922399458307854876617196441433654621), SC_(0.2558564892703794491473251035369658526678e-15001), SC_(1), SC_(0.6790386375981693220899301732852035737115e-15003) },
- { SC_(0.021562583744525909423828125), SC_(122176.578125), SC_(0.8350250720977783203125), SC_(35.59341411600131762873790863135769487504), SC_(0.6198904429834281812244715470706494453801e-95618), SC_(1), SC_(0.1741587477287690806826379876287995341719e-95619) },
+ { SC_(0.02124021016061305999755859375), SC_(20481.953125), SC_(0.81474220752716064453125), SC_(37.67922399458307854876617196441433654621), SC_(BOOST_MATH_SMALL_CONSTANT(0.2558564892703794491473251035369658526678e-15001)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.6790386375981693220899301732852035737115e-15003)) },
+ { SC_(0.021562583744525909423828125), SC_(122176.578125), SC_(0.8350250720977783203125), SC_(35.59341411600131762873790863135769487504), SC_(BOOST_MATH_SMALL_CONSTANT(0.6198904429834281812244715470706494453801e-95618)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.1741587477287690806826379876287995341719e-95619)) },
{ SC_(0.02161762677133083343505859375), SC_(1.312267780303955078125), SC_(0.1355634629726409912109375), SC_(44.26210844968925347790095601894818044278), SC_(1.58203800395258243471926218101715395344), SC_(0.9654909486524662707028901677517790456839), SC_(0.03450905134753372929710983224822095431611) },
{ SC_(0.021679364144802093505859375), SC_(0.42985266190953552722930908203125e-4), SC_(0.12707412242889404296875), SC_(44.2365702512397635991673589750004369616), SC_(23265.6402816351731290526307170355289763), SC_(0.001897760787511831199676029655530990490207), SC_(0.9981022392124881688003239703444690095098) },
{ SC_(0.02205819822847843170166015625), SC_(0.00224195979535579681396484375), SC_(0.12707412242889404296875), SC_(43.44472254336863189641421901977429954758), SC_(447.8889491974596897304687119460459534591), SC_(0.08842203382772658579099103813157515805609), SC_(0.9115779661722734142090089618684248419439) },
@@ -388,14 +388,14 @@
{ SC_(0.027010373771190643310546875), SC_(40.798625946044921875), SC_(0.8350250720977783203125), SC_(33.00592499252189951355614137798818549215), SC_(0.3429917551747212316183718711491129418791e-33), SC_(0.9999999999999999999999999999999999896082), SC_(0.1039182374838554998371391484307285180498e-34) },
{ SC_(0.027130119502544403076171875), SC_(0.390757262706756591796875), SC_(0.3082362115383148193359375), SC_(35.90552418547066004606923895937043297202), SC_(2.98380695457424005202119856899103204052), SC_(0.9232744079904791320765841232160411392892), SC_(0.07672559200952086792341587678395886071084) },
{ SC_(0.027266047894954681396484375), SC_(0.2437297735013999044895172119140625e-4), SC_(0.1355634629726409912109375), SC_(34.86521525249479186979358108920793470328), SC_(41030.81205322347091227833069937233911148), SC_(0.0008490110859381600035235893021351087779298), SC_(0.9991509889140618399964764106978648912221) },
- { SC_(0.0276034064590930938720703125), SC_(29335.0078125), SC_(0.8350250720977783203125), SC_(26.85785623035577696227462871088924256017), SC_(0.3615083784310516986138575354063124550047e-22961), SC_(1), SC_(0.1346006082281656919355265001294210112337e-22962) },
- { SC_(0.02829697541892528533935546875), SC_(13777.6298828125), SC_(0.913384497165679931640625), SC_(26.56580055953003226290677804181116986292), SC_(0.3054028669242327526394177881070317637973e-14641), SC_(1), SC_(0.1149609123353426035890781795044026282057e-14642) },
+ { SC_(0.0276034064590930938720703125), SC_(29335.0078125), SC_(0.8350250720977783203125), SC_(26.85785623035577696227462871088924256017), SC_(BOOST_MATH_SMALL_CONSTANT(0.3615083784310516986138575354063124550047e-22961)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.1346006082281656919355265001294210112337e-22962)) },
+ { SC_(0.02829697541892528533935546875), SC_(13777.6298828125), SC_(0.913384497165679931640625), SC_(26.56580055953003226290677804181116986292), SC_(BOOST_MATH_SMALL_CONSTANT(0.3054028669242327526394177881070317637973e-14641)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.1149609123353426035890781795044026282057e-14642)) },
{ SC_(0.02842903696000576019287109375), SC_(0.03119052015244960784912109375), SC_(0.8350250720977783203125), SC_(36.6730480246053194934000096056202450598), SC_(30.46935560382069638858935070257014865759), SC_(0.5461980215596435075766995065932255193652), SC_(0.4538019784403564924233004934067744806348) },
{ SC_(0.02883697114884853363037109375), SC_(399.402069091796875), SC_(0.3082362115383148193359375), SC_(28.71526545288497625508742226734804914204), SC_(0.9363671800038887851786384477722789146146e-66), SC_(1), SC_(0.3260868967205781097054901857257900727036e-67) },
{ SC_(0.0292808823287487030029296875), SC_(0.4510292112827301025390625), SC_(0.632396042346954345703125), SC_(34.16626096491055239111143376362071217439), SC_(1.614162501040144007071966262357462703595), SC_(0.9548869928111328675235876376981510710952), SC_(0.04511300718886713247641236230184892890484) },
{ SC_(0.0295875072479248046875), SC_(0.18167886082665063440799713134765625e-4), SC_(0.913384497165679931640625), SC_(36.10874453604145969175645989765609155776), SC_(55039.81854938211499539380858745297466486), SC_(0.0006556175503563209739788378491170180687729), SC_(0.9993443824496436790260211621508829819312) },
- { SC_(0.03072208352386951446533203125), SC_(487934.875), SC_(0.12707412242889404296875), SC_(21.40039309248696402801946483893072349666), SC_(0.9540553262538226105022025664601283221644e-28804), SC_(1), SC_(0.4458120568770126061414102572984363082005e-28805) },
- { SC_(0.0310857109725475311279296875), SC_(15232.21875), SC_(0.905801355838775634765625), SC_(23.44028489227366049390242332703067336678), SC_(0.1916791109501658525873364793532490055884e-15631), SC_(1), SC_(0.8177337085751322722517495985834528569095e-15633) },
+ { SC_(0.03072208352386951446533203125), SC_(487934.875), SC_(0.12707412242889404296875), SC_(21.40039309248696402801946483893072349666), SC_(BOOST_MATH_SMALL_CONSTANT(0.9540553262538226105022025664601283221644e-28804)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.4458120568770126061414102572984363082005e-28805)) },
+ { SC_(0.0310857109725475311279296875), SC_(15232.21875), SC_(0.905801355838775634765625), SC_(23.44028489227366049390242332703067336678), SC_(BOOST_MATH_SMALL_CONSTANT(0.1916791109501658525873364793532490055884e-15631)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.8177337085751322722517495985834528569095e-15633)) },
{ SC_(0.03123457171022891998291015625), SC_(3524.479736328125), SC_(0.12707412242889404296875), SC_(24.38302966802117338623323410267777880059), SC_(0.1976861395081482593400168565772118123666e-210), SC_(1), SC_(0.8107529794273988391895895895799958760346e-212) },
{ SC_(0.0312533564865589141845703125), SC_(3994.4365234375), SC_(0.8350250720977783203125), SC_(24.26925582076123268914474286266556107924), SC_(0.3162589788262145279359701440899680574297e-3129), SC_(1), SC_(0.13031259844221078673429625968931804599e-3130) },
{ SC_(0.0315650589764118194580078125), SC_(0.001970894634723663330078125), SC_(0.3082362115383148193359375), SC_(30.869710220720063489222966688220281495), SC_(508.1408365649057706132322210921735073939), SC_(0.05727106900748177964273230228606521142893), SC_(0.9427289309925182203572676977139347885711) },
@@ -408,16 +408,16 @@
{ SC_(0.033940948545932769775390625), SC_(489.9017333984375), SC_(0.221111953258514404296875), SC_(23.43592890949145426826226872729950125799), SC_(0.5935926099240656620059970318616507256013e-55), SC_(1), SC_(0.2532831586136375035323482066483628637581e-56) },
{ SC_(0.0344383455812931060791015625), SC_(1315.3695068359375), SC_(0.9688708782196044921875), SC_(22.25010120703504429376162251599304630768), SC_(0.7109679311034694236733626555971539797882e-1985), SC_(1), SC_(0.3195346953651947210669700263684425060838e-1986) },
{ SC_(0.0346836335957050323486328125), SC_(2.891076564788818359375), SC_(0.221111953258514404296875), SC_(26.99757576962473828694663602310193086957), SC_(0.4344915503078346109866161249402339894598), SC_(0.9841611809551033656235948199023818862418), SC_(0.01583881904489663437640518009761811375819) },
- { SC_(0.0355083644390106201171875), SC_(207270.546875), SC_(0.221111953258514404296875), SC_(17.88254290202323034987146975286489955936), SC_(0.1938863043447469635408367737841101764686e-22498), SC_(1), SC_(0.1084221105505138606850733967746475364952e-22499) },
+ { SC_(0.0355083644390106201171875), SC_(207270.546875), SC_(0.221111953258514404296875), SC_(17.88254290202323034987146975286489955936), SC_(BOOST_MATH_SMALL_CONSTANT(0.1938863043447469635408367737841101764686e-22498)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.1084221105505138606850733967746475364952e-22499)) },
{ SC_(0.035541228950023651123046875), SC_(353.3453369140625), SC_(0.8350250720977783203125), SC_(22.400439232555436086445547455037739456), SC_(0.1012431808330590013913997249824269720048e-278), SC_(1), SC_(0.4519696233720199536282891802287731883289e-280) },
{ SC_(0.0357905812561511993408203125), SC_(0.19347016513347625732421875), SC_(0.12707412242889404296875), SC_(26.0493907087657493086432836468187365539), SC_(6.737193859417837128916013021795419009459), SC_(0.7945137028406528766417351867693694311322), SC_(0.2054862971593471233582648132306305688678) },
{ SC_(0.03617782890796661376953125), SC_(4978.021484375), SC_(0.1355634629726409912109375), SC_(19.91580571160478764140047890799065498089), SC_(0.1566588315502458236212370977217589413572e-317), SC_(1), SC_(0.7866055424459273613263907314587584981944e-319) },
{ SC_(0.036653555929660797119140625), SC_(0.0039511634968221187591552734375), SC_(0.221111953258514404296875), SC_(26.04199226253237026297526089983526355229), SC_(254.2656285318020713174260723752206115004), SC_(0.09290504549514099127804895601282910382889), SC_(0.9070949545048590087219510439871708961711) },
{ SC_(0.0366611182689666748046875), SC_(0.001741903950460255146026611328125), SC_(0.81474220752716064453125), SC_(28.70284461580296960605174706910055535579), SC_(572.5970242286072277899701318800904722238), SC_(0.04773465969810480016227634131591638953376), SC_(0.9522653403018951998377236586840836104662) },
{ SC_(0.036767013370990753173828125), SC_(0.010332576930522918701171875), SC_(0.3082362115383148193359375), SC_(26.38411238247533242854934500580607347367), SC_(97.52057268574274732010177365298373642887), SC_(0.2129387792555952004858471262124048281948), SC_(0.7870612207444047995141528737875951718052) },
- { SC_(0.036872327327728271484375), SC_(345497.65625), SC_(0.905801355838775634765625), SC_(16.60802591265856682616182018546405467996), SC_(0.2161420343251689268071125522978270155822e-354470), SC_(1), SC_(0.1301431220434370746446718784751414005802e-354471) },
- { SC_(0.0370448939502239227294921875), SC_(289887.34375), SC_(0.81474220752716064453125), SC_(16.6004189281411556087941964361545494995), SC_(0.1965954913814918759506831311707010927856e-212267), SC_(1), SC_(0.1184280301795406580843211345157086411144e-212268) },
- { SC_(0.0378056205809116363525390625), SC_(296247.6875), SC_(0.913384497165679931640625), SC_(16.09194444987159321324019514614444639933), SC_(0.535410774324226603415118024790685936299e-314740), SC_(1), SC_(0.3327197505510273811696486116295989619144e-314741) },
+ { SC_(0.036872327327728271484375), SC_(345497.65625), SC_(0.905801355838775634765625), SC_(16.60802591265856682616182018546405467996), SC_(BOOST_MATH_SMALL_CONSTANT(0.2161420343251689268071125522978270155822e-354470)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.1301431220434370746446718784751414005802e-354471)) },
+ { SC_(0.0370448939502239227294921875), SC_(289887.34375), SC_(0.81474220752716064453125), SC_(16.6004189281411556087941964361545494995), SC_(BOOST_MATH_SMALL_CONSTANT(0.1965954913814918759506831311707010927856e-212267)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.1184280301795406580843211345157086411144e-212268)) },
+ { SC_(0.0378056205809116363525390625), SC_(296247.6875), SC_(0.913384497165679931640625), SC_(16.09194444987159321324019514614444639933), SC_(BOOST_MATH_SMALL_CONSTANT(0.535410774324226603415118024790685936299e-314740)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.3327197505510273811696486116295989619144e-314741)) },
{ SC_(0.0378379710018634796142578125), SC_(353.800811767578125), SC_(0.632396042346954345703125), SC_(20.73345001001782217833384545958108093874), SC_(0.7467809176821582887634024422866665464842e-156), SC_(1), SC_(0.360181695434833407410588393958961418318e-157) },
{ SC_(0.0379242189228534698486328125), SC_(0.004291436634957790374755859375), SC_(0.632396042346954345703125), SC_(26.86430465925230384256659574614086409308), SC_(232.4589024982946008459886804740086725718), SC_(0.1035939087508331029327591205661608644132), SC_(0.8964060912491668970672408794338391355868) },
{ SC_(0.0379955135285854339599609375), SC_(128.872100830078125), SC_(0.81474220752716064453125), SC_(21.43553637109974649031979315943776616494), SC_(0.4088158636111406672945129705764095533446e-96), SC_(1), SC_(0.1907187469133371818859225613657519503967e-97) },
@@ -430,15 +430,15 @@
{ SC_(0.04279924929141998291015625), SC_(3897.815673828125), SC_(0.3082362115383148193359375), SC_(16.02484096656381736207710622754696913186), SC_(0.1211378961687267592427950158904546549886e-626), SC_(1), SC_(0.7559382113150679011913355365533542467539e-628) },
{ SC_(0.04297505319118499755859375), SC_(3.1283900737762451171875), SC_(0.632396042346954345703125), SC_(21.77594742125604909733896625284641283204), SC_(0.01924256699181671126161716640584811112549), SC_(0.9991171186393790349390521464440413266787), SC_(0.0008828813606209650609478535559586733212865) },
{ SC_(0.0442209132015705108642578125), SC_(0.02011293359100818634033203125), SC_(0.9688708782196044921875), SC_(25.83640189819377370074430241522822555899), SC_(46.39556092643460168783413044868798538564), SC_(0.3576865543709762649319662277323093277561), SC_(0.6423134456290237350680337722676906722439) },
- { SC_(0.0450148619711399078369140625), SC_(14815.267578125), SC_(0.9688708782196044921875), SC_(14.07099423884325284155797173281234217818), SC_(0.5085882135107557429438835316270112271216e-22328), SC_(1), SC_(0.3614444046226585064269677541879272600456e-22329) },
+ { SC_(0.0450148619711399078369140625), SC_(14815.267578125), SC_(0.9688708782196044921875), SC_(14.07099423884325284155797173281234217818), SC_(BOOST_MATH_SMALL_CONSTANT(0.5085882135107557429438835316270112271216e-22328)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.3614444046226585064269677541879272600456e-22329)) },
{ SC_(0.04518614709377288818359375), SC_(23.06797027587890625), SC_(0.1355634629726409912109375), SC_(18.75026000874948524362588152802072705895), SC_(0.008353637632983779823472639118059362970688), SC_(0.9995546772383899090161089691183323492346), SC_(0.0004453227616100909838910308816676507654412) },
{ SC_(0.04527465999126434326171875), SC_(0.013598117046058177947998046875), SC_(0.221111953258514404296875), SC_(20.8493594462655209724110517945580848197), SC_(74.6848226228261945497192248886865267748), SC_(0.2182397859562659966619080829557459720467), SC_(0.7817602140437340033380919170442540279533) },
{ SC_(0.04625232517719268798828125), SC_(43.923553466796875), SC_(0.12707412242889404296875), SC_(17.71130196100934836543988893586324943749), SC_(0.0003682241231851475227643177992042953399886), SC_(0.9999792100846878776631728586938955375579), SC_(0.2078991531212233682714130610446244208255e-4) },
{ SC_(0.0468132793903350830078125), SC_(0.00025698760873638093471527099609375), SC_(0.1355634629726409912109375), SC_(19.58067472138623149146094712368030565282), SC_(3892.944114011192267804353768770152496087), SC_(0.005004613588078808404357317268552392675046), SC_(0.994995386411921191595642682731447607325) },
{ SC_(0.04770947992801666259765625), SC_(0.00015248873387463390827178955078125), SC_(0.905801355838775634765625), SC_(23.15197505544387007118889541618334627984), SC_(6555.593650161884398802067838570577463821), SC_(0.003519208124828362954315511675485902971432), SC_(0.9964807918751716370456844883245140970286) },
- { SC_(0.0477449037134647369384765625), SC_(402512.65625), SC_(0.1355634629726409912109375), SC_(11.0230169005882531820742576201897796517), SC_(0.3159717752762467343985344247714084898607e-25470), SC_(1), SC_(0.2866472746307633958676851942917575263438e-25471) },
+ { SC_(0.0477449037134647369384765625), SC_(402512.65625), SC_(0.1355634629726409912109375), SC_(11.0230169005882531820742576201897796517), SC_(BOOST_MATH_SMALL_CONSTANT(0.3159717752762467343985344247714084898607e-25470)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.2866472746307633958676851942917575263438e-25471)) },
{ SC_(0.0480652190744876861572265625), SC_(0.00045122022856958210468292236328125), SC_(0.12707412242889404296875), SC_(18.95862272936696329395560578384428525019), SC_(2217.982046632910544999553191852062947007), SC_(0.008475246120305827497705967588029104133415), SC_(0.9915247538796941725022940324119708958666) },
- { SC_(0.0483077578246593475341796875), SC_(389962.375), SC_(0.3082362115383148193359375), SC_(10.82924224047048652720135547852684809634), SC_(0.2941052044145309049967634408530288794614e-62415), SC_(1), SC_(0.2715842880634954105001337483314292410207e-62416) },
+ { SC_(0.0483077578246593475341796875), SC_(389962.375), SC_(0.3082362115383148193359375), SC_(10.82924224047048652720135547852684809634), SC_(BOOST_MATH_SMALL_CONSTANT(0.2941052044145309049967634408530288794614e-62415)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.2715842880634954105001337483314292410207e-62416)) },
{ SC_(0.04874597489833831787109375), SC_(2329.3564453125), SC_(0.81474220752716064453125), SC_(13.69417520929604126788814613120980079318), SC_(0.1281744195556668348251261203821222329825e-1708), SC_(1), SC_(0.9359776517877321012858673788534608515729e-1710) },
{ SC_(0.04926551878452301025390625), SC_(0.0299147777259349822998046875), SC_(0.905801355838775634765625), SC_(22.37091475699371165610887016365649486326), SC_(31.23253834199579451650658398141050636854), SC_(0.4173409260720823242228709969532622686722), SC_(0.5826590739279176757771290030467377313278) },
{ SC_(0.049306534230709075927734375), SC_(4.597743988037109375), SC_(0.81474220752716064453125), SC_(18.41612001008947971188429212832608416516), SC_(0.0001095078525055740520832753964766298238141), SC_(0.9999940537311180398689483683191900603588), SC_(0.594626888196013105163168080993964120443e-5) },
@@ -448,7 +448,7 @@
{ SC_(0.10046042501926422119140625), SC_(0.000209066798561252653598785400390625), SC_(0.1355634629726409912109375), SC_(8.252310036018254646221510609655865173472), SC_(4784.707689769652824754566087774246223879), SC_(0.001721756500440821898886461164041864193657), SC_(0.9982782434995591781011135388359581358063) },
{ SC_(0.102686129510402679443359375), SC_(0.19225277355872094631195068359375e-4), SC_(0.905801355838775634765625), SC_(11.85483541062642757513981710923389935021), SC_(52012.58051877421631706953337214645263474), SC_(0.0002278705252621800009748306170952863296859), SC_(0.9997721294747378199990251693829047136703) },
{ SC_(0.11430509388446807861328125), SC_(0.00042258042958565056324005126953125), SC_(0.9688708782196044921875), SC_(12.01329309340862835147249771396542240502), SC_(2362.974282807676113435814374883535855015), SC_(0.005058255131650830565829250827858602156065), SC_(0.9949417448683491694341707491721413978439) },
- { SC_(0.11778163909912109375), SC_(206355), SC_(0.632396042346954345703125), SC_(1.897249074578603579880390834557515140444), SC_(0.7720868413993223061762249642195049797765e-89691), SC_(1), SC_(0.4069507012782756923257716167260406359152e-89691) },
+ { SC_(0.11778163909912109375), SC_(206355), SC_(0.632396042346954345703125), SC_(1.897249074578603579880390834557515140444), SC_(BOOST_MATH_SMALL_CONSTANT(0.7720868413993223061762249642195049797765e-89691)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.4069507012782756923257716167260406359152e-89691)) },
{ SC_(0.1254365444183349609375), SC_(233.073516845703125), SC_(0.9688708782196044921875), SC_(3.789367389662553925323948561477155058364), SC_(0.2764197193237842253458928385156242796673e-353), SC_(1), SC_(0.7294613873488778123589525827176549048439e-354) },
{ SC_(0.13644538819789886474609375), SC_(0.0134486891329288482666015625), SC_(0.632396042346954345703125), SC_(7.721137222106381932723137407676225170978), SC_(73.74216216797055061410884528445009217529), SC_(0.09478056106142560478448745147440359632423), SC_(0.9052194389385743952155125485255964036758) },
{ SC_(0.13752801716327667236328125), SC_(43384.8671875), SC_(0.1355634629726409912109375), SC_(1.569318408615190130813475372041265160589), SC_(0.1930636483362086764296738057805909991263e-2748), SC_(1), SC_(0.1230238855775440545065233522181695629778e-2748) },
@@ -456,8 +456,8 @@
{ SC_(0.14387898147106170654296875), SC_(282.2655029296875), SC_(0.913384497165679931640625), SC_(2.886375857208684041526189982555401262593), SC_(0.50442835692798726440979965186144662879e-302), SC_(1), SC_(0.1747618404124966519382734754762036539193e-302) },
{ SC_(0.14768581092357635498046875), SC_(43.79425048828125), SC_(0.81474220752716064453125), SC_(3.623526026665682414439047242280013644154), SC_(0.231940011285713602857259877385433485333e-33), SC_(0.9999999999999999999999999999999999359905), SC_(0.640094784965961822139983865020879451094e-34) },
{ SC_(0.14775849878787994384765625), SC_(0.1444317400455474853515625), SC_(0.905801355838775634765625), SC_(8.325590106245668883338953744594313315262), SC_(4.974516500743730333812021534374216102687), SC_(0.625979200938919568234413720041948646786), SC_(0.374020799061080431765586279958051353214) },
- { SC_(0.1555496752262115478515625), SC_(4926.16162109375), SC_(0.9688708782196044921875), SC_(1.595231945629570077638907300201011887714), SC_(0.2603423318770011435431033758868982902314e-7426), SC_(1), SC_(0.1632002998625100364874964811622052002368e-7426) },
- { SC_(0.15999889373779296875), SC_(346211.125), SC_(0.1355634629726409912109375), SC_(0.7550675518068729220256451449394596675709), SC_(0.3091551967012326406929489089422086414851e-21908), SC_(1), SC_(0.4094404480253796921531614155425924978421e-21908) },
+ { SC_(0.1555496752262115478515625), SC_(4926.16162109375), SC_(0.9688708782196044921875), SC_(1.595231945629570077638907300201011887714), SC_(BOOST_MATH_SMALL_CONSTANT(0.2603423318770011435431033758868982902314e-7426)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.1632002998625100364874964811622052002368e-7426)) },
+ { SC_(0.15999889373779296875), SC_(346211.125), SC_(0.1355634629726409912109375), SC_(0.7550675518068729220256451449394596675709), SC_(BOOST_MATH_SMALL_CONSTANT(0.3091551967012326406929489089422086414851e-21908)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.4094404480253796921531614155425924978421e-21908)) },
{ SC_(0.16108848154544830322265625), SC_(0.003161008469760417938232421875), SC_(0.3082362115383148193359375), SC_(5.400843106601757600521129512394784044383), SC_(316.9198894651245599485293307741302659594), SC_(0.01675611451832346282500337182117707686699), SC_(0.983243885481676537174996628178822923133) },
{ SC_(0.17034976184368133544921875), SC_(0.00294548436067998409271240234375), SC_(0.12707412242889404296875), SC_(4.212699542106957969935444584135593452544), SC_(340.9066466328349110274891723020101988374), SC_(0.01220650070416953653716545402022420581463), SC_(0.9877934992958304634628345459797757941854) },
{ SC_(0.17546479403972625732421875), SC_(0.045397706329822540283203125), SC_(0.221111953258514404296875), SC_(4.530100682241991525935733248800172574816), SC_(22.88470823467187025751407777819916982283), SC_(0.1652428326592164242163300383340972184638), SC_(0.8347571673407835757836699616659027815362) },
@@ -467,11 +467,11 @@
{ SC_(0.1874706447124481201171875), SC_(406.947998046875), SC_(0.8350250720977783203125), SC_(1.593950370369185073634567181631377851823), SC_(0.9631902208098806186131874884536400924932e-321), SC_(1), SC_(0.6042786768742303756895366312326667059292e-321) },
{ SC_(0.18961600959300994873046875), SC_(0.4673106013797223567962646484375e-4), SC_(0.1355634629726409912109375), SC_(3.694836563621182491215455880578456693337), SC_(21400.34772910220757893165895074561807598), SC_(0.0001726233047932758551768571330726338834291), SC_(0.9998273766952067241448231428669273661166) },
{ SC_(0.19449223577976226806640625), SC_(0.23129458725452423095703125), SC_(0.8350250720977783203125), SC_(6.015660159425561670344251989489929530053), SC_(2.927582419949657985277532568191640439983), SC_(0.6726486624995270265101377241589246335436), SC_(0.3273513375004729734898622758410753664564) },
- { SC_(0.1971141397953033447265625), SC_(147358.625), SC_(0.8350250720977783203125), SC_(0.4464878109850020374312930918610764954226), SC_(0.4777993900862828666875629809326430706783e-115325), SC_(1), SC_(0.1070128631355476389128871358053279403756e-115324) },
+ { SC_(0.1971141397953033447265625), SC_(147358.625), SC_(0.8350250720977783203125), SC_(0.4464878109850020374312930918610764954226), SC_(BOOST_MATH_SMALL_CONSTANT(0.4777993900862828666875629809326430706783e-115325)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.1070128631355476389128871358053279403756e-115324)) },
{ SC_(0.1971398293972015380859375), SC_(0.00232790899462997913360595703125), SC_(0.913384497165679931640625), SC_(7.15265893822281085848080465485692234334), SC_(427.2025689850565811808513235055773807162), SC_(0.01646730251739065592434230421607959606613), SC_(0.9835326974826093440756576957839204039339) },
{ SC_(0.2019160687923431396484375), SC_(0.4740857184515334665775299072265625e-4), SC_(0.12707412242889404296875), SC_(3.340312551347237514184812055786484456526), SC_(21094.55348210925371156573532264319825814), SC_(0.0001583244556948426274976933012534521009447), SC_(0.9998416755443051573725023066987465478991) },
{ SC_(0.2025763988494873046875), SC_(2.372247219085693359375), SC_(0.913384497165679931640625), SC_(3.937203199022278252105354314395874943421), SC_(0.0013379829260142046180656790494772087335), SC_(0.9996602846424085529684782517403873628343), SC_(0.0003397153575914470315217482596126371656571) },
- { SC_(0.20485810935497283935546875), SC_(480505.75), SC_(0.3082362115383148193359375), SC_(0.306848523885785014481646694440861253385), SC_(0.3460117627697644993182072834296248764001e-76906), SC_(1), SC_(0.1127630527232247021191770437558198209557e-76905) },
+ { SC_(0.20485810935497283935546875), SC_(480505.75), SC_(0.3082362115383148193359375), SC_(0.306848523885785014481646694440861253385), SC_(BOOST_MATH_SMALL_CONSTANT(0.3460117627697644993182072834296248764001e-76906)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.1127630527232247021191770437558198209557e-76905)) },
{ SC_(0.2059116065502166748046875), SC_(24.2244358062744140625), SC_(0.3082362115383148193359375), SC_(2.317098126687310653694466350546003052727), SC_(0.1309204045483426382329857359196673939813e-4), SC_(0.9999943498437411983238274705951394985482), SC_(0.5650156258801676172529404860501451803968e-5) },
{ SC_(0.20762462913990020751953125), SC_(0.0442828945815563201904296875), SC_(0.12707412242889404296875), SC_(3.208757799440129059173937558212400209151), SC_(23.84071978676539155823574004573949164694), SC_(0.1186254998535168040048487450476216883436), SC_(0.8813745001464831959951512549523783116564) },
{ SC_(0.21499927341938018798828125), SC_(0.0337234772741794586181640625), SC_(0.3082362115383148193359375), SC_(3.842065222121155731997225444566201482496), SC_(30.11620543051094229321847610375530049551), SC_(0.1131407797947849299248107466223786193189), SC_(0.8868592202052150700751892533776213806811) },
@@ -479,17 +479,17 @@
{ SC_(0.22898872196674346923828125), SC_(0.000221865411731414496898651123046875), SC_(0.8350250720977783203125), SC_(5.706591552815756273351959094649631661446), SC_(4505.572905024566783440534660711790531952), SC_(0.001264960762716039444330752487957723028592), SC_(0.9987350392372839605556692475120422769714) },
{ SC_(0.23644983768463134765625), SC_(0.00389209692366421222686767578125), SC_(0.632396042346954345703125), SC_(4.552530094026749191113284955376849779478), SC_(256.2697676925452286102734645995453186659), SC_(0.01745452797809501155414428231193259547456), SC_(0.9825454720219049884458557176880674045254) },
{ SC_(0.2377849519252777099609375), SC_(0.19049095499212853610515594482421875e-4), SC_(0.632396042346954345703125), SC_(4.53164976289766096174798459680844480505), SC_(52495.26961808240492975835642795738264917), SC_(0.863174650848282912012987122430403011656e-4), SC_(0.9999136825349151717087987012877569596988) },
- { SC_(0.2390850484371185302734375), SC_(394272.125), SC_(0.12707412242889404296875), SC_(0.1745849851757016911719459583019216641561), SC_(0.1280755209981353127528079468932698099317e-23275), SC_(1), SC_(0.733599861805072047806121153366488358174e-23275) },
+ { SC_(0.2390850484371185302734375), SC_(394272.125), SC_(0.12707412242889404296875), SC_(0.1745849851757016911719459583019216641561), SC_(BOOST_MATH_SMALL_CONSTANT(0.1280755209981353127528079468932698099317e-23275)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.733599861805072047806121153366488358174e-23275)) },
{ SC_(0.24008722603321075439453125), SC_(1.274954319000244140625), SC_(0.3082362115383148193359375), SC_(3.084743633676409259964114272723441763204), SC_(0.7624524502911317466523552818168956347006), SC_(0.8018160671694100742859808331924415867861), SC_(0.1981839328305899257140191668075584132139) },
- { SC_(0.2436912953853607177734375), SC_(193457.484375), SC_(0.9688708782196044921875), SC_(0.1917873480216332357378284754442872026183), SC_(0.3774012622666596906907009409478240642198e-291513), SC_(1), SC_(0.1967811047807437070384744017057333226547e-291512) },
+ { SC_(0.2436912953853607177734375), SC_(193457.484375), SC_(0.9688708782196044921875), SC_(0.1917873480216332357378284754442872026183), SC_(BOOST_MATH_SMALL_CONSTANT(0.3774012622666596906907009409478240642198e-291513)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.1967811047807437070384744017057333226547e-291512)) },
{ SC_(0.2463264763355255126953125), SC_(1483.4622802734375), SC_(0.221111953258514404296875), SC_(0.6095848838071273412043230795119430431948), SC_(0.2134084169223695609854362659824172215945e-163), SC_(1), SC_(0.3500881051864993172066533730543461613597e-163) },
{ SC_(0.254708468914031982421875), SC_(0.493781044497154653072357177734375e-4), SC_(0.9688708782196044921875), SC_(7.016415499405410658790600405881980952071), SC_(20248.4454227091885406449218658109898752), SC_(0.0003463962241616282470308411565585885253707), SC_(0.9996536037758383717529691588434414114746) },
- { SC_(0.2573825418949127197265625), SC_(44778.4140625), SC_(0.8350250720977783203125), SC_(0.2233180923540966297674867063805482002216), SC_(0.4206110747125570277793308692053653655775e-35047), SC_(1), SC_(0.1883461703790795356476903325019216889077e-35046) },
+ { SC_(0.2573825418949127197265625), SC_(44778.4140625), SC_(0.8350250720977783203125), SC_(0.2233180923540966297674867063805482002216), SC_(BOOST_MATH_SMALL_CONSTANT(0.4206110747125570277793308692053653655775e-35047)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.1883461703790795356476903325019216889077e-35046)) },
{ SC_(0.2618319988250732421875), SC_(4353.03955078125), SC_(0.12707412242889404296875), SC_(0.3849666563346155953776492505211989550318), SC_(0.1242248199936297604165680007483887186758e-259), SC_(1), SC_(0.3226898172855072286657292908581418011501e-259) },
{ SC_(0.2664634287357330322265625), SC_(2.7337188720703125), SC_(0.81474220752716064453125), SC_(2.685258724408317040116055739832085019844), SC_(0.004059762694853894582711241957150810346059), SC_(0.998490412082346218227504068762203917039), SC_(0.001509587917653781772495931237796082961007) },
{ SC_(0.269739627838134765625), SC_(0.0001012004868243820965290069580078125), SC_(0.3082362115383148193359375), SC_(2.914655976096051160435051331811495380652), SC_(9881.794762389233106512649854575334706675), SC_(0.0002948651146669780977537873667881976598873), SC_(0.9997051348853330219022462126332118023401) },
{ SC_(0.270291507244110107421875), SC_(0.04600088298320770263671875), SC_(0.913384497165679931640625), SC_(5.535625010893188303466524796023891090522), SC_(19.48123447500466816913415535740350134829), SC_(0.2212757766023209693546547405899639082743), SC_(0.7787242233976790306453452594100360917257) },
- { SC_(0.276960909366607666015625), SC_(225226.28125), SC_(0.905801355838775634765625), SC_(0.1071421706233882854378819962409694800002), SC_(0.3720988495311030205840463975177304151268e-231077), SC_(1), SC_(0.3472944848569987764982518079554275520801e-231076) },
+ { SC_(0.276960909366607666015625), SC_(225226.28125), SC_(0.905801355838775634765625), SC_(0.1071421706233882854378819962409694800002), SC_(BOOST_MATH_SMALL_CONSTANT(0.3720988495311030205840463975177304151268e-231077)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.3472944848569987764982518079554275520801e-231076)) },
{ SC_(0.279349148273468017578125), SC_(3217.235107421875), SC_(0.1355634629726409912109375), SC_(0.337829357005361094121756192427915189105), SC_(0.3740045494430662948332189772006883872255e-206), SC_(1), SC_(0.1107081257704703052228323192318580079036e-205) },
{ SC_(0.280055105686187744140625), SC_(0.489566028118133544921875), SC_(0.9688708782196044921875), SC_(4.472960873464681839529880962499036608606), SC_(0.3764727172031023899329394807885403670498), SC_(0.9223676930172662165205455538273957814328), SC_(0.07763230698273378347945444617260421856722) },
{ SC_(0.28349018096923828125), SC_(3.132917881011962890625), SC_(0.12707412242889404296875), SC_(1.852567089757968504381052032680922751599), SC_(0.521631353273639512227923011132635751048), SC_(0.7802915949150527830116740656433407989041), SC_(0.2197084050849472169883259343566592010959) },
@@ -498,8 +498,8 @@
{ SC_(0.28854286670684814453125), SC_(0.00019903402426280081272125244140625), SC_(0.913384497165679931640625), SC_(5.452222757212524014274110277597719693085), SC_(5021.88490729987368580974885081972739547), SC_(0.001084515045672024219473733057218408210046), SC_(0.99891548495432797578052626694278159179) },
{ SC_(0.2893944084644317626953125), SC_(0.0018625170923769474029541015625), SC_(0.221111953258514404296875), SC_(2.359684838555847552855883355484859523753), SC_(537.6057681887136579927596914914783486131), SC_(0.004370066316884680407864702286930947053297), SC_(0.9956299336831153195921352977130690529467) },
{ SC_(0.291785299777984619140625), SC_(38.487705230712890625), SC_(0.913384497165679931640625), SC_(1.064563216983953577984974879133551224242), SC_(0.3566983853901848960591959182819036301658e-42), SC_(1), SC_(0.335065480094980116296341064211507092312e-42) },
- { SC_(0.293941318988800048828125), SC_(43703.57421875), SC_(0.81474220752716064453125), SC_(0.1321828888145803590804606716816193088251), SC_(0.4340711794287861382533364616958556756036e-32005), SC_(1), SC_(0.3283868156624113372810977808405361315335e-32004) },
- { SC_(0.308021008968353271484375), SC_(34557.2734375), SC_(0.9688708782196044921875), SC_(0.1163863903955997243376526669904137951038), SC_(0.2669396375425675399509007637464316628519e-52076), SC_(1), SC_(0.2293564020975598998320985646863906582949e-52075) },
+ { SC_(0.293941318988800048828125), SC_(43703.57421875), SC_(0.81474220752716064453125), SC_(0.1321828888145803590804606716816193088251), SC_(BOOST_MATH_SMALL_CONSTANT(0.4340711794287861382533364616958556756036e-32005)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.3283868156624113372810977808405361315335e-32004)) },
+ { SC_(0.308021008968353271484375), SC_(34557.2734375), SC_(0.9688708782196044921875), SC_(0.1163863903955997243376526669904137951038), SC_(BOOST_MATH_SMALL_CONSTANT(0.2669396375425675399509007637464316628519e-52076)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.2293564020975598998320985646863906582949e-52075)) },
{ SC_(0.3089981377124786376953125), SC_(432.827178955078125), SC_(0.632396042346954345703125), SC_(0.4445432103700716281916733518106100388495), SC_(0.2429571357222311862579075445645067748202e-190), SC_(1), SC_(0.5465321031896430517328038990414424129403e-190) },
{ SC_(0.310161769390106201171875), SC_(24687.779296875), SC_(0.221111953258514404296875), SC_(0.1254101149018303501185970214060483310229), SC_(0.65963006765331415770328699169886780425e-2683), SC_(1), SC_(0.5259783616095601808094442123983332365233e-2682) },
{ SC_(0.3121376931667327880859375), SC_(12025.0380859375), SC_(0.3082362115383148193359375), SC_(0.152852811831666880331296851749833541672), SC_(0.5730315156314877826157933739045864554133e-1928), SC_(1), SC_(0.3748910528793893482878921750841203613866e-1927) },
@@ -509,7 +509,7 @@
{ SC_(0.31863725185394287109375), SC_(0.049230270087718963623046875), SC_(0.905801355838775634765625), SC_(4.835956404824482039448613310634303665217), SC_(18.13934952405892063945685223408767166096), SC_(0.210484962411097216872077065087854065853), SC_(0.789515037588902783127922934912145934147) },
{ SC_(0.330483734607696533203125), SC_(0.0469950400292873382568359375), SC_(0.81474220752716064453125), SC_(4.041757710054468269024263067242651231763), SC_(19.77709858403868207245622664736302187405), SC_(0.1696873124448374841824015206249455353811), SC_(0.8303126875551625158175984793750544646189) },
{ SC_(0.3328996598720550537109375), SC_(49.7097015380859375), SC_(0.12707412242889404296875), SC_(0.7323668753990232209369905213683887988684), SC_(0.8576132716239690748322478888864445900834e-4), SC_(0.9998829121190064645049870036907901811314), SC_(0.0001170878809935354950129963092098188685626) },
- { SC_(0.334436833858489990234375), SC_(365052.03125), SC_(0.221111953258514404296875), SC_(0.03683055124744016650145146533269472360119), SC_(0.4134049894941059365873825201708076187273e-39622), SC_(1), SC_(0.1122451268015812878040846843117965816022e-39620) },
+ { SC_(0.334436833858489990234375), SC_(365052.03125), SC_(0.221111953258514404296875), SC_(0.03683055124744016650145146533269472360119), SC_(BOOST_MATH_SMALL_CONSTANT(0.4134049894941059365873825201708076187273e-39622)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.1122451268015812878040846843117965816022e-39620)) },
{ SC_(0.340868175029754638671875), SC_(0.3847523112199269235134124755859375e-4), SC_(0.913384497165679931640625), SC_(4.867158987608664583707798913433802847757), SC_(25988.36014028287055499976803342113923811), SC_(0.0001872471983402101556651165326821452152247), SC_(0.9998127528016597898443348834673178547848) },
{ SC_(0.342921555042266845703125), SC_(0.14970906078815460205078125), SC_(0.913384497165679931640625), SC_(4.34661506955168974465709711878525557199), SC_(4.66698548364575957976986790627158113517), SC_(0.4822284994657089119420803591920631570587), SC_(0.5177715005342910880579196408079368429413) },
{ SC_(0.3429556787014007568359375), SC_(0.00213477574288845062255859375), SC_(0.81474220752716064453125), SC_(4.009626419111881299546237742750132966845), SC_(466.8817946854137311266127224461611608934), SC_(0.008514970202062459796618729698481092001944), SC_(0.9914850297979375402033812703015189079981) },
@@ -524,18 +524,18 @@
{ SC_(0.3647778928279876708984375), SC_(3.6492011547088623046875), SC_(0.1355634629726409912109375), SC_(1.203574965158435233461977332268630128914), SC_(0.3670868422164121606267998575347684448692), SC_(0.7662852432695558674737034751895626930234), SC_(0.2337147567304441325262965248104373069766) },
{ SC_(0.364803850650787353515625), SC_(1.8238222599029541015625), SC_(0.632396042346954345703125), SC_(1.98332037500285904167492684245866890195), SC_(0.1057199556537739191447240811398613600922), SC_(0.9493930518705956581716798098610616676469), SC_(0.05060694812940434182832019013893833235313) },
{ SC_(0.367133080959320068359375), SC_(0.2215300992247648537158966064453125e-4), SC_(0.221111953258514404296875), SC_(1.672202901005245368409465681456105196346), SC_(45141.16279023901003340872215218221080163), SC_(0.3704248750126916634066649181251461079228e-4), SC_(0.9999629575124987308336593335081874853892) },
- { SC_(0.3685724437236785888671875), SC_(13019.9375), SC_(0.905801355838775634765625), SC_(0.07346192894752838396872414217069367165819), SC_(0.1091462836658307512933433692191812119613e-13361), SC_(1), SC_(0.1485753031938361078192174724676668699441e-13360) },
+ { SC_(0.3685724437236785888671875), SC_(13019.9375), SC_(0.905801355838775634765625), SC_(0.07346192894752838396872414217069367165819), SC_(BOOST_MATH_SMALL_CONSTANT(0.1091462836658307512933433692191812119613e-13361)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.1485753031938361078192174724676668699441e-13360)) },
{ SC_(0.3701328337192535400390625), SC_(0.30404355129576288163661956787109375e-4), SC_(0.8350250720977783203125), SC_(3.907212891949879411112160145684479307266), SC_(32888.33472482277201881408367831161659839), SC_(0.0001187882814235843380579530114317406305126), SC_(0.9998812117185764156619420469885682593695) },
{ SC_(0.37160670757293701171875), SC_(0.10332970321178436279296875), SC_(0.1355634629726409912109375), SC_(1.326235322335575399353327226388802714303), SC_(10.47079586999725008986459054878780116643), SC_(0.1124211083884840158821807304424753673166), SC_(0.8875788916115159841178192695575246326834) },
{ SC_(0.373345315456390380859375), SC_(0.0465487875044345855712890625), SC_(0.8350250720977783203125), SC_(3.781022238997846088967810182963259723552), SC_(19.85213028953340746912429272502061562773), SC_(0.1599880606039835847379289976786339079274), SC_(0.8400119393960164152620710023213660920726) },
- { SC_(0.375118434429168701171875), SC_(448846.15625), SC_(0.913384497165679931640625), SC_(0.01796721578967246096941631594289269772469), SC_(0.1799138068499384979536172441972070918912e-476861), SC_(1), SC_(0.1001344943791195449739236764586364500037e-476859) },
+ { SC_(0.375118434429168701171875), SC_(448846.15625), SC_(0.913384497165679931640625), SC_(0.01796721578967246096941631594289269772469), SC_(BOOST_MATH_SMALL_CONSTANT(0.1799138068499384979536172441972070918912e-476861)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.1001344943791195449739236764586364500037e-476859)) },
{ SC_(0.37850654125213623046875), SC_(43846.46875), SC_(0.12707412242889404296875), SC_(0.04108227627338822067418734977442707267622), SC_(0.9568951816810034520862409628026188555004e-2592), SC_(1), SC_(0.2329216558773909572112587849537516074883e-2590) },
{ SC_(0.3837126791477203369140625), SC_(0.3599123060703277587890625), SC_(0.81474220752716064453125), SC_(3.075247592841129835761442448815551460631), SC_(1.564718451797673059591945445086361195995), SC_(0.6627737279229425454390476573983761733012), SC_(0.3372262720770574545609523426016238266988) },
{ SC_(0.3884186446666717529296875), SC_(178.5201263427734375), SC_(0.3082362115383148193359375), SC_(0.3053396123511452758493138162878906281623), SC_(0.3068204932133039376108445126541750560395e-30), SC_(0.9999999999999999999999999999989951500532), SC_(0.1004849946755207201449902212960864401949e-29) },
{ SC_(0.3887031972408294677734375), SC_(0.00263000768609344959259033203125), SC_(0.1355634629726409912109375), SC_(1.231835472333350871108555599550915098284), SC_(381.0613905476908828408619275278063196499), SC_(0.003222226784287379052086614849141003662113), SC_(0.9967777732157126209479133851508589963379) },
{ SC_(0.3953707516193389892578125), SC_(0.0040236986242234706878662109375), SC_(0.905801355838775634765625), SC_(4.30748590147399691027261636167922996641), SC_(246.2348442100958977461491752998931352643), SC_(0.01719264724470238250085784376930689493694), SC_(0.9828073527552976174991421562306931050631) },
- { SC_(0.3965031802654266357421875), SC_(11295.04296875), SC_(0.913384497165679931640625), SC_(0.05532529105048326762731390349286115129294), SC_(0.1169114037234189913010919921095716564677e-12003), SC_(1), SC_(0.2113163826228036944645503113506416485004e-12002) },
- { SC_(0.401973307132720947265625), SC_(467754.28125), SC_(0.81474220752716064453125), SC_(0.01160401103786041951825925851136580471694), SC_(0.5001299126500188022188279304610580232569e-342506), SC_(1), SC_(0.4309974465021141298745525936903956016857e-342504) },
+ { SC_(0.3965031802654266357421875), SC_(11295.04296875), SC_(0.913384497165679931640625), SC_(0.05532529105048326762731390349286115129294), SC_(BOOST_MATH_SMALL_CONSTANT(0.1169114037234189913010919921095716564677e-12003)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.2113163826228036944645503113506416485004e-12002)) },
+ { SC_(0.401973307132720947265625), SC_(467754.28125), SC_(0.81474220752716064453125), SC_(0.01160401103786041951825925851136580471694), SC_(BOOST_MATH_SMALL_CONSTANT(0.5001299126500188022188279304610580232569e-342506)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.4309974465021141298745525936903956016857e-342504)) },
{ SC_(0.4054018557071685791015625), SC_(1848.73486328125), SC_(0.3082362115383148193359375), SC_(0.1036718367061499887847634293582280399546), SC_(0.1449344911630642718545284308256712096656e-298), SC_(1), SC_(0.1398012186992212443204102412298732809805e-297) },
{ SC_(0.4062000215053558349609375), SC_(0.0105956681072711944580078125), SC_(0.1355634629726409912109375), SC_(1.139345600873763402654598734204640178761), SC_(95.16973264199774880726676400337473448765), SC_(0.01183009558040385558933506736549787048401), SC_(0.988169904419596144410664932634502129516) },
{ SC_(0.4080638885498046875), SC_(0.0004883776418864727020263671875), SC_(0.81474220752716064453125), SC_(3.492855214092404977589960204283500634297), SC_(2046.029050123807241396902523730452797889), SC_(0.00170422926683310882251145890570357012742), SC_(0.9982957707331668911774885410942964298726) },
@@ -546,7 +546,7 @@
{ SC_(0.433166682720184326171875), SC_(1.27705013751983642578125), SC_(0.905801355838775634765625), SC_(1.984679081190707733574624066435764139873), SC_(0.03954575294540647145094585103870723513553), SC_(0.9804637546785737582005006621268432097211), SC_(0.01953624532142624179949933787315679027891) },
{ SC_(0.436771690845489501953125), SC_(1.04477035999298095703125), SC_(0.8350250720977783203125), SC_(2.081714265177482078767294301059126918754), SC_(0.1532535623587647546743803544317434770187), SC_(0.9314291863754896579986797985018804703014), SC_(0.06857081362451034200132020149811952969859) },
{ SC_(0.4377568662166595458984375), SC_(0.4160407115705311298370361328125e-4), SC_(0.3082362115383148193359375), SC_(1.522719063698491191810023886243372284363), SC_(24036.31702533616631466385339866738944195), SC_(0.6334675161703087587041918595495668507129e-4), SC_(0.9999366532483829691241295808140450433149) },
- { SC_(0.444455921649932861328125), SC_(49022.46484375), SC_(0.632396042346954345703125), SC_(0.0163983440631684185036000697841305621376), SC_(0.1928572246899730380461347400325118333019e-21310), SC_(1), SC_(0.1176077437740442085175403878859448687866e-21308) },
+ { SC_(0.444455921649932861328125), SC_(49022.46484375), SC_(0.632396042346954345703125), SC_(0.0163983440631684185036000697841305621376), SC_(BOOST_MATH_SMALL_CONSTANT(0.1928572246899730380461347400325118333019e-21310)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.1176077437740442085175403878859448687866e-21308)) },
{ SC_(0.447976410388946533203125), SC_(44.28264617919921875), SC_(0.221111953258514404296875), SC_(0.3628789143928556564497309259291339420156), SC_(0.781030226862406623923165710779878019526e-6), SC_(0.9999978476882649722212930554802620074136), SC_(0.2152311735027778706944519737992586411172e-5) },
{ SC_(0.466396510601043701171875), SC_(0.000362085294909775257110595703125), SC_(0.12707412242889404296875), SC_(0.8550289748994692887932915188394847007569), SC_(2762.487191450379985253322065514292380138), SC_(0.0003094184167923580573652410584667572272426), SC_(0.9996905815832076419426347589415332427728) },
{ SC_(0.4669697284698486328125), SC_(0.004207052290439605712890625), SC_(0.9688708782196044921875), SC_(4.983939876459954438522038296768868926815), SC_(234.2681889463908380212481891486849812964), SC_(0.02083132928004251077110019900857162650321), SC_(0.9791686707199574892288998009914283734968) },
@@ -559,35 +559,35 @@
{ SC_(1.06793177127838134765625), SC_(2593.565185546875), SC_(0.632396042346954345703125), SC_(0.00021814818706820204122140431640517093719), SC_(0.2279040265365697422812937326452021450552e-1130), SC_(1), SC_(0.1044721157665718426627598635375750226813e-1126) },
{ SC_(1.078310489654541015625), SC_(0.1611862899153493344783782958984375e-4), SC_(0.81474220752716064453125), SC_(1.579238934608002020930576188419414139161), SC_(62038.31480199683602703014226388490958657), SC_(0.2545521650256338689760697709112582973268e-4), SC_(0.9999745447834974366131023930229088741703) },
{ SC_(1.127964019775390625), SC_(28082.556640625), SC_(0.221111953258514404296875), SC_(0.9031444614627416618001308756504366467831e-5), SC_(0.6446722352112902992756278548084437136712e-3052), SC_(1), SC_(0.7138085463837898091420140568036635292841e-3047) },
- { SC_(1.17060959339141845703125), SC_(374486.4375), SC_(0.221111953258514404296875), SC_(0.2770348746813317152148567841195551130469e-6), SC_(0.1544222082236331533651701311405865986201e-40646), SC_(1), SC_(0.5574107173375275245760170786317275232285e-40640) },
- { SC_(1.1981303691864013671875), SC_(18840.236328125), SC_(0.81474220752716064453125), SC_(0.6934970851989473984828582349279761548277e-5), SC_(0.2774673653527033277856718432732877361682e-13799), SC_(1), SC_(0.4000988198430635197865793159272447313039e-13794) },
+ { SC_(1.17060959339141845703125), SC_(374486.4375), SC_(0.221111953258514404296875), SC_(0.2770348746813317152148567841195551130469e-6), SC_(BOOST_MATH_SMALL_CONSTANT(0.1544222082236331533651701311405865986201e-40646)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.5574107173375275245760170786317275232285e-40640)) },
+ { SC_(1.1981303691864013671875), SC_(18840.236328125), SC_(0.81474220752716064453125), SC_(0.6934970851989473984828582349279761548277e-5), SC_(BOOST_MATH_SMALL_CONSTANT(0.2774673653527033277856718432732877361682e-13799)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.4000988198430635197865793159272447313039e-13794)) },
{ SC_(1.2198965549468994140625), SC_(0.1385947167873382568359375), SC_(0.9688708782196044921875), SC_(2.476100393862268102451316018157336805629), SC_(4.457073809447786720692093046710205236916), SC_(0.3571380613341752670809919250585172665935), SC_(0.6428619386658247329190080749414827334065) },
{ SC_(1.3339312076568603515625), SC_(327.5166015625), SC_(0.632396042346954345703125), SC_(0.000393880060303142468976379431401696514736), SC_(0.1184022713919227905295431760253988365597e-144), SC_(1), SC_(0.3006048879468452467763121228666591540639e-141) },
{ SC_(1.359802722930908203125), SC_(0.39465808868408203125), SC_(0.1355634629726409912109375), SC_(0.05106481064957347464764855792811332922631), SC_(2.124848787490442060819126279665208636722), SC_(0.02346821615215971447624268273783067701828), SC_(0.9765317838478402855237573172621693229817) },
{ SC_(1.44682300090789794921875), SC_(0.17606438696384429931640625), SC_(0.221111953258514404296875), SC_(0.0876907555927175240997186365838154717148), SC_(5.103276100986290681799294432218717156109), SC_(0.01689295231804045371190720225591093428374), SC_(0.9831070476819595462880927977440890657163) },
{ SC_(1.4834382534027099609375), SC_(1159.6116943359375), SC_(0.81474220752716064453125), SC_(0.2520493995468790742310543925834688118861e-4), SC_(0.6277129730492132650095565877062169428781e-852), SC_(1), SC_(0.2490436296129576444460388465665272717916e-847) },
- { SC_(1.49233496189117431640625), SC_(47973.6953125), SC_(0.913384497165679931640625), SC_(0.9158142701219620515735116806823620402928e-7), SC_(0.6856885307691086571645551101168057228575e-50972), SC_(1), SC_(0.7487200769188639313615991098103951104891e-50965) },
+ { SC_(1.49233496189117431640625), SC_(47973.6953125), SC_(0.913384497165679931640625), SC_(0.9158142701219620515735116806823620402928e-7), SC_(BOOST_MATH_SMALL_CONSTANT(0.6856885307691086571645551101168057228575e-50972)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.7487200769188639313615991098103951104891e-50965)) },
{ SC_(1.54517018795013427734375), SC_(0.2047308981418609619140625), SC_(0.3082362115383148193359375), SC_(0.1246691455112791133529726738608095355786), SC_(4.205316764985243567300214824811226800357), SC_(0.02879204415170561384327527121287883723012), SC_(0.9712079558482943861567247287871211627699) },
- { SC_(1.5860595703125), SC_(268341.4375), SC_(0.12707412242889404296875), SC_(0.2188529267992022850133716156935067320774e-8), SC_(0.6735609334108315179849663945793421049789e-15844), SC_(1), SC_(0.3077687574307946771709117498857270187347e-15835) },
+ { SC_(1.5860595703125), SC_(268341.4375), SC_(0.12707412242889404296875), SC_(0.2188529267992022850133716156935067320774e-8), SC_(BOOST_MATH_SMALL_CONSTANT(0.6735609334108315179849663945793421049789e-15844)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.3077687574307946771709117498857270187347e-15835)) },
{ SC_(1.5904328823089599609375), SC_(0.175132334232330322265625), SC_(0.913384497165679931640625), SC_(1.417983846922945074086281300478897686333), SC_(3.691617709165716915935800312844163731536), SC_(0.2775135852292158976635665611127901281819), SC_(0.7224864147707841023364334388872098718181) },
{ SC_(1.61900937557220458984375), SC_(0.0355711281299591064453125), SC_(0.3082362115383148193359375), SC_(0.1136541817329229254269843881829401312168), SC_(27.30222816046602658712459577564402451514), SC_(0.004145559873445497452627965327295647615897), SC_(0.9958544401265545025473720346727043523841) },
{ SC_(1.6690142154693603515625), SC_(0.0045049847103655338287353515625), SC_(0.905801355838775634765625), SC_(1.654671420443895204691845091716983754591), SC_(219.5639400669292015831138254049874771508), SC_(0.007479802035274694512028581353642119369761), SC_(0.9925201979647253054879714186463578806302) },
- { SC_(1.7562887668609619140625), SC_(374293.53125), SC_(0.1355634629726409912109375), SC_(0.1499189513271098776623048463642459294765e-9), SC_(0.2424349442341666429067734444899906899063e-23686), SC_(1), SC_(0.1617106723920413906032975601315111209707e-23676) },
+ { SC_(1.7562887668609619140625), SC_(374293.53125), SC_(0.1355634629726409912109375), SC_(0.1499189513271098776623048463642459294765e-9), SC_(BOOST_MATH_SMALL_CONSTANT(0.2424349442341666429067734444899906899063e-23686)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.1617106723920413906032975601315111209707e-23676)) },
{ SC_(1.75884163379669189453125), SC_(0.369454860687255859375), SC_(0.8350250720977783203125), SC_(0.7459991194649348508593671759038903077423), SC_(1.343398870365095255155485654427562685422), SC_(0.3570402207219606539986727822574040037171), SC_(0.6429597792780393460013272177425959962829) },
- { SC_(1.77004158496856689453125), SC_(49033.26953125), SC_(0.905801355838775634765625), SC_(0.4604637724742806794236788169427640062807e-8), SC_(0.2144426942604382168761343777126695639019e-50310), SC_(1), SC_(0.4657102405866597634441661634012437599171e-50302) },
+ { SC_(1.77004158496856689453125), SC_(49033.26953125), SC_(0.905801355838775634765625), SC_(0.4604637724742806794236788169427640062807e-8), SC_(BOOST_MATH_SMALL_CONSTANT(0.2144426942604382168761343777126695639019e-50310)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.4657102405866597634441661634012437599171e-50302)) },
{ SC_(1.788215160369873046875), SC_(0.12965712812729179859161376953125e-4), SC_(0.9688708782196044921875), SC_(2.640634438889896708617514645592185372095), SC_(77123.00209217535250302348088163455537592), SC_(0.3423808665361923747204066878435148080854e-4), SC_(0.9999657619133463807625279593312156485192) },
{ SC_(1.799451351165771484375), SC_(0.04982374608516693115234375), SC_(0.632396042346954345703125), SC_(0.4255395277792709792589480096041978492367), SC_(18.82260408866470434474041837153588423404), SC_(0.02210808149912837478136406335251040762786), SC_(0.9778919185008716252186359366474895923721) },
- { SC_(1.82197666168212890625), SC_(39458.8984375), SC_(0.9688708782196044921875), SC_(0.3961398447554578817125063708808197814433e-8), SC_(0.2612564425789845768175531564246729143871e-59462), SC_(1), SC_(0.6595055913657498178517734953584139382822e-59454) },
- { SC_(1.837620258331298828125), SC_(3435.755859375), SC_(0.9688708782196044921875), SC_(0.2992581288998905430300739013792708491349e-6), SC_(0.2196425106883746221137085162739396644011e-5180), SC_(1), SC_(0.7339567065255915886696628555434224696579e-5174) },
+ { SC_(1.82197666168212890625), SC_(39458.8984375), SC_(0.9688708782196044921875), SC_(0.3961398447554578817125063708808197814433e-8), SC_(BOOST_MATH_SMALL_CONSTANT(0.2612564425789845768175531564246729143871e-59462)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.6595055913657498178517734953584139382822e-59454)) },
+ { SC_(1.837620258331298828125), SC_(3435.755859375), SC_(0.9688708782196044921875), SC_(0.2992581288998905430300739013792708491349e-6), SC_(BOOST_MATH_SMALL_CONSTANT(0.2196425106883746221137085162739396644011e-5180)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.7339567065255915886696628555434224696579e-5174)) },
{ SC_(1.86407566070556640625), SC_(0.000142144519486464560031890869140625), SC_(0.9688708782196044921875), SC_(2.587406529835929906908103338386687729829), SC_(7031.597939263406660826488911159064663572), SC_(0.0003678331466462302876247043330802756681583), SC_(0.9996321668533537697123752956669197243318) },
{ SC_(1.911371707916259765625), SC_(16.85260009765625), SC_(0.81474220752716064453125), SC_(0.00415327177405512137666547731638393421375), SC_(0.2277069326301129117415576625655239073555e-13), SC_(0.9999999999945174083224864733449004647348), SC_(0.5482591677513526655099535265191131570159e-11) },
{ SC_(1.98693811893463134765625), SC_(298.79779052734375), SC_(0.221111953258514404296875), SC_(0.1196137731365210334436030960431701756123e-4), SC_(0.2856165679605071527615820193479064068975e-35), SC_(0.9999999999999999999999999999997612176587), SC_(0.2387823412564028331398841789617579979614e-30) },
{ SC_(2.081081867218017578125), SC_(0.171459905686788260936737060546875e-4), SC_(0.913384497165679931640625), SC_(1.488702561868755884237721327915942320219), SC_(58320.13323944254348270913531881604926284), SC_(0.2552574006513632598147199047180593453667e-4), SC_(0.9999744742599348636740185280095281940655) },
- { SC_(2.1274673938751220703125), SC_(497909.9375), SC_(0.632396042346954345703125), SC_(0.8037448229976571143979811001021714752968e-12), SC_(0.3550228339076187849936593977146902793143e-216407), SC_(1), SC_(0.4417108810524228571698460596174699747163e-216395) },
+ { SC_(2.1274673938751220703125), SC_(497909.9375), SC_(0.632396042346954345703125), SC_(0.8037448229976571143979811001021714752968e-12), SC_(BOOST_MATH_SMALL_CONSTANT(0.3550228339076187849936593977146902793143e-216407)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.4417108810524228571698460596174699747163e-216395)) },
{ SC_(2.274096965789794921875), SC_(0.0312146879732608795166015625), SC_(0.9688708782196044921875), SC_(2.196683805098439034040943843963161336389), SC_(28.71343219945377139900472099439413865446), SC_(0.0710668250088394327537390803024871598051), SC_(0.9289331749911605672462609196975128401949) },
{ SC_(2.31026172637939453125), SC_(0.00233163125813007354736328125), SC_(0.221111953258514404296875), SC_(0.01571244871861467114292688043541166213954), SC_(427.6886752748253213817442343909326747566), SC_(0.3673670219341017196605035396837681998268e-4), SC_(0.99996326329780658982803394964603162318) },
{ SC_(2.323431491851806640625), SC_(0.489291487610898911952972412109375e-4), SC_(0.8350250720977783203125), SC_(0.827369238662420067558137225717222927895), SC_(20435.69785260805758421542451561713036197), SC_(0.4048482947472691363415515690231412697368e-4), SC_(0.999959515170525273086365844843097685873) },
- { SC_(2.44964599609375), SC_(12697.8740234375), SC_(0.632396042346954345703125), SC_(0.1137057590475477348116732810083465638967e-9), SC_(0.7245353688384564801212454707725109820553e-5523), SC_(1), SC_(0.6372019983046605086666389661217280482321e-5513) },
+ { SC_(2.44964599609375), SC_(12697.8740234375), SC_(0.632396042346954345703125), SC_(0.1137057590475477348116732810083465638967e-9), SC_(BOOST_MATH_SMALL_CONSTANT(0.7245353688384564801212454707725109820553e-5523)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.6372019983046605086666389661217280482321e-5513)) },
{ SC_(2.509582042694091796875), SC_(0.00033403583802282810211181640625), SC_(0.913384497165679931640625), SC_(1.289833455805136344069185638870621448839), SC_(2991.11632989703270150746226073849403594), SC_(0.0004310355564700294631384799607263649785933), SC_(0.9995689644435299705368615200392736350214) },
{ SC_(2.564732074737548828125), SC_(0.000453212647698819637298583984375), SC_(0.3082362115383148193359375), SC_(0.02464832555746644285754024188263887460935), SC_(2205.134132599338738162441322041789880736), SC_(0.1117757404622280625320507532230938354193e-4), SC_(0.9999888224259537771937467949246776906165) },
{ SC_(2.57882976531982421875), SC_(0.3226127228117547929286956787109375e-4), SC_(0.1355634629726409912109375), SC_(0.002486466998068928679780937936994252108702), SC_(30995.59689380055526154730970067395611954), SC_(0.8022000050922924115668151603694250255305e-7), SC_(0.9999999197799994907707588433184839630575) },
@@ -597,19 +597,19 @@
{ SC_(2.71968555450439453125), SC_(0.00041439200867898762226104736328125), SC_(0.1355634629726409912109375), SC_(0.001781952190693927759024929827182201958694), SC_(2411.79004735384091727391030124394912695), SC_(0.7388499160836224595939787763650885622781e-6), SC_(0.9999992611500839163775404060212236349114) },
{ SC_(2.754580020904541015625), SC_(0.0048456829972565174102783203125), SC_(0.632396042346954345703125), SC_(0.2012235661922152132272903655062681078713), SC_(204.7775390244987611591096954298352797072), SC_(0.0009816800708960553370130825813222883720957), SC_(0.9990183199291039446629869174186777116279) },
{ SC_(2.769221782684326171875), SC_(0.366566746379248797893524169921875e-4), SC_(0.632396042346954345703125), SC_(0.1996957759895774162080025052862658212039), SC_(27278.55725574597868280625903171760364926), SC_(0.7320559963361371431432147856490047793823e-5), SC_(0.9999926794400366386285685678521435099522) },
- { SC_(2.780732631683349609375), SC_(495953.28125), SC_(0.9688708782196044921875), SC_(0.2398292646917707560124992979242780157301e-15), SC_(0.2781154293448569232517364618623603676914e-747324), SC_(1), SC_(0.115963925295893999212106421694525461812e-747308) },
+ { SC_(2.780732631683349609375), SC_(495953.28125), SC_(0.9688708782196044921875), SC_(0.2398292646917707560124992979242780157301e-15), SC_(BOOST_MATH_SMALL_CONSTANT(0.2781154293448569232517364618623603676914e-747324)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.115963925295893999212106421694525461812e-747308)) },
{ SC_(2.91809368133544921875), SC_(21.43137359619140625), SC_(0.3082362115383148193359375), SC_(0.0002115892914364910572043643848950895139729), SC_(0.2192618572284581292361088522964625063202e-5), SC_(0.9897436664674079513230225262156800692848), SC_(0.01025633353259204867697747378431993071523) },
{ SC_(2.9371860027313232421875), SC_(2652.859619140625), SC_(0.905801355838775634765625), SC_(0.1658236966080120503243323886023037349916e-9), SC_(0.5991967514867191164566809014128887789337e-2725), SC_(1), SC_(0.3613456723879160702175323605361247762983e-2715) },
- { SC_(2.958280086517333984375), SC_(35774.58984375), SC_(0.8350250720977783203125), SC_(0.6511424206979178883680584277451301714988e-13), SC_(0.5509841454195994872563646231911938269328e-28001), SC_(1), SC_(0.84618069397019909122625585151108936335e-27988) },
+ { SC_(2.958280086517333984375), SC_(35774.58984375), SC_(0.8350250720977783203125), SC_(0.6511424206979178883680584277451301714988e-13), SC_(BOOST_MATH_SMALL_CONSTANT(0.5509841454195994872563646231911938269328e-28001)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.84618069397019909122625585151108936335e-27988)) },
{ SC_(2.98002338409423828125), SC_(0.1707812249660491943359375), SC_(0.905801355838775634765625), SC_(0.8061305149524062992643042855909028552288), SC_(3.807753672865923506647365054411987336976), SC_(0.174718411242477295345916452260913416746), SC_(0.825281588757522704654083547739086583254) },
{ SC_(2.98070812225341796875), SC_(0.2840107381343841552734375), SC_(0.81474220752716064453125), SC_(0.392888581028449529241290682772237418065), SC_(2.013262244676749848732070538277818192877), SC_(0.1632851011795160336456375818504424610958), SC_(0.8367148988204839663543624181495575389042) },
{ SC_(2.99237728118896484375), SC_(13.7659931182861328125), SC_(0.8350250720977783203125), SC_(0.0006330260109235047478811608476068694254983), SC_(0.8784866862106843248872857887758672368004e-12), SC_(0.9999999986122423568188660379383225681103), SC_(0.1387757643181133962061677431889710145459e-8) },
- { SC_(2.9964640140533447265625), SC_(235220.21875), SC_(0.905801355838775634765625), SC_(0.1600213661608141959980213910633746624008e-15), SC_(0.1262778634498618515615030641078309168309e-241330), SC_(1), SC_(0.7891312671519023359516257488928419584491e-241315) },
+ { SC_(2.9964640140533447265625), SC_(235220.21875), SC_(0.905801355838775634765625), SC_(0.1600213661608141959980213910633746624008e-15), SC_(BOOST_MATH_SMALL_CONSTANT(0.1262778634498618515615030641078309168309e-241330)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.7891312671519023359516257488928419584491e-241315)) },
{ SC_(3.0576937198638916015625), SC_(0.03248409926891326904296875), SC_(0.12707412242889404296875), SC_(0.000657166396253856112420817904131697694946), SC_(29.31723438639669348292098048836029171345), SC_(0.2241519977896403808220848026298478626326e-4), SC_(0.9999775848002210359619177915197370152137) },
{ SC_(3.1107203960418701171875), SC_(10.69952869415283203125), SC_(0.221111953258514404296875), SC_(0.0005593621180658764916032354796476988885327), SC_(0.0004897865015629660797959732567916697366427), SC_(0.5331581318419520895479003417175303065101), SC_(0.4668418681580479104520996582824696934899) },
{ SC_(3.1362564563751220703125), SC_(0.412800610065460205078125), SC_(0.12707412242889404296875), SC_(0.0005243957231309698424424038853343999532901), SC_(1.392495891474714025850895086191276968485), SC_(0.0003764451443746217706553968021572423592609), SC_(0.9996235548556253782293446031978427576407) },
- { SC_(3.143204212188720703125), SC_(245166.296875), SC_(0.913384497165679931640625), SC_(0.2630059636404044176917380685846427352151e-16), SC_(0.6043270917410382335978807169229650293393e-260471), SC_(1), SC_(0.2297769538668355098082544810040529712714e-260454) },
- { SC_(3.1543867588043212890625), SC_(274237.21875), SC_(0.81474220752716064453125), SC_(0.1625350376420910741384848449693863184265e-16), SC_(0.2690539847628662110788655761771698612467e-200808), SC_(1), SC_(0.1655359906799506806868897367788715537181e-200791) },
+ { SC_(3.143204212188720703125), SC_(245166.296875), SC_(0.913384497165679931640625), SC_(0.2630059636404044176917380685846427352151e-16), SC_(BOOST_MATH_SMALL_CONSTANT(0.6043270917410382335978807169229650293393e-260471)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.2297769538668355098082544810040529712714e-260454)) },
+ { SC_(3.1543867588043212890625), SC_(274237.21875), SC_(0.81474220752716064453125), SC_(0.1625350376420910741384848449693863184265e-16), SC_(BOOST_MATH_SMALL_CONSTANT(0.2690539847628662110788655761771698612467e-200808)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.1655359906799506806868897367788715537181e-200791)) },
{ SC_(3.2091653347015380859375), SC_(12216.2568359375), SC_(0.12707412242889404296875), SC_(0.1873797592728273205179908606995030456467e-12), SC_(0.7919285686868581022013174499890084615767e-727), SC_(1), SC_(0.4226329309847175120814746567152805472633e-714) },
{ SC_(3.24223804473876953125), SC_(1.68130600452423095703125), SC_(0.1355634629726409912109375), SC_(0.0004394960498861844768550401648312202217273), SC_(0.106531152706243738563169469720543304429), SC_(0.004108566742342013504145261269084905519575), SC_(0.9958914332576579864958547387309150944804) },
{ SC_(3.2986447811126708984375), SC_(18.05455780029296875), SC_(0.913384497165679931640625), SC_(0.0001571231807759573941342283741313652373997), SC_(0.2997084203140047681159353167938184883028e-20), SC_(0.9999999999999999809252575696414736899537), SC_(0.190747424303585263100463198766717611279e-16) },
@@ -622,13 +622,13 @@
{ SC_(3.45885372161865234375), SC_(29400.57421875), SC_(0.3082362115383148193359375), SC_(0.1113097721240300362972826582934483808616e-14), SC_(0.877209818992475775035689064062142091421e-4711), SC_(1), SC_(0.7880797905282027931851392155990827896495e-4696) },
{ SC_(3.5038392543792724609375), SC_(174.0391998291015625), SC_(0.81474220752716064453125), SC_(0.4588448232831660229952451882786936627741e-7), SC_(0.1265843939076240475896867177771413219439e-129), SC_(1), SC_(0.2758762603049032638216040912750710542023e-122) },
{ SC_(3.519533634185791015625), SC_(43931.828125), SC_(0.1355634629726409912109375), SC_(0.1550601994296576624475572682354891325322e-15), SC_(0.5506303550678763576292786848202724162192e-2786), SC_(1), SC_(0.355107472512743190826437889308446598755e-2770) },
- { SC_(3.5407917499542236328125), SC_(192506.5), SC_(0.3082362115383148193359375), SC_(0.6762501081091727750666256335913014047553e-18), SC_(0.1810714101987144792606684975020851024195e-30815), SC_(1), SC_(0.2677580499099640659954906366427546539929e-30797) },
+ { SC_(3.5407917499542236328125), SC_(192506.5), SC_(0.3082362115383148193359375), SC_(0.6762501081091727750666256335913014047553e-18), SC_(BOOST_MATH_SMALL_CONSTANT(0.1810714101987144792606684975020851024195e-30815)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.2677580499099640659954906366427546539929e-30797)) },
{ SC_(3.643778324127197265625), SC_(460.66265869140625), SC_(0.8350250720977783203125), SC_(0.7631535147388549115637412492866378561899e-9), SC_(0.4205040932908895771554373642902487973848e-363), SC_(1), SC_(0.5510085260300252268571165317876316783109e-354) },
{ SC_(3.6656649112701416015625), SC_(336.389312744140625), SC_(0.3082362115383148193359375), SC_(0.215791720749920489432567844635617465443e-8), SC_(0.1913959160478324006182179322373144888867e-57), SC_(1), SC_(0.8869474481351385317830904747175621652939e-49) },
{ SC_(3.6850574016571044921875), SC_(0.0037575312890112400054931640625), SC_(0.3082362115383148193359375), SC_(0.004700958723625040380482933503067520773596), SC_(264.3959126179765937938283198290409057692), SC_(0.1777968159768031291326144486881844545145e-4), SC_(0.9999822203184023196870867385551311815545) },
{ SC_(3.7146091461181640625), SC_(0.280897915363311767578125), SC_(0.632396042346954345703125), SC_(0.08266985092943892844994513141054194966211), SC_(2.197083375517572737580826900944351079459), SC_(0.03626263139817094798750334205303616370305), SC_(0.963737368601829052012496657946963836297) },
{ SC_(3.7336635589599609375), SC_(0.477436915389262139797210693359375e-4), SC_(0.221111953258514404296875), SC_(0.001161350390915668250446450228578170310865), SC_(20943.41972718709787515626983068263368694), SC_(0.5545180021432339794938139482542775628364e-7), SC_(0.9999999445481997856766020506186051745722) },
- { SC_(3.78065204620361328125), SC_(397517.0625), SC_(0.8350250720977783203125), SC_(0.3106692370941557178524894184578248280721e-20), SC_(0.2911649718207596959822032674625140507844e-311095), SC_(1), SC_(0.9372185496838079614946082001992536183017e-311075) },
+ { SC_(3.78065204620361328125), SC_(397517.0625), SC_(0.8350250720977783203125), SC_(0.3106692370941557178524894184578248280721e-20), SC_(BOOST_MATH_SMALL_CONSTANT(0.2911649718207596959822032674625140507844e-311095)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.9372185496838079614946082001992536183017e-311075)) },
{ SC_(3.7866687774658203125), SC_(4.32257175445556640625), SC_(0.3082362115383148193359375), SC_(0.001233453284813738256980335173501548189344), SC_(0.005474414653806166186400567572273711207249), SC_(0.183881569538996081375634417888316953202), SC_(0.816118430461003918624365582111683046798) },
{ SC_(3.81618976593017578125), SC_(0.30148139558150433003902435302734375e-4), SC_(0.3082362115383148193359375), SC_(0.003902917947682581703045615669910691845878), SC_(33167.75902216366067552099307425048603802), SC_(0.1176720286049553847622526013198847043118e-6), SC_(0.9999998823279713950446152377473986801153) },
{ SC_(3.9190075397491455078125), SC_(109.78485107421875), SC_(0.905801355838775634765625), SC_(0.5188940518655968999732995391783015444467e-7), SC_(0.1588078213027438911853841563985523076893e-114), SC_(1), SC_(0.3060505718494495997940146116913898836079e-107) },
@@ -668,23 +668,23 @@
{ SC_(10.5313282012939453125), SC_(4949.1328125), SC_(0.81474220752716064453125), SC_(0.1489333556837978488936234271997902284363e-32), SC_(0.3856025533992777785693030839310786174967e-3628), SC_(1), SC_(0.2589094643230594187220313290600198648947e-3595) },
{ SC_(11.0091266632080078125), SC_(0.01806267909705638885498046875), SC_(0.913384497165679931640625), SC_(0.2290913115286434049901291231609836006505), SC_(52.29317531396651045563254082820621090561), SC_(0.004361794077969947966105722200544195166528), SC_(0.9956382059220300520338942777994558048335) },
{ SC_(11.23558139801025390625), SC_(0.01205970533192157745361328125), SC_(0.1355634629726409912109375), SC_(0.1801437548445751478743847387122581131884e-10), SC_(80.03049850672077749426711239130895565057), SC_(0.2250938807152457506452211604760772953299e-12), SC_(0.9999999999997749061192847542493547788395) },
- { SC_(11.8540496826171875), SC_(28582.3984375), SC_(0.905801355838775634765625), SC_(0.4196989563963513018235513889188109873243e-45), SC_(0.6501486219485649635488047189211134227925e-29329), SC_(1), SC_(0.1549083246551091735727896562237340707779e-29283) },
+ { SC_(11.8540496826171875), SC_(28582.3984375), SC_(0.905801355838775634765625), SC_(0.4196989563963513018235513889188109873243e-45), SC_(BOOST_MATH_SMALL_CONSTANT(0.6501486219485649635488047189211134227925e-29329)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.1549083246551091735727896562237340707779e-29283)) },
{ SC_(12.08311557769775390625), SC_(0.000145281082950532436370849609375), SC_(0.905801355838775634765625), SC_(0.1724057421068149458120519666384394766988), SC_(6880.009901516096508765952433178202969915), SC_(0.250583101446216964096661427068897712434e-4), SC_(0.9999749416898553783035903338572931102288) },
{ SC_(12.1501750946044921875), SC_(2569.097900390625), SC_(0.3082362115383148193359375), SC_(0.2089415491959561405232965744934814940039e-33), SC_(0.5387791953231732231031430172096660368293e-420), SC_(1), SC_(0.2578612044356378151404340936138124265347e-386) },
{ SC_(12.16957950592041015625), SC_(0.2478319108486175537109375), SC_(0.632396042346954345703125), SC_(0.0006061150384945097283682858755569887265526), SC_(1.984399791404405138978224349455243951108), SC_(0.0003053467178748392974745176907177243792601), SC_(0.9996946532821251607025254823092822756207) },
{ SC_(12.2681884765625), SC_(31.347698211669921875), SC_(0.221111953258514404296875), SC_(0.9029530084836614196063215287799145722015e-12), SC_(0.3829678009880710229549215843075214127243e-11), SC_(0.1907930292853736794061279981430787188763), SC_(0.8092069707146263205938720018569212811237) },
- { SC_(12.48180866241455078125), SC_(35551.12890625), SC_(0.81474220752716064453125), SC_(0.2055129032867034297384496390928032173932e-48), SC_(0.1134877969519662374773260042042733147932e-26036), SC_(1), SC_(0.552217379721620791615004012932233616666e-25988) },
+ { SC_(12.48180866241455078125), SC_(35551.12890625), SC_(0.81474220752716064453125), SC_(0.2055129032867034297384496390928032173932e-48), SC_(BOOST_MATH_SMALL_CONSTANT(0.1134877969519662374773260042042733147932e-26036)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.552217379721620791615004012932233616666e-25988)) },
{ SC_(12.5361804962158203125), SC_(0.0011118580587208271026611328125), SC_(0.1355634629726409912109375), SC_(0.12035557149326799083259332542666489627e-11), SC_(896.3360416890092611550346282723233913045), SC_(0.1342750552197767451331942946403735674419e-14), SC_(0.9999999999999986572494478022325486680571) },
{ SC_(12.85811328887939453125), SC_(1765.9459228515625), SC_(0.1355634629726409912109375), SC_(0.5705926152881144062747827324988998356049e-33), SC_(0.5687161280418321885891109339443080853181e-125), SC_(1), SC_(0.9967113362563679407527245274419457886804e-92) },
- { SC_(13.23449611663818359375), SC_(385250.125), SC_(0.221111953258514404296875), SC_(0.1032646208826374291094174773587843687418e-64), SC_(0.1384078056643836734532369459798476005579e-41822), SC_(1), SC_(0.1340321636600857388950148353569427019247e-41757) },
+ { SC_(13.23449611663818359375), SC_(385250.125), SC_(0.221111953258514404296875), SC_(0.1032646208826374291094174773587843687418e-64), SC_(BOOST_MATH_SMALL_CONSTANT(0.1384078056643836734532369459798476005579e-41822)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.1340321636600857388950148353569427019247e-41757)) },
{ SC_(13.28284740447998046875), SC_(0.00048034972860477864742279052734375), SC_(0.1355634629726409912109375), SC_(0.2556419984719537621177367194308522762536e-12), SC_(2078.69366536242135471302999616696632128), SC_(0.1229820452776443186126984426686117854589e-15), SC_(0.9999999999999998770179547223556813873016) },
- { SC_(13.5956668853759765625), SC_(153334.59375), SC_(0.1355634629726409912109375), SC_(0.6876783917625074831478377703058966947845e-61), SC_(0.7607041673086546740187797968209920060655e-9717), SC_(1), SC_(0.1106191755362537170021971657634988714053e-9655) },
+ { SC_(13.5956668853759765625), SC_(153334.59375), SC_(0.1355634629726409912109375), SC_(0.6876783917625074831478377703058966947845e-61), SC_(BOOST_MATH_SMALL_CONSTANT(0.7607041673086546740187797968209920060655e-9717)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.1106191755362537170021971657634988714053e-9655)) },
{ SC_(13.7348194122314453125), SC_(3484.218017578125), SC_(0.913384497165679931640625), SC_(0.6832590237907416461316409008802195758425e-39), SC_(0.2034847173393662557682179508557633804649e-3705), SC_(1), SC_(0.2978148992609375494249351287176812960761e-3666) },
{ SC_(14.008861541748046875), SC_(2.686798095703125), SC_(0.9688708782196044921875), SC_(0.001064885029412461370744338050039719052766), SC_(0.2477669808586811850386960714962704372694e-4), SC_(0.9772620277829239418423712708773841814268), SC_(0.02273797221707605815762872912261581857319) },
{ SC_(14.066776275634765625), SC_(10778.09375), SC_(0.1355634629726409912109375), SC_(0.1384429458382036725199325066251311565329e-46), SC_(0.5423868404097407030381093993157021243669e-697), SC_(1), SC_(0.3917764369472609965631906874797581143959e-650) },
{ SC_(14.16046237945556640625), SC_(201.0361175537109375), SC_(0.1355634629726409912109375), SC_(0.1457467076579967985937310888273502286932e-22), SC_(0.5953315175646441172741979225187016188513e-26), SC_(0.9995916968202057773412609528963707342408), SC_(0.0004083031797942226587390471036292657591638) },
{ SC_(14.22837734222412109375), SC_(0.000125592589029110968112945556640625), SC_(0.221111953258514404296875), SC_(0.4191360841278267573232549994819329283305e-10), SC_(7959.057087433980072463360139209842812211), SC_(0.5266152504290619088438816820102498081658e-14), SC_(0.9999999999999947338474957093809115611832) },
- { SC_(14.366168975830078125), SC_(236787.609375), SC_(0.8350250720977783203125), SC_(0.100281550093745232466792422575515082718e-66), SC_(0.7008982824946768264114851096978910610725e-185312), SC_(1), SC_(0.6989304431766988620282656617551653668956e-185245) },
+ { SC_(14.366168975830078125), SC_(236787.609375), SC_(0.8350250720977783203125), SC_(0.100281550093745232466792422575515082718e-66), SC_(BOOST_MATH_SMALL_CONSTANT(0.7008982824946768264114851096978910610725e-185312)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.6989304431766988620282656617551653668956e-185245)) },
{ SC_(14.726207733154296875), SC_(0.21476264297962188720703125), SC_(0.9688708782196044921875), SC_(0.3433724310693093819167547189662152817345), SC_(2.059940898494670096164527259701817456699), SC_(0.1428746001802460104759930526155408867704), SC_(0.8571253998197539895240069473844591132296) },
{ SC_(14.9572906494140625), SC_(0.3900313095073215663433074951171875e-4), SC_(0.12707412242889404296875), SC_(0.3015618536926003968329396709576020408051e-14), SC_(25635.71894737369159379969581373144169475), SC_(0.1176334684865526556691865610881892798014e-18), SC_(0.9999999999999999998823665315134473443308) },
{ SC_(15.357250213623046875), SC_(0.01863213069736957550048828125), SC_(0.12707412242889404296875), SC_(0.1284230241208752102484513913830316353992e-14), SC_(50.50650654176348723073367831074223892027), SC_(0.2542702572681067944331417962210811575535e-16), SC_(0.9999999999999999745729742731893205566858) },
@@ -704,18 +704,18 @@
{ SC_(19.699462890625), SC_(1044.098388671875), SC_(0.221111953258514404296875), SC_(0.1427764414528640851938160431554939361847e-42), SC_(0.2775170190989384442597659521518656372131e-128), SC_(1), SC_(0.194371715862211995706515872837686429047e-85) },
{ SC_(20.811771392822265625), SC_(0.1686411633272655308246612548828125e-4), SC_(0.632396042346954345703125), SC_(0.8779696878552985850651735416020130779145e-5), SC_(59293.91525827321754111891249017431745502), SC_(0.1480707900466725772495285243001825944989e-9), SC_(0.9999999998519292099533274227504714756998) },
{ SC_(21.513973236083984375), SC_(1.2695052623748779296875), SC_(0.632396042346954345703125), SC_(0.1892628249277866715008878383095558629667e-5), SC_(0.0182028323467953004598273326758314495929), SC_(0.0001039635727467633546556483853281441265773), SC_(0.9998960364272532366453443516146718558734) },
- { SC_(21.758922576904296875), SC_(208175.28125), SC_(0.9688708782196044921875), SC_(0.4612573152176481888738663958595416358469e-96), SC_(0.9671960975436415515109880867851741788795e-313691), SC_(1), SC_(0.2096868853098322881509460069025765821922e-313594) },
+ { SC_(21.758922576904296875), SC_(208175.28125), SC_(0.9688708782196044921875), SC_(0.4612573152176481888738663958595416358469e-96), SC_(BOOST_MATH_SMALL_CONSTANT(0.9671960975436415515109880867851741788795e-313691)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.2096868853098322881509460069025765821922e-313594)) },
{ SC_(21.821353912353515625), SC_(0.0424164198338985443115234375), SC_(0.632396042346954345703125), SC_(0.50822417383931418054857572691006794692e-5), SC_(20.23387388522215583387412099522239396239), SC_(0.2511748610617565545640382292453663293953e-6), SC_(0.9999997488251389382434454359617707546337) },
- { SC_(21.8938732147216796875), SC_(12260.4462890625), SC_(0.632396042346954345703125), SC_(0.1110991956559958905405342390968892539915e-69), SC_(0.1320801184663675939690239246407185274489e-5336), SC_(1), SC_(0.1188848557241911842325110186828327556073e-5266) },
- { SC_(21.929759979248046875), SC_(21858.861328125), SC_(0.8350250720977783203125), SC_(0.2774931077356019451270225172182562988159e-75), SC_(0.4667400506650037846545412750177604140044e-17112), SC_(1), SC_(0.1681987904037307170893345577930663142505e-17036) },
+ { SC_(21.8938732147216796875), SC_(12260.4462890625), SC_(0.632396042346954345703125), SC_(0.1110991956559958905405342390968892539915e-69), SC_(BOOST_MATH_SMALL_CONSTANT(0.1320801184663675939690239246407185274489e-5336)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.1188848557241911842325110186828327556073e-5266)) },
+ { SC_(21.929759979248046875), SC_(21858.861328125), SC_(0.8350250720977783203125), SC_(0.2774931077356019451270225172182562988159e-75), SC_(BOOST_MATH_SMALL_CONSTANT(0.4667400506650037846545412750177604140044e-17112)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.1681987904037307170893345577930663142505e-17036)) },
{ SC_(21.9974803924560546875), SC_(241.2039947509765625), SC_(0.905801355838775634765625), SC_(0.7843991893180589007908056830908579631267e-33), SC_(0.1798121401045468000655093415604055950109e-250), SC_(1), SC_(0.2292354996706102012785787858677543673356e-217) },
{ SC_(22.052242279052734375), SC_(0.02685627527534961700439453125), SC_(0.3082362115383148193359375), SC_(0.3412495872226285359474144888488643586863e-12), SC_(33.77965545931704801885704495388096429783), SC_(0.1010222225722856503263931994106391745227e-13), SC_(0.9999999999999898977777427714349673606801) },
- { SC_(22.2946758270263671875), SC_(4700.37939453125), SC_(0.9688708782196044921875), SC_(0.1625376075227914134322624671457026695199e-61), SC_(0.222876718150242603733562852318365160857e-7086), SC_(1), SC_(0.1371231689373736446745878922392568188495e-7024) },
+ { SC_(22.2946758270263671875), SC_(4700.37939453125), SC_(0.9688708782196044921875), SC_(0.1625376075227914134322624671457026695199e-61), SC_(BOOST_MATH_SMALL_CONSTANT(0.222876718150242603733562852318365160857e-7086)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.1371231689373736446745878922392568188495e-7024)) },
{ SC_(23.23316192626953125), SC_(0.13708417117595672607421875), SC_(0.905801355838775634765625), SC_(0.02605383957379540375908337816020645148022), SC_(4.428348071894942126796540322967444941726), SC_(0.005849009607039420435378760155821299478133), SC_(0.9941509903929605795646212398441787005219) },
- { SC_(23.2837123870849609375), SC_(33643.07421875), SC_(0.3082362115383148193359375), SC_(0.1068799239730547041080141349760579217134e-83), SC_(0.5934564882022625589600999132268094038937e-5400), SC_(1), SC_(0.5552553427637895345283585051275346312517e-5316) },
+ { SC_(23.2837123870849609375), SC_(33643.07421875), SC_(0.3082362115383148193359375), SC_(0.1068799239730547041080141349760579217134e-83), SC_(BOOST_MATH_SMALL_CONSTANT(0.5934564882022625589600999132268094038937e-5400)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.5552553427637895345283585051275346312517e-5316)) },
{ SC_(23.31745147705078125), SC_(0.022672764956951141357421875), SC_(0.81474220752716064453125), SC_(0.001622437892479151174304580158396023246771), SC_(40.56717549342520710039911539684386231383), SC_(0.399922594508694116453159686750409274362e-4), SC_(0.9999600077405491305883546840313249590726) },
{ SC_(23.4339599609375), SC_(23.290653228759765625), SC_(0.632396042346954345703125), SC_(0.6120488483323810340876127825639431641592e-14), SC_(0.2219752993363680426258948638666335917817e-15), SC_(0.965001723787019185029655736223016441261), SC_(0.03499827621298081497034426377698355873905) },
- { SC_(23.523906707763671875), SC_(363844.15625), SC_(0.913384497165679931640625), SC_(0.8852371887134551999324120911774536127461e-109), SC_(0.854289970022026695484753283772963117985e-386556), SC_(1), SC_(0.9650407607294434478678963380059740446762e-386447) },
+ { SC_(23.523906707763671875), SC_(363844.15625), SC_(0.913384497165679931640625), SC_(0.8852371887134551999324120911774536127461e-109), SC_(BOOST_MATH_SMALL_CONSTANT(0.854289970022026695484753283772963117985e-386556)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.9650407607294434478678963380059740446762e-386447)) },
{ SC_(23.9151668548583984375), SC_(0.13243019580841064453125), SC_(0.221111953258514404296875), SC_(0.1090292982477346593414029076655843761839e-16), SC_(4.668514756535746933179227111744024113897), SC_(0.2335417235108825537419793742198452968969e-17), SC_(0.9999999999999999976645827648911744625802) },
{ SC_(24.385395050048828125), SC_(49.88166046142578125), SC_(0.1355634629726409912109375), SC_(0.3229288310092962335144804488418336170046e-25), SC_(0.2382116635449748094378654872427524354017e-20), SC_(0.1355619823632515389034043550239533010916e-4), SC_(0.9999864438017636748461096595644976046699) },
{ SC_(25.94358062744140625), SC_(0.00362619315274059772491455078125), SC_(0.9688708782196044921875), SC_(0.3046507692738888516972813499195180346853), SC_(271.6820215214510436761364592323637559144), SC_(0.00112009447635084656146453462226077833215), SC_(0.9988799055236491534385354653777392216679) },
@@ -728,10 +728,10 @@
{ SC_(28.682727813720703125), SC_(0.0453636646270751953125), SC_(0.8350250720977783203125), SC_(0.0009661455107012884120479986102936651646781), SC_(18.48515953086525057150779816375925963023), SC_(0.522632772066436067096579898978566860452e-4), SC_(0.999947736722793356393290342010102143314) },
{ SC_(28.738727569580078125), SC_(27.254573822021484375), SC_(0.9688708782196044921875), SC_(0.9572498697263697862453881461093343605252e-17), SC_(0.1347061208111147737313027634003403911828e-42), SC_(0.9999999999999999999999999859277995149145), SC_(0.1407220048508552589290190367969040450163e-25) },
{ SC_(29.614292144775390625), SC_(0.435002657468430697917938232421875e-4), SC_(0.1355634629726409912109375), SC_(0.7737013612359115147454805505018838782536e-27), SC_(22984.41718847787840930792802750541434429), SC_(0.336619960772278849225161034207510040012e-31), SC_(0.9999999999999999999999999999999663380039) },
- { SC_(30.21712493896484375), SC_(47917.328125), SC_(0.913384497165679931640625), SC_(0.6776336763750069355502711645477384929586e-110), SC_(0.390114760786060488589150194209388553626e-50913), SC_(1), SC_(0.5757015543751819277815605708572541789266e-50803) },
+ { SC_(30.21712493896484375), SC_(47917.328125), SC_(0.913384497165679931640625), SC_(0.6776336763750069355502711645477384929586e-110), SC_(BOOST_MATH_SMALL_CONSTANT(0.390114760786060488589150194209388553626e-50913)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.5757015543751819277815605708572541789266e-50803)) },
{ SC_(30.5350971221923828125), SC_(0.0039173173718154430389404296875), SC_(0.905801355838775634765625), SC_(0.01340698363588127821045074934336249847345), SC_(251.3176638596272682077848509721466391698), SC_(0.5334391641629631882491499304169925615287e-4), SC_(0.9999466560835837036811750850069583007438) },
{ SC_(30.87542724609375), SC_(25.78265380859375), SC_(0.3082362115383148193359375), SC_(0.8718342814354225610387065167462673942443e-21), SC_(0.7428350393405893614201669493770856529965e-17), SC_(0.000117352026190071202713981323406974886229), SC_(0.9998826479738099287972860186765930251138) },
- { SC_(31.3508777618408203125), SC_(354516.9375), SC_(0.81474220752716064453125), SC_(0.9094401866825436655613518390610522322292e-141), SC_(0.1292851760462042082207729125855859647249e-259593), SC_(1), SC_(0.1421590753734016673666087992993000747878e-259452) },
+ { SC_(31.3508777618408203125), SC_(354516.9375), SC_(0.81474220752716064453125), SC_(0.9094401866825436655613518390610522322292e-141), SC_(BOOST_MATH_SMALL_CONSTANT(0.1292851760462042082207729125855859647249e-259593)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.1421590753734016673666087992993000747878e-259452)) },
{ SC_(31.5992832183837890625), SC_(2.974167346954345703125), SC_(0.1355634629726409912109375), SC_(0.9033933515544142198440298653550612801455e-29), SC_(0.6181735987291850858669229798372732083083e-4), SC_(0.146139102901122230857444458947007129656e-24), SC_(0.9999999999999999999999998538608970988778) },
{ SC_(32.361301422119140625), SC_(0.12657617032527923583984375), SC_(0.12707412242889404296875), SC_(0.3515627543575595912294473523056058630931e-30), SC_(4.796522581505533865741816552693577853579), SC_(0.7329534019356393280378750970791864073727e-31), SC_(0.9999999999999999999999999999999267046598) },
{ SC_(32.474456787109375), SC_(480.857269287109375), SC_(0.632396042346954345703125), SC_(0.1198870036486328385012482508850487533555e-52), SC_(0.1204794083488578152029519671194520563234e-217), SC_(1), SC_(0.1004941358797832731865124325954045027862e-164) },
@@ -739,7 +739,7 @@
{ SC_(32.948390960693359375), SC_(0.000167359961778856813907623291015625), SC_(0.8350250720977783203125), SC_(0.0004267963806230203802319762649087267148703), SC_(5971.088947042175590625017553976944711217), SC_(0.7147713824096579668234406750576390886032e-7), SC_(0.9999999285228617590342033176559324942361) },
{ SC_(33.888454437255859375), SC_(331.263580322265625), SC_(0.8350250720977783203125), SC_(0.4535727011434517253717920014222046688612e-49), SC_(0.4702005612542732083919944746569871773653e-264), SC_(1), SC_(0.1036659746208056245375677482680543842459e-214) },
{ SC_(34.838344573974609375), SC_(0.00024838323588483035564422607421875), SC_(0.81474220752716064453125), SC_(0.000110674026959646824563311286265396374658), SC_(4021.925282897090220365260490176746425958), SC_(0.2751767278839998335093556980718689979271e-7), SC_(0.9999999724823272116000166490644301928131) },
- { SC_(35.242801666259765625), SC_(301364.125), SC_(0.12707412242889404296875), SC_(0.5552864720973749931023406224100690397589e-154), SC_(0.3450335943757303600834727106815755814629e-17823), SC_(1), SC_(0.6213614264228380040050540433114097406271e-17669) },
+ { SC_(35.242801666259765625), SC_(301364.125), SC_(0.12707412242889404296875), SC_(0.5552864720973749931023406224100690397589e-154), SC_(BOOST_MATH_SMALL_CONSTANT(0.3450335943757303600834727106815755814629e-17823)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.6213614264228380040050540433114097406271e-17669)) },
{ SC_(35.6124725341796875), SC_(0.25395145712536759674549102783203125e-4), SC_(0.905801355838775634765625), SC_(0.007194412942043370323502024754284716097514), SC_(39373.46157644505017523016809700259111813), SC_(0.1827223550943082418355783690202895032613e-6), SC_(0.9999998172776449056917581644216309797105) },
{ SC_(35.927936553955078125), SC_(0.02636432647705078125), SC_(0.905801355838775634765625), SC_(0.006536006690061065132195621679577078104776), SC_(34.0160493697400203998889955221757994158), SC_(0.0001921078782739724469334649000234180162257), SC_(0.9998078921217260275530665350999765819838) },
{ SC_(36.51232147216796875), SC_(0.17059408128261566162109375), SC_(0.8350250720977783203125), SC_(0.0001534303250957219523679684882514773307855), SC_(2.94556776861927066396555528151116241826), SC_(0.5208582711449593474334844011835086057491e-4), SC_(0.9999479141728855040652566515598816491394) },
@@ -749,12 +749,12 @@
{ SC_(39.4506988525390625), SC_(136.2086944580078125), SC_(0.3082362115383148193359375), SC_(0.1046401415703928449021460480791107851989e-40), SC_(0.6499172262477108767221541032448302027552e-43), SC_(0.9938273638207100374070280334202013073578), SC_(0.006172636179289962592971966579798692642214) },
{ SC_(39.513668060302734375), SC_(0.0025859004817903041839599609375), SC_(0.12707412242889404296875), SC_(0.114441788784727428298583906744515343314e-36), SC_(382.4965696456579013529430340110046661171), SC_(0.2991969023166547260127478856811919127572e-39), SC_(0.9999999999999999999999999999999999999997) },
{ SC_(39.82184600830078125), SC_(152.626007080078125), SC_(0.221111953258514404296875), SC_(0.7584129261311716058539320034041156306212e-43), SC_(0.3317115800628570076497725906155907508941e-43), SC_(0.6957122070203084957785356385194147673907), SC_(0.3042877929796915042214643614805852326093) },
- { SC_(40.45703887939453125), SC_(32077.298828125), SC_(0.9688708782196044921875), SC_(0.5274972812271768787697694139128653121614e-135), SC_(0.653534335683051610104865963589483864264e-48340), SC_(1), SC_(0.1238934036138841145558836218395953108413e-48204) },
+ { SC_(40.45703887939453125), SC_(32077.298828125), SC_(0.9688708782196044921875), SC_(0.5274972812271768787697694139128653121614e-135), SC_(BOOST_MATH_SMALL_CONSTANT(0.653534335683051610104865963589483864264e-48340)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.1238934036138841145558836218395953108413e-48204)) },
{ SC_(40.55828094482421875), SC_(2.458832263946533203125), SC_(0.905801355838775634765625), SC_(0.194560320532190398741461580821072086047e-4), SC_(0.0001180576580973117370161338171703709343677), SC_(0.1414843280834169605218952831421147719938), SC_(0.8585156719165830394781047168578852280062) },
- { SC_(41.08962249755859375), SC_(470040.03125), SC_(0.3082362115383148193359375), SC_(0.9752425688700116628147333573383493902956e-185), SC_(0.4057571005755055542592905716135103019968e-75252), SC_(1), SC_(0.4160576184093828170964391396667592625281e-75067) },
+ { SC_(41.08962249755859375), SC_(470040.03125), SC_(0.3082362115383148193359375), SC_(0.9752425688700116628147333573383493902956e-185), SC_(BOOST_MATH_SMALL_CONSTANT(0.4057571005755055542592905716135103019968e-75252)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.4160576184093828170964391396667592625281e-75067)) },
{ SC_(41.42235565185546875), SC_(0.0039965151809155941009521484375), SC_(0.8350250720977783203125), SC_(0.7483570093601061794142170984517784798211e-4), SC_(245.9687245597023094193990632989811033502), SC_(0.3042487548012529543430621190391693066668e-6), SC_(0.9999996957512451987470456569378809608307) },
{ SC_(42.728160858154296875), SC_(1.57044470310211181640625), SC_(0.913384497165679931640625), SC_(0.0001361019068919888642281443609832535642091), SC_(0.002285967953332932614556214340365342908101), SC_(0.05619239524302985529643101317208258610858), SC_(0.9438076047569701447035689868279174138914) },
- { SC_(43.03235626220703125), SC_(365461.34375), SC_(0.905801355838775634765625), SC_(0.6563308692566014948006600328843554947252e-188), SC_(0.4083200099908300905039485839115530865362e-374954), SC_(1), SC_(0.6221252558992342928897984273440111903962e-374766) },
+ { SC_(43.03235626220703125), SC_(365461.34375), SC_(0.905801355838775634765625), SC_(0.6563308692566014948006600328843554947252e-188), SC_(BOOST_MATH_SMALL_CONSTANT(0.4083200099908300905039485839115530865362e-374954)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.6221252558992342928897984273440111903962e-374766)) },
{ SC_(43.688262939453125), SC_(0.011019987054169178009033203125), SC_(0.9688708782196044921875), SC_(0.1182948453489624950569266818770470091269), SC_(86.39385961971211899557668084726661214148), SC_(0.001367378330599051432954434144521106173212), SC_(0.9986326216694009485670455658554788938268) },
{ SC_(44.11992645263671875), SC_(0.25921415726770646870136260986328125e-4), SC_(0.221111953258514404296875), SC_(0.3511712859668647997106545731357581339004e-30), SC_(38573.78732568621448631527013502161347731), SC_(0.9103884018487873036859859860774153373753e-35), SC_(0.9999999999999999999999999999999999908961) },
{ SC_(44.16400146484375), SC_(0.3705587089061737060546875), SC_(0.1355634629726409912109375), SC_(0.1163472906159461555726531373829001038094e-39), SC_(0.5911925656899954531514499390330400989391), SC_(0.1968010042212800113349372444003097709178e-39), SC_(0.9999999999999999999999999999999999999998) },
@@ -764,7 +764,7 @@
{ SC_(45.79766845703125), SC_(2480.718017578125), SC_(0.12707412242889404296875), SC_(0.1259804823233771527697669291269210245088e-99), SC_(0.1282520196934329494253693718110955598641e-189), SC_(1), SC_(0.1018030867386465675676633176562499501144e-89) },
{ SC_(45.8876495361328125), SC_(3835.69384765625), SC_(0.8350250720977783203125), SC_(0.2095396776227800319268013022132640844885e-108), SC_(0.1436386331441517479550600784227933947687e-3008), SC_(1), SC_(0.6854961063877103377095682562436891119733e-2900) },
{ SC_(45.93944549560546875), SC_(0.1238458156585693359375), SC_(0.913384497165679931640625), SC_(0.002473439698616220984076705500972664961831), SC_(4.73891573081797345547575301975972726354), SC_(0.0005216698333890891587849521861409941981553), SC_(0.9994783301666109108412150478138590058018) },
- { SC_(46.205387115478515625), SC_(461419.53125), SC_(0.632396042346954345703125), SC_(0.5079474489759754960060400183458927170744e-205), SC_(0.1841643826332333036789004225959389385977e-200556), SC_(1), SC_(0.3625658185792833219552831830159943286788e-200351) },
+ { SC_(46.205387115478515625), SC_(461419.53125), SC_(0.632396042346954345703125), SC_(0.5079474489759754960060400183458927170744e-205), SC_(BOOST_MATH_SMALL_CONSTANT(0.1841643826332333036789004225959389385977e-200556)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.3625658185792833219552831830159943286788e-200351)) },
{ SC_(46.20613861083984375), SC_(17.2277240753173828125), SC_(0.905801355838775634765625), SC_(0.5503381473363679858700365191997254597413e-16), SC_(0.1873186360010425903381250840707434565313e-20), SC_(0.9999659641510662426455714247638091370827), SC_(0.3403584893375735442857523619086291730661e-4) },
{ SC_(46.48529815673828125), SC_(230.984283447265625), SC_(0.12707412242889404296875), SC_(0.3958743424763615180298933316445042817009e-56), SC_(0.1354089865134714125392200419399266007453e-54), SC_(0.02840502192665440250928387940996779418467), SC_(0.9715949780733455974907161205900322058153) },
{ SC_(47.248058319091796875), SC_(0.00016102936933748424053192138671875), SC_(0.913384497165679931640625), SC_(0.002842960961791706137633136490995901584215), SC_(6205.624152518811758082949945302510079975), SC_(0.4581263043786777349368582631087681503809e-6), SC_(0.9999995418736956213222650631417368912318) },
@@ -775,33 +775,33 @@
{ SC_(49.536712646484375), SC_(3.863943576812744140625), SC_(0.12707412242889404296875), SC_(0.5722122371900771884836644158867112909992e-46), SC_(0.128391359380948559506095811600063365791e-5), SC_(0.4456781515119508083604696797625477258644e-40), SC_(1) },
{ SC_(49.81558990478515625), SC_(38816.20703125), SC_(0.221111953258514404296875), SC_(0.7140981938463531043372241188626609665284e-166), SC_(0.7805812151567538364681773771415207116495e-4249), SC_(1), SC_(0.1093100671424895609355803207497854177793e-4082) },
{ SC_(49.97966766357421875), SC_(2.618212223052978515625), SC_(0.3082362115383148193359375), SC_(0.3183691967137990310274008287004766564778e-27), SC_(0.4957259188701203252073324312379755446411e-4), SC_(0.6422282648432821387495444768097760247251e-23), SC_(0.9999999999999999999999935777173515671786) },
- { SC_(103.12812042236328125), SC_(114067.6640625), SC_(0.1355634629726409912109375), SC_(0.4840193810822088905056438194611237216161e-359), SC_(0.4044686084940322906243428825958074889722e-7310), SC_(1), SC_(0.8356454809509679588208652528566894372411e-6951) },
+ { SC_(103.12812042236328125), SC_(114067.6640625), SC_(0.1355634629726409912109375), SC_(0.4840193810822088905056438194611237216161e-359), SC_(BOOST_MATH_SMALL_CONSTANT(0.4044686084940322906243428825958074889722e-7310)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.8356454809509679588208652528566894372411e-6951)) },
{ SC_(104.1346435546875), SC_(0.27170151952304877340793609619140625e-4), SC_(0.1355634629726409912109375), SC_(0.4688222559640187561116980967428509380181e-92), SC_(36799.87642605902996151913362190767512823), SC_(0.127397779964291537566046982943678428291e-96), SC_(1) },
- { SC_(114.89385223388671875), SC_(4951.32373046875), SC_(0.9688708782196044921875), SC_(0.1308089138735526057460193163216993396376e-238), SC_(0.8370057028341217097143028672278420279251e-7466), SC_(1), SC_(0.6398690104890094876228279887907518512493e-7227) },
+ { SC_(114.89385223388671875), SC_(4951.32373046875), SC_(0.9688708782196044921875), SC_(0.1308089138735526057460193163216993396376e-238), SC_(BOOST_MATH_SMALL_CONSTANT(0.8370057028341217097143028672278420279251e-7466)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.6398690104890094876228279887907518512493e-7227)) },
{ SC_(119.378936767578125), SC_(0.4208850805298425257205963134765625e-4), SC_(0.221111953258514404296875), SC_(0.618124420969444256377785266068493817182e-80), SC_(23754.10000237703534142589158822470559032), SC_(0.260217992223485427769847730483781873655e-84), SC_(1) },
{ SC_(120.53275299072265625), SC_(0.00151182874105870723724365234375), SC_(0.81474220752716064453125), SC_(0.8130315786385940598826717432380190957003e-12), SC_(656.1085234044774548296590454561463146907), SC_(0.1239172407667954880152803421760691006921e-14), SC_(0.9999999999999987608275923320451198471966) },
- { SC_(123.761322021484375), SC_(31601.099609375), SC_(0.632396042346954345703125), SC_(0.3907984695587686805179723879016625105735e-352), SC_(0.4038022423803575124969725251308526345727e-13763), SC_(1), SC_(0.1033274881644932621954231446766784155708e-13410) },
+ { SC_(123.761322021484375), SC_(31601.099609375), SC_(0.632396042346954345703125), SC_(0.3907984695587686805179723879016625105735e-352), SC_(BOOST_MATH_SMALL_CONSTANT(0.4038022423803575124969725251308526345727e-13763)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.1033274881644932621954231446766784155708e-13410)) },
{ SC_(124.63626861572265625), SC_(0.0002591950469650328159332275390625), SC_(0.3082362115383148193359375), SC_(0.2286602885657900358920089526905234202367e-65), SC_(3852.703804376633993315113456969305977472), SC_(0.5935060159725597784541759251964673259975e-69), SC_(1) },
{ SC_(129.1541290283203125), SC_(0.001998660154640674591064453125), SC_(0.8350250720977783203125), SC_(0.3476183625813380126233045754717090061941e-11), SC_(494.9318626564336077744675904785127268524), SC_(0.7023559984915367785981115982916012717189e-14), SC_(0.999999999999992976440015084632214018884) },
{ SC_(134.4938201904296875), SC_(0.369370639324188232421875), SC_(0.81474220752716064453125), SC_(0.227660055512276422731147692360582174155e-13), SC_(0.3941976092074812035130070739014794440327), SC_(0.5775277429255973076361119528365283386592e-13), SC_(0.9999999999999422472257074402692363888047) },
{ SC_(134.6666259765625), SC_(1.34013068675994873046875), SC_(0.3082362115383148193359375), SC_(0.9693383317484800528178309536604610067942e-71), SC_(0.001248080442774986081119014683534380655141), SC_(0.7766633451873102668027649589750566871098e-68), SC_(1) },
{ SC_(135.4109954833984375), SC_(0.00301261036656796932220458984375), SC_(0.905801355838775634765625), SC_(0.1109605271415662750236334436887917080405e-6), SC_(326.50365289455264554913282902592824183), SC_(0.3398446728548322019973559428175602751721e-9), SC_(0.9999999996601553271451677980026440571824) },
{ SC_(136.5994873046875), SC_(43.41033172607421875), SC_(0.905801355838775634765625), SC_(0.2853398846078208710261830663332092623754e-43), SC_(0.1453317414454361857387631649481562211522e-51), SC_(0.9999999949067148146860648367467346428607), SC_(0.5093285185313935163253265357139339803881e-8) },
- { SC_(136.9409332275390625), SC_(131351.0625), SC_(0.12707412242889404296875), SC_(0.3043829429539097644465665899119787466457e-468), SC_(0.2534855485403572206098440978016365817555e-7879), SC_(1), SC_(0.8327849980041111480192868524026541897304e-7411) },
+ { SC_(136.9409332275390625), SC_(131351.0625), SC_(0.12707412242889404296875), SC_(0.3043829429539097644465665899119787466457e-468), SC_(BOOST_MATH_SMALL_CONSTANT(0.2534855485403572206098440978016365817555e-7879)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.8327849980041111480192868524026541897304e-7411)) },
{ SC_(140.242523193359375), SC_(10.396793365478515625), SC_(0.3082362115383148193359375), SC_(0.4808562615150081561181266391405746679761e-75), SC_(0.3039808893830175850688892962372282308458e-16), SC_(0.1581863460203008465056674226001222325059e-58), SC_(1) },
{ SC_(141.92529296875), SC_(0.000180798946530558168888092041015625), SC_(0.913384497165679931640625), SC_(0.198065041643384141690518647089004395326e-6), SC_(5525.479599810219206389522532998440566081), SC_(0.3584576470847656128976467755574628703498e-10), SC_(0.9999999999641542352915234387102353224443) },
{ SC_(141.9384918212890625), SC_(13.08813571929931640625), SC_(0.9688708782196044921875), SC_(0.236888370715470680626417233504345420607e-19), SC_(0.244365343557627256774710860721631870458e-22), SC_(0.9989694997509884144768508510553717884208), SC_(0.001030500249011585523149148944628211579229) },
- { SC_(143.5271759033203125), SC_(276260.9375), SC_(0.8350250720977783203125), SC_(0.3742702817290309906721968317388625320875e-534), SC_(0.3525421786589960772588483801597439607466e-216213), SC_(1), SC_(0.9419454225175005886234763722070685227395e-215679) },
+ { SC_(143.5271759033203125), SC_(276260.9375), SC_(0.8350250720977783203125), SC_(0.3742702817290309906721968317388625320875e-534), SC_(BOOST_MATH_SMALL_CONSTANT(0.3525421786589960772588483801597439607466e-216213)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.9419454225175005886234763722070685227395e-215679)) },
{ SC_(143.902008056640625), SC_(3178.291015625), SC_(0.12707412242889404296875), SC_(0.1041390448460074214940384887504552195879e-257), SC_(0.1082471811489777657966730157841617119947e-318), SC_(1), SC_(0.1039448569064995085861634581761604480829e-60) },
{ SC_(144.141387939453125), SC_(0.02794832177460193634033203125), SC_(0.3082362115383148193359375), SC_(0.210121969321088412000745631560412360473e-75), SC_(30.66336863860899471105345531623399851862), SC_(0.6852540299715104354573897272954159449745e-77), SC_(1) },
{ SC_(144.9135894775390625), SC_(216.5679473876953125), SC_(0.12707412242889404296875), SC_(0.2432218642440712886007055366627878680872e-144), SC_(0.5225315287504169883069444039355278897519e-106), SC_(0.4654683035600025384322185120148805193791e-38), SC_(0.9999999999999999999999999999999999999953) },
{ SC_(146.9971466064453125), SC_(0.03688235580921173095703125), SC_(0.632396042346954345703125), SC_(0.9828141249232948864866827305334372752907e-31), SC_(22.10701285297225737646153116481359017817), SC_(0.4445712007586573974443384645607925683607e-32), SC_(0.999999999999999999999999999999995554288) },
- { SC_(150.13287353515625), SC_(33750.34765625), SC_(0.913384497165679931640625), SC_(0.7629791065827503204271437688211232798831e-419), SC_(0.1222534096324452698576282770002449221401e-35866), SC_(1), SC_(0.1602316611001274496355022047977218365824e-35447) },
- { SC_(150.599945068359375), SC_(306722), SC_(0.913384497165679931640625), SC_(0.3686020516088520592717144023675096548389e-564), SC_(0.6826246931306197753836329254533494563908e-325874), SC_(1), SC_(0.185192863184331335763940971897577903196e-325309) },
+ { SC_(150.13287353515625), SC_(33750.34765625), SC_(0.913384497165679931640625), SC_(0.7629791065827503204271437688211232798831e-419), SC_(BOOST_MATH_SMALL_CONSTANT(0.1222534096324452698576282770002449221401e-35866)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.1602316611001274496355022047977218365824e-35447)) },
+ { SC_(150.599945068359375), SC_(306722), SC_(0.913384497165679931640625), SC_(0.3686020516088520592717144023675096548389e-564), SC_(BOOST_MATH_SMALL_CONSTANT(0.6826246931306197753836329254533494563908e-325874)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.185192863184331335763940971897577903196e-325309)) },
{ SC_(151.1553497314453125), SC_(0.00040882988832890987396240234375), SC_(0.9688708782196044921875), SC_(0.00151337404731319656908269530771069428744), SC_(2440.418116026032771985404725000611438149), SC_(0.6201286160303603506040678590772569703063e-6), SC_(0.999999379871383969639649395932140922743) },
- { SC_(152.060577392578125), SC_(48686.92578125), SC_(0.9688708782196044921875), SC_(0.1566704821027432284960697774985309189842e-447), SC_(0.1462550236236577686175407186333220017517e-73369), SC_(1), SC_(0.9335199691780160165629655945998021793685e-72922) },
+ { SC_(152.060577392578125), SC_(48686.92578125), SC_(0.9688708782196044921875), SC_(0.1566704821027432284960697774985309189842e-447), SC_(BOOST_MATH_SMALL_CONSTANT(0.1462550236236577686175407186333220017517e-73369)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.9335199691780160165629655945998021793685e-72922)) },
{ SC_(152.8331756591796875), SC_(0.01893596164882183074951171875), SC_(0.1355634629726409912109375), SC_(0.173789437775042018661111866596562065448e-134), SC_(47.50713183618351040884535215505963259578), SC_(0.3658175752944032252165469442263971607961e-136), SC_(1) },
- { SC_(153.7213134765625), SC_(247144.21875), SC_(0.9688708782196044921875), SC_(0.458380108098649973404151004050230761875e-560), SC_(0.2585179282730915085169292532378029360404e-372412), SC_(1), SC_(0.5639815596392650238174911274822139942524e-371852) },
+ { SC_(153.7213134765625), SC_(247144.21875), SC_(0.9688708782196044921875), SC_(0.458380108098649973404151004050230761875e-560), SC_(BOOST_MATH_SMALL_CONSTANT(0.2585179282730915085169292532378029360404e-372412)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.5639815596392650238174911274822139942524e-371852)) },
{ SC_(160.7382049560546875), SC_(25.5228900909423828125), SC_(0.1355634629726409912109375), SC_(0.5688547289308073203114763516392845261777e-143), SC_(0.2571459217934017533228733831741249744827e-32), SC_(0.2212186469703537302353523764298414585353e-110), SC_(1) },
{ SC_(174.9843292236328125), SC_(3107.8662109375), SC_(0.221111953258514404296875), SC_(0.3615410786240862772639301332997469171478e-297), SC_(0.1970044949079050617211883893754729790376e-454), SC_(1), SC_(0.5449021053365314558486616995281192927788e-157) },
{ SC_(182.269805908203125), SC_(4.91394901275634765625), SC_(0.81474220752716064453125), SC_(0.4974658008839300075233400944071145768898e-21), SC_(0.1557816258000933394170684974660506345715e-9), SC_(0.3193353505763985662610590462172514124542e-11), SC_(0.9999999999968066464942360143373894095378) },
@@ -814,7 +814,7 @@
{ SC_(215.1907958984375), SC_(0.25329818527097813785076141357421875e-4), SC_(0.9688708782196044921875), SC_(0.0001464897688255976900811653585245822205338), SC_(39473.21554892836728858453251636025514219), SC_(0.3711118191026973474994418758364436476617e-8), SC_(0.9999999962888818089730265250055812416356) },
{ SC_(216.6281280517578125), SC_(348.682403564453125), SC_(0.221111953258514404296875), SC_(0.164783927326766909594538745614784038617e-181), SC_(0.8349234060239147498805922200825817369842e-164), SC_(0.1973641248261364415368843487755364206024e-17), SC_(0.9999999999999999980263587517386355846312) },
{ SC_(217.62652587890625), SC_(17.93491363525390625), SC_(0.632396042346954345703125), SC_(0.1131025448330549907800879310735393550066e-52), SC_(0.1771247617123621225419147341481414126187e-27), SC_(0.6385473365758164932877615155616247159519e-25), SC_(0.9999999999999999999999999361452663424184) },
- { SC_(226.324554443359375), SC_(39210.1875), SC_(0.81474220752716064453125), SC_(0.9619060456905223231314220053099666967455e-606), SC_(0.5451448812286429935081677790602533918603e-28735), SC_(1), SC_(0.5667340211354015356418078146042937541176e-28129) },
+ { SC_(226.324554443359375), SC_(39210.1875), SC_(0.81474220752716064453125), SC_(0.9619060456905223231314220053099666967455e-606), SC_(BOOST_MATH_SMALL_CONSTANT(0.5451448812286429935081677790602533918603e-28735)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.5667340211354015356418078146042937541176e-28129)) },
{ SC_(231.5256805419921875), SC_(0.0435504876077175140380859375), SC_(0.8350250720977783203125), SC_(0.1764246149052565528301167841309519016063e-19), SC_(17.69346219873896208988238740952600405439), SC_(0.9971175393690364512707768877106432329784e-21), SC_(0.9999999999999999999990028824606309635487) },
{ SC_(235.0335540771484375), SC_(0.00019701055134646594524383544921875), SC_(0.81474220752716064453125), SC_(0.27531994594023280538911518101612379631e-22), SC_(5069.839200047210415604381785276244494116), SC_(0.5430545922199446130158487343748527895309e-26), SC_(0.9999999999999999999999999945694540778006) },
{ SC_(246.57464599609375), SC_(0.1393482387065887451171875), SC_(0.8350250720977783203125), SC_(0.9273358296306291857739256587313571273325e-21), SC_(3.120782444115820198187644033429437246973), SC_(0.2971485024145481213597968821633580834816e-21), SC_(0.9999999999999999999997028514975854518786) },
@@ -824,7 +824,7 @@
{ SC_(258.402679443359375), SC_(3463.272216796875), SC_(0.905801355838775634765625), SC_(0.4274015793494460038889981037032130451897e-408), SC_(0.1743410487391723622973621969516092419379e-3567), SC_(1), SC_(0.4079092290780472578614331149052623639426e-3159) },
{ SC_(258.608306884765625), SC_(0.00045402420801110565662384033203125), SC_(0.221111953258514404296875), SC_(0.1609294182526599030396675264914452400612e-171), SC_(2196.404029586864051763637824429964329181), SC_(0.7326949690714698156932579494006958296424e-175), SC_(1) },
{ SC_(262.12615966796875), SC_(41.1895599365234375), SC_(0.913384497165679931640625), SC_(0.196155236562708974581412258075747841396e-52), SC_(0.5197083331772625347348423839179114220326e-55), SC_(0.9973575264838519192374913606794778162899), SC_(0.002642473516148080762508639320522183710125) },
- { SC_(269.2437744140625), SC_(248884.53125), SC_(0.221111953258514404296875), SC_(0.4495990210228204825261153088053209387021e-916), SC_(0.4148636163061508725942755799652902000729e-27191), SC_(1), SC_(0.9227413693258319379201933796485124942393e-26275) },
+ { SC_(269.2437744140625), SC_(248884.53125), SC_(0.221111953258514404296875), SC_(0.4495990210228204825261153088053209387021e-916), SC_(BOOST_MATH_SMALL_CONSTANT(0.4148636163061508725942755799652902000729e-27191)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.9227413693258319379201933796485124942393e-26275)) },
{ SC_(271.8258056640625), SC_(40013.29296875), SC_(0.1355634629726409912109375), SC_(0.2729944157865051084814361794570061186133e-708), SC_(0.7284127379139313776586553004405313755609e-2771), SC_(1), SC_(0.2668233105850727419781718050477605101313e-2062) },
{ SC_(272.993988037109375), SC_(213.918212890625), SC_(0.81474220752716064453125), SC_(0.2212637644878602262122560508627173804609e-145), SC_(0.9520034199590249554257981594736319403554e-183), SC_(0.999999999999999999999999999999999999957), SC_(0.4302572642938366051420975175205847076302e-37) },
{ SC_(273.05694580078125), SC_(120.83953857421875), SC_(0.913384497165679931640625), SC_(0.9441715054771388442198671739449233407868e-106), SC_(0.8626889088160577360563703310298453850553e-141), SC_(0.999999999999999999999999999999999990863), SC_(0.9136993690358154529882782822264029164688e-35) },
@@ -834,7 +834,7 @@
{ SC_(295.04150390625), SC_(4611.853515625), SC_(0.81474220752716064453125), SC_(0.5643528361826129736519071496970908840319e-485), SC_(0.1866904355931125055366992084754075152891e-3406), SC_(1), SC_(0.3308044606560696352715396097168974011776e-2921) },
{ SC_(310.44097900390625), SC_(0.3617111724452115595340728759765625e-4), SC_(0.81474220752716064453125), SC_(0.4085436315134407397665257096352830176133e-29), SC_(27640.05464626633929170953687365053540456), SC_(0.1478085469590876645316585336633217008742e-33), SC_(0.9999999999999999999999999999999998521915) },
{ SC_(312.348907470703125), SC_(17.8608245849609375), SC_(0.8350250720977783203125), SC_(0.9723876523048781193094731483076253335422e-40), SC_(0.4134164544643688521390779638495418981003e-30), SC_(0.235207776946375077595003817041232173269e-9), SC_(0.9999999997647922230536249224049961829588) },
- { SC_(312.48370361328125), SC_(290847.96875), SC_(0.81474220752716064453125), SC_(0.4523765765919173382352735144370898815018e-1064), SC_(0.1254850832918198558931943494569323341016e-212998), SC_(1), SC_(0.2773907620000807787162089481974537683579e-211934) },
+ { SC_(312.48370361328125), SC_(290847.96875), SC_(0.81474220752716064453125), SC_(0.4523765765919173382352735144370898815018e-1064), SC_(BOOST_MATH_SMALL_CONSTANT(0.1254850832918198558931943494569323341016e-212998)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.2773907620000807787162089481974537683579e-211934)) },
{ SC_(319.8160400390625), SC_(0.0034338268451392650604248046875), SC_(0.12707412242889404296875), SC_(0.1039487352249436822822754219339456868299e-288), SC_(284.9482190829596218680197390653836755493), SC_(0.3647986836326923012989805955948769306774e-291), SC_(1) },
{ SC_(320.71142578125), SC_(4.67389774322509765625), SC_(0.905801355838775634765625), SC_(0.9850171618247693902460627494485569139128e-20), SC_(0.2800574695987022181206384892775397912514e-10), SC_(0.3517196534303343749823322883058843095715e-9), SC_(0.9999999996482803465696656250176677116941) },
{ SC_(322.667938232421875), SC_(0.000298001919873058795928955078125), SC_(0.1355634629726409912109375), SC_(0.3346120796609924218957333268979457363039e-282), SC_(3349.337042651967348019908243227315338955), SC_(0.9990397365206648353102493000873009612277e-286), SC_(1) },
@@ -843,23 +843,23 @@
{ SC_(341.38720703125), SC_(0.384202649001963436603546142578125e-4), SC_(0.632396042346954345703125), SC_(0.9108135773369031849026323044395471973537e-70), SC_(26021.52295326780794111723906784983713539), SC_(0.3500231631225574895492215967492848453865e-74), SC_(1) },
{ SC_(341.41339111328125), SC_(468.468475341796875), SC_(0.3082362115383148193359375), SC_(0.3565543496946831024491691828768394458409e-251), SC_(0.629433015816388768125402133427542758933e-240), SC_(0.5664690931888984677553491428462049448298e-11), SC_(0.9999999999943353090681110153224465085715) },
{ SC_(343.1463623046875), SC_(0.0001005965095828287303447723388671875), SC_(0.8350250720977783203125), SC_(0.2356381288057253516466149971441467456345e-28), SC_(9934.290991814903354659373047105922533208), SC_(0.237196724959912250831117297940355079515e-32), SC_(0.9999999999999999999999999999999976280328) },
- { SC_(343.94287109375), SC_(36665.765625), SC_(0.3082362115383148193359375), SC_(0.4202526370890087084639418504930818300741e-848), SC_(0.12369306034179296732473775142835346482e-6047), SC_(1), SC_(0.2943302419196836892889910632108001147524e-5199) },
- { SC_(352.70654296875), SC_(212717.25), SC_(0.905801355838775634765625), SC_(0.1441972851961034211719947431273403233423e-1134), SC_(0.1446128095776781832284043928815361433868e-218258), SC_(1), SC_(0.1002881638035068850146195912609331103968e-217123) },
+ { SC_(343.94287109375), SC_(36665.765625), SC_(0.3082362115383148193359375), SC_(0.4202526370890087084639418504930818300741e-848), SC_(BOOST_MATH_SMALL_CONSTANT(0.12369306034179296732473775142835346482e-6047)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.2943302419196836892889910632108001147524e-5199)) },
+ { SC_(352.70654296875), SC_(212717.25), SC_(0.905801355838775634765625), SC_(0.1441972851961034211719947431273403233423e-1134), SC_(BOOST_MATH_SMALL_CONSTANT(0.1446128095776781832284043928815361433868e-218258)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.1002881638035068850146195912609331103968e-217123)) },
{ SC_(356.28717041015625), SC_(0.0463746227324008941650390625), SC_(0.81474220752716064453125), SC_(0.274854253144334457190696078886098926166e-33), SC_(16.01525623507416452576597962646525649559), SC_(0.1716202657703288651931002315562720282044e-34), SC_(0.999999999999999999999999999999999982838) },
{ SC_(356.7762451171875), SC_(3.3235576152801513671875), SC_(0.9688708782196044921875), SC_(0.1364165363012484972823945395989807921582e-10), SC_(0.8931730062261176515126969192659486206286e-8), SC_(0.001524995725542705293456313521237359078585), SC_(0.9984750042744572947065436864787626409214) },
{ SC_(361.524810791015625), SC_(0.01847557537257671356201171875), SC_(0.905801355838775634765625), SC_(0.8022720212822092847986147827704351777061e-17), SC_(48.04400546905792875821423344152799898027), SC_(0.166986914069623396372200973840296672574e-18), SC_(0.9999999999999999998330130859303766036278) },
{ SC_(362.19921875), SC_(344.353759765625), SC_(0.9688708782196044921875), SC_(0.4787224091975894935100062848169341926213e-213), SC_(0.4299691468982810933904699845220691067036e-526), SC_(1), SC_(0.89815964040407848330304241199415911355e-313) },
- { SC_(362.229278564453125), SC_(131165.359375), SC_(0.3082362115383148193359375), SC_(0.5057364165135122178363336585033416342913e-1085), SC_(0.1841654023932158082629951444684797586402e-21181), SC_(1), SC_(0.3641529389218806520857720108160630097918e-20096) },
+ { SC_(362.229278564453125), SC_(131165.359375), SC_(0.3082362115383148193359375), SC_(0.5057364165135122178363336585033416342913e-1085), SC_(BOOST_MATH_SMALL_CONSTANT(0.1841654023932158082629951444684797586402e-21181)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.3641529389218806520857720108160630097918e-20096)) },
{ SC_(367.16644287109375), SC_(0.23287344447453506290912628173828125e-4), SC_(0.3082362115383148193359375), SC_(0.8509062422527874302645435035136800483759e-190), SC_(42935.29789300576214757142986631869718034), SC_(0.1981833791798150303512183506262879890148e-194), SC_(1) },
{ SC_(369.317962646484375), SC_(35824.7421875), SC_(0.12707412242889404296875), SC_(0.1401277778307608857522144096233095426528e-895), SC_(0.103560415644484015438123327460794726839e-2448), SC_(1), SC_(0.7390427311960869932370824428985573234745e-1553) },
{ SC_(373.486236572265625), SC_(0.0390747748315334320068359375), SC_(0.12707412242889404296875), SC_(0.7276873943205061127949449274485728007157e-337), SC_(19.8771556345436876725173165123440803917), SC_(0.3660923160735775747610133192362243213198e-338), SC_(1) },
{ SC_(374.011383056640625), SC_(0.1863805353641510009765625), SC_(0.913384497165679931640625), SC_(0.3680853549931935424729101433697114219094e-16), SC_(1.63996778181418168964791681198568110514), SC_(0.2244466989381989216250070729496838307869e-16), SC_(0.9999999999999999775553301061801078374993) },
{ SC_(377.012786865234375), SC_(0.00041205019806511700153350830078125), SC_(0.12707412242889404296875), SC_(0.5018255520456287019307505533535785648385e-340), SC_(2420.389662042830422339503339413745095856), SC_(0.2073325464553849847840499156751296217151e-343), SC_(1) },
{ SC_(377.90087890625), SC_(133.8535003662109375), SC_(0.8350250720977783203125), SC_(0.4764303775395275156357475406276231056301e-128), SC_(0.8979815675883332024694445404371251955499e-136), SC_(0.999999981151882982344684499992705910614), SC_(0.1884811701765531550000729408938601969429e-7) },
- { SC_(378.573211669921875), SC_(29545.880859375), SC_(0.905801355838775634765625), SC_(0.1819161083786019421236995979220271276677e-882), SC_(0.3567768305107357071563069529318010263981e-30333), SC_(1), SC_(0.1961216264412469843105695279989097621613e-29450) },
+ { SC_(378.573211669921875), SC_(29545.880859375), SC_(0.905801355838775634765625), SC_(0.1819161083786019421236995979220271276677e-882), SC_(BOOST_MATH_SMALL_CONSTANT(0.3567768305107357071563069529318010263981e-30333)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.1961216264412469843105695279989097621613e-29450)) },
{ SC_(382.9013671875), SC_(0.46764689614064991474151611328125e-4), SC_(0.905801355838775634765625), SC_(0.9554051624934791521808252488493868262495e-18), SC_(21377.13258428691757807457543956816125374), SC_(0.4469285853593581217844881708560939442293e-22), SC_(0.9999999999999999999999553071414640641878) },
{ SC_(389.089813232421875), SC_(0.0373030789196491241455078125), SC_(0.221111953258514404296875), SC_(0.3231575825547556828096359195883892985532e-257), SC_(21.02788392868429236020299549248550271942), SC_(0.1536805052047743276126284045624474354474e-258), SC_(1) },
- { SC_(389.16900634765625), SC_(413674.96875), SC_(0.632396042346954345703125), SC_(0.1523073710619273141670447579828970845159e-1347), SC_(0.6203083669742001315335466647235180952343e-179874), SC_(1), SC_(0.4072740292536375431999707817360029371767e-178526) },
+ { SC_(389.16900634765625), SC_(413674.96875), SC_(0.632396042346954345703125), SC_(0.1523073710619273141670447579828970845159e-1347), SC_(BOOST_MATH_SMALL_CONSTANT(0.6203083669742001315335466647235180952343e-179874)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.4072740292536375431999707817360029371767e-178526)) },
{ SC_(391.8837890625), SC_(0.19626211724244058132171630859375e-4), SC_(0.8350250720977783203125), SC_(0.3156660959615283137675626160491049296641e-32), SC_(50945.72155259349797640877051570356243093), SC_(0.6196125726390044116169667113856543669063e-37), SC_(0.999999999999999999999999999999999999938) },
{ SC_(393.736419677734375), SC_(0.004322923719882965087890625), SC_(0.632396042346954345703125), SC_(0.3004974652924474956100160452044348570937e-80), SC_(224.8686489014385231824592335003405580727), SC_(0.133632441320958709225529491856927709637e-82), SC_(1) },
{ SC_(393.983001708984375), SC_(0.2691637575626373291015625), SC_(0.221111953258514404296875), SC_(0.1870527793829857996963117135782901988535e-260), SC_(0.6714385221846706365806862683133772310713), SC_(0.2785851171814942556490675848554657168373e-260), SC_(1) },
@@ -870,7 +870,7 @@
{ SC_(403.239715576171875), SC_(231.1188201904296875), SC_(0.905801355838775634765625), SC_(0.4209076100284479575459272050589722133011e-181), SC_(0.2097420529948794342641861558008743468945e-256), SC_(1), SC_(0.4983090065316318723760331393489524960538e-75) },
{ SC_(407.583343505859375), SC_(1515.2218017578125), SC_(0.8350250720977783203125), SC_(0.6106516291260666365026418574546229451623e-432), SC_(0.1667628395292839871395498306645192446908e-1220), SC_(1), SC_(0.2730899772885997692805519448869943783372e-788) },
{ SC_(408.7735595703125), SC_(3.076730251312255859375), SC_(0.632396042346954345703125), SC_(0.1378287322801105462206772129061690311001e-84), SC_(0.1968181405629450728659864963206833038828e-7), SC_(0.7002846987878694790764947964174289324482e-77), SC_(1) },
- { SC_(409.088836669921875), SC_(41189.671875), SC_(0.8350250720977783203125), SC_(0.143904091158808850646611131514643898925e-998), SC_(0.1363139954023903785257309899372358371717e-32270), SC_(1), SC_(0.9472558723292846634420162507585859990812e-31272) },
+ { SC_(409.088836669921875), SC_(41189.671875), SC_(0.8350250720977783203125), SC_(0.143904091158808850646611131514643898925e-998), SC_(BOOST_MATH_SMALL_CONSTANT(0.1363139954023903785257309899372358371717e-32270)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.9472558723292846634420162507585859990812e-31272)) },
{ SC_(412.0701904296875), SC_(0.000211175109143368899822235107421875), SC_(0.632396042346954345703125), SC_(0.647616717896141274500164522105167342336e-84), SC_(4728.814144546499136816670985737169832699), SC_(0.1369511886279152459177282803600209927911e-87), SC_(1) },
{ SC_(412.55084228515625), SC_(0.3415349419810809195041656494140625e-4), SC_(0.913384497165679931640625), SC_(0.1598951502476228351696480573690411165113e-17), SC_(29272.98341448901344132555396999064805538), SC_(0.5462208890142738821114941245966009915949e-22), SC_(0.9999999999999999999999453779110985726118) },
{ SC_(412.772796630859375), SC_(10.2405414581298828125), SC_(0.221111953258514404296875), SC_(0.7210631161000411893596368421118781124139e-274), SC_(0.9132989709772482176203558464533790146331e-21), SC_(0.7895148675449499217836227273432362656399e-253), SC_(1) },
@@ -888,7 +888,7 @@
{ SC_(1082.14306640625), SC_(10693.6611328125), SC_(0.12707412242889404296875), SC_(0.2278754068927472156288012140413843328972e-1570), SC_(0.4710634212604126043266066650730864250032e-1603), SC_(0.9999999999999999999999999999999979328027), SC_(0.2067197279793011048484820322721178352804e-32) },
{ SC_(1097.736083984375), SC_(1.48078691959381103515625), SC_(0.1355634629726409912109375), SC_(0.1781516798617882923386756479578446275105e-955), SC_(0.2785129897942893166037431459860886839776e-4), SC_(0.6396530373444044954143234151352585767162e-951), SC_(1) },
{ SC_(1146.2520751953125), SC_(184.5145416259765625), SC_(0.9688708782196044921875), SC_(0.4677065383471207613026721995792121706691e-233), SC_(0.1170010114027342356906428338257499650131e-295), SC_(1), SC_(0.2501590245375163959038911002528123869642e-62) },
- { SC_(1256.7484130859375), SC_(114671.2265625), SC_(0.221111953258514404296875), SC_(0.3864052120281740910984826266649804985814e-3013), SC_(0.1841074042592996185772811936640211942933e-13272), SC_(1), SC_(0.4764620106777331318281507507630583790219e-10259) },
+ { SC_(1256.7484130859375), SC_(114671.2265625), SC_(0.221111953258514404296875), SC_(0.3864052120281740910984826266649804985814e-3013), SC_(BOOST_MATH_SMALL_CONSTANT(0.1841074042592996185772811936640211942933e-13272)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.4764620106777331318281507507630583790219e-10259)) },
{ SC_(1295.97900390625), SC_(0.00442600063979625701904296875), SC_(0.632396042346954345703125), SC_(0.254468554506769970848011093621387782895e-260), SC_(218.3284697331136530629038750535253642784), SC_(0.1165530793202710697732542983745490174379e-262), SC_(1) },
{ SC_(1309.38720703125), SC_(0.00044117416837252676486968994140625), SC_(0.3082362115383148193359375), SC_(0.621665421336862472879397361848521150676e-672), SC_(2258.937956171080727633037218705285702127), SC_(0.2752025214497660268024310700652187996244e-675), SC_(1) },
{ SC_(1394.074951171875), SC_(15.51703548431396484375), SC_(0.905801355838775634765625), SC_(0.1282445221776865687937653231808833904475e-77), SC_(0.5247043222849333125720311799101580200549e-37), SC_(0.2444129326383653883103923748144980641462e-40), SC_(1) },
@@ -900,7 +900,7 @@
{ SC_(1614.361572265625), SC_(257.008087158203125), SC_(0.81474220752716064453125), SC_(0.1585702744226958009407406130989849499305e-333), SC_(0.113558977705796973767770949754211098822e-325), SC_(0.1396369317618244336614987327591678300512e-7), SC_(0.9999999860363068238175566338501267240832) },
{ SC_(1617.479248046875), SC_(0.032529197633266448974609375), SC_(0.12707412242889404296875), SC_(0.4777591022400609015805375048629480436748e-1452), SC_(23.74474755791250852883499903705096067287), SC_(0.2012062251135014928192024393427748953461e-1453), SC_(1) },
{ SC_(1644.535888671875), SC_(0.0342094860970973968505859375), SC_(0.221111953258514404296875), SC_(0.1202190328594983373413205725678074814986e-1080), SC_(22.26763753526301348896484161372508813266), SC_(0.5398822963105968038539413361276247656143e-1082), SC_(1) },
- { SC_(1654.0494384765625), SC_(34146.52734375), SC_(0.632396042346954345703125), SC_(0.3896459091825206171891077272890649849148e-2911), SC_(0.5580096527651012054744158801308476347691e-15174), SC_(1), SC_(0.1432094215837678627665949709074620682969e-12262) },
+ { SC_(1654.0494384765625), SC_(34146.52734375), SC_(0.632396042346954345703125), SC_(0.3896459091825206171891077272890649849148e-2911), SC_(BOOST_MATH_SMALL_CONSTANT(0.5580096527651012054744158801308476347691e-15174)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.1432094215837678627665949709074620682969e-12262)) },
{ SC_(1654.2796630859375), SC_(364.202728271484375), SC_(0.12707412242889404296875), SC_(0.1652798774335487385895757390454814471833e-1506), SC_(0.2262099992848952631445017227753709826679e-414), SC_(0.7306479729279809248231411847474679865719e-1092), SC_(1) },
{ SC_(1664.814208984375), SC_(0.00033929268829524517059326171875), SC_(0.913384497165679931640625), SC_(0.2155607436923262531841164263370337144072e-67), SC_(2939.324565586548760075341929333703526553), SC_(0.7333682922127744913958456803612633697384e-71), SC_(1) },
{ SC_(1673.0052490234375), SC_(0.106633078758022747933864593505859375e-4), SC_(0.221111953258514404296875), SC_(0.2616727938825976180789490877394296978506e-1099), SC_(93771.5309777213146595157831837880636062), SC_(0.2790535583180006757787084431103671419022e-1104), SC_(1) },
@@ -912,11 +912,11 @@
{ SC_(1848.123291015625), SC_(0.00048024553689174354076385498046875), SC_(0.221111953258514404296875), SC_(0.4020280761426968915026600499046717884357e-1214), SC_(2074.18543171540418571701655366550582641), SC_(0.1938245587860529094866465011198826538811e-1217), SC_(1) },
{ SC_(1848.65283203125), SC_(24.98059844970703125), SC_(0.8350250720977783203125), SC_(0.1759276691447393041938193480576385650064e-166), SC_(0.1223762749573607286345903162959711693756e-57), SC_(0.1437596210589326723100717819013761715731e-108), SC_(1) },
{ SC_(1870.2532958984375), SC_(0.13475679224939085543155670166015625e-4), SC_(0.8350250720977783203125), SC_(0.1168858965976695939868324029529178043302e-148), SC_(74199.65192080726603366419296630218839546), SC_(0.1575289015134748042787177027180545895155e-153), SC_(1) },
- { SC_(1914.6778564453125), SC_(240454.8125), SC_(0.1355634629726409912109375), SC_(0.1362123729045771190351072122214389258813e-4854), SC_(0.1035613818291344775459851316322919807035e-16878), SC_(1), SC_(0.7602935006622626988376589038345728804959e-12024) },
+ { SC_(1914.6778564453125), SC_(240454.8125), SC_(0.1355634629726409912109375), SC_(0.1362123729045771190351072122214389258813e-4854), SC_(BOOST_MATH_SMALL_CONSTANT(0.1035613818291344775459851316322919807035e-16878)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.7602935006622626988376589038345728804959e-12024)) },
{ SC_(1961.91357421875), SC_(1.22353923320770263671875), SC_(0.913384497165679931640625), SC_(0.1888794324802670476538793010492694418827e-80), SC_(0.8538183807506730243916820891060685578539e-4), SC_(0.2212173416953206801610018852971508294782e-76), SC_(1) },
{ SC_(2004.1676025390625), SC_(0.1820631950977258384227752685546875e-4), SC_(0.905801355838775634765625), SC_(0.4062543973156701589290933207940784529363e-88), SC_(54917.8038997340536514817480325450015585), SC_(0.739749896149138434077240141578222282626e-93), SC_(1) },
{ SC_(2021.546875), SC_(1278.527099609375), SC_(0.9688708782196044921875), SC_(0.1483934995162793775206111848679747717182e-957), SC_(0.4350310933674388433268538805755337518644e-1957), SC_(1), SC_(0.2931604785826310014861243178722065932111e-999) },
- { SC_(2030.455078125), SC_(27725.34375), SC_(0.9688708782196044921875), SC_(0.1878636810444501212373007325979956102648e-3219), SC_(0.1655258511735768636603108633056838283451e-41809), SC_(1), SC_(0.8810955382824211783756781228548296136572e-38590) },
+ { SC_(2030.455078125), SC_(27725.34375), SC_(0.9688708782196044921875), SC_(0.1878636810444501212373007325979956102648e-3219), SC_(BOOST_MATH_SMALL_CONSTANT(0.1655258511735768636603108633056838283451e-41809)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.8810955382824211783756781228548296136572e-38590)) },
{ SC_(2031.1689453125), SC_(0.001671129255555570125579833984375), SC_(0.221111953258514404296875), SC_(0.3955790606046084527284621559758683305339e-1334), SC_(590.2616130712235793589422310423909958626), SC_(0.670175820084841146568352704004977826627e-1337), SC_(1) },
{ SC_(2160.7412109375), SC_(4.9396953582763671875), SC_(0.221111953258514404296875), SC_(0.1302217695091183525459476058687262124071e-1419), SC_(0.7363180529281059482774557084481883763268e-15), SC_(0.1768553262971989069540929369132310123363e-1404), SC_(1) },
{ SC_(2176.594482421875), SC_(0.0227449946105480194091796875), SC_(0.905801355838775634765625), SC_(0.1384115282058986953743777793463642081081e-95), SC_(36.44850067419443199002993066424687116033), SC_(0.3797454645477205307734827607870898832397e-97), SC_(1) },
@@ -930,17 +930,17 @@
{ SC_(2403.10693359375), SC_(0.0393528044223785400390625), SC_(0.81474220752716064453125), SC_(0.3118436767587323412962861794379243037092e-216), SC_(18.30891617470164827363948970052722957826), SC_(0.1703233953245263406203517612910504765217e-217), SC_(1) },
{ SC_(2438.42529296875), SC_(0.4890716075897216796875), SC_(0.81474220752716064453125), SC_(0.1037642856895648843730984337375533046527e-219), SC_(0.03994908265612262192819015004190041106887), SC_(0.2597413477119277572735736406645521482144e-218), SC_(1) },
{ SC_(2525.380859375), SC_(0.0469692982733249664306640625), SC_(0.1355634629726409912109375), SC_(0.9718816748681519785982031265848916843842e-2195), SC_(14.36749526206160737764778488127206016531), SC_(0.6764447505575134115382019671129730076222e-2196), SC_(1) },
- { SC_(2563.04833984375), SC_(444797.40625), SC_(0.913384497165679931640625), SC_(0.4708659010959950717205430665225397776429e-6857), SC_(0.6871523478649237942696144958600737267074e-472661), SC_(1), SC_(0.1459337671862619267889334835943691340587e-465803) },
+ { SC_(2563.04833984375), SC_(444797.40625), SC_(0.913384497165679931640625), SC_(BOOST_MATH_SMALL_CONSTANT(0.4708659010959950717205430665225397776429e-6857)), SC_(BOOST_MATH_SMALL_CONSTANT(0.6871523478649237942696144958600737267074e-472661)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.1459337671862619267889334835943691340587e-465803)) },
{ SC_(2587.197265625), SC_(0.001075554522685706615447998046875), SC_(0.3082362115383148193359375), SC_(0.2444353237317730025383383576818923702803e-1325), SC_(921.3566322728319931387356299737332825061), SC_(0.2652993587605617297051874018503019594896e-1328), SC_(1) },
{ SC_(2595.52294921875), SC_(2311.214111328125), SC_(0.8350250720977783203125), SC_(0.2288949937715536177111141422371568975486e-1474), SC_(0.7549038718853678415354774527137853469774e-2015), SC_(1), SC_(0.3298035747513080940137389710734199967035e-540) },
{ SC_(2608.736083984375), SC_(0.0039381901733577251434326171875), SC_(0.913384497165679931640625), SC_(0.9903151303240974158935153837082905608973e-105), SC_(245.6220706381780385069217188919019587618), SC_(0.4031865409126506659492178070254142848986e-107), SC_(1) },
{ SC_(2609.55322265625), SC_(0.0041527482680976390838623046875), SC_(0.8350250720977783203125), SC_(0.1078073927655620034929749306816219287884e-206), SC_(232.5100497888069205730664581484971150885), SC_(0.4636676688318866487891112040740303654784e-209), SC_(1) },
{ SC_(2660.373779296875), SC_(2036.114990234375), SC_(0.905801355838775634765625), SC_(0.143128444481996215147192895235313137492e-1396), SC_(0.335806034392376310362878782680161159116e-2206), SC_(1), SC_(0.2346186571143910871009982672536508940281e-809) },
- { SC_(2676.193359375), SC_(457043.46875), SC_(0.905801355838775634765625), SC_(0.3920215987045519051917282021639556080379e-7141), SC_(0.1599886413887271785369191300485834742603e-469026), SC_(1), SC_(0.4081118028124338963951366996409686764645e-461885) },
+ { SC_(2676.193359375), SC_(457043.46875), SC_(0.905801355838775634765625), SC_(BOOST_MATH_SMALL_CONSTANT(0.3920215987045519051917282021639556080379e-7141)), SC_(BOOST_MATH_SMALL_CONSTANT(0.1599886413887271785369191300485834742603e-469026)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.4081118028124338963951366996409686764645e-461885)) },
{ SC_(2690.582763671875), SC_(0.22973056137561798095703125), SC_(0.632396042346954345703125), SC_(0.2815358879783806589544950929902226594006e-538), SC_(0.646079473776380407645459179984928723535), SC_(0.4357604588995582842767141615286707798988e-538), SC_(1) },
{ SC_(2697.339111328125), SC_(0.3278447091579437255859375), SC_(0.913384497165679931640625), SC_(0.1417568117001298118698339763069731766565e-108), SC_(0.2045026287313223140065364339627882109421), SC_(0.6931784328619628121835127461938924376676e-108), SC_(1) },
{ SC_(2717.423095703125), SC_(0.278538644313812255859375), SC_(0.9688708782196044921875), SC_(0.2128517470081175567588832613689989800062e-39), SC_(0.357516946170104782730738707906199957098), SC_(0.5953612808799383608197051593765274145908e-39), SC_(0.9999999999999999999999999999999999999994) },
- { SC_(2760.142333984375), SC_(46082.70703125), SC_(0.913384497165679931640625), SC_(0.1606817442384679216447504369336462826297e-4609), SC_(0.2029688686521188812468055426861266945045e-49071), SC_(1), SC_(0.1263173172621854291637924813807736147072e-44461) },
+ { SC_(2760.142333984375), SC_(46082.70703125), SC_(0.913384497165679931640625), SC_(0.1606817442384679216447504369336462826297e-4609), SC_(BOOST_MATH_SMALL_CONSTANT(0.2029688686521188812468055426861266945045e-49071)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.1263173172621854291637924813807736147072e-44461)) },
{ SC_(2810.3701171875), SC_(0.3556720912456512451171875), SC_(0.3082362115383148193359375), SC_(0.1691291405420655174976547197853551601938e-1439), SC_(0.1485995060620461974166844358868336437211), SC_(0.1138154123281186291924394687497950591179e-1438), SC_(1) },
{ SC_(2831.54541015625), SC_(2.64873027801513671875), SC_(0.905801355838775634765625), SC_(0.1569550910329461716749990717647089249125e-126), SC_(0.1065471925601074637322494217647203412137e-8), SC_(0.1473103957613914875972800446242766673551e-117), SC_(1) },
{ SC_(2853.04248046875), SC_(23.2325763702392578125), SC_(0.81474220752716064453125), SC_(0.2615085001757634387811519908910861141731e-273), SC_(0.112424123146530934341191800142750908027e-58), SC_(0.2326088857592595720025972574740611065982e-214), SC_(1) },
@@ -952,15 +952,15 @@
{ SC_(3222.951904296875), SC_(0.000114076086902059614658355712890625), SC_(0.12707412242889404296875), SC_(0.933100695906133383792779828454651317464e-2891), SC_(8757.428341063870418190564143042884979598), SC_(0.106549623881110557951346641461218442187e-2894), SC_(1) },
{ SC_(3231.15576171875), SC_(0.00042852279148064553737640380859375), SC_(0.8350250720977783203125), SC_(0.1867021500763222500441418898175790971479e-255), SC_(2324.956900363979379703392736889282702904), SC_(0.8030348865696969954787532787646234158509e-259), SC_(1) },
{ SC_(3233.27685546875), SC_(0.302093982696533203125), SC_(0.8350250720977783203125), SC_(0.7394495679867784030074674295563958853451e-256), SC_(0.2585220426817447194394678287236757523982), SC_(0.2860296013122110106293010342463747525215e-255), SC_(1) },
- { SC_(3309.57666015625), SC_(19694.05859375), SC_(0.905801355838775634765625), SC_(0.2208631038565245596877093778960712501508e-4116), SC_(0.2132326548035614993901261756283994925164e-20351), SC_(1), SC_(0.9654516806124399318694577899108144606729e-16235) },
+ { SC_(3309.57666015625), SC_(19694.05859375), SC_(0.905801355838775634765625), SC_(0.2208631038565245596877093778960712501508e-4116), SC_(BOOST_MATH_SMALL_CONSTANT(0.2132326548035614993901261756283994925164e-20351)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.9654516806124399318694577899108144606729e-16235)) },
{ SC_(3389.960693359375), SC_(0.12216867506504058837890625), SC_(0.12707412242889404296875), SC_(0.2043860892710376191166579788352867691171e-3040), SC_(2.858776376468209088925102203244016022808), SC_(0.7149425570794046564076716911579132342617e-3041), SC_(1) },
{ SC_(3482.687744140625), SC_(0.003345853649079799652099609375), SC_(0.9688708782196044921875), SC_(0.1331946003311204974453353230024933321625e-49), SC_(290.2737663310366178992356910668771076101), SC_(0.4588585527884787012964148793593696016582e-52), SC_(1) },
{ SC_(3489.989013671875), SC_(0.000430709798820316791534423828125), SC_(0.9688708782196044921875), SC_(0.1065835473530261878862571077378414811744e-49), SC_(2313.030932747487101849276179998333520729), SC_(0.4607960310605231409250741425914671459289e-53), SC_(1) },
- { SC_(3568.2431640625), SC_(352075.78125), SC_(0.8350250720977783203125), SC_(0.2541234347003218620925586365830762003992e-8674), SC_(0.8907337148236950426034394889044629146075e-275813), SC_(1), SC_(0.3505122287813021112960779898848412225165e-267138) },
+ { SC_(3568.2431640625), SC_(352075.78125), SC_(0.8350250720977783203125), SC_(BOOST_MATH_SMALL_CONSTANT(0.2541234347003218620925586365830762003992e-8674)), SC_(BOOST_MATH_SMALL_CONSTANT(0.8907337148236950426034394889044629146075e-275813)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.3505122287813021112960779898848412225165e-267138)) },
{ SC_(3614.7607421875), SC_(3.387983798980712890625), SC_(0.632396042346954345703125), SC_(0.1066392343401903074570981794034797612126e-723), SC_(0.2591906791946646226214895922674915680462e-11), SC_(0.4114315941897707341535557667714226386279e-712), SC_(1) },
- { SC_(3614.799560546875), SC_(45861.59765625), SC_(0.221111953258514404296875), SC_(0.1002562797439735725293044078624918573793e-5619), SC_(0.8157703784701342011174480634396233609118e-7350), SC_(1), SC_(0.8136850684599338941739115897548011164103e-1730) },
+ { SC_(3614.799560546875), SC_(45861.59765625), SC_(0.221111953258514404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.1002562797439735725293044078624918573793e-5619)), SC_(BOOST_MATH_SMALL_CONSTANT(0.8157703784701342011174480634396233609118e-7350)), SC_(1), SC_(0.8136850684599338941739115897548011164103e-1730) },
{ SC_(3663.94873046875), SC_(125.4974365234375), SC_(0.1355634629726409912109375), SC_(0.5983916526263260783662182189142940149961e-3191), SC_(0.109238605784170592476358066692321757953e-239), SC_(0.5477840442312172452470686670755495488233e-2951), SC_(1) },
- { SC_(3684.808837890625), SC_(238875.625), SC_(0.632396042346954345703125), SC_(0.1173669919221787144531594474279032100143e-8289), SC_(0.2668463891339278217426918600732690621104e-104558), SC_(1), SC_(0.2273606784698570314862915887926907619496e-96268) },
+ { SC_(3684.808837890625), SC_(238875.625), SC_(0.632396042346954345703125), SC_(BOOST_MATH_SMALL_CONSTANT(0.1173669919221787144531594474279032100143e-8289)), SC_(BOOST_MATH_SMALL_CONSTANT(0.2668463891339278217426918600732690621104e-104558)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.2273606784698570314862915887926907619496e-96268)) },
{ SC_(3718.935546875), SC_(284.95684814453125), SC_(0.913384497165679931640625), SC_(0.1294003811275988797120708635387277581269e-450), SC_(0.7922660499004278048558506697943302441345e-447), SC_(0.0001633027815614288283942094303317874664245), SC_(0.9998366972184385711716057905696682125336) },
{ SC_(3726.241943359375), SC_(28.8971099853515625), SC_(0.632396042346954345703125), SC_(0.5586199653986671340101278306961205757215e-757), SC_(0.1225345553171307233831318418620512936238e-73), SC_(0.4558876995578163029911899103643809814477e-683), SC_(1) },
{ SC_(3736.384033203125), SC_(0.0043655070476233959197998046875), SC_(0.81474220752716064453125), SC_(0.4936522971383731596646688934747087886844e-335), SC_(220.4359571359634487110970810001367212539), SC_(0.2239436358533338865353329179187538484566e-337), SC_(1) },
@@ -968,253 +968,253 @@
{ SC_(3810.80908203125), SC_(139.7005615234375), SC_(0.632396042346954345703125), SC_(0.5924463400183605803006809012446629946778e-822), SC_(0.954841383577710103509948090108551124963e-263), SC_(0.6204657131622365690086051201735696798525e-559), SC_(1) },
{ SC_(3812.892822265625), SC_(0.290711686830036342144012451171875e-4), SC_(0.9688708782196044921875), SC_(0.3592448713049080325420212703865359978702e-54), SC_(34389.51983461813619743577281330947149361), SC_(0.1044634740562079483553913297843410433397e-58), SC_(1) },
{ SC_(3826.86083984375), SC_(0.00044492297456599771976470947265625), SC_(0.81474220752716064453125), SC_(0.4318212520262088654085243799487132645206e-343), SC_(2238.770836217429788151584057613326346436), SC_(0.1928831861843452721743690083042640483525e-346), SC_(1) },
- { SC_(3860.85009765625), SC_(408688.75), SC_(0.81474220752716064453125), SC_(0.7343070404148790245024162966963883904056e-9503), SC_(0.2677465506453831922845591502537589422007e-299600), SC_(1), SC_(0.3646247903249136968170165929436587515456e-290097) },
+ { SC_(3860.85009765625), SC_(408688.75), SC_(0.81474220752716064453125), SC_(BOOST_MATH_SMALL_CONSTANT(0.7343070404148790245024162966963883904056e-9503)), SC_(BOOST_MATH_SMALL_CONSTANT(0.2677465506453831922845591502537589422007e-299600)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.3646247903249136968170165929436587515456e-290097)) },
{ SC_(3962.59228515625), SC_(31.1610393524169921875), SC_(0.1355634629726409912109375), SC_(0.3384712230537736690981003779060463677214e-3444), SC_(0.3124137125523955424441891849418603640826e-79), SC_(0.1083407063948923075182335962189351711032e-3364), SC_(1) },
{ SC_(3970.181396484375), SC_(0.46857738494873046875), SC_(0.905801355838775634765625), SC_(0.2285235610597586946096424145268850967653e-173), SC_(0.03891888964637741735745142775849093350722), SC_(0.5871790360314910485880298902783526181515e-172), SC_(1) },
{ SC_(3974.75341796875), SC_(31.3806819915771484375), SC_(0.221111953258514404296875), SC_(0.1258218693853321148582037748838785943212e-2611), SC_(0.9749514582632188361913601678810860673319e-80), SC_(0.1290544963227928631200180913029430611917e-2531), SC_(1) },
{ SC_(3994.4755859375), SC_(1430.89794921875), SC_(0.1355634629726409912109375), SC_(0.2105984586363485191489122069253217127303e-3560), SC_(0.3229438169052957659815167182603135997404e-1360), SC_(0.6521210427698237770929763396330685024629e-2200), SC_(1) },
- { SC_(4007.785888671875), SC_(325072.90625), SC_(0.12707412242889404296875), SC_(0.1535875454312946710181314646533980315805e-9403), SC_(0.1039179881121639310008295742856771329998e-22781), SC_(1), SC_(0.6766042638441034890994705226282583622852e-13378) },
+ { SC_(4007.785888671875), SC_(325072.90625), SC_(0.12707412242889404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.1535875454312946710181314646533980315805e-9403)), SC_(BOOST_MATH_SMALL_CONSTANT(0.1039179881121639310008295742856771329998e-22781)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.6766042638441034890994705226282583622852e-13378)) },
{ SC_(4032.44970703125), SC_(0.014052885584533214569091796875), SC_(0.3082362115383148193359375), SC_(0.3171277208553330764287268239017078454643e-2064), SC_(62.82230248061425754625616329120345086349), SC_(0.5048011746356996896875551850116190870035e-2066), SC_(1) },
{ SC_(4037.3095703125), SC_(16.8816509246826171875), SC_(0.12707412242889404296875), SC_(0.1811392346614968167108368205175892965523e-3621), SC_(0.1929835772220333361251284618212707307798e-47), SC_(0.9386251269095854120904261337078739905176e-3574), SC_(1) },
{ SC_(4055.591552734375), SC_(3.02400684356689453125), SC_(0.9688708782196044921875), SC_(0.4456144694071283666347523985176164644498e-62), SC_(0.2509527649774158192255909566659648745673e-10), SC_(0.1775690614316327156100048460672669241989e-51), SC_(1) },
- { SC_(4069.31787109375), SC_(325513.34375), SC_(0.3082362115383148193359375), SC_(0.162173975418663081604091567477023934026e-9523), SC_(0.1787797438774108221234499823359245468524e-54180), SC_(1), SC_(0.1102394779531542139116411393051318030817e-44656) },
- { SC_(4178.6318359375), SC_(46566.515625), SC_(0.8350250720977783203125), SC_(0.3679641802030769930157052195262162209034e-6270), SC_(0.1287385523085865425356989676186722457646e-36773), SC_(1), SC_(0.3498670773811097278706589044194044553718e-30503) },
+ { SC_(4069.31787109375), SC_(325513.34375), SC_(0.3082362115383148193359375), SC_(BOOST_MATH_SMALL_CONSTANT(0.162173975418663081604091567477023934026e-9523)), SC_(BOOST_MATH_SMALL_CONSTANT(0.1787797438774108221234499823359245468524e-54180)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.1102394779531542139116411393051318030817e-44656)) },
+ { SC_(4178.6318359375), SC_(46566.515625), SC_(0.8350250720977783203125), SC_(BOOST_MATH_SMALL_CONSTANT(0.3679641802030769930157052195262162209034e-6270)), SC_(BOOST_MATH_SMALL_CONSTANT(0.1287385523085865425356989676186722457646e-36773)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.3498670773811097278706589044194044553718e-30503)) },
{ SC_(4236.8154296875), SC_(2638.01123046875), SC_(0.12707412242889404296875), SC_(0.6702401115167996316133372613571524749209e-3955), SC_(0.5590999583938067133692408291595627864472e-1989), SC_(0.1198784048280523078702343865750003226665e-1965), SC_(1) },
- { SC_(4264.560546875), SC_(235044.84375), SC_(0.9688708782196044921875), SC_(0.1079378039697116076905432865775769928285e-9295), SC_(0.5187858929714358425321211767043278891815e-354237), SC_(1), SC_(0.4806341002796501070170458421211796097238e-344941) },
+ { SC_(4264.560546875), SC_(235044.84375), SC_(0.9688708782196044921875), SC_(BOOST_MATH_SMALL_CONSTANT(0.1079378039697116076905432865775769928285e-9295)), SC_(BOOST_MATH_SMALL_CONSTANT(0.5187858929714358425321211767043278891815e-354237)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.4806341002796501070170458421211796097238e-344941)) },
{ SC_(4294.29833984375), SC_(39.17559051513671875), SC_(0.913384497165679931640625), SC_(0.7705234436368799337133459389811661281009e-213), SC_(0.3990173102068232973197151632490777618695e-97), SC_(0.1931052673472971015938167725950074066875e-115), SC_(1) },
{ SC_(4329.69384765625), SC_(0.0356505475938320159912109375), SC_(0.9688708782196044921875), SC_(0.2234805586966795339320542404669008076833e-61), SC_(20.40812812474043026599138750402293917848), SC_(0.1095056623178280685632856382784930975713e-62), SC_(1) },
{ SC_(4484.44482421875), SC_(0.0347605831921100616455078125), SC_(0.632396042346954345703125), SC_(0.2062703691196530763626473007312376014898e-895), SC_(21.071219100449385506787973991376012016), SC_(0.9789199577695718229676416274222490268767e-897), SC_(1) },
{ SC_(4571.689453125), SC_(0.30711162253282964229583740234375e-4), SC_(0.913384497165679931640625), SC_(0.3326135673042652498235499652967901833815e-182), SC_(32552.4473674992253698229040907974757233), SC_(0.1021777452089058092599760990417017662114e-186), SC_(1) },
{ SC_(4577.5576171875), SC_(462.9542236328125), SC_(0.221111953258514404296875), SC_(0.1390280064397496966216136027920506216894e-3053), SC_(0.3194354696778845146248942290654235433269e-672), SC_(0.4352303348777896430560533546618204120396e-2381), SC_(1) },
{ SC_(4655.2021484375), SC_(0.0004921201034449040889739990234375), SC_(0.632396042346954345703125), SC_(0.2140620923443938107709164196116768458034e-929), SC_(2023.021838799842632538718276005449325328), SC_(0.105813040788223082775212877148027545833e-932), SC_(1) },
- { SC_(4684.38916015625), SC_(48115.4140625), SC_(0.81474220752716064453125), SC_(0.218241877450408797106019672016568921144e-6870), SC_(0.2305962248621997562140158914137553109272e-35652), SC_(1), SC_(0.1056608509586333829044418529250443856336e-28781) },
- { SC_(4694.7021484375), SC_(15396.767578125), SC_(0.1355634629726409912109375), SC_(0.1852561299193606023720471490013502627154e-5051), SC_(0.5989612122653983882790191873744879415003e-4745), SC_(0.3092957041720324637368428164684280177988e-306), SC_(1) },
- { SC_(4730.45458984375), SC_(39692.90234375), SC_(0.3082362115383148193359375), SC_(0.2035281588348346104333793090830905189314e-6543), SC_(0.4970853485809765005131726892117555907765e-8774), SC_(1), SC_(0.2442341892280207038115598697680841789413e-2230) },
+ { SC_(4684.38916015625), SC_(48115.4140625), SC_(0.81474220752716064453125), SC_(BOOST_MATH_SMALL_CONSTANT(0.218241877450408797106019672016568921144e-6870)), SC_(BOOST_MATH_SMALL_CONSTANT(0.2305962248621997562140158914137553109272e-35652)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.1056608509586333829044418529250443856336e-28781)) },
+ { SC_(4694.7021484375), SC_(15396.767578125), SC_(0.1355634629726409912109375), SC_(BOOST_MATH_SMALL_CONSTANT(0.1852561299193606023720471490013502627154e-5051)), SC_(0.5989612122653983882790191873744879415003e-4745), SC_(0.3092957041720324637368428164684280177988e-306), SC_(1) },
+ { SC_(4730.45458984375), SC_(39692.90234375), SC_(0.3082362115383148193359375), SC_(BOOST_MATH_SMALL_CONSTANT(0.2035281588348346104333793090830905189314e-6543)), SC_(BOOST_MATH_SMALL_CONSTANT(0.4970853485809765005131726892117555907765e-8774)), SC_(1), SC_(0.2442341892280207038115598697680841789413e-2230) },
{ SC_(4742.923828125), SC_(4.058574676513671875), SC_(0.8350250720977783203125), SC_(0.3618704425719174888414811614820879760013e-377), SC_(0.7766753096761709008080229458823739563667e-14), SC_(0.4659224235192911276439005519311341553406e-363), SC_(1) },
{ SC_(4813.82861328125), SC_(366.26776123046875), SC_(0.8350250720977783203125), SC_(0.5627514171627524766139963270209350110119e-666), SC_(0.2634983998623451125939473126729828251295e-575), SC_(0.2135691971779490556767376018124259992261e-90), SC_(1) },
{ SC_(4827.74365234375), SC_(3.2813909053802490234375), SC_(0.81474220752716064453125), SC_(0.118872123863226120265418126982617028843e-434), SC_(0.214888648478858832158315123268435991217e-11), SC_(0.5531800991103585147606812339512713885385e-423), SC_(1) },
{ SC_(4931.3408203125), SC_(0.003918074071407318115234375), SC_(0.905801355838775634765625), SC_(0.2773594750858212051700506959595157168854e-214), SC_(246.3096931692891819165947525290236505784), SC_(0.1126059926903450938715209232296910374899e-216), SC_(1) },
{ SC_(4951.73876953125), SC_(0.0031504244543612003326416015625), SC_(0.12707412242889404296875), SC_(0.7744045211659641741396761663113692238095e-4440), SC_(308.4642224078795873590957835909065411626), SC_(0.2510516503732402840998214197696161679016e-4442), SC_(1) },
- { SC_(10727.1015625), SC_(20.6144351959228515625), SC_(0.3082362115383148193359375), SC_(0.1081001151781088997936050592587015059289e-5489), SC_(0.6132368639454089451800706265258888733253e-65), SC_(0.1762779140226835695604238411072259470264e-5424), SC_(1) },
- { SC_(10865.9921875), SC_(0.472520351409912109375), SC_(0.1355634629726409912109375), SC_(0.7347876450068710869507820874537195116341e-9434), SC_(0.02321258677224304556295768537681135974067), SC_(0.316547075177984627391986679086994910297e-9432), SC_(1) },
+ { SC_(10727.1015625), SC_(20.6144351959228515625), SC_(0.3082362115383148193359375), SC_(BOOST_MATH_SMALL_CONSTANT(0.1081001151781088997936050592587015059289e-5489)), SC_(0.6132368639454089451800706265258888733253e-65), SC_(BOOST_MATH_SMALL_CONSTANT(0.1762779140226835695604238411072259470264e-5424)), SC_(1) },
+ { SC_(10865.9921875), SC_(0.472520351409912109375), SC_(0.1355634629726409912109375), SC_(BOOST_MATH_SMALL_CONSTANT(0.7347876450068710869507820874537195116341e-9434)), SC_(0.02321258677224304556295768537681135974067), SC_(BOOST_MATH_SMALL_CONSTANT(0.316547075177984627391986679086994910297e-9432)), SC_(1) },
{ SC_(11005.3994140625), SC_(0.00037013436667621135711669921875), SC_(0.913384497165679931640625), SC_(0.9943504329391992763799984620230626791599e-436), SC_(2691.856610960288035586597960035050675795), SC_(0.3693920504125502100678479520619804484949e-439), SC_(1) },
{ SC_(11199.677734375), SC_(2.693786144256591796875), SC_(0.8350250720977783203125), SC_(0.4846281950960513689799422380816610977361e-882), SC_(0.1900690857842524014984635567886583437591e-10), SC_(0.2549747598860728410190825408241079567128e-871), SC_(1) },
- { SC_(11672.794921875), SC_(151.0876007080078125), SC_(0.3082362115383148193359375), SC_(0.5737665427335230575523667671751519408751e-5994), SC_(0.1066411814561236409434102801689669503075e-351), SC_(0.5380346831299811573931802848624492607659e-5642), SC_(1) },
+ { SC_(11672.794921875), SC_(151.0876007080078125), SC_(0.3082362115383148193359375), SC_(BOOST_MATH_SMALL_CONSTANT(0.5737665427335230575523667671751519408751e-5994)), SC_(0.1066411814561236409434102801689669503075e-351), SC_(BOOST_MATH_SMALL_CONSTANT(0.5380346831299811573931802848624492607659e-5642)), SC_(1) },
{ SC_(11802.0439453125), SC_(0.0215594768524169921875), SC_(0.81474220752716064453125), SC_(0.3169522110929015172287107743853420674783e-1053), SC_(37.43972471890515899015607804901055773783), SC_(0.8465666173364163445990163934368844000655e-1055), SC_(1) },
{ SC_(12400.75390625), SC_(0.351217095158062875270843505859375e-4), SC_(0.913384497165679931640625), SC_(0.1106557530092916473993753368683133042285e-490), SC_(28462.41726270018294068189654350498967089), SC_(0.3887784793117530075305939975237267838173e-495), SC_(1) },
- { SC_(12677.8505859375), SC_(38.009876251220703125), SC_(0.1355634629726409912109375), SC_(0.9770029059207102099490143013811735760616e-11009), SC_(0.1492641238077330770184205950231500370148e-112), SC_(0.6545463712225895469605766540125052659091e-10896), SC_(1) },
- { SC_(13303.708984375), SC_(16683.587890625), SC_(0.905801355838775634765625), SC_(0.1933259776074049940506534044874302951426e-8945), SC_(0.417959873762397775217420769886278674411e-17692), SC_(1), SC_(0.2161943671176804100612026364980929327471e-8746) },
+ { SC_(12677.8505859375), SC_(38.009876251220703125), SC_(0.1355634629726409912109375), SC_(BOOST_MATH_SMALL_CONSTANT(0.9770029059207102099490143013811735760616e-11009)), SC_(0.1492641238077330770184205950231500370148e-112), SC_(BOOST_MATH_SMALL_CONSTANT(0.6545463712225895469605766540125052659091e-10896)), SC_(1) },
+ { SC_(13303.708984375), SC_(16683.587890625), SC_(0.905801355838775634765625), SC_(BOOST_MATH_SMALL_CONSTANT(0.1933259776074049940506534044874302951426e-8945)), SC_(BOOST_MATH_SMALL_CONSTANT(0.417959873762397775217420769886278674411e-17692)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.2161943671176804100612026364980929327471e-8746)) },
{ SC_(13483.087890625), SC_(3.4626166820526123046875), SC_(0.913384497165679931640625), SC_(0.5549699412116022378520103010599550872238e-537), SC_(0.159864431299585207613567103065375578284e-13), SC_(0.347150355272956950177545390769399859092e-523), SC_(1) },
- { SC_(13500.0146484375), SC_(0.0147750042378902435302734375), SC_(0.221111953258514404296875), SC_(0.1705934191262976500825609090119819526895e-8851), SC_(58.32040248375219115941908275056004877979), SC_(0.292510702706182848954962974234494531825e-8853), SC_(1) },
+ { SC_(13500.0146484375), SC_(0.0147750042378902435302734375), SC_(0.221111953258514404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.1705934191262976500825609090119819526895e-8851)), SC_(58.32040248375219115941908275056004877979), SC_(BOOST_MATH_SMALL_CONSTANT(0.292510702706182848954962974234494531825e-8853)), SC_(1) },
{ SC_(14277.6669921875), SC_(275.66424560546875), SC_(0.632396042346954345703125), SC_(0.1187658379676931288134484422703850186642e-2964), SC_(0.5630317048018228546398578271006617933091e-594), SC_(0.2109398759515622504280670173384052208024e-2370), SC_(1) },
- { SC_(15026.18359375), SC_(191435.6875), SC_(0.905801355838775634765625), SC_(0.2119395103570560832804887387441312169326e-23383), SC_(0.4640380238764152752098128051205651494234e-197055), SC_(1), SC_(0.2189483325193339055602886539896657820207e-173671) },
- { SC_(15514.759765625), SC_(469.305145263671875), SC_(0.12707412242889404296875), SC_(0.6792116795333714050014097120690611996861e-13932), SC_(0.1551617501782117229216160679908864375336e-920), SC_(0.4377442757337164534594408118556290623672e-13011), SC_(1) },
+ { SC_(15026.18359375), SC_(191435.6875), SC_(0.905801355838775634765625), SC_(BOOST_MATH_SMALL_CONSTANT(0.2119395103570560832804887387441312169326e-23383)), SC_(BOOST_MATH_SMALL_CONSTANT(0.4640380238764152752098128051205651494234e-197055)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.2189483325193339055602886539896657820207e-173671)) },
+ { SC_(15514.759765625), SC_(469.305145263671875), SC_(0.12707412242889404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.6792116795333714050014097120690611996861e-13932)), SC_(0.1551617501782117229216160679908864375336e-920), SC_(BOOST_MATH_SMALL_CONSTANT(0.4377442757337164534594408118556290623672e-13011)), SC_(1) },
{ SC_(15687.4873046875), SC_(0.000288298237137496471405029296875), SC_(0.905801355838775634765625), SC_(0.6096020893529961277223878428636413874687e-677), SC_(3458.407825009435937506481330445155152371), SC_(0.1762666869258928091512979989687453621203e-680), SC_(1) },
{ SC_(17074.203125), SC_(0.00107910879887640476226806640625), SC_(0.8350250720977783203125), SC_(0.427457964385380263638580848973505633587e-1340), SC_(916.4262639951811326129298125584673977294), SC_(0.4664401067270459379336484710267800483659e-1343), SC_(1) },
{ SC_(17224.67578125), SC_(0.0225061289966106414794921875), SC_(0.632396042346954345703125), SC_(0.1955070422559485104388995940681677254754e-3431), SC_(35.22874831250725228282816191624496159701), SC_(0.5549644867357881744630482252448403510375e-3433), SC_(1) },
- { SC_(17285.642578125), SC_(252.595855712890625), SC_(0.221111953258514404296875), SC_(0.4579155613408594147943987501378120777984e-11360), SC_(0.1329327800877027982650034796865467411697e-574), SC_(0.3444715148804894150399635636083692920444e-10785), SC_(1) },
- { SC_(17364.01171875), SC_(0.0032844119705259799957275390625), SC_(0.12707412242889404296875), SC_(0.4534117685393013223625663165569470156362e-15561), SC_(294.3053538476502534219745888362523594316), SC_(0.154061678665218540123085427908925128439e-15563), SC_(1) },
- { SC_(18709.283203125), SC_(311063.03125), SC_(0.8350250720977783203125), SC_(0.1623326155096450649755434641645297779583e-31206), SC_(0.199146209059788229813537624593649188508e-244902), SC_(1), SC_(0.1226778786472246969416903414773867933151e-213695) },
- { SC_(18712.064453125), SC_(125.128173828125), SC_(0.1355634629726409912109375), SC_(0.296851932434343132924442873205905982913e-16251), SC_(0.5056024816465771861278220568508739133031e-327), SC_(0.587125149124261132925097733767024791782e-15924), SC_(1) },
- { SC_(18950.81640625), SC_(0.02248309552669525146484375), SC_(0.12707412242889404296875), SC_(0.8531376165533034514490752209777736500755e-16983), SC_(35.19754234719377982457251861372588583048), SC_(0.2423855643493024101837650235108650041103e-16984), SC_(1) },
- { SC_(18966.861328125), SC_(0.00021034784731455147266387939453125), SC_(0.3082362115383148193359375), SC_(0.4066547098951612620721277536808353340447e-9698), SC_(4743.61407389308172270355006936173880486), SC_(0.8572676941263477256811863073166251697026e-9702), SC_(1) },
- { SC_(19108.51171875), SC_(1.5829699039459228515625), SC_(0.3082362115383148193359375), SC_(0.8971659142595029657488728896907354438759e-9771), SC_(0.1489910955347552015717735020626187042582e-6), SC_(0.6021607607081597568215929208053439043328e-9764), SC_(1) },
+ { SC_(17285.642578125), SC_(252.595855712890625), SC_(0.221111953258514404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.4579155613408594147943987501378120777984e-11360)), SC_(0.1329327800877027982650034796865467411697e-574), SC_(BOOST_MATH_SMALL_CONSTANT(0.3444715148804894150399635636083692920444e-10785)), SC_(1) },
+ { SC_(17364.01171875), SC_(0.0032844119705259799957275390625), SC_(0.12707412242889404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.4534117685393013223625663165569470156362e-15561)), SC_(294.3053538476502534219745888362523594316), SC_(BOOST_MATH_SMALL_CONSTANT(0.154061678665218540123085427908925128439e-15563)), SC_(1) },
+ { SC_(18709.283203125), SC_(311063.03125), SC_(0.8350250720977783203125), SC_(BOOST_MATH_SMALL_CONSTANT(0.1623326155096450649755434641645297779583e-31206)), SC_(BOOST_MATH_SMALL_CONSTANT(0.199146209059788229813537624593649188508e-244902)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.1226778786472246969416903414773867933151e-213695)) },
+ { SC_(18712.064453125), SC_(125.128173828125), SC_(0.1355634629726409912109375), SC_(BOOST_MATH_SMALL_CONSTANT(0.296851932434343132924442873205905982913e-16251)), SC_(0.5056024816465771861278220568508739133031e-327), SC_(BOOST_MATH_SMALL_CONSTANT(0.587125149124261132925097733767024791782e-15924)), SC_(1) },
+ { SC_(18950.81640625), SC_(0.02248309552669525146484375), SC_(0.12707412242889404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.8531376165533034514490752209777736500755e-16983)), SC_(35.19754234719377982457251861372588583048), SC_(BOOST_MATH_SMALL_CONSTANT(0.2423855643493024101837650235108650041103e-16984)), SC_(1) },
+ { SC_(18966.861328125), SC_(0.00021034784731455147266387939453125), SC_(0.3082362115383148193359375), SC_(BOOST_MATH_SMALL_CONSTANT(0.4066547098951612620721277536808353340447e-9698)), SC_(4743.61407389308172270355006936173880486), SC_(BOOST_MATH_SMALL_CONSTANT(0.8572676941263477256811863073166251697026e-9702)), SC_(1) },
+ { SC_(19108.51171875), SC_(1.5829699039459228515625), SC_(0.3082362115383148193359375), SC_(BOOST_MATH_SMALL_CONSTANT(0.8971659142595029657488728896907354438759e-9771)), SC_(0.1489910955347552015717735020626187042582e-6), SC_(BOOST_MATH_SMALL_CONSTANT(0.6021607607081597568215929208053439043328e-9764)), SC_(1) },
{ SC_(19766.611328125), SC_(1197.8387451171875), SC_(0.8350250720977783203125), SC_(0.3185318408399375391201349006284076382164e-2488), SC_(0.6244715042856530734735781967451609038198e-1995), SC_(0.5100822674115662637340284485698509200389e-493), SC_(1) },
- { SC_(19945.158203125), SC_(1.323333263397216796875), SC_(0.1355634629726409912109375), SC_(0.1341686475958076796448446957548106673943e-17313), SC_(0.18252239404929000361227231329604692237e-5), SC_(0.7350804721505875082771016025446126632403e-17308), SC_(1) },
+ { SC_(19945.158203125), SC_(1.323333263397216796875), SC_(0.1355634629726409912109375), SC_(BOOST_MATH_SMALL_CONSTANT(0.1341686475958076796448446957548106673943e-17313)), SC_(0.18252239404929000361227231329604692237e-5), SC_(BOOST_MATH_SMALL_CONSTANT(0.7350804721505875082771016025446126632403e-17308)), SC_(1) },
{ SC_(20612.880859375), SC_(0.0045445901341736316680908203125), SC_(0.913384497165679931640625), SC_(0.5026950516660181375002184069309382660166e-814), SC_(209.7816273601100812081722221573307482765), SC_(0.2396277777000434612070453109788469106733e-816), SC_(1) },
- { SC_(21002.7890625), SC_(3.6717395782470703125), SC_(0.12707412242889404296875), SC_(0.1662262372153926156509978579564012413128e-18821), SC_(0.5439464377981884946280312356646226100979e-15), SC_(0.3055930247254690249520818325673208514748e-18806), SC_(1) },
- { SC_(21820.291015625), SC_(4256.572265625), SC_(0.905801355838775634765625), SC_(0.1236249902866452151132958091361628613911e-5040), SC_(0.137446002602018047941490836678526755619e-5307), SC_(1), SC_(0.1111797883933713598996484573949101107612e-266) },
- { SC_(22356.583984375), SC_(457832.53125), SC_(0.913384497165679931640625), SC_(0.2427624054077081053070462603157523396911e-39260), SC_(0.2811118692419803409475001024557664483642e-487288), SC_(1), SC_(0.1157971180792454683526657616202966016306e-448027) },
- { SC_(22697.115234375), SC_(0.3655127875390462577342987060546875e-4), SC_(0.12707412242889404296875), SC_(0.2422351225756202534756635143055666957355e-20339), SC_(27348.21883352735268633229163531358469692), SC_(0.8857436897449929818388276572775353757861e-20344), SC_(1) },
- { SC_(23467.970703125), SC_(2143.580810546875), SC_(0.632396042346954345703125), SC_(0.1302191943227601633813919978470740088649e-5605), SC_(0.4256209373395801514253968777699399700945e-3201), SC_(0.3059511008474313899338424120814023168547e-2404), SC_(1) },
- { SC_(23857.951171875), SC_(344059.4375), SC_(0.221111953258514404296875), SC_(0.1820268245405173677104573378456949715364e-38365), SC_(0.9855951801856089118034713573367093594693e-52980), SC_(1), SC_(0.5414560093950467116381035650090584886562e-14614) },
+ { SC_(21002.7890625), SC_(3.6717395782470703125), SC_(0.12707412242889404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.1662262372153926156509978579564012413128e-18821)), SC_(0.5439464377981884946280312356646226100979e-15), SC_(BOOST_MATH_SMALL_CONSTANT(0.3055930247254690249520818325673208514748e-18806)), SC_(1) },
+ { SC_(21820.291015625), SC_(4256.572265625), SC_(0.905801355838775634765625), SC_(BOOST_MATH_SMALL_CONSTANT(0.1236249902866452151132958091361628613911e-5040)), SC_(BOOST_MATH_SMALL_CONSTANT(0.137446002602018047941490836678526755619e-5307)), SC_(1), SC_(0.1111797883933713598996484573949101107612e-266) },
+ { SC_(22356.583984375), SC_(457832.53125), SC_(0.913384497165679931640625), SC_(BOOST_MATH_SMALL_CONSTANT(0.2427624054077081053070462603157523396911e-39260)), SC_(BOOST_MATH_SMALL_CONSTANT(0.2811118692419803409475001024557664483642e-487288)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.1157971180792454683526657616202966016306e-448027)) },
+ { SC_(22697.115234375), SC_(0.3655127875390462577342987060546875e-4), SC_(0.12707412242889404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.2422351225756202534756635143055666957355e-20339)), SC_(27348.21883352735268633229163531358469692), SC_(BOOST_MATH_SMALL_CONSTANT(0.8857436897449929818388276572775353757861e-20344)), SC_(1) },
+ { SC_(23467.970703125), SC_(2143.580810546875), SC_(0.632396042346954345703125), SC_(BOOST_MATH_SMALL_CONSTANT(0.1302191943227601633813919978470740088649e-5605)), SC_(0.4256209373395801514253968777699399700945e-3201), SC_(0.3059511008474313899338424120814023168547e-2404), SC_(1) },
+ { SC_(23857.951171875), SC_(344059.4375), SC_(0.221111953258514404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.1820268245405173677104573378456949715364e-38365)), SC_(BOOST_MATH_SMALL_CONSTANT(0.9855951801856089118034713573367093594693e-52980)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.5414560093950467116381035650090584886562e-14614)) },
{ SC_(23897.50390625), SC_(0.0264662839472293853759765625), SC_(0.905801355838775634765625), SC_(0.6537725144721824905665984618756409566583e-1030), SC_(28.51287213248977398680191123392335013322), SC_(0.2292903048960905878796791478694241369087e-1031), SC_(1) },
{ SC_(24178.228515625), SC_(454.8056640625), SC_(0.905801355838775634765625), SC_(0.1785916433983294692635116615174974457353e-1508), SC_(0.7879600822752658967292127616670030077666e-985), SC_(0.2266506228115503474591694981080031053324e-523), SC_(1) },
- { SC_(24181.37109375), SC_(463750.875), SC_(0.12707412242889404296875), SC_(0.1849255643263548665067441360065463603155e-41792), SC_(0.3146356315397489737950931076379571144576e-49041), SC_(1), SC_(0.1701417717371314989041581514224517991596e-7248) },
- { SC_(24202.947265625), SC_(0.000431136810220777988433837890625), SC_(0.1355634629726409912109375), SC_(0.9414521021069579791689130150635411436057e-21009), SC_(2308.802802750210144576162773483800451287), SC_(0.4077663544870591868832466457655898176825e-21012), SC_(1) },
- { SC_(24814.5078125), SC_(0.0022801845334470272064208984375), SC_(0.221111953258514404296875), SC_(0.3876201512836319382668825596201791404601e-16267), SC_(427.9958316303507195186244355967105304424), SC_(0.9056633794938679563008497581469693912042e-16270), SC_(1) },
- { SC_(24942.55078125), SC_(0.03099299408495426177978515625), SC_(0.1355634629726409912109375), SC_(0.1225881087866866874909840493874552423954e-21650), SC_(23.17560209270867089614435392066751649514), SC_(0.5289532858576926135978436656838263708535e-21652), SC_(1) },
+ { SC_(24181.37109375), SC_(463750.875), SC_(0.12707412242889404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.1849255643263548665067441360065463603155e-41792)), SC_(BOOST_MATH_SMALL_CONSTANT(0.3146356315397489737950931076379571144576e-49041)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.1701417717371314989041581514224517991596e-7248)) },
+ { SC_(24202.947265625), SC_(0.000431136810220777988433837890625), SC_(0.1355634629726409912109375), SC_(BOOST_MATH_SMALL_CONSTANT(0.9414521021069579791689130150635411436057e-21009)), SC_(2308.802802750210144576162773483800451287), SC_(BOOST_MATH_SMALL_CONSTANT(0.4077663544870591868832466457655898176825e-21012)), SC_(1) },
+ { SC_(24814.5078125), SC_(0.0022801845334470272064208984375), SC_(0.221111953258514404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.3876201512836319382668825596201791404601e-16267)), SC_(427.9958316303507195186244355967105304424), SC_(BOOST_MATH_SMALL_CONSTANT(0.9056633794938679563008497581469693912042e-16270)), SC_(1) },
+ { SC_(24942.55078125), SC_(0.03099299408495426177978515625), SC_(0.1355634629726409912109375), SC_(BOOST_MATH_SMALL_CONSTANT(0.1225881087866866874909840493874552423954e-21650)), SC_(23.17560209270867089614435392066751649514), SC_(BOOST_MATH_SMALL_CONSTANT(0.5289532858576926135978436656838263708535e-21652)), SC_(1) },
{ SC_(25332.25390625), SC_(0.1855850517749786376953125), SC_(0.8350250720977783203125), SC_(0.507984703157042916373804360059617322265e-1987), SC_(0.7568185447119811054787401996866618079721), SC_(0.671210697341413957308514820423884955283e-1987), SC_(1) },
{ SC_(25354.7421875), SC_(0.02945673465728759765625), SC_(0.9688708782196044921875), SC_(0.6813421592537537934114140295569834417605e-351), SC_(24.77466284487784724303745251655406030537), SC_(0.2750157140461836973908132806701626197706e-352), SC_(1) },
{ SC_(25489.81640625), SC_(0.00049681845121085643768310546875), SC_(0.8350250720977783203125), SC_(0.3241670731870165278670277444065337162173e-1999), SC_(2002.113381083162552722948484655907114959), SC_(0.1619124452440545751504157926476730166189e-2002), SC_(1) },
{ SC_(26425.1640625), SC_(307.398162841796875), SC_(0.913384497165679931640625), SC_(0.240837043913045867013176071571758822933e-1369), SC_(0.1895505175800123992274428762526147765707e-729), SC_(0.1270569170624314329751710900359604903738e-639), SC_(1) },
- { SC_(26463.7421875), SC_(19163.873046875), SC_(0.12707412242889404296875), SC_(0.3811618166243515739079675218011879119595e-24845), SC_(0.6205606313458244734681171673982181745552e-13482), SC_(0.6142217172199869571772476440726756588e-11363), SC_(1) },
- { SC_(26537.091796875), SC_(270229.28125), SC_(0.81474220752716064453125), SC_(0.7840170224157673881647928730837906756439e-38821), SC_(0.1472617967355003738702596497793040110774e-200234), SC_(1), SC_(0.1878298461961286974428732052785606229546e-161413) },
+ { SC_(26463.7421875), SC_(19163.873046875), SC_(0.12707412242889404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.3811618166243515739079675218011879119595e-24845)), SC_(BOOST_MATH_SMALL_CONSTANT(0.6205606313458244734681171673982181745552e-13482)), SC_(BOOST_MATH_SMALL_CONSTANT(0.6142217172199869571772476440726756588e-11363)), SC_(1) },
+ { SC_(26537.091796875), SC_(270229.28125), SC_(0.81474220752716064453125), SC_(BOOST_MATH_SMALL_CONSTANT(0.7840170224157673881647928730837906756439e-38821)), SC_(BOOST_MATH_SMALL_CONSTANT(0.1472617967355003738702596497793040110774e-200234)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.1878298461961286974428732052785606229546e-161413)) },
{ SC_(26844.490234375), SC_(0.000473332009278237819671630859375), SC_(0.9688708782196044921875), SC_(0.2465535777981155170717536487881773845459e-371), SC_(2101.934770935125324206281681756040345732), SC_(0.1172983963191335457974021591141553130826e-374), SC_(1) },
{ SC_(27758.564453125), SC_(0.18002581782639026641845703125e-4), SC_(0.905801355838775634765625), SC_(0.7572136353491294299735386009252448431571e-1196), SC_(55536.78080233768051407979393020163072174), SC_(0.1363445313915740025302288081798092363667e-1200), SC_(1) },
- { SC_(28065.55078125), SC_(3.5871093273162841796875), SC_(0.221111953258514404296875), SC_(0.2831918939336931775182831068832737617574e-18398), SC_(0.4052213968913740427625123980894064134795e-15), SC_(0.6988572077046741208424416664469332024614e-18383), SC_(1) },
- { SC_(28187.794921875), SC_(384992.25), SC_(0.632396042346954345703125), SC_(0.4195483788367892268291818901823265579288e-44685), SC_(0.4922837564878794849276603313467462725246e-172940), SC_(1), SC_(0.1173365888941702808662502166307690959849e-128254) },
- { SC_(30225.46484375), SC_(0.1016343958326615393161773681640625e-4), SC_(0.632396042346954345703125), SC_(0.5735445758829078877322279214267862293538e-6019), SC_(98380.99406981288047553435885352296888513), SC_(0.5829831069565231146984689007106713301415e-6024), SC_(1) },
- { SC_(30472.796875), SC_(42078.734375), SC_(0.8350250720977783203125), SC_(0.9483704074780328821085578083750287302226e-21437), SC_(0.2655891017223718785870199558721735657561e-35320), SC_(1), SC_(0.2800478585457378085797559061293897649618e-13883) },
+ { SC_(28065.55078125), SC_(3.5871093273162841796875), SC_(0.221111953258514404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.2831918939336931775182831068832737617574e-18398)), SC_(0.4052213968913740427625123980894064134795e-15), SC_(BOOST_MATH_SMALL_CONSTANT(0.6988572077046741208424416664469332024614e-18383)), SC_(1) },
+ { SC_(28187.794921875), SC_(384992.25), SC_(0.632396042346954345703125), SC_(BOOST_MATH_SMALL_CONSTANT(0.4195483788367892268291818901823265579288e-44685)), SC_(BOOST_MATH_SMALL_CONSTANT(0.4922837564878794849276603313467462725246e-172940)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.1173365888941702808662502166307690959849e-128254)) },
+ { SC_(30225.46484375), SC_(0.1016343958326615393161773681640625e-4), SC_(0.632396042346954345703125), SC_(BOOST_MATH_SMALL_CONSTANT(0.5735445758829078877322279214267862293538e-6019)), SC_(98380.99406981288047553435885352296888513), SC_(BOOST_MATH_SMALL_CONSTANT(0.5829831069565231146984689007106713301415e-6024)), SC_(1) },
+ { SC_(30472.796875), SC_(42078.734375), SC_(0.8350250720977783203125), SC_(BOOST_MATH_SMALL_CONSTANT(0.9483704074780328821085578083750287302226e-21437)), SC_(BOOST_MATH_SMALL_CONSTANT(0.2655891017223718785870199558721735657561e-35320)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.2800478585457378085797559061293897649618e-13883)) },
{ SC_(31113.873046875), SC_(2243.24951171875), SC_(0.9688708782196044921875), SC_(0.1738403130458333833378719546384908867263e-3571), SC_(0.2483709955132829075876446969586895664448e-3810), SC_(1), SC_(0.1428730719368868973678261648125656163208e-238) },
{ SC_(31202.068359375), SC_(0.3144348561763763427734375), SC_(0.9688708782196044921875), SC_(0.1014606551373880184881575878619157270648e-431), SC_(0.1099900996643561454577515798148436940672), SC_(0.9224526157081734634028730038649490917215e-431), SC_(1) },
{ SC_(31365.501953125), SC_(42.0266265869140625), SC_(0.8350250720977783203125), SC_(0.2922365214408881636459506278468027347876e-2492), SC_(0.3844722578182003219478844936798405179602e-139), SC_(0.7600978106958076047155690712834246165663e-2353), SC_(1) },
{ SC_(31426.568359375), SC_(3.5692617893218994140625), SC_(0.905801355838775634765625), SC_(0.3636457231475868049124966817745055235491e-1357), SC_(0.3184250129085964454474326617632075570021e-15), SC_(0.1142013687385704574933108386765313909448e-1341), SC_(1) },
- { SC_(32071.69921875), SC_(37284.46484375), SC_(0.632396042346954345703125), SC_(0.1415938233451437073644891654526396338438e-20794), SC_(0.5554990610707697922721920634839578452726e-22591), SC_(1), SC_(0.3923187099176681260861333290360925901128e-1796) },
+ { SC_(32071.69921875), SC_(37284.46484375), SC_(0.632396042346954345703125), SC_(BOOST_MATH_SMALL_CONSTANT(0.1415938233451437073644891654526396338438e-20794)), SC_(BOOST_MATH_SMALL_CONSTANT(0.5554990610707697922721920634839578452726e-22591)), SC_(1), SC_(0.3923187099176681260861333290360925901128e-1796) },
{ SC_(32841.03515625), SC_(0.00211882009170949459075927734375), SC_(0.81474220752716064453125), SC_(0.1061606319772079274790936641952283975456e-2925), SC_(461.1125150121719098661013588359762674941), SC_(0.2302271756263341129412695244629710642605e-2928), SC_(1) },
{ SC_(33019.796875), SC_(0.3179961740970611572265625), SC_(0.913384497165679931640625), SC_(0.9925450963325257937067158349703657211857e-1303), SC_(0.1028972504039433204138221286589713750593), SC_(0.9645982690850294997294805844164437309475e-1302), SC_(1) },
- { SC_(33341.328125), SC_(44482.7265625), SC_(0.3082362115383148193359375), SC_(0.4158755572080177693624137640217208898905e-24164), SC_(0.2696826538514875460811876828109498848842e-23081), SC_(0.1542092349169174552498114444757830719228e-1082), SC_(1) },
- { SC_(33342.82421875), SC_(33088.58203125), SC_(0.81474220752716064453125), SC_(0.4511196723857646439931417508868110380746e-19999), SC_(0.4047086548745808875099380119057871658307e-27199), SC_(1), SC_(0.8971203865578789500681498288400685913727e-7200) },
- { SC_(34105.53125), SC_(27232.5546875), SC_(0.1355634629726409912109375), SC_(0.858632509974686789044520831374440759616e-31326), SC_(0.193563172259515494452895394204534986601e-18298), SC_(0.443592910754476814082200170995698799272e-13027), SC_(1) },
+ { SC_(33341.328125), SC_(44482.7265625), SC_(0.3082362115383148193359375), SC_(BOOST_MATH_SMALL_CONSTANT(0.4158755572080177693624137640217208898905e-24164)), SC_(BOOST_MATH_SMALL_CONSTANT(0.2696826538514875460811876828109498848842e-23081)), SC_(0.1542092349169174552498114444757830719228e-1082), SC_(1) },
+ { SC_(33342.82421875), SC_(33088.58203125), SC_(0.81474220752716064453125), SC_(BOOST_MATH_SMALL_CONSTANT(0.4511196723857646439931417508868110380746e-19999)), SC_(BOOST_MATH_SMALL_CONSTANT(0.4047086548745808875099380119057871658307e-27199)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.8971203865578789500681498288400685913727e-7200)) },
+ { SC_(34105.53125), SC_(27232.5546875), SC_(0.1355634629726409912109375), SC_(BOOST_MATH_SMALL_CONSTANT(0.858632509974686789044520831374440759616e-31326)), SC_(BOOST_MATH_SMALL_CONSTANT(0.193563172259515494452895394204534986601e-18298)), SC_(BOOST_MATH_SMALL_CONSTANT(0.443592910754476814082200170995698799272e-13027)), SC_(1) },
{ SC_(34199.625), SC_(0.000267275259830057621002197265625), SC_(0.81474220752716064453125), SC_(0.132643294506611330073418825528524868617e-3046), SC_(3730.460399129728567420227043754630634483), SC_(0.3555681613388937499195389288597612766175e-3050), SC_(1) },
{ SC_(34657.7421875), SC_(103.4410247802734375), SC_(0.81474220752716064453125), SC_(0.4146866532289065093188708344417768991589e-3163), SC_(0.159293278333510523988593026460220721103e-306), SC_(0.2603290343241488086207617300289569355598e-2856), SC_(1) },
{ SC_(34691.16796875), SC_(0.1412391960620880126953125), SC_(0.905801355838775634765625), SC_(0.5809634550216812209088028784875721779853e-1494), SC_(1.513770318715366625025854737630098626195), SC_(0.3837857354177119719624259539664969858835e-1494), SC_(1) },
{ SC_(35037.50390625), SC_(11.6895084381103515625), SC_(0.9688708782196044921875), SC_(0.1392515511651523124059194101920454621853e-501), SC_(0.141084174330549940047030109734968874949e-45), SC_(0.9870104271149227190945465193986459578784e-456), SC_(1) },
- { SC_(35093.859375), SC_(0.19068343937397003173828125), SC_(0.12707412242889404296875), SC_(0.2564880079031630591421972951902695966518e-31446), SC_(0.6563018747289881100024884524131931727022), SC_(0.3908079769070851238843257638900015112909e-31446), SC_(1) },
- { SC_(35247.55078125), SC_(0.00044111299212090671062469482421875), SC_(0.12707412242889404296875), SC_(0.524416373059227452327029532233653483142e-31584), SC_(2255.97273393481107215818585100800014121), SC_(0.2324568755512189035231803971642924529304e-31587), SC_(1) },
+ { SC_(35093.859375), SC_(0.19068343937397003173828125), SC_(0.12707412242889404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.2564880079031630591421972951902695966518e-31446)), SC_(0.6563018747289881100024884524131931727022), SC_(BOOST_MATH_SMALL_CONSTANT(0.3908079769070851238843257638900015112909e-31446)), SC_(1) },
+ { SC_(35247.55078125), SC_(0.00044111299212090671062469482421875), SC_(0.12707412242889404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.524416373059227452327029532233653483142e-31584)), SC_(2255.97273393481107215818585100800014121), SC_(BOOST_MATH_SMALL_CONSTANT(0.2324568755512189035231803971642924529304e-31587)), SC_(1) },
{ SC_(35426.453125), SC_(0.25611940145608969032764434814453125e-4), SC_(0.81474220752716064453125), SC_(0.8803503845736481738526768470619380243194e-3156), SC_(39033.23844697706670690655117716505316948), SC_(0.2255386484955687817889300452155100323305e-3160), SC_(1) },
- { SC_(35604.6640625), SC_(0.0404350571334362030029296875), SC_(0.3082362115383148193359375), SC_(0.2995110884485993993638424385068457774754e-18202), SC_(15.83573475873814293328067317403119221055), SC_(0.1891362118725368736323990363026947714916e-18203), SC_(1) },
- { SC_(36098.04296875), SC_(0.00035800389014184474945068359375), SC_(0.632396042346954345703125), SC_(0.9429878307894887982229671727138664099931e-7188), SC_(2782.216745908151514947359188102505687192), SC_(0.3389339928948222109519281563909451175851e-7191), SC_(1) },
+ { SC_(35604.6640625), SC_(0.0404350571334362030029296875), SC_(0.3082362115383148193359375), SC_(BOOST_MATH_SMALL_CONSTANT(0.2995110884485993993638424385068457774754e-18202)), SC_(15.83573475873814293328067317403119221055), SC_(BOOST_MATH_SMALL_CONSTANT(0.1891362118725368736323990363026947714916e-18203)), SC_(1) },
+ { SC_(36098.04296875), SC_(0.00035800389014184474945068359375), SC_(0.632396042346954345703125), SC_(BOOST_MATH_SMALL_CONSTANT(0.9429878307894887982229671727138664099931e-7188)), SC_(2782.216745908151514947359188102505687192), SC_(BOOST_MATH_SMALL_CONSTANT(0.3389339928948222109519281563909451175851e-7191)), SC_(1) },
{ SC_(36424.671875), SC_(0.020534180104732513427734375), SC_(0.913384497165679931640625), SC_(0.1998363537649993427821455663211980779133e-1436), SC_(38.80250984361917484278570877400762258836), SC_(0.5150088346614031104127057660043541503683e-1438), SC_(1) },
- { SC_(36495.27734375), SC_(2484.92626953125), SC_(0.81474220752716064453125), SC_(0.2891129665563148807756785314594203541986e-5070), SC_(0.7483339000415565880282347712036234787721e-4016), SC_(0.3863422017100385497186393404241853178733e-1054), SC_(1) },
- { SC_(37065.7890625), SC_(2610.560791015625), SC_(0.1355634629726409912109375), SC_(0.3309451879311226443563015822821123087694e-32337), SC_(0.8761279815637359392108508293101243357992e-4182), SC_(0.3777361240539802091868865758227080822171e-28155), SC_(1) },
- { SC_(37207.1328125), SC_(3485.194091796875), SC_(0.913384497165679931640625), SC_(0.3056312468045395693244553222208424065696e-5168), SC_(0.9580419324916712053803069946390067494199e-5168), SC_(0.2418594078057093959803756377889539827651), SC_(0.7581405921942906040196243622110460172349) },
- { SC_(37353.54296875), SC_(12.2282161712646484375), SC_(0.632396042346954345703125), SC_(0.6127780828699515822469574632599335812528e-7443), SC_(0.8550114765655429655165308741366514996961e-48), SC_(0.7166898920835451515299975390148663687493e-7395), SC_(1) },
- { SC_(38782.8046875), SC_(35499.7734375), SC_(0.913384497165679931640625), SC_(0.3154615245272554347164260433201874137959e-22331), SC_(0.2883157131832080481457769642315887354047e-39245), SC_(1), SC_(0.9139488995219699877558490838998145341563e-16914) },
+ { SC_(36495.27734375), SC_(2484.92626953125), SC_(0.81474220752716064453125), SC_(BOOST_MATH_SMALL_CONSTANT(0.2891129665563148807756785314594203541986e-5070)), SC_(0.7483339000415565880282347712036234787721e-4016), SC_(0.3863422017100385497186393404241853178733e-1054), SC_(1) },
+ { SC_(37065.7890625), SC_(2610.560791015625), SC_(0.1355634629726409912109375), SC_(BOOST_MATH_SMALL_CONSTANT(0.3309451879311226443563015822821123087694e-32337)), SC_(0.8761279815637359392108508293101243357992e-4182), SC_(BOOST_MATH_SMALL_CONSTANT(0.3777361240539802091868865758227080822171e-28155)), SC_(1) },
+ { SC_(37207.1328125), SC_(3485.194091796875), SC_(0.913384497165679931640625), SC_(BOOST_MATH_SMALL_CONSTANT(0.3056312468045395693244553222208424065696e-5168)), SC_(BOOST_MATH_SMALL_CONSTANT(0.9580419324916712053803069946390067494199e-5168)), SC_(0.2418594078057093959803756377889539827651), SC_(0.7581405921942906040196243622110460172349) },
+ { SC_(37353.54296875), SC_(12.2282161712646484375), SC_(0.632396042346954345703125), SC_(BOOST_MATH_SMALL_CONSTANT(0.6127780828699515822469574632599335812528e-7443)), SC_(0.8550114765655429655165308741366514996961e-48), SC_(BOOST_MATH_SMALL_CONSTANT(0.7166898920835451515299975390148663687493e-7395)), SC_(1) },
+ { SC_(38782.8046875), SC_(35499.7734375), SC_(0.913384497165679931640625), SC_(BOOST_MATH_SMALL_CONSTANT(0.3154615245272554347164260433201874137959e-22331)), SC_(BOOST_MATH_SMALL_CONSTANT(0.2883157131832080481457769642315887354047e-39245)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.9139488995219699877558490838998145341563e-16914)) },
{ SC_(38926.94140625), SC_(0.02303241193294525146484375), SC_(0.8350250720977783203125), SC_(0.1499284844117009513270765293679465581648e-3051), SC_(33.60081130975603606394362964314838746437), SC_(0.4462049532957825788106406576933266995857e-3053), SC_(1) },
- { SC_(39031.0078125), SC_(0.00275336927734315395355224609375), SC_(0.1355634629726409912109375), SC_(0.1333042063563220018903085469232404224353e-33877), SC_(352.2136571794090544917638968073346300555), SC_(0.3784754044571874378745530172666885958958e-33880), SC_(1) },
- { SC_(39044.17578125), SC_(143514), SC_(0.9688708782196044921875), SC_(0.2445319239265617598939834130184288746047e-41153), SC_(0.9420859125561112963495678455294030032674e-216793), SC_(1), SC_(0.3852609088533733238151472859262645829194e-175639) },
- { SC_(39369.1875), SC_(0.004928432404994964599609375), SC_(0.632396042346954345703125), SC_(0.874124682703121149706250853273509037208e-7839), SC_(192.0514067601594880194418396360822303492), SC_(0.4551514083907537411987592363241931698251e-7841), SC_(1) },
- { SC_(39833.8984375), SC_(0.413198292255401611328125), SC_(0.632396042346954345703125), SC_(0.1890257504908931707894003312804909768565e-7931), SC_(0.02696284642773986106932257472445046354622), SC_(0.7010600716711425574687549185433903929967e-7930), SC_(1) },
- { SC_(40020.80078125), SC_(38980.671875), SC_(0.221111953258514404296875), SC_(0.1340168901428884537927946857577049637898e-30463), SC_(0.2583038216475443404512247159191887250728e-23780), SC_(0.5188343296203900135697408474883260619761e-6683), SC_(1) },
- { SC_(40673.2578125), SC_(3205.197998046875), SC_(0.3082362115383148193359375), SC_(0.6802197549545965984035196789549544466361e-21306), SC_(0.258943490416802222895137511807214102674e-4983), SC_(0.262690424794883651458380029209063549487e-16322), SC_(1) },
+ { SC_(39031.0078125), SC_(0.00275336927734315395355224609375), SC_(0.1355634629726409912109375), SC_(BOOST_MATH_SMALL_CONSTANT(0.1333042063563220018903085469232404224353e-33877)), SC_(352.2136571794090544917638968073346300555), SC_(BOOST_MATH_SMALL_CONSTANT(0.3784754044571874378745530172666885958958e-33880)), SC_(1) },
+ { SC_(39044.17578125), SC_(143514), SC_(0.9688708782196044921875), SC_(BOOST_MATH_SMALL_CONSTANT(0.2445319239265617598939834130184288746047e-41153)), SC_(BOOST_MATH_SMALL_CONSTANT(0.9420859125561112963495678455294030032674e-216793)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.3852609088533733238151472859262645829194e-175639)) },
+ { SC_(39369.1875), SC_(0.004928432404994964599609375), SC_(0.632396042346954345703125), SC_(BOOST_MATH_SMALL_CONSTANT(0.874124682703121149706250853273509037208e-7839)), SC_(192.0514067601594880194418396360822303492), SC_(BOOST_MATH_SMALL_CONSTANT(0.4551514083907537411987592363241931698251e-7841)), SC_(1) },
+ { SC_(39833.8984375), SC_(0.413198292255401611328125), SC_(0.632396042346954345703125), SC_(BOOST_MATH_SMALL_CONSTANT(0.1890257504908931707894003312804909768565e-7931)), SC_(0.02696284642773986106932257472445046354622), SC_(BOOST_MATH_SMALL_CONSTANT(0.7010600716711425574687549185433903929967e-7930)), SC_(1) },
+ { SC_(40020.80078125), SC_(38980.671875), SC_(0.221111953258514404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.1340168901428884537927946857577049637898e-30463)), SC_(BOOST_MATH_SMALL_CONSTANT(0.2583038216475443404512247159191887250728e-23780)), SC_(BOOST_MATH_SMALL_CONSTANT(0.5188343296203900135697408474883260619761e-6683)), SC_(1) },
+ { SC_(40673.2578125), SC_(3205.197998046875), SC_(0.3082362115383148193359375), SC_(BOOST_MATH_SMALL_CONSTANT(0.6802197549545965984035196789549544466361e-21306)), SC_(BOOST_MATH_SMALL_CONSTANT(0.258943490416802222895137511807214102674e-4983)), SC_(BOOST_MATH_SMALL_CONSTANT(0.262690424794883651458380029209063549487e-16322)), SC_(1) },
{ SC_(41349.45703125), SC_(38.29947662353515625), SC_(0.81474220752716064453125), SC_(0.6425739337486675098510616911375013747856e-3711), SC_(0.6234000656743663181579777483541679566988e-133), SC_(0.1030756923410907502062264526828802816786e-3577), SC_(1) },
- { SC_(41562.9375), SC_(0.26003241146099753677845001220703125e-4), SC_(0.221111953258514404296875), SC_(0.4451628432615203302839774316230569936245e-27244), SC_(38445.53395226496611584481972736517371363), SC_(0.1157905216804237334489568087834910631462e-27248), SC_(1) },
- { SC_(42022.34375), SC_(0.4905900061130523681640625), SC_(0.3082362115383148193359375), SC_(0.1417209460579730791079348883478424448945e-21482), SC_(0.009737853159983752988806478754785472880161), SC_(0.1455361297091170471303137485376139560109e-21480), SC_(1) },
+ { SC_(41562.9375), SC_(0.26003241146099753677845001220703125e-4), SC_(0.221111953258514404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.4451628432615203302839774316230569936245e-27244)), SC_(38445.53395226496611584481972736517371363), SC_(BOOST_MATH_SMALL_CONSTANT(0.1157905216804237334489568087834910631462e-27248)), SC_(1) },
+ { SC_(42022.34375), SC_(0.4905900061130523681640625), SC_(0.3082362115383148193359375), SC_(BOOST_MATH_SMALL_CONSTANT(0.1417209460579730791079348883478424448945e-21482)), SC_(0.009737853159983752988806478754785472880161), SC_(BOOST_MATH_SMALL_CONSTANT(0.1455361297091170471303137485376139560109e-21480)), SC_(1) },
{ SC_(42083.65625), SC_(4.19858837127685546875), SC_(0.9688708782196044921875), SC_(0.3768163821884418241224052326287648485896e-587), SC_(0.2978888719443599109772257168060445641745e-18), SC_(0.1264956222529937610270595263016474793515e-568), SC_(1) },
- { SC_(42177.98046875), SC_(2.612369060516357421875), SC_(0.632396042346954345703125), SC_(0.6282772223306738618674595731246666952309e-8399), SC_(0.1193491464720943905209382805095579667749e-11), SC_(0.5264195353735306700582799804942401915427e-8387), SC_(1) },
+ { SC_(42177.98046875), SC_(2.612369060516357421875), SC_(0.632396042346954345703125), SC_(BOOST_MATH_SMALL_CONSTANT(0.6282772223306738618674595731246666952309e-8399)), SC_(0.1193491464720943905209382805095579667749e-11), SC_(BOOST_MATH_SMALL_CONSTANT(0.5264195353735306700582799804942401915427e-8387)), SC_(1) },
{ SC_(42524.5078125), SC_(0.2802095115184783935546875), SC_(0.81474220752716064453125), SC_(0.1193524162120151495829870822995328691468e-3787), SC_(0.1622187320901969961897451599226976127073), SC_(0.7357499018402678581539835169646052661627e-3787), SC_(1) },
- { SC_(42581.58984375), SC_(0.37374455132521688938140869140625e-4), SC_(0.1355634629726409912109375), SC_(0.4880975703369441798957686255404298423277e-36959), SC_(26745.00891443861029221559998579428768041), SC_(0.1825004328465334394009465665206216869516e-36963), SC_(1) },
- { SC_(43662.40625), SC_(0.0046618557535111904144287109375), SC_(0.3082362115383148193359375), SC_(0.8908986356863706658573384931232469735442e-22321), SC_(203.5395372687220792563282284831229950607), SC_(0.4377029876559884758218235401695605907255e-22323), SC_(1) },
- { SC_(44090.55859375), SC_(0.10735684554674662649631500244140625e-4), SC_(0.3082362115383148193359375), SC_(0.1290253648236426039020448598282133966015e-22539), SC_(93136.0266985255526497037479478000941428), SC_(0.1385343238243222368094895425484609570952e-22544), SC_(1) },
+ { SC_(42581.58984375), SC_(0.37374455132521688938140869140625e-4), SC_(0.1355634629726409912109375), SC_(BOOST_MATH_SMALL_CONSTANT(0.4880975703369441798957686255404298423277e-36959)), SC_(26745.00891443861029221559998579428768041), SC_(BOOST_MATH_SMALL_CONSTANT(0.1825004328465334394009465665206216869516e-36963)), SC_(1) },
+ { SC_(43662.40625), SC_(0.0046618557535111904144287109375), SC_(0.3082362115383148193359375), SC_(BOOST_MATH_SMALL_CONSTANT(0.8908986356863706658573384931232469735442e-22321)), SC_(203.5395372687220792563282284831229950607), SC_(BOOST_MATH_SMALL_CONSTANT(0.4377029876559884758218235401695605907255e-22323)), SC_(1) },
+ { SC_(44090.55859375), SC_(0.10735684554674662649631500244140625e-4), SC_(0.3082362115383148193359375), SC_(BOOST_MATH_SMALL_CONSTANT(0.1290253648236426039020448598282133966015e-22539)), SC_(93136.0266985255526497037479478000941428), SC_(BOOST_MATH_SMALL_CONSTANT(0.1385343238243222368094895425484609570952e-22544)), SC_(1) },
{ SC_(44669.99609375), SC_(0.4677930337493307888507843017578125e-4), SC_(0.9688708782196044921875), SC_(0.2261282329889107346362825204067670515544e-616), SC_(21365.69378087691196235245281532328438315), SC_(0.1058370653946673552698442997883654609519e-620), SC_(1) },
{ SC_(45414.3828125), SC_(48.6922149658203125), SC_(0.905801355838775634765625), SC_(0.124686350330629295784253960815731543812e-2004), SC_(0.6241983475781985591204988281618446972134e-166), SC_(0.1997543742536242320628759391631820477378e-1838), SC_(1) },
- { SC_(45461.75390625), SC_(459125.75), SC_(0.3082362115383148193359375), SC_(0.9597732801097847670639475789719189038193e-66349), SC_(0.1694625349339944115847813449396605029185e-96720), SC_(1), SC_(0.1765651726776663809923506725204795102396e-30371) },
+ { SC_(45461.75390625), SC_(459125.75), SC_(0.3082362115383148193359375), SC_(BOOST_MATH_SMALL_CONSTANT(0.9597732801097847670639475789719189038193e-66349)), SC_(BOOST_MATH_SMALL_CONSTANT(0.1694625349339944115847813449396605029185e-96720)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.1765651726776663809923506725204795102396e-30371)) },
{ SC_(45960.19921875), SC_(49.68207550048828125), SC_(0.913384497165679931640625), SC_(0.1801858939735704757188458424142507079542e-1864), SC_(0.3958744688593045786782344257924267795688e-169), SC_(0.4551591682402971196985143943698001164995e-1695), SC_(1) },
- { SC_(46422.796875), SC_(0.11781878769397735595703125), SC_(0.221111953258514404296875), SC_(0.3128018409960626982809502420265694906417e-30429), SC_(2.260043414599503805378278737013694930524), SC_(0.1384052354815022296405819797968850482285e-30429), SC_(1) },
+ { SC_(46422.796875), SC_(0.11781878769397735595703125), SC_(0.221111953258514404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.3128018409960626982809502420265694906417e-30429)), SC_(2.260043414599503805378278737013694930524), SC_(BOOST_MATH_SMALL_CONSTANT(0.1384052354815022296405819797968850482285e-30429)), SC_(1) },
{ SC_(46983.234375), SC_(0.0014450610615313053131103515625), SC_(0.9688708782196044921875), SC_(0.3631579655779383458200579071191530299984e-648), SC_(680.7710207928221035284165757961012688395), SC_(0.5334509761520204264540019443624319725709e-651), SC_(1) },
- { SC_(47575.9296875), SC_(42.76256561279296875), SC_(0.221111953258514404296875), SC_(0.1281007314819202426546706305153763033198e-31189), SC_(0.5446274668111871054623429242369010326878e-149), SC_(0.2352079894757319391053891898620243458818e-31040), SC_(1) },
+ { SC_(47575.9296875), SC_(42.76256561279296875), SC_(0.221111953258514404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.1281007314819202426546706305153763033198e-31189)), SC_(0.5446274668111871054623429242369010326878e-149), SC_(BOOST_MATH_SMALL_CONSTANT(0.2352079894757319391053891898620243458818e-31040)), SC_(1) },
{ SC_(47586.44140625), SC_(449.601318359375), SC_(0.8350250720977783203125), SC_(0.1717885779363308110563529610640180833346e-4081), SC_(0.4055579985382530879990057548669177197369e-1107), SC_(0.4235857227708636823447501475688153166501e-2974), SC_(1) },
- { SC_(47823.16796875), SC_(2585.581787109375), SC_(0.12707412242889404296875), SC_(0.8873433122876154215235504655591740863431e-43004), SC_(0.6899131916765299728241300702373898959911e-4430), SC_(0.1286166611963627694262326368951666529208e-38573), SC_(1) },
+ { SC_(47823.16796875), SC_(2585.581787109375), SC_(0.12707412242889404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.8873433122876154215235504655591740863431e-43004)), SC_(0.6899131916765299728241300702373898959911e-4430), SC_(BOOST_MATH_SMALL_CONSTANT(0.1286166611963627694262326368951666529208e-38573)), SC_(1) },
{ SC_(48035.7734375), SC_(0.4999766315449960529804229736328125e-4), SC_(0.8350250720977783203125), SC_(0.7526697336024885931646505148613916252162e-3765), SC_(19989.58114015959355372790956380367867298), SC_(0.3765310179963477718170777308052048038044e-3769), SC_(1) },
{ SC_(48295.36328125), SC_(0.0023451945744454860687255859375), SC_(0.905801355838775634765625), SC_(0.1702399821655822132964248219814399971084e-2078), SC_(415.1934803800744794350002685129457832461), SC_(0.4100256632395622464631609228605330128581e-2081), SC_(1) },
- { SC_(48850.35546875), SC_(289555.46875), SC_(0.1355634629726409912109375), SC_(0.1294773939114091904070677516334875748016e-60717), SC_(0.1910549841723689253904285694417754227142e-60668), SC_(0.6776970225209894702083863339546688639084e-49), SC_(1) },
+ { SC_(48850.35546875), SC_(289555.46875), SC_(0.1355634629726409912109375), SC_(BOOST_MATH_SMALL_CONSTANT(0.1294773939114091904070677516334875748016e-60717)), SC_(BOOST_MATH_SMALL_CONSTANT(0.1910549841723689253904285694417754227142e-60668)), SC_(0.6776970225209894702083863339546688639084e-49), SC_(1) },
{ SC_(49373.98046875), SC_(222.311065673828125), SC_(0.9688708782196044921875), SC_(0.6106410258636356710957886396350286515268e-1016), SC_(0.6310884578023346318794902107496885899933e-619), SC_(0.9675997371114916339117077163833508385771e-397), SC_(1) },
{ SC_(49444.171875), SC_(4.673758029937744140625), SC_(0.81474220752716064453125), SC_(0.1214094340613585096764415398046112492438e-4406), SC_(0.1709328901299858846919930075689684944451e-20), SC_(0.710275441835873295036486702114009786702e-4386), SC_(1) },
- { SC_(49532.08984375), SC_(1899.7972412109375), SC_(0.221111953258514404296875), SC_(0.3285641253811721046295585659566089755466e-32673), SC_(0.4154294863215141418765544887779036460343e-3532), SC_(0.7909022739105375845300408580947121495777e-29141), SC_(1) },
- { SC_(49565.796875), SC_(27.7097911834716796875), SC_(0.12707412242889404296875), SC_(0.4032053953934215782773620452150408686366e-44414), SC_(0.3267223807451580153760937282811257617716e-102), SC_(0.1234091752373462195294816501093343638153e-44311), SC_(1) },
- { SC_(49846.2421875), SC_(49663.23828125), SC_(0.9688708782196044921875), SC_(0.862576376721314951484184712102874499511e-29957), SC_(0.3356710975950936547856944082829601692435e-75523), SC_(1), SC_(0.3891494210298130852536543532323001074747e-45566) },
- { SC_(49880.1328125), SC_(0.00046944446512497961521148681640625), SC_(0.221111953258514404296875), SC_(0.3811422605486493883342432112209493755269e-32695), SC_(2118.813642454311489365540333218677987084), SC_(0.1798847491406352196962183911656597563472e-32698), SC_(1) },
- { SC_(103920.8984375), SC_(0.111212420961237512528896331787109375e-4), SC_(0.221111953258514404296875), SC_(0.402724510532558600508958354716027788154e-68113), SC_(89905.88600644825125958799928771679492755), SC_(0.4479400942711073418907433981637247217451e-68118), SC_(1) },
- { SC_(112769.0546875), SC_(421.523895263671875), SC_(0.905801355838775634765625), SC_(0.1489938256413702851146155215564486467662e-5281), SC_(0.3067957656567422861129083322098226909147e-1207), SC_(0.4856449870565412989838005491171072436419e-4074), SC_(1) },
- { SC_(116919.109375), SC_(234197.234375), SC_(0.8350250720977783203125), SC_(0.2064958853295781582868627436497981502063e-97026), SC_(0.2390507369881614656651790264224788501208e-192438), SC_(1), SC_(0.115765375473038638637891869996823133935e-95411) },
- { SC_(117063.9375), SC_(0.4761638047057203948497772216796875e-4), SC_(0.8350250720977783203125), SC_(0.3557072314175628838245768895584561334308e-9170), SC_(20988.93220124087773696925323411944285242), SC_(0.1694737150070613253156363270278658624233e-9174), SC_(1) },
- { SC_(117666.234375), SC_(0.003791221417486667633056640625), SC_(0.905801355838775634765625), SC_(0.1521718998877627133096948856559430340768e-5059), SC_(251.797624834930194264630014030887089571), SC_(0.6043420782365256334800931559435553635151e-5062), SC_(1) },
- { SC_(119021.8671875), SC_(1724.5032958984375), SC_(0.8350250720977783203125), SC_(0.506791007427913391904456640012169560459e-10673), SC_(0.1395293850133434234550711107533045517001e-3926), SC_(0.3632145353320722644944857764132454568671e-6746), SC_(1) },
+ { SC_(49532.08984375), SC_(1899.7972412109375), SC_(0.221111953258514404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.3285641253811721046295585659566089755466e-32673)), SC_(0.4154294863215141418765544887779036460343e-3532), SC_(BOOST_MATH_SMALL_CONSTANT(0.7909022739105375845300408580947121495777e-29141)), SC_(1) },
+ { SC_(49565.796875), SC_(27.7097911834716796875), SC_(0.12707412242889404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.4032053953934215782773620452150408686366e-44414)), SC_(0.3267223807451580153760937282811257617716e-102), SC_(BOOST_MATH_SMALL_CONSTANT(0.1234091752373462195294816501093343638153e-44311)), SC_(1) },
+ { SC_(49846.2421875), SC_(49663.23828125), SC_(0.9688708782196044921875), SC_(BOOST_MATH_SMALL_CONSTANT(0.862576376721314951484184712102874499511e-29957)), SC_(BOOST_MATH_SMALL_CONSTANT(0.3356710975950936547856944082829601692435e-75523)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.3891494210298130852536543532323001074747e-45566)) },
+ { SC_(49880.1328125), SC_(0.00046944446512497961521148681640625), SC_(0.221111953258514404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.3811422605486493883342432112209493755269e-32695)), SC_(2118.813642454311489365540333218677987084), SC_(BOOST_MATH_SMALL_CONSTANT(0.1798847491406352196962183911656597563472e-32698)), SC_(1) },
+ { SC_(103920.8984375), SC_(0.111212420961237512528896331787109375e-4), SC_(0.221111953258514404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.402724510532558600508958354716027788154e-68113)), SC_(89905.88600644825125958799928771679492755), SC_(BOOST_MATH_SMALL_CONSTANT(0.4479400942711073418907433981637247217451e-68118)), SC_(1) },
+ { SC_(112769.0546875), SC_(421.523895263671875), SC_(0.905801355838775634765625), SC_(BOOST_MATH_SMALL_CONSTANT(0.1489938256413702851146155215564486467662e-5281)), SC_(0.3067957656567422861129083322098226909147e-1207), SC_(0.4856449870565412989838005491171072436419e-4074), SC_(1) },
+ { SC_(116919.109375), SC_(234197.234375), SC_(0.8350250720977783203125), SC_(BOOST_MATH_SMALL_CONSTANT(0.2064958853295781582868627436497981502063e-97026)), SC_(BOOST_MATH_SMALL_CONSTANT(0.2390507369881614656651790264224788501208e-192438)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.115765375473038638637891869996823133935e-95411)) },
+ { SC_(117063.9375), SC_(0.4761638047057203948497772216796875e-4), SC_(0.8350250720977783203125), SC_(BOOST_MATH_SMALL_CONSTANT(0.3557072314175628838245768895584561334308e-9170)), SC_(20988.93220124087773696925323411944285242), SC_(BOOST_MATH_SMALL_CONSTANT(0.1694737150070613253156363270278658624233e-9174)), SC_(1) },
+ { SC_(117666.234375), SC_(0.003791221417486667633056640625), SC_(0.905801355838775634765625), SC_(BOOST_MATH_SMALL_CONSTANT(0.1521718998877627133096948856559430340768e-5059)), SC_(251.797624834930194264630014030887089571), SC_(BOOST_MATH_SMALL_CONSTANT(0.6043420782365256334800931559435553635151e-5062)), SC_(1) },
+ { SC_(119021.8671875), SC_(1724.5032958984375), SC_(0.8350250720977783203125), SC_(BOOST_MATH_SMALL_CONSTANT(0.506791007427913391904456640012169560459e-10673)), SC_(0.1395293850133434234550711107533045517001e-3926), SC_(BOOST_MATH_SMALL_CONSTANT(0.3632145353320722644944857764132454568671e-6746)), SC_(1) },
{ SC_(121846.6484375), SC_(0.0102547816932201385498046875), SC_(0.9688708782196044921875), SC_(0.8947177053524591999969874426003937360555e-1677), SC_(85.97781064589153929768992522596508618429), SC_(0.1040637925798606503865143332970238762629e-1678), SC_(1) },
- { SC_(139635.859375), SC_(0.00359443644993007183074951171875), SC_(0.8350250720977783203125), SC_(0.1200411021373305972085728293542348706339e-10937), SC_(266.0598728377260065511100686016954842333), SC_(0.4511807844490157479272247531660627407605e-10940), SC_(1) },
- { SC_(139638.109375), SC_(0.00364904291927814483642578125), SC_(0.221111953258514404296875), SC_(0.7124698785671631677263569877949201217441e-91522), SC_(261.9007208942754265545010052942457193583), SC_(0.2720381509964511867366632709770210627566e-91524), SC_(1) },
- { SC_(140613.5625), SC_(0.04485572874546051025390625), SC_(0.905801355838775634765625), SC_(0.1213996798462934451546061797201029097163e-6045), SC_(12.78564295017450834301178895528450273433), SC_(0.9495000002689461028413898434572917976252e-6047), SC_(1) },
- { SC_(143155.5625), SC_(0.00386732374317944049835205078125), SC_(0.12707412242889404296875), SC_(0.4964902710277630208125952137476169753569e-128264), SC_(246.4257926660344960293210192076077331621), SC_(0.2014765847585708337294337097631779282769e-128266), SC_(1) },
- { SC_(149909.609375), SC_(2.0033237934112548828125), SC_(0.632396042346954345703125), SC_(0.5601865597517213906982198460312303425576e-29839), SC_(0.4282985391041620067373351878082277338411e-10), SC_(0.1307934789886089894651986816995366289121e-29828), SC_(1) },
- { SC_(155018.640625), SC_(0.27750885486602783203125), SC_(0.8350250720977783203125), SC_(0.2189600536278663888089739250282366199981e-12142), SC_(0.1177997645565165471561636064914377897339), SC_(0.1858747803547742923699583327919111965553e-12141), SC_(1) },
- { SC_(155105.15625), SC_(27467.107421875), SC_(0.632396042346954345703125), SC_(0.1102644209378919640642692274235750137785e-42809), SC_(0.2501495324258768121484793466326974864798e-33579), SC_(0.4407940317480506300101086260146805075637e-9230), SC_(1) },
- { SC_(155440.6875), SC_(25353.65625), SC_(0.8350250720977783203125), SC_(0.8941214025675720839947382390911459942351e-32016), SC_(0.7341950414271885193993490458038675049208e-31832), SC_(0.1217825444352641760127168800486312561702e-183), SC_(1) },
- { SC_(170849.5), SC_(0.00046143750660121440887451171875), SC_(0.8350250720977783203125), SC_(0.8932798569056563733432357552812282247856e-13382), SC_(2154.552031316987476016365197599340088807), SC_(0.4146011996561678697797342745398553532881e-13385), SC_(1) },
- { SC_(171593), SC_(0.0390150845050811767578125), SC_(0.1355634629726409912109375), SC_(0.3808818562331720430729550615151248330977e-148923), SC_(15.6782046961596187023865989050765796256), SC_(0.2429371625224852285654983284139567086578e-148924), SC_(1) },
- { SC_(172891), SC_(0.00412352383136749267578125), SC_(0.1355634629726409912109375), SC_(0.1261508876351832263878339216717470434296e-150049), SC_(230.2002478717688094390524743042864738996), SC_(0.54800500347616723860757541011092778473e-150052), SC_(1) },
- { SC_(175682.734375), SC_(342375.09375), SC_(0.913384497165679931640625), SC_(0.3387341086210335388285649512749436564435e-144096), SC_(0.1795794751912361346488594465486064257971e-370658), SC_(1), SC_(0.5301487822478035199922994877956397118574e-226562) },
- { SC_(177298.140625), SC_(0.00180856394581496715545654296875), SC_(0.632396042346954345703125), SC_(0.8516891724051227220598361169759734476922e-35289), SC_(540.4074280614505942989554143978724575293), SC_(0.1576013074913314814731763422753196121745e-35291), SC_(1) },
- { SC_(184058.265625), SC_(0.0481239259243011474609375), SC_(0.3082362115383148193359375), SC_(0.5011685357386681038084289717245581028305e-94080), SC_(11.29830628383595379593224834916619211301), SC_(0.4435784649028946789930916331332918288727e-94081), SC_(1) },
- { SC_(189710.828125), SC_(0.0004468346596695482730865478515625), SC_(0.12707412242889404296875), SC_(0.5188315366392478090272792788651594123975e-169975), SC_(2225.270299039879402937966752903472740162), SC_(0.2331543888682215998996030637290955805423e-169978), SC_(1) },
- { SC_(192153.234375), SC_(4460.083984375), SC_(0.1355634629726409912109375), SC_(0.1022452100691270242676491725999926765425e-167048), SC_(0.1398359931090325990354518704244200134233e-9249), SC_(0.731179489599681422187067081110076015194e-157799), SC_(1) },
- { SC_(194577.984375), SC_(0.00036247042589820921421051025390625), SC_(0.81474220752716064453125), SC_(0.8624226692331135959285353838204701375781e-17318), SC_(2746.119705338191749945130579954251613059), SC_(0.3140513749479482402469467099759580915747e-17321), SC_(1) },
- { SC_(196362), SC_(2509.231201171875), SC_(0.9688708782196044921875), SC_(0.3856482340702243145420560651420455809962e-6481), SC_(0.5652420341505424085842925275720886631988e-5849), SC_(0.68227097556498000743757316100203279656e-632), SC_(1) },
- { SC_(207621.90625), SC_(0.00042250819387845695018768310546875), SC_(0.1355634629726409912109375), SC_(0.3544168575172053195688364323122776381218e-180191), SC_(2354.032323315899608882640510773291239734), SC_(0.1505573453715250081770279309998939513989e-180194), SC_(1) },
- { SC_(212600.609375), SC_(3789.47216796875), SC_(0.12707412242889404296875), SC_(0.1162875437533969677380975629265995346525e-190706), SC_(0.3572904950620103274095363616181997412084e-8289), SC_(0.3254705774728612096631189967081659505062e-182417), SC_(1) },
- { SC_(212603.09375), SC_(20133.15625), SC_(0.221111953258514404296875), SC_(0.2362572268084451377670154616635164036924e-141527), SC_(0.3652077641977781302789589817509647608679e-29756), SC_(0.646911840243626703260093779489488783331e-111771), SC_(1) },
- { SC_(224776.03125), SC_(0.0415735431015491485595703125), SC_(0.12707412242889404296875), SC_(0.1658960264768293374695368021921618319401e-201391), SC_(14.08884084986776431793587580402506526197), SC_(0.1177499470997192873580592646539708667598e-201392), SC_(1) },
- { SC_(228984.171875), SC_(46.157588958740234375), SC_(0.1355634629726409912109375), SC_(0.1540400982450543871048593457437142794287e-198733), SC_(0.8740613889857634925378998367387854310713e-191), SC_(0.1762348734152394371413169466461289084642e-198542), SC_(1) },
- { SC_(231101.984375), SC_(155.261932373046875), SC_(0.3082362115383148193359375), SC_(0.8852764944774570528678983043239949746808e-118150), SC_(0.1763399753127686268061992508179417253384e-560), SC_(0.5020282513407808892851228645306011609752e-117589), SC_(1) },
- { SC_(232169.4375), SC_(16.358287811279296875), SC_(0.81474220752716064453125), SC_(0.1004815071118392356784942205953132166455e-20674), SC_(0.587724374876512150244459824716029030012e-75), SC_(0.1709670577010721905366456702457756799289e-20599), SC_(1) },
- { SC_(235582.25), SC_(0.011084310710430145263671875), SC_(0.221111953258514404296875), SC_(0.1017643250025693405674093870392166132869e-154402), SC_(78.16455130127354840873852787165449218854), SC_(0.1301924252214203870286963316556287714256e-154404), SC_(1) },
- { SC_(237315.15625), SC_(3.7124271392822265625), SC_(0.221111953258514404296875), SC_(0.7536126865779733008730126500222323004189e-155539), SC_(0.4688134850906469512740105351527398525871e-19), SC_(0.1607489354603908826711205809046906316143e-155519), SC_(1) },
- { SC_(239513.921875), SC_(3236.540771484375), SC_(0.905801355838775634765625), SC_(0.9078466292704468179757983138091189896474e-13616), SC_(0.4763031957127142496806317602545438438184e-7466), SC_(0.1906026743977634660356542047153393121634e-6149), SC_(1) },
- { SC_(241256.71875), SC_(417787.0625), SC_(0.3082362115383148193359375), SC_(0.4139218165554650302732575887154116926375e-190178), SC_(0.1384615419520965439611502658608246043672e-187999), SC_(0.2989435266427043771761060718022390102514e-2178), SC_(1) },
- { SC_(242747.59375), SC_(307.633697509765625), SC_(0.913384497165679931640625), SC_(0.4135448462258999745189194724632122657543e-9882), SC_(0.1641240444860787359657006071324757612212e-1025), SC_(0.2519709086629153292670089405584358725747e-8856), SC_(1) },
- { SC_(244254.640625), SC_(17.7450542449951171875), SC_(0.905801355838775634765625), SC_(0.3430985610854914780380641194927931339872e-10517), SC_(0.4237689124483248224991752915244175660383e-81), SC_(0.8096359855734569989336526965289033914691e-10436), SC_(1) },
- { SC_(246462.734375), SC_(43952.4453125), SC_(0.913384497165679931640625), SC_(0.3938710785527875787688018700990301514826e-53609), SC_(0.1105323376193801074638945243105005161062e-56396), SC_(1), SC_(0.2806307536605947812694951237611079993073e-2787) },
- { SC_(251274.4375), SC_(0.1303907993133179843425750732421875e-4), SC_(0.905801355838775634765625), SC_(0.1284050969853127988754756985503067194045e-10800), SC_(76679.51739053277711700788121412509668115), SC_(0.1674568403076129834643607249408326608986e-10805), SC_(1) },
- { SC_(256001.953125), SC_(0.3102722465991973876953125), SC_(0.905801355838775634765625), SC_(0.4517081658880984032838741386685794411436e-11004), SC_(0.0606067283762034266767895128284342433694), SC_(0.7453102617323536411221722791114842895032e-11003), SC_(1) },
- { SC_(256341.890625), SC_(0.045557327568531036376953125), SC_(0.913384497165679931640625), SC_(0.3046836016076670331250987993117619690904e-10090), SC_(12.14326372762000066047653769127404375479), SC_(0.2509075059571180069981406913298733504809e-10091), SC_(1) },
- { SC_(259312.890625), SC_(4.09720611572265625), SC_(0.913384497165679931640625), SC_(0.1889642755657341099597171869122225183632e-10211), SC_(0.4468819938274178704121653254171240524415e-21), SC_(0.422850502315630443921252075167032941947e-10190), SC_(1) },
+ { SC_(139635.859375), SC_(0.00359443644993007183074951171875), SC_(0.8350250720977783203125), SC_(BOOST_MATH_SMALL_CONSTANT(0.1200411021373305972085728293542348706339e-10937)), SC_(266.0598728377260065511100686016954842333), SC_(BOOST_MATH_SMALL_CONSTANT(0.4511807844490157479272247531660627407605e-10940)), SC_(1) },
+ { SC_(139638.109375), SC_(0.00364904291927814483642578125), SC_(0.221111953258514404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.7124698785671631677263569877949201217441e-91522)), SC_(261.9007208942754265545010052942457193583), SC_(BOOST_MATH_SMALL_CONSTANT(0.2720381509964511867366632709770210627566e-91524)), SC_(1) },
+ { SC_(140613.5625), SC_(0.04485572874546051025390625), SC_(0.905801355838775634765625), SC_(BOOST_MATH_SMALL_CONSTANT(0.1213996798462934451546061797201029097163e-6045)), SC_(12.78564295017450834301178895528450273433), SC_(BOOST_MATH_SMALL_CONSTANT(0.9495000002689461028413898434572917976252e-6047)), SC_(1) },
+ { SC_(143155.5625), SC_(0.00386732374317944049835205078125), SC_(0.12707412242889404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.4964902710277630208125952137476169753569e-128264)), SC_(246.4257926660344960293210192076077331621), SC_(BOOST_MATH_SMALL_CONSTANT(0.2014765847585708337294337097631779282769e-128266)), SC_(1) },
+ { SC_(149909.609375), SC_(2.0033237934112548828125), SC_(0.632396042346954345703125), SC_(BOOST_MATH_SMALL_CONSTANT(0.5601865597517213906982198460312303425576e-29839)), SC_(0.4282985391041620067373351878082277338411e-10), SC_(BOOST_MATH_SMALL_CONSTANT(0.1307934789886089894651986816995366289121e-29828)), SC_(1) },
+ { SC_(155018.640625), SC_(0.27750885486602783203125), SC_(0.8350250720977783203125), SC_(BOOST_MATH_SMALL_CONSTANT(0.2189600536278663888089739250282366199981e-12142)), SC_(0.1177997645565165471561636064914377897339), SC_(BOOST_MATH_SMALL_CONSTANT(0.1858747803547742923699583327919111965553e-12141)), SC_(1) },
+ { SC_(155105.15625), SC_(27467.107421875), SC_(0.632396042346954345703125), SC_(BOOST_MATH_SMALL_CONSTANT(0.1102644209378919640642692274235750137785e-42809)), SC_(BOOST_MATH_SMALL_CONSTANT(0.2501495324258768121484793466326974864798e-33579)), SC_(BOOST_MATH_SMALL_CONSTANT(0.4407940317480506300101086260146805075637e-9230)), SC_(1) },
+ { SC_(155440.6875), SC_(25353.65625), SC_(0.8350250720977783203125), SC_(BOOST_MATH_SMALL_CONSTANT(0.8941214025675720839947382390911459942351e-32016)), SC_(BOOST_MATH_SMALL_CONSTANT(0.7341950414271885193993490458038675049208e-31832)), SC_(0.1217825444352641760127168800486312561702e-183), SC_(1) },
+ { SC_(170849.5), SC_(0.00046143750660121440887451171875), SC_(0.8350250720977783203125), SC_(BOOST_MATH_SMALL_CONSTANT(0.8932798569056563733432357552812282247856e-13382)), SC_(2154.552031316987476016365197599340088807), SC_(BOOST_MATH_SMALL_CONSTANT(0.4146011996561678697797342745398553532881e-13385)), SC_(1) },
+ { SC_(171593), SC_(0.0390150845050811767578125), SC_(0.1355634629726409912109375), SC_(BOOST_MATH_SMALL_CONSTANT(0.3808818562331720430729550615151248330977e-148923)), SC_(15.6782046961596187023865989050765796256), SC_(BOOST_MATH_SMALL_CONSTANT(0.2429371625224852285654983284139567086578e-148924)), SC_(1) },
+ { SC_(172891), SC_(0.00412352383136749267578125), SC_(0.1355634629726409912109375), SC_(BOOST_MATH_SMALL_CONSTANT(0.1261508876351832263878339216717470434296e-150049)), SC_(230.2002478717688094390524743042864738996), SC_(BOOST_MATH_SMALL_CONSTANT(0.54800500347616723860757541011092778473e-150052)), SC_(1) },
+ { SC_(175682.734375), SC_(342375.09375), SC_(0.913384497165679931640625), SC_(BOOST_MATH_SMALL_CONSTANT(0.3387341086210335388285649512749436564435e-144096)), SC_(BOOST_MATH_SMALL_CONSTANT(0.1795794751912361346488594465486064257971e-370658)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.5301487822478035199922994877956397118574e-226562)) },
+ { SC_(177298.140625), SC_(0.00180856394581496715545654296875), SC_(0.632396042346954345703125), SC_(BOOST_MATH_SMALL_CONSTANT(0.8516891724051227220598361169759734476922e-35289)), SC_(540.4074280614505942989554143978724575293), SC_(BOOST_MATH_SMALL_CONSTANT(0.1576013074913314814731763422753196121745e-35291)), SC_(1) },
+ { SC_(184058.265625), SC_(0.0481239259243011474609375), SC_(0.3082362115383148193359375), SC_(BOOST_MATH_SMALL_CONSTANT(0.5011685357386681038084289717245581028305e-94080)), SC_(11.29830628383595379593224834916619211301), SC_(BOOST_MATH_SMALL_CONSTANT(0.4435784649028946789930916331332918288727e-94081)), SC_(1) },
+ { SC_(189710.828125), SC_(0.0004468346596695482730865478515625), SC_(0.12707412242889404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.5188315366392478090272792788651594123975e-169975)), SC_(2225.270299039879402937966752903472740162), SC_(BOOST_MATH_SMALL_CONSTANT(0.2331543888682215998996030637290955805423e-169978)), SC_(1) },
+ { SC_(192153.234375), SC_(4460.083984375), SC_(0.1355634629726409912109375), SC_(BOOST_MATH_SMALL_CONSTANT(0.1022452100691270242676491725999926765425e-167048)), SC_(BOOST_MATH_SMALL_CONSTANT(0.1398359931090325990354518704244200134233e-9249)), SC_(BOOST_MATH_SMALL_CONSTANT(0.731179489599681422187067081110076015194e-157799)), SC_(1) },
+ { SC_(194577.984375), SC_(0.00036247042589820921421051025390625), SC_(0.81474220752716064453125), SC_(BOOST_MATH_SMALL_CONSTANT(0.8624226692331135959285353838204701375781e-17318)), SC_(2746.119705338191749945130579954251613059), SC_(BOOST_MATH_SMALL_CONSTANT(0.3140513749479482402469467099759580915747e-17321)), SC_(1) },
+ { SC_(196362), SC_(2509.231201171875), SC_(0.9688708782196044921875), SC_(BOOST_MATH_SMALL_CONSTANT(0.3856482340702243145420560651420455809962e-6481)), SC_(BOOST_MATH_SMALL_CONSTANT(0.5652420341505424085842925275720886631988e-5849)), SC_(0.68227097556498000743757316100203279656e-632), SC_(1) },
+ { SC_(207621.90625), SC_(0.00042250819387845695018768310546875), SC_(0.1355634629726409912109375), SC_(BOOST_MATH_SMALL_CONSTANT(0.3544168575172053195688364323122776381218e-180191)), SC_(2354.032323315899608882640510773291239734), SC_(BOOST_MATH_SMALL_CONSTANT(0.1505573453715250081770279309998939513989e-180194)), SC_(1) },
+ { SC_(212600.609375), SC_(3789.47216796875), SC_(0.12707412242889404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.1162875437533969677380975629265995346525e-190706)), SC_(BOOST_MATH_SMALL_CONSTANT(0.3572904950620103274095363616181997412084e-8289)), SC_(BOOST_MATH_SMALL_CONSTANT(0.3254705774728612096631189967081659505062e-182417)), SC_(1) },
+ { SC_(212603.09375), SC_(20133.15625), SC_(0.221111953258514404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.2362572268084451377670154616635164036924e-141527)), SC_(BOOST_MATH_SMALL_CONSTANT(0.3652077641977781302789589817509647608679e-29756)), SC_(BOOST_MATH_SMALL_CONSTANT(0.646911840243626703260093779489488783331e-111771)), SC_(1) },
+ { SC_(224776.03125), SC_(0.0415735431015491485595703125), SC_(0.12707412242889404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.1658960264768293374695368021921618319401e-201391)), SC_(14.08884084986776431793587580402506526197), SC_(BOOST_MATH_SMALL_CONSTANT(0.1177499470997192873580592646539708667598e-201392)), SC_(1) },
+ { SC_(228984.171875), SC_(46.157588958740234375), SC_(0.1355634629726409912109375), SC_(BOOST_MATH_SMALL_CONSTANT(0.1540400982450543871048593457437142794287e-198733)), SC_(0.8740613889857634925378998367387854310713e-191), SC_(BOOST_MATH_SMALL_CONSTANT(0.1762348734152394371413169466461289084642e-198542)), SC_(1) },
+ { SC_(231101.984375), SC_(155.261932373046875), SC_(0.3082362115383148193359375), SC_(BOOST_MATH_SMALL_CONSTANT(0.8852764944774570528678983043239949746808e-118150)), SC_(0.1763399753127686268061992508179417253384e-560), SC_(BOOST_MATH_SMALL_CONSTANT(0.5020282513407808892851228645306011609752e-117589)), SC_(1) },
+ { SC_(232169.4375), SC_(16.358287811279296875), SC_(0.81474220752716064453125), SC_(BOOST_MATH_SMALL_CONSTANT(0.1004815071118392356784942205953132166455e-20674)), SC_(0.587724374876512150244459824716029030012e-75), SC_(BOOST_MATH_SMALL_CONSTANT(0.1709670577010721905366456702457756799289e-20599)), SC_(1) },
+ { SC_(235582.25), SC_(0.011084310710430145263671875), SC_(0.221111953258514404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.1017643250025693405674093870392166132869e-154402)), SC_(78.16455130127354840873852787165449218854), SC_(BOOST_MATH_SMALL_CONSTANT(0.1301924252214203870286963316556287714256e-154404)), SC_(1) },
+ { SC_(237315.15625), SC_(3.7124271392822265625), SC_(0.221111953258514404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.7536126865779733008730126500222323004189e-155539)), SC_(0.4688134850906469512740105351527398525871e-19), SC_(BOOST_MATH_SMALL_CONSTANT(0.1607489354603908826711205809046906316143e-155519)), SC_(1) },
+ { SC_(239513.921875), SC_(3236.540771484375), SC_(0.905801355838775634765625), SC_(BOOST_MATH_SMALL_CONSTANT(0.9078466292704468179757983138091189896474e-13616)), SC_(BOOST_MATH_SMALL_CONSTANT(0.4763031957127142496806317602545438438184e-7466)), SC_(BOOST_MATH_SMALL_CONSTANT(0.1906026743977634660356542047153393121634e-6149)), SC_(1) },
+ { SC_(241256.71875), SC_(417787.0625), SC_(0.3082362115383148193359375), SC_(BOOST_MATH_SMALL_CONSTANT(0.4139218165554650302732575887154116926375e-190178)), SC_(BOOST_MATH_SMALL_CONSTANT(0.1384615419520965439611502658608246043672e-187999)), SC_(0.2989435266427043771761060718022390102514e-2178), SC_(1) },
+ { SC_(242747.59375), SC_(307.633697509765625), SC_(0.913384497165679931640625), SC_(BOOST_MATH_SMALL_CONSTANT(0.4135448462258999745189194724632122657543e-9882)), SC_(0.1641240444860787359657006071324757612212e-1025), SC_(BOOST_MATH_SMALL_CONSTANT(0.2519709086629153292670089405584358725747e-8856)), SC_(1) },
+ { SC_(244254.640625), SC_(17.7450542449951171875), SC_(0.905801355838775634765625), SC_(BOOST_MATH_SMALL_CONSTANT(0.3430985610854914780380641194927931339872e-10517)), SC_(0.4237689124483248224991752915244175660383e-81), SC_(BOOST_MATH_SMALL_CONSTANT(0.8096359855734569989336526965289033914691e-10436)), SC_(1) },
+ { SC_(246462.734375), SC_(43952.4453125), SC_(0.913384497165679931640625), SC_(BOOST_MATH_SMALL_CONSTANT(0.3938710785527875787688018700990301514826e-53609)), SC_(BOOST_MATH_SMALL_CONSTANT(0.1105323376193801074638945243105005161062e-56396)), SC_(1), SC_(0.2806307536605947812694951237611079993073e-2787) },
+ { SC_(251274.4375), SC_(0.1303907993133179843425750732421875e-4), SC_(0.905801355838775634765625), SC_(BOOST_MATH_SMALL_CONSTANT(0.1284050969853127988754756985503067194045e-10800)), SC_(76679.51739053277711700788121412509668115), SC_(BOOST_MATH_SMALL_CONSTANT(0.1674568403076129834643607249408326608986e-10805)), SC_(1) },
+ { SC_(256001.953125), SC_(0.3102722465991973876953125), SC_(0.905801355838775634765625), SC_(BOOST_MATH_SMALL_CONSTANT(0.4517081658880984032838741386685794411436e-11004)), SC_(0.0606067283762034266767895128284342433694), SC_(BOOST_MATH_SMALL_CONSTANT(0.7453102617323536411221722791114842895032e-11003)), SC_(1) },
+ { SC_(256341.890625), SC_(0.045557327568531036376953125), SC_(0.913384497165679931640625), SC_(BOOST_MATH_SMALL_CONSTANT(0.3046836016076670331250987993117619690904e-10090)), SC_(12.14326372762000066047653769127404375479), SC_(BOOST_MATH_SMALL_CONSTANT(0.2509075059571180069981406913298733504809e-10091)), SC_(1) },
+ { SC_(259312.890625), SC_(4.09720611572265625), SC_(0.913384497165679931640625), SC_(BOOST_MATH_SMALL_CONSTANT(0.1889642755657341099597171869122225183632e-10211)), SC_(0.4468819938274178704121653254171240524415e-21), SC_(BOOST_MATH_SMALL_CONSTANT(0.422850502315630443921252075167032941947e-10190)), SC_(1) },
{ SC_(265560.28125), SC_(14.26784992218017578125), SC_(0.9688708782196044921875), SC_(0.2255456396828479920717334888632409438555e-3672), SC_(0.5092282394886762178699134425746537111738e-67), SC_(0.4429165984771814351326604284513000560131e-3605), SC_(1) },
- { SC_(272688.46875), SC_(0.4279204308986663818359375), SC_(0.1355634629726409912109375), SC_(0.8125575456729716243938388570732195995244e-236660), SC_(0.009774280032563511863022336056748788267978), SC_(0.8313221464556926613351826150695679545886e-236658), SC_(1) },
- { SC_(279777.4375), SC_(110919.8125), SC_(0.632396042346954345703125), SC_(0.6148430343219194706377521237908296432287e-103891), SC_(0.1156211272107542159862785096226588071867e-101231), SC_(0.5317739492378269700677621217632990048617e-2659), SC_(1) },
- { SC_(280536.21875), SC_(1998.197021484375), SC_(0.913384497165679931640625), SC_(0.4730459791299165766564524415469547707803e-13165), SC_(0.1075155179828709931223331787105624315381e-5162), SC_(0.4399792588129284315579695728392266529331e-8002), SC_(1) },
- { SC_(290996.875), SC_(0.00046665043919347226619720458984375), SC_(0.3082362115383148193359375), SC_(0.2740689055798068038261548986673720163647e-148738), SC_(2129.814074427695605797478885855586306243), SC_(0.1286820802202897094627135589769732633674e-148741), SC_(1) },
- { SC_(294260.65625), SC_(0.393247187137603759765625), SC_(0.632396042346954345703125), SC_(0.5366621090960572054689623726756327820964e-58566), SC_(0.01595930469496627944511629771146368297354), SC_(0.3362691040451941966929326235860298229558e-58564), SC_(1) },
- { SC_(295837.75), SC_(414044.375), SC_(0.1355634629726409912109375), SC_(0.2738207633868624490637016944591828716385e-282945), SC_(0.1291893132914534123455535857061490734143e-209403), SC_(0.2119531069641324636847604040747073688875e-73541), SC_(1) },
- { SC_(295905.53125), SC_(0.0040032281540334224700927734375), SC_(0.3082362115383148193359375), SC_(0.3432444114466741914522489325459591711318e-151247), SC_(236.9679241666109725149413470050507888954), SC_(0.1448484695360460463354669319016151667841e-151249), SC_(1) },
- { SC_(296938.03125), SC_(220.9876708984375), SC_(0.12707412242889404296875), SC_(0.1066546302444701932433833129869504077407e-266057), SC_(0.799025964451165746090446805742325043734e-788), SC_(0.1334808066190052186293725658701353747668e-265269), SC_(1) },
- { SC_(300513.1875), SC_(0.37814271450042724609375), SC_(0.12707412242889404296875), SC_(0.8089094344018176787861408819014348077561e-269248), SC_(0.01993759802261050545029555014189027071964), SC_(0.4057206056037757819954051223760869381102e-269246), SC_(1) },
- { SC_(301512.3125), SC_(290772.15625), SC_(0.12707412242889404296875), SC_(0.4984517826717744682218608311609889507618e-287305), SC_(0.519892537600854112225555677828535502315e-178255), SC_(0.9587592562339474907280276143889734396976e-109050), SC_(1) },
- { SC_(304061), SC_(0.015454678796231746673583984375), SC_(0.632396042346954345703125), SC_(0.3197884056982186223192534133421457418371e-60516), SC_(52.7731607602237885882113216192417829959), SC_(0.6059678842265777058340606757102341256221e-60518), SC_(1) },
- { SC_(319723.40625), SC_(20.909183502197265625), SC_(0.632396042346954345703125), SC_(0.2590505925978753870005807652732470012149e-63642), SC_(0.1467093689208665286611141322144853204044e-96), SC_(0.1765739942195542522633559404183774890433e-63545), SC_(1) },
- { SC_(320904.625), SC_(29.05339813232421875), SC_(0.221111953258514404296875), SC_(0.301795651159796849839717117809261571877e-210325), SC_(0.3822651521762847371013382041405160862927e-130), SC_(0.7894929721991014467158241189990231432032e-210195), SC_(1) },
- { SC_(322918.0625), SC_(0.00355008454062044620513916015625), SC_(0.913384497165679931640625), SC_(0.7905337968047845333067020031953625780259e-12710), SC_(268.7312156127938150100094841850794506944), SC_(0.29417267175386104489176827833275889391e-12712), SC_(1) },
- { SC_(335283.75), SC_(21810.169921875), SC_(0.905801355838775634765625), SC_(0.3299040575389629100198235447056122444995e-36786), SC_(0.202307289118563899376051109222726987044e-35658), SC_(0.1630707716841679611298911719116727449455e-1127), SC_(1) },
- { SC_(336243.46875), SC_(3128.056640625), SC_(0.632396042346954345703125), SC_(0.1989755909590248190077843590850637980752e-68280), SC_(0.386253976690019495221586847622724535798e-7720), SC_(0.5151418573450927910578006074003632539119e-60560), SC_(1) },
- { SC_(347334.96875), SC_(4.06880474090576171875), SC_(0.1355634629726409912109375), SC_(0.1151000019927157406145680469175846621823e-301442), SC_(0.1869580828614440943080976971537425939805e-21), SC_(0.6156460326886061099554832161303503534759e-301421), SC_(1) },
- { SC_(347788.625), SC_(37.86353302001953125), SC_(0.8350250720977783203125), SC_(0.3911807398179509287085805652571430683349e-27266), SC_(0.128644350335128231481736445186331109064e-166), SC_(0.3040792221336542252097696240821869657085e-27099), SC_(1) },
- { SC_(349486.5625), SC_(0.0004298138082958757877349853515625), SC_(0.632396042346954345703125), SC_(0.1865595218115872133983227884322014482709e-69556), SC_(2313.2859134142840503071282236890179605), SC_(0.8064697957557503876725389314635299246407e-69560), SC_(1) },
- { SC_(349829.1875), SC_(4556.69775390625), SC_(0.3082362115383148193359375), SC_(0.8716243656492448960493553078724261487418e-179538), SC_(0.3005933497722659142770197020235806505349e-10583), SC_(0.2899679471650323433353852583136590704171e-168954), SC_(1) },
- { SC_(351569.59375), SC_(0.0152290202677249908447265625), SC_(0.8350250720977783203125), SC_(0.142942439498922314939960947453612938523e-27532), SC_(53.59599328878060781737142119144735114836), SC_(0.2667035924285124443055616600216689774719e-27534), SC_(1) },
- { SC_(358590.96875), SC_(1.7338650226593017578125), SC_(0.8350250720977783203125), SC_(0.1058148376671415191380608829185909505343e-28083), SC_(0.2141548976451757099123225598000962489873e-9), SC_(0.4941042153631326077987405894010837264966e-28074), SC_(1) },
- { SC_(364175.1875), SC_(2293.671875), SC_(0.81474220752716064453125), SC_(0.2970907400871436762454120402519455621845e-34088), SC_(0.3942277478053191901866283024837159384948e-6048), SC_(0.7536017993179300124085651069786590216621e-28040), SC_(1) },
- { SC_(365061.53125), SC_(135.407379150390625), SC_(0.9688708782196044921875), SC_(0.132561620732637353847620367820812298033e-5221), SC_(0.9348116048625191354304436021264235582514e-524), SC_(0.1418057072067830448845425654367014413568e-4697), SC_(1) },
- { SC_(366848.125), SC_(489622.875), SC_(0.9688708782196044921875), SC_(0.1593861357254841199493602244543381689225e-253990), SC_(0.1087599097235379865638568519804395894287e-742823), SC_(1), SC_(0.6823674419891745504101999703531254110972e-488833) },
- { SC_(369212.46875), SC_(0.00043601836659945547580718994140625), SC_(0.221111953258514404296875), SC_(0.1589837506262236294533702040658122820427e-241982), SC_(2280.124431101420007150565551801342146135), SC_(0.6972590989230623579661684537574695268047e-241986), SC_(1) },
- { SC_(377515.0625), SC_(0.25923203793354332447052001953125e-4), SC_(0.1355634629726409912109375), SC_(0.1846099338711330641874444967580256082628e-327634), SC_(38562.06263811561345901519963121865990616), SC_(0.4787345936434957111959631565210397850823e-327639), SC_(1) },
- { SC_(377897.28125), SC_(217.7733001708984375), SC_(0.1355634629726409912109375), SC_(0.5979546991309016931374244693774165753579e-327980), SC_(0.1504122228349321219225606712861511198541e-800), SC_(0.3975439547802701271946172226507152197205e-327179), SC_(1) },
- { SC_(381735.84375), SC_(0.1554123082314617931842803955078125e-4), SC_(0.913384497165679931640625), SC_(0.3657468778839370617455648636532628074199e-15024), SC_(64331.53971593053993165972765577354825155), SC_(0.568534313804658519403859557834748785329e-15029), SC_(1) },
- { SC_(384451.40625), SC_(2821.419677734375), SC_(0.221111953258514404296875), SC_(0.3774667393849660313070000619550292965817e-252276), SC_(0.7926054736804532094181417506264134619276e-7253), SC_(0.4762353427010844825792649025736193403842e-245023), SC_(1) },
- { SC_(385429.59375), SC_(3.3841388225555419921875), SC_(0.12707412242889404296875), SC_(0.235912325871912806903517917043120974532e-345328), SC_(0.3659527638406590216438323566506540139083e-18), SC_(0.6446523955606258252275291431690649324288e-345310), SC_(1) },
- { SC_(386018), SC_(14093.7041015625), SC_(0.12707412242889404296875), SC_(0.3533816041883537299284294859041196659449e-346687), SC_(0.1786199254113275768897792024673451795822e-26493), SC_(0.1978399685111184439989792884160734955792e-320193), SC_(1) },
- { SC_(391805.21875), SC_(0.3055977504118345677852630615234375e-4), SC_(0.9688708782196044921875), SC_(0.6645640986776143695258650559207070499956e-5385), SC_(32709.30102510362913407477993114535519627), SC_(0.2031728217510905698625535037789910554642e-5389), SC_(1) },
- { SC_(392234.125), SC_(2.3254187107086181640625), SC_(0.81474220752716064453125), SC_(0.3372946332051058353869565881444329491903e-34907), SC_(0.116500178379113381650444797417636967012e-12), SC_(0.2895228470015607868587943879852069969558e-34894), SC_(1) },
- { SC_(392420.34375), SC_(26721.41796875), SC_(0.3082362115383148193359375), SC_(0.3760691264606479837185828827725121521107e-204854), SC_(0.6134691376735092695204920695453546200521e-43174), SC_(0.6130204493853339987206932621927405818447e-161680), SC_(1) },
- { SC_(395628.875), SC_(169.021026611328125), SC_(0.81474220752716064453125), SC_(0.2526414214512150994786424981884882502037e-35331), SC_(0.2367657718298624418210670946569777464019e-643), SC_(0.1067052131305367667538379844205511148824e-34687), SC_(1) },
- { SC_(399928.875), SC_(2.3772995471954345703125), SC_(0.9688708782196044921875), SC_(0.4575823381440133470258713714489339986042e-5500), SC_(0.5891271920613133184754929015938875783606e-13), SC_(0.7767123030647523365790059307890380108771e-5487), SC_(1) },
- { SC_(402603.8125), SC_(15.56592464447021484375), SC_(0.913384497165679931640625), SC_(0.839964051894727144748188102571476786515e-15862), SC_(0.2276187152898794510296259141901545424811e-75), SC_(0.3690224025845181622960356235998888477582e-15786), SC_(1) },
- { SC_(406768.65625), SC_(0.00042969666537828743457794189453125), SC_(0.913384497165679931640625), SC_(0.3845971664948874841658532459081877377021e-16009), SC_(2313.76926505807402290357969801321322552), SC_(0.1662210542351699700942923632024041265388e-16012), SC_(1) },
- { SC_(408381.65625), SC_(0.456345951533876359462738037109375e-4), SC_(0.81474220752716064453125), SC_(0.256636316436966534711309393776406356604e-36342), SC_(21899.70679105534773755741399478867643693), SC_(0.1171871015833811629121890074513165499571e-36346), SC_(1) },
- { SC_(408998), SC_(0.0042365207336843013763427734375), SC_(0.9688708782196044921875), SC_(0.4679643318850173892444623183563750454659e-5621), SC_(222.9260767164665503554164247892365552352), SC_(0.2099190632059649758309471308391737222338e-5623), SC_(1) },
- { SC_(413148.84375), SC_(0.4799632370122708380222320556640625e-4), SC_(0.12707412242889404296875), SC_(0.4760216892086520862254727449513859060669e-370163), SC_(20821.4247115356994008030634209707211316), SC_(0.2286210938029239011421440938749654302622e-370167), SC_(1) },
- { SC_(422703.84375), SC_(15069.125), SC_(0.9688708782196044921875), SC_(0.1894290547150840332529440634809860623788e-28480), SC_(0.5317858193741856644130900155741731742e-28515), SC_(0.9999999999999999999999999999999999719269), SC_(0.2807308626303566343788814258620297467638e-34) },
- { SC_(424641.03125), SC_(0.2840512692928314208984375), SC_(0.3082362115383148193359375), SC_(0.3281697221736068695894776974100410805984e-217046), SC_(0.07983838849602386203799283789214340070297), SC_(0.4110425177105753921575682833010882185377e-217045), SC_(1) },
- { SC_(431857.34375), SC_(0.000211423015571199357509613037109375), SC_(0.905801355838775634765625), SC_(0.5772928801419627986284807700357329751852e-18560), SC_(4716.320526853965142300050830950109310733), SC_(0.1224032329556379061882981898965492987967e-18563), SC_(1) },
- { SC_(433260.8125), SC_(3.3808853626251220703125), SC_(0.905801355838775634765625), SC_(0.9743394652123491454497722494064540082877e-18624), SC_(0.2560546738053348250776027384729315592872e-18), SC_(0.3805200860942258123591032689689538525655e-18605), SC_(1) },
- { SC_(434088.21875), SC_(21.81499481201171875), SC_(0.12707412242889404296875), SC_(0.7666944874274611518715379495155788957394e-388925), SC_(0.3007553193509600488237813376679700633905e-103), SC_(0.254923001555554620514995644832550525135e-388821), SC_(1) },
- { SC_(434689.125), SC_(39291.4765625), SC_(0.81474220752716064453125), SC_(0.4229593173885190819792612716082535703903e-67453), SC_(0.2997707408973057615935360098045888677795e-58830), SC_(0.141094262943231928276825070136084907e-8622), SC_(1) },
- { SC_(435121.25), SC_(397.58978271484375), SC_(0.632396042346954345703125), SC_(0.1391846018183584493348497097868590409154e-86771), SC_(0.1011089115991303029245123638141426629899e-1381), SC_(0.13765809523317592290575564449364874034e-85389), SC_(1) },
- { SC_(437285.3125), SC_(0.2788266647257842123508453369140625e-4), SC_(0.3082362115383148193359375), SC_(0.7080016520655375267035486305854570379383e-223509), SC_(35851.012645549836380276487988456969042), SC_(0.1974844222854668306991988406185103636153e-223513), SC_(1) },
- { SC_(442472.9375), SC_(49476.66015625), SC_(0.1355634629726409912109375), SC_(0.6336326725813869671779066098442524839183e-387139), SC_(0.2249187802897843416031847629628799944729e-69724), SC_(0.2817162140773738373578099290063302965899e-317414), SC_(1) },
- { SC_(450819.5), SC_(499216.46875), SC_(0.221111953258514404296875), SC_(0.3800121390355127178063074898342430570494e-349644), SC_(0.9678656246284879041515322169506269463219e-285456), SC_(0.3926290275898362964767484676866590121196e-64188), SC_(1) },
- { SC_(457779.125), SC_(0.326781928539276123046875), SC_(0.81474220752716064453125), SC_(0.5550829230252479526732424261273786286927e-40738), SC_(0.03865177027724154668769750896774259956337), SC_(0.1436112548128448741327568829062085238803e-40736), SC_(1) },
- { SC_(458356.625), SC_(0.00327513157390058040618896484375), SC_(0.81474220752716064453125), SC_(0.3934256588938313890657511884630295473806e-40789), SC_(292.0201861612453957241730382306629407247), SC_(0.1347255010229302168172554227989064367004e-40791), SC_(1) },
- { SC_(462545.71875), SC_(0.01835658587515354156494140625), SC_(0.81474220752716064453125), SC_(0.6842410988092162996870266776720414780451e-41162), SC_(42.43584359872765638163172784469089833824), SC_(0.1612413094174311960166824477001882166453e-41163), SC_(1) },
- { SC_(466997.53125), SC_(0.356361567974090576171875), SC_(0.9688708782196044921875), SC_(0.3241995530691347719937107476224957921527e-6418), SC_(0.02384677265659975718672488537621955689915), SC_(0.1359511233397070742246772924547520956389e-6416), SC_(1) },
- { SC_(468932.8125), SC_(0.182366857188753783702850341796875e-4), SC_(0.632396042346954345703125), SC_(0.1103527708644207448237778040457649555939e-93327), SC_(54820.89133734763217172708014125126167222), SC_(0.2012969292771077366711511442513115417448e-93332), SC_(1) },
- { SC_(470942.5), SC_(0.326362073421478271484375), SC_(0.913384497165679931640625), SC_(0.1471321546322475787061574604050565023955e-18534), SC_(0.03855775001051170472627007361165177373414), SC_(0.3815890569136841848282960464759255989168e-18533), SC_(1) },
- { SC_(473791.3125), SC_(0.00037331905332393944263458251953125), SC_(0.9688708782196044921875), SC_(0.5426122640062687858436002133933513536523e-6511), SC_(2665.063154701061606205642057038907522539), SC_(0.2036020283606124332820904603012161247452e-6514), SC_(1) },
- { SC_(474410.90625), SC_(1.53685867786407470703125), SC_(0.3082362115383148193359375), SC_(0.117766994152457958795877225944368333002e-242484), SC_(0.1678625980035251962785258430723784518394e-8), SC_(0.7015678033887262640021676404777871768517e-242476), SC_(1) },
- { SC_(481669.8125), SC_(360.35894775390625), SC_(0.8350250720977783203125), SC_(0.1292404819014634354658936369356745477441e-38001), SC_(0.1184119790891173687044477395438058404198e-1283), SC_(0.1091447697231683701613307519286097336645e-36717), SC_(1) },
- { SC_(485412.125), SC_(483725.21875), SC_(0.81474220752716064453125), SC_(0.8593009078995238625969168132860357389775e-291741), SC_(0.4682031506788712249402837988058297965792e-397392), SC_(1), SC_(0.544865187939051001712434628531605526675e-105651) },
- { SC_(489093.59375), SC_(101.60869598388671875), SC_(0.221111953258514404296875), SC_(0.2679049247465053509778519007374647739724e-320562), SC_(0.1239584973345346670544577370734255574289e-418), SC_(0.2161246953675901063139086740469757800594e-320143), SC_(1) },
- { SC_(489183.34375), SC_(118808.328125), SC_(0.905801355838775634765625), SC_(0.1458359410123570793275225181353576621217e-130434), SC_(0.259453747115697820698795192063284012701e-142915), SC_(1), SC_(0.1779079596666185278653733063531830995884e-12480) },
- { SC_(491651.625), SC_(32.955524444580078125), SC_(0.3082362115383148193359375), SC_(0.1033057257566332368173504705063859426151e-251301), SC_(0.603837473523874333668117011509794982175e-152), SC_(0.1710820051524158477748585452714475118872e-251149), SC_(1) },
- { SC_(499024.09375), SC_(0.3617647588253021240234375), SC_(0.221111953258514404296875), SC_(0.1198688160746637782814955712359261486421e-327059), SC_(0.0213597393543653960374826366383814420494), SC_(0.5611904437877215617130419280865220458283e-327058), SC_(1) }
+ { SC_(272688.46875), SC_(0.4279204308986663818359375), SC_(0.1355634629726409912109375), SC_(BOOST_MATH_SMALL_CONSTANT(0.8125575456729716243938388570732195995244e-236660)), SC_(0.009774280032563511863022336056748788267978), SC_(BOOST_MATH_SMALL_CONSTANT(0.8313221464556926613351826150695679545886e-236658)), SC_(1) },
+ { SC_(279777.4375), SC_(110919.8125), SC_(0.632396042346954345703125), SC_(BOOST_MATH_SMALL_CONSTANT(0.6148430343219194706377521237908296432287e-103891)), SC_(BOOST_MATH_SMALL_CONSTANT(0.1156211272107542159862785096226588071867e-101231)), SC_(0.5317739492378269700677621217632990048617e-2659), SC_(1) },
+ { SC_(280536.21875), SC_(1998.197021484375), SC_(0.913384497165679931640625), SC_(BOOST_MATH_SMALL_CONSTANT(0.4730459791299165766564524415469547707803e-13165)), SC_(BOOST_MATH_SMALL_CONSTANT(0.1075155179828709931223331787105624315381e-5162)), SC_(BOOST_MATH_SMALL_CONSTANT(0.4399792588129284315579695728392266529331e-8002)), SC_(1) },
+ { SC_(290996.875), SC_(0.00046665043919347226619720458984375), SC_(0.3082362115383148193359375), SC_(BOOST_MATH_SMALL_CONSTANT(0.2740689055798068038261548986673720163647e-148738)), SC_(2129.814074427695605797478885855586306243), SC_(BOOST_MATH_SMALL_CONSTANT(0.1286820802202897094627135589769732633674e-148741)), SC_(1) },
+ { SC_(294260.65625), SC_(0.393247187137603759765625), SC_(0.632396042346954345703125), SC_(BOOST_MATH_SMALL_CONSTANT(0.5366621090960572054689623726756327820964e-58566)), SC_(0.01595930469496627944511629771146368297354), SC_(BOOST_MATH_SMALL_CONSTANT(0.3362691040451941966929326235860298229558e-58564)), SC_(1) },
+ { SC_(295837.75), SC_(414044.375), SC_(0.1355634629726409912109375), SC_(BOOST_MATH_SMALL_CONSTANT(0.2738207633868624490637016944591828716385e-282945)), SC_(BOOST_MATH_SMALL_CONSTANT(0.1291893132914534123455535857061490734143e-209403)), SC_(BOOST_MATH_SMALL_CONSTANT(0.2119531069641324636847604040747073688875e-73541)), SC_(1) },
+ { SC_(295905.53125), SC_(0.0040032281540334224700927734375), SC_(0.3082362115383148193359375), SC_(BOOST_MATH_SMALL_CONSTANT(0.3432444114466741914522489325459591711318e-151247)), SC_(236.9679241666109725149413470050507888954), SC_(BOOST_MATH_SMALL_CONSTANT(0.1448484695360460463354669319016151667841e-151249)), SC_(1) },
+ { SC_(296938.03125), SC_(220.9876708984375), SC_(0.12707412242889404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.1066546302444701932433833129869504077407e-266057)), SC_(0.799025964451165746090446805742325043734e-788), SC_(BOOST_MATH_SMALL_CONSTANT(0.1334808066190052186293725658701353747668e-265269)), SC_(1) },
+ { SC_(300513.1875), SC_(0.37814271450042724609375), SC_(0.12707412242889404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.8089094344018176787861408819014348077561e-269248)), SC_(0.01993759802261050545029555014189027071964), SC_(BOOST_MATH_SMALL_CONSTANT(0.4057206056037757819954051223760869381102e-269246)), SC_(1) },
+ { SC_(301512.3125), SC_(290772.15625), SC_(0.12707412242889404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.4984517826717744682218608311609889507618e-287305)), SC_(BOOST_MATH_SMALL_CONSTANT(0.519892537600854112225555677828535502315e-178255)), SC_(BOOST_MATH_SMALL_CONSTANT(0.9587592562339474907280276143889734396976e-109050)), SC_(1) },
+ { SC_(304061), SC_(0.015454678796231746673583984375), SC_(0.632396042346954345703125), SC_(BOOST_MATH_SMALL_CONSTANT(0.3197884056982186223192534133421457418371e-60516)), SC_(52.7731607602237885882113216192417829959), SC_(BOOST_MATH_SMALL_CONSTANT(0.6059678842265777058340606757102341256221e-60518)), SC_(1) },
+ { SC_(319723.40625), SC_(20.909183502197265625), SC_(0.632396042346954345703125), SC_(BOOST_MATH_SMALL_CONSTANT(0.2590505925978753870005807652732470012149e-63642)), SC_(0.1467093689208665286611141322144853204044e-96), SC_(BOOST_MATH_SMALL_CONSTANT(0.1765739942195542522633559404183774890433e-63545)), SC_(1) },
+ { SC_(320904.625), SC_(29.05339813232421875), SC_(0.221111953258514404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.301795651159796849839717117809261571877e-210325)), SC_(0.3822651521762847371013382041405160862927e-130), SC_(BOOST_MATH_SMALL_CONSTANT(0.7894929721991014467158241189990231432032e-210195)), SC_(1) },
+ { SC_(322918.0625), SC_(0.00355008454062044620513916015625), SC_(0.913384497165679931640625), SC_(BOOST_MATH_SMALL_CONSTANT(0.7905337968047845333067020031953625780259e-12710)), SC_(268.7312156127938150100094841850794506944), SC_(BOOST_MATH_SMALL_CONSTANT(0.29417267175386104489176827833275889391e-12712)), SC_(1) },
+ { SC_(335283.75), SC_(21810.169921875), SC_(0.905801355838775634765625), SC_(BOOST_MATH_SMALL_CONSTANT(0.3299040575389629100198235447056122444995e-36786)), SC_(BOOST_MATH_SMALL_CONSTANT(0.202307289118563899376051109222726987044e-35658)), SC_(0.1630707716841679611298911719116727449455e-1127), SC_(1) },
+ { SC_(336243.46875), SC_(3128.056640625), SC_(0.632396042346954345703125), SC_(BOOST_MATH_SMALL_CONSTANT(0.1989755909590248190077843590850637980752e-68280)), SC_(BOOST_MATH_SMALL_CONSTANT(0.386253976690019495221586847622724535798e-7720)), SC_(BOOST_MATH_SMALL_CONSTANT(0.5151418573450927910578006074003632539119e-60560)), SC_(1) },
+ { SC_(347334.96875), SC_(4.06880474090576171875), SC_(0.1355634629726409912109375), SC_(BOOST_MATH_SMALL_CONSTANT(0.1151000019927157406145680469175846621823e-301442)), SC_(0.1869580828614440943080976971537425939805e-21), SC_(BOOST_MATH_SMALL_CONSTANT(0.6156460326886061099554832161303503534759e-301421)), SC_(1) },
+ { SC_(347788.625), SC_(37.86353302001953125), SC_(0.8350250720977783203125), SC_(BOOST_MATH_SMALL_CONSTANT(0.3911807398179509287085805652571430683349e-27266)), SC_(0.128644350335128231481736445186331109064e-166), SC_(BOOST_MATH_SMALL_CONSTANT(0.3040792221336542252097696240821869657085e-27099)), SC_(1) },
+ { SC_(349486.5625), SC_(0.0004298138082958757877349853515625), SC_(0.632396042346954345703125), SC_(BOOST_MATH_SMALL_CONSTANT(0.1865595218115872133983227884322014482709e-69556)), SC_(2313.2859134142840503071282236890179605), SC_(BOOST_MATH_SMALL_CONSTANT(0.8064697957557503876725389314635299246407e-69560)), SC_(1) },
+ { SC_(349829.1875), SC_(4556.69775390625), SC_(0.3082362115383148193359375), SC_(BOOST_MATH_SMALL_CONSTANT(0.8716243656492448960493553078724261487418e-179538)), SC_(BOOST_MATH_SMALL_CONSTANT(0.3005933497722659142770197020235806505349e-10583)), SC_(BOOST_MATH_SMALL_CONSTANT(0.2899679471650323433353852583136590704171e-168954)), SC_(1) },
+ { SC_(351569.59375), SC_(0.0152290202677249908447265625), SC_(0.8350250720977783203125), SC_(BOOST_MATH_SMALL_CONSTANT(0.142942439498922314939960947453612938523e-27532)), SC_(53.59599328878060781737142119144735114836), SC_(BOOST_MATH_SMALL_CONSTANT(0.2667035924285124443055616600216689774719e-27534)), SC_(1) },
+ { SC_(358590.96875), SC_(1.7338650226593017578125), SC_(0.8350250720977783203125), SC_(BOOST_MATH_SMALL_CONSTANT(0.1058148376671415191380608829185909505343e-28083)), SC_(0.2141548976451757099123225598000962489873e-9), SC_(BOOST_MATH_SMALL_CONSTANT(0.4941042153631326077987405894010837264966e-28074)), SC_(1) },
+ { SC_(364175.1875), SC_(2293.671875), SC_(0.81474220752716064453125), SC_(BOOST_MATH_SMALL_CONSTANT(0.2970907400871436762454120402519455621845e-34088)), SC_(BOOST_MATH_SMALL_CONSTANT(0.3942277478053191901866283024837159384948e-6048)), SC_(BOOST_MATH_SMALL_CONSTANT(0.7536017993179300124085651069786590216621e-28040)), SC_(1) },
+ { SC_(365061.53125), SC_(135.407379150390625), SC_(0.9688708782196044921875), SC_(BOOST_MATH_SMALL_CONSTANT(0.132561620732637353847620367820812298033e-5221)), SC_(0.9348116048625191354304436021264235582514e-524), SC_(0.1418057072067830448845425654367014413568e-4697), SC_(1) },
+ { SC_(366848.125), SC_(489622.875), SC_(0.9688708782196044921875), SC_(BOOST_MATH_SMALL_CONSTANT(0.1593861357254841199493602244543381689225e-253990)), SC_(BOOST_MATH_SMALL_CONSTANT(0.1087599097235379865638568519804395894287e-742823)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.6823674419891745504101999703531254110972e-488833)) },
+ { SC_(369212.46875), SC_(0.00043601836659945547580718994140625), SC_(0.221111953258514404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.1589837506262236294533702040658122820427e-241982)), SC_(2280.124431101420007150565551801342146135), SC_(BOOST_MATH_SMALL_CONSTANT(0.6972590989230623579661684537574695268047e-241986)), SC_(1) },
+ { SC_(377515.0625), SC_(0.25923203793354332447052001953125e-4), SC_(0.1355634629726409912109375), SC_(BOOST_MATH_SMALL_CONSTANT(0.1846099338711330641874444967580256082628e-327634)), SC_(38562.06263811561345901519963121865990616), SC_(BOOST_MATH_SMALL_CONSTANT(0.4787345936434957111959631565210397850823e-327639)), SC_(1) },
+ { SC_(377897.28125), SC_(217.7733001708984375), SC_(0.1355634629726409912109375), SC_(BOOST_MATH_SMALL_CONSTANT(0.5979546991309016931374244693774165753579e-327980)), SC_(0.1504122228349321219225606712861511198541e-800), SC_(BOOST_MATH_SMALL_CONSTANT(0.3975439547802701271946172226507152197205e-327179)), SC_(1) },
+ { SC_(381735.84375), SC_(0.1554123082314617931842803955078125e-4), SC_(0.913384497165679931640625), SC_(BOOST_MATH_SMALL_CONSTANT(0.3657468778839370617455648636532628074199e-15024)), SC_(64331.53971593053993165972765577354825155), SC_(BOOST_MATH_SMALL_CONSTANT(0.568534313804658519403859557834748785329e-15029)), SC_(1) },
+ { SC_(384451.40625), SC_(2821.419677734375), SC_(0.221111953258514404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.3774667393849660313070000619550292965817e-252276)), SC_(BOOST_MATH_SMALL_CONSTANT(0.7926054736804532094181417506264134619276e-7253)), SC_(BOOST_MATH_SMALL_CONSTANT(0.4762353427010844825792649025736193403842e-245023)), SC_(1) },
+ { SC_(385429.59375), SC_(3.3841388225555419921875), SC_(0.12707412242889404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.235912325871912806903517917043120974532e-345328)), SC_(0.3659527638406590216438323566506540139083e-18), SC_(BOOST_MATH_SMALL_CONSTANT(0.6446523955606258252275291431690649324288e-345310)), SC_(1) },
+ { SC_(386018), SC_(14093.7041015625), SC_(0.12707412242889404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.3533816041883537299284294859041196659449e-346687)), SC_(BOOST_MATH_SMALL_CONSTANT(0.1786199254113275768897792024673451795822e-26493)), SC_(BOOST_MATH_SMALL_CONSTANT(0.1978399685111184439989792884160734955792e-320193)), SC_(1) },
+ { SC_(391805.21875), SC_(0.3055977504118345677852630615234375e-4), SC_(0.9688708782196044921875), SC_(BOOST_MATH_SMALL_CONSTANT(0.6645640986776143695258650559207070499956e-5385)), SC_(32709.30102510362913407477993114535519627), SC_(BOOST_MATH_SMALL_CONSTANT(0.2031728217510905698625535037789910554642e-5389)), SC_(1) },
+ { SC_(392234.125), SC_(2.3254187107086181640625), SC_(0.81474220752716064453125), SC_(BOOST_MATH_SMALL_CONSTANT(0.3372946332051058353869565881444329491903e-34907)), SC_(0.116500178379113381650444797417636967012e-12), SC_(BOOST_MATH_SMALL_CONSTANT(0.2895228470015607868587943879852069969558e-34894)), SC_(1) },
+ { SC_(392420.34375), SC_(26721.41796875), SC_(0.3082362115383148193359375), SC_(BOOST_MATH_SMALL_CONSTANT(0.3760691264606479837185828827725121521107e-204854)), SC_(BOOST_MATH_SMALL_CONSTANT(0.6134691376735092695204920695453546200521e-43174)), SC_(BOOST_MATH_SMALL_CONSTANT(0.6130204493853339987206932621927405818447e-161680)), SC_(1) },
+ { SC_(395628.875), SC_(169.021026611328125), SC_(0.81474220752716064453125), SC_(BOOST_MATH_SMALL_CONSTANT(0.2526414214512150994786424981884882502037e-35331)), SC_(0.2367657718298624418210670946569777464019e-643), SC_(BOOST_MATH_SMALL_CONSTANT(0.1067052131305367667538379844205511148824e-34687)), SC_(1) },
+ { SC_(399928.875), SC_(2.3772995471954345703125), SC_(0.9688708782196044921875), SC_(BOOST_MATH_SMALL_CONSTANT(0.4575823381440133470258713714489339986042e-5500)), SC_(0.5891271920613133184754929015938875783606e-13), SC_(BOOST_MATH_SMALL_CONSTANT(0.7767123030647523365790059307890380108771e-5487)), SC_(1) },
+ { SC_(402603.8125), SC_(15.56592464447021484375), SC_(0.913384497165679931640625), SC_(BOOST_MATH_SMALL_CONSTANT(0.839964051894727144748188102571476786515e-15862)), SC_(0.2276187152898794510296259141901545424811e-75), SC_(BOOST_MATH_SMALL_CONSTANT(0.3690224025845181622960356235998888477582e-15786)), SC_(1) },
+ { SC_(406768.65625), SC_(0.00042969666537828743457794189453125), SC_(0.913384497165679931640625), SC_(BOOST_MATH_SMALL_CONSTANT(0.3845971664948874841658532459081877377021e-16009)), SC_(2313.76926505807402290357969801321322552), SC_(BOOST_MATH_SMALL_CONSTANT(0.1662210542351699700942923632024041265388e-16012)), SC_(1) },
+ { SC_(408381.65625), SC_(0.456345951533876359462738037109375e-4), SC_(0.81474220752716064453125), SC_(BOOST_MATH_SMALL_CONSTANT(0.256636316436966534711309393776406356604e-36342)), SC_(21899.70679105534773755741399478867643693), SC_(BOOST_MATH_SMALL_CONSTANT(0.1171871015833811629121890074513165499571e-36346)), SC_(1) },
+ { SC_(408998), SC_(0.0042365207336843013763427734375), SC_(0.9688708782196044921875), SC_(BOOST_MATH_SMALL_CONSTANT(0.4679643318850173892444623183563750454659e-5621)), SC_(222.9260767164665503554164247892365552352), SC_(BOOST_MATH_SMALL_CONSTANT(0.2099190632059649758309471308391737222338e-5623)), SC_(1) },
+ { SC_(413148.84375), SC_(0.4799632370122708380222320556640625e-4), SC_(0.12707412242889404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.4760216892086520862254727449513859060669e-370163)), SC_(20821.4247115356994008030634209707211316), SC_(BOOST_MATH_SMALL_CONSTANT(0.2286210938029239011421440938749654302622e-370167)), SC_(1) },
+ { SC_(422703.84375), SC_(15069.125), SC_(0.9688708782196044921875), SC_(BOOST_MATH_SMALL_CONSTANT(0.1894290547150840332529440634809860623788e-28480)), SC_(BOOST_MATH_SMALL_CONSTANT(0.5317858193741856644130900155741731742e-28515)), SC_(0.9999999999999999999999999999999999719269), SC_(0.2807308626303566343788814258620297467638e-34) },
+ { SC_(424641.03125), SC_(0.2840512692928314208984375), SC_(0.3082362115383148193359375), SC_(BOOST_MATH_SMALL_CONSTANT(0.3281697221736068695894776974100410805984e-217046)), SC_(0.07983838849602386203799283789214340070297), SC_(BOOST_MATH_SMALL_CONSTANT(0.4110425177105753921575682833010882185377e-217045)), SC_(1) },
+ { SC_(431857.34375), SC_(0.000211423015571199357509613037109375), SC_(0.905801355838775634765625), SC_(BOOST_MATH_SMALL_CONSTANT(0.5772928801419627986284807700357329751852e-18560)), SC_(4716.320526853965142300050830950109310733), SC_(BOOST_MATH_SMALL_CONSTANT(0.1224032329556379061882981898965492987967e-18563)), SC_(1) },
+ { SC_(433260.8125), SC_(3.3808853626251220703125), SC_(0.905801355838775634765625), SC_(BOOST_MATH_SMALL_CONSTANT(0.9743394652123491454497722494064540082877e-18624)), SC_(0.2560546738053348250776027384729315592872e-18), SC_(BOOST_MATH_SMALL_CONSTANT(0.3805200860942258123591032689689538525655e-18605)), SC_(1) },
+ { SC_(434088.21875), SC_(21.81499481201171875), SC_(0.12707412242889404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.7666944874274611518715379495155788957394e-388925)), SC_(0.3007553193509600488237813376679700633905e-103), SC_(BOOST_MATH_SMALL_CONSTANT(0.254923001555554620514995644832550525135e-388821)), SC_(1) },
+ { SC_(434689.125), SC_(39291.4765625), SC_(0.81474220752716064453125), SC_(BOOST_MATH_SMALL_CONSTANT(0.4229593173885190819792612716082535703903e-67453)), SC_(BOOST_MATH_SMALL_CONSTANT(0.2997707408973057615935360098045888677795e-58830)), SC_(BOOST_MATH_SMALL_CONSTANT(0.141094262943231928276825070136084907e-8622)), SC_(1) },
+ { SC_(435121.25), SC_(397.58978271484375), SC_(0.632396042346954345703125), SC_(BOOST_MATH_SMALL_CONSTANT(0.1391846018183584493348497097868590409154e-86771)), SC_(0.1011089115991303029245123638141426629899e-1381), SC_(BOOST_MATH_SMALL_CONSTANT(0.13765809523317592290575564449364874034e-85389)), SC_(1) },
+ { SC_(437285.3125), SC_(0.2788266647257842123508453369140625e-4), SC_(0.3082362115383148193359375), SC_(BOOST_MATH_SMALL_CONSTANT(0.7080016520655375267035486305854570379383e-223509)), SC_(35851.012645549836380276487988456969042), SC_(BOOST_MATH_SMALL_CONSTANT(0.1974844222854668306991988406185103636153e-223513)), SC_(1) },
+ { SC_(442472.9375), SC_(49476.66015625), SC_(0.1355634629726409912109375), SC_(BOOST_MATH_SMALL_CONSTANT(0.6336326725813869671779066098442524839183e-387139)), SC_(BOOST_MATH_SMALL_CONSTANT(0.2249187802897843416031847629628799944729e-69724)), SC_(BOOST_MATH_SMALL_CONSTANT(0.2817162140773738373578099290063302965899e-317414)), SC_(1) },
+ { SC_(450819.5), SC_(499216.46875), SC_(0.221111953258514404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.3800121390355127178063074898342430570494e-349644)), SC_(BOOST_MATH_SMALL_CONSTANT(0.9678656246284879041515322169506269463219e-285456)), SC_(BOOST_MATH_SMALL_CONSTANT(0.3926290275898362964767484676866590121196e-64188)), SC_(1) },
+ { SC_(457779.125), SC_(0.326781928539276123046875), SC_(0.81474220752716064453125), SC_(BOOST_MATH_SMALL_CONSTANT(0.5550829230252479526732424261273786286927e-40738)), SC_(0.03865177027724154668769750896774259956337), SC_(BOOST_MATH_SMALL_CONSTANT(0.1436112548128448741327568829062085238803e-40736)), SC_(1) },
+ { SC_(458356.625), SC_(0.00327513157390058040618896484375), SC_(0.81474220752716064453125), SC_(BOOST_MATH_SMALL_CONSTANT(0.3934256588938313890657511884630295473806e-40789)), SC_(292.0201861612453957241730382306629407247), SC_(BOOST_MATH_SMALL_CONSTANT(0.1347255010229302168172554227989064367004e-40791)), SC_(1) },
+ { SC_(462545.71875), SC_(0.01835658587515354156494140625), SC_(0.81474220752716064453125), SC_(BOOST_MATH_SMALL_CONSTANT(0.6842410988092162996870266776720414780451e-41162)), SC_(42.43584359872765638163172784469089833824), SC_(BOOST_MATH_SMALL_CONSTANT(0.1612413094174311960166824477001882166453e-41163)), SC_(1) },
+ { SC_(466997.53125), SC_(0.356361567974090576171875), SC_(0.9688708782196044921875), SC_(BOOST_MATH_SMALL_CONSTANT(0.3241995530691347719937107476224957921527e-6418)), SC_(0.02384677265659975718672488537621955689915), SC_(BOOST_MATH_SMALL_CONSTANT(0.1359511233397070742246772924547520956389e-6416)), SC_(1) },
+ { SC_(468932.8125), SC_(0.182366857188753783702850341796875e-4), SC_(0.632396042346954345703125), SC_(BOOST_MATH_SMALL_CONSTANT(0.1103527708644207448237778040457649555939e-93327)), SC_(54820.89133734763217172708014125126167222), SC_(BOOST_MATH_SMALL_CONSTANT(0.2012969292771077366711511442513115417448e-93332)), SC_(1) },
+ { SC_(470942.5), SC_(0.326362073421478271484375), SC_(0.913384497165679931640625), SC_(BOOST_MATH_SMALL_CONSTANT(0.1471321546322475787061574604050565023955e-18534)), SC_(0.03855775001051170472627007361165177373414), SC_(BOOST_MATH_SMALL_CONSTANT(0.3815890569136841848282960464759255989168e-18533)), SC_(1) },
+ { SC_(473791.3125), SC_(0.00037331905332393944263458251953125), SC_(0.9688708782196044921875), SC_(BOOST_MATH_SMALL_CONSTANT(0.5426122640062687858436002133933513536523e-6511)), SC_(2665.063154701061606205642057038907522539), SC_(BOOST_MATH_SMALL_CONSTANT(0.2036020283606124332820904603012161247452e-6514)), SC_(1) },
+ { SC_(474410.90625), SC_(1.53685867786407470703125), SC_(0.3082362115383148193359375), SC_(BOOST_MATH_SMALL_CONSTANT(0.117766994152457958795877225944368333002e-242484)), SC_(0.1678625980035251962785258430723784518394e-8), SC_(BOOST_MATH_SMALL_CONSTANT(0.7015678033887262640021676404777871768517e-242476)), SC_(1) },
+ { SC_(481669.8125), SC_(360.35894775390625), SC_(0.8350250720977783203125), SC_(BOOST_MATH_SMALL_CONSTANT(0.1292404819014634354658936369356745477441e-38001)), SC_(0.1184119790891173687044477395438058404198e-1283), SC_(BOOST_MATH_SMALL_CONSTANT(0.1091447697231683701613307519286097336645e-36717)), SC_(1) },
+ { SC_(485412.125), SC_(483725.21875), SC_(0.81474220752716064453125), SC_(BOOST_MATH_SMALL_CONSTANT(0.8593009078995238625969168132860357389775e-291741)), SC_(BOOST_MATH_SMALL_CONSTANT(0.4682031506788712249402837988058297965792e-397392)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.544865187939051001712434628531605526675e-105651)) },
+ { SC_(489093.59375), SC_(101.60869598388671875), SC_(0.221111953258514404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.2679049247465053509778519007374647739724e-320562)), SC_(0.1239584973345346670544577370734255574289e-418), SC_(BOOST_MATH_SMALL_CONSTANT(0.2161246953675901063139086740469757800594e-320143)), SC_(1) },
+ { SC_(489183.34375), SC_(118808.328125), SC_(0.905801355838775634765625), SC_(BOOST_MATH_SMALL_CONSTANT(0.1458359410123570793275225181353576621217e-130434)), SC_(BOOST_MATH_SMALL_CONSTANT(0.259453747115697820698795192063284012701e-142915)), SC_(1), SC_(BOOST_MATH_SMALL_CONSTANT(0.1779079596666185278653733063531830995884e-12480)) },
+ { SC_(491651.625), SC_(32.955524444580078125), SC_(0.3082362115383148193359375), SC_(BOOST_MATH_SMALL_CONSTANT(0.1033057257566332368173504705063859426151e-251301)), SC_(0.603837473523874333668117011509794982175e-152), SC_(BOOST_MATH_SMALL_CONSTANT(0.1710820051524158477748585452714475118872e-251149)), SC_(1) },
+ { SC_(499024.09375), SC_(0.3617647588253021240234375), SC_(0.221111953258514404296875), SC_(BOOST_MATH_SMALL_CONSTANT(0.1198688160746637782814955712359261486421e-327059)), SC_(0.0213597393543653960374826366383814420494), SC_(BOOST_MATH_SMALL_CONSTANT(0.5611904437877215617130419280865220458283e-327058)), SC_(1) }
} };
#undef SC_
Modified: sandbox/math_toolkit/libs/math/test/igamma_big_data.ipp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/igamma_big_data.ipp (original)
+++ sandbox/math_toolkit/libs/math/test/igamma_big_data.ipp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -200,98 +200,98 @@
{ SC_(230.1575469970703125), SC_(230.1575469970703125), SC_(0.3902125711209141749169738822595467642465379627204853447527623692260839529414655887300731747165667578), SC_(0.4912343004237358607289747140325946370477956811693055364940306943959659677095875895076435061750962822), SC_(0.4041386596142341492947015109399088112787484367544129079171538332728132170310565630918517387007845794), SC_(0.5087656995762641392710252859674053629522043188306944635059693056040340322904124104923564938249037178) },
{ SC_(230.1575469970703125), SC_(232.1575469970703125), SC_(0.3487501889396853257613873709625756982927978890960690452261371310879305408861795829594157702393902252), SC_(0.4390377649656656899508279604758759349074080513082357116118517884562056435445571208463156984095475396), SC_(0.4456010417954629984502880222368798772324885103788292074437790714109666290863425688625091431779611121), SC_(0.5609622350343343100491720395241240650925919486917642883881482115437943564554428791536843015904524604) },
{ SC_(230.1575469970703125), SC_(460.315093994140625), SC_(0.4407730519635239782394783554127362184391684954328510668870843466275578363345143797655617743698392878), SC_(0.5548843319039131990882691513243314111283345266801758353532094934100654252020248166518909120713686568e-32), SC_(0.7943512307351483242116753931994511677947667642351158578863620751367127782875678233112560425738850617), SC_(0.9999999999999999999999999999999944511566809608680091173084867566858887166547331982416464679050658993) },
- { SC_(230.1575469970703125), SC_(23015.75390625), SC_(0.9559236409417348208950021152441346378729603969644625960148748982677900217226751345451199820074363395e-8996), SC_(0.1203401724520595328794601630545412981309154417499555052010254193737832188451276268511110869475419232e-9438), SC_(0.7943512307351483242116753931994555755252863994748982526699162024988971699725221518219249134173513373), SC_(1) },
+ { SC_(230.1575469970703125), SC_(23015.75390625), SC_(BOOST_MATH_SMALL_CONSTANT(0.9559236409417348208950021152441346378729603969644625960148748982677900217226751345451199820074363395e-8996)), SC_(BOOST_MATH_SMALL_CONSTANT(0.1203401724520595328794601630545412981309154417499555052010254193737832188451276268511110869475419232e-9438)), SC_(0.7943512307351483242116753931994555755252863994748982526699162024988971699725221518219249134173513373), SC_(1) },
{ SC_(460.871795654296875), SC_(1), SC_(0.3035697913328577383103573207361433550048171545351043103427946337286406766335561424688872199902627644), SC_(1), SC_(0.0007999570943827548943010381276909696101503474270950161551998016380700161022055691674813276239985866686), SC_(0.263516699362756806302924272183408617249859311132449191463747391836511682589270348351185414999011926e-1029) },
{ SC_(460.871795654296875), SC_(230.4358978271484375), SC_(0.3035697913328577383103573207361433550047925351370884076635599897138082095152794906157429847334951853), SC_(0.9999999999999999999999999999999999999999189003691447412844502774348028830000232618580279072994806341), SC_(0.2461939801590267923464401483246711827665185314423525676757909375351780224332385807676145414825568404), SC_(0.8109963085525871554972256519711699997673814197209270051936588154826179820725730567233569656951290491e-40) },
{ SC_(460.871795654296875), SC_(458.871795654296875), SC_(0.1611931483241718379676730539883166095529909983108046890396800612185587953951876268408693414028956011), SC_(0.530992058255977856491744157658594549661381367389538808982523985300127763450276738767474706920587693), SC_(0.1423766430086859003426842667478267454518261562242996213031145725100818812383685156280178785873671632), SC_(0.469007941744022143508255842341405450338618632610461191017476014699872236549723261232525293079412307) },
{ SC_(460.871795654296875), SC_(460.871795654296875), SC_(0.1499044425611669817452516634978304074804845409565096465620306533651905004146763285309824382109683004), SC_(0.4938055328331401358749551739774500026079273309328516400413537728779540654346471892486393687796370785), SC_(0.1536653487716907565651056572383129475243326135785946637807639803634501762188798139379047817792944639), SC_(0.5061944671668598641250448260225499973920726690671483599586462271220459345653528107513606312203629215) },
{ SC_(460.871795654296875), SC_(462.871795654296875), SC_(0.1386645136476389702527676004487322668191450267077516764379529098330836887026073425447155428151335593), SC_(0.4567796849575072422528834382064975306821917056574500241896950256666133220324798484185934498637551554), SC_(0.164905277685218768057589720287411088185672127827352633904841723895556987930948799924171677175129205), SC_(0.5432203150424927577471165617935024693178082943425499758103049743333866779675201515814065501362448446) },
{ SC_(460.871795654296875), SC_(921.74359130859375), SC_(0.214579568282097447843285341234033253132140021796896174619250110179219191931782655042052951085903063), SC_(0.7068541548220638744450497903888966495830510626579681233627159150684459468037055060183111727855356285e-63), SC_(0.3035697913328577383103573207361433550048171545351043103427946335140611083514586946256018787562295112), SC_(0.9999999999999999999999999999999999999999999999999999999999999992931458451779361255549502096111033504) },
- { SC_(460.871795654296875), SC_(46087.1796875), SC_(0.1759948687946540932943422895133578780806254223549085877126768144753543541319766123991600654675160946e-17870), SC_(0.5797509298337248254275801202156047189153910514148794160732208629325216030358623936601957024666048442e-18897), SC_(0.3035697913328577383103573207361433550048171545351043103427946337286406766335561424688872199902627644), SC_(1) },
+ { SC_(460.871795654296875), SC_(46087.1796875), SC_(BOOST_MATH_SMALL_CONSTANT(0.1759948687946540932943422895133578780806254223549085877126768144753543541319766123991600654675160946e-17870)), SC_(BOOST_MATH_SMALL_CONSTANT(0.5797509298337248254275801202156047189153910514148794160732208629325216030358623936601957024666048442e-18897)), SC_(0.3035697913328577383103573207361433550048171545351043103427946337286406766335561424688872199902627644), SC_(1) },
{ SC_(664.0791015625), SC_(1), SC_(0.5745703266423053012388846296755759814458236575017295797872518233032217040765801424270951932343892656), SC_(1), SC_(0.000554803499100533461700081675382127658415484012034431099012469964977561860611562701898919933771029858), SC_(0.9655972008556621156398909346034920368728235561361941209577148915248010183298024193896373627559762647e-1588) },
{ SC_(664.0791015625), SC_(332.03955078125), SC_(0.5745703266423053012388846296755759814458236575017295797869018458769535952325154619307030524922146164), SC_(0.9999999999999999999999999999999999999999999999999999999993908884429982322791299632237165916284594418), SC_(0.3499774262681088440646804963921407421746491858377886363583697179665453608787350388997316735168900411), SC_(0.6091115570017677208700367762834083715405581683323513398498453028923230365514524283437552918367998412e-57) },
{ SC_(664.0791015625), SC_(662.0791015625), SC_(0.3021167487573438738160129595305571832198618183437747086825419999530854511327755168926331826960039427), SC_(0.5258133508614421049922565116779507398294624638695327972751007507697623513933985163278375927725745103), SC_(0.2724535778849614274228716701450187982259618391579548711047098233501362529438046255344620105383853229), SC_(0.4741866491385578950077434883220492601705375361304672027248992492302376486066014836721624072274254897) },
{ SC_(664.0791015625), SC_(664.0791015625), SC_(0.2843201563499913066053586445117464815121852615133384043443363638833281789611578313103564412744820411), SC_(0.494839609994326789934188822741956842775938040001912655673429653876761834997096017421334224252871364), SC_(0.2902501702923139946335259851638294999336383959883911754429154594198935251154223111167387519599072244), SC_(0.505160390005673210065811177258043157224061959998087344326570346123238165002903982578665775747128636) },
{ SC_(664.0791015625), SC_(666.0791015625), SC_(0.2665770008350486832539682183986178091094039928067551889686056029306641365030303914782037547507298816), SC_(0.4639588723505457189002094923711730626394167476456643807276073537522553952201326725769733994829306401), SC_(0.3079933258072566179849164112769581723364196646949743908186462203725575675735497509488914384836593839), SC_(0.5360411276494542810997905076288269373605832523543356192723926462477446047798673274230266005170693599) },
{ SC_(664.0791015625), SC_(1328.158203125), SC_(0.2815972350463307317319513325546921336811187310092965580873275148483880823923796516975854414779446515), SC_(0.490100553385585993788823794136328178072277263551970508868100075216984438630852032648844240985526793e-90), SC_(0.5745703266423053012388846296755759814458236575017295797872518233032217040765801424270951929527920305), SC_(0.9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999995098994466) },
- { SC_(664.0791015625), SC_(66407.90625), SC_(0.8516936430425091984695352018926240039240039876743845066067885000233245389027299911547740471304411031e-25643), SC_(0.1482314006745992402392065908335891607562619332695970947910626860700838612133574022151344757253035352e-27227), SC_(0.5745703266423053012388846296755759814458236575017295797872518233032217040765801424270951932343892656), SC_(1) },
+ { SC_(664.0791015625), SC_(66407.90625), SC_(BOOST_MATH_SMALL_CONSTANT(0.8516936430425091984695352018926240039240039876743845066067885000233245389027299911547740471304411031e-25643)), SC_(BOOST_MATH_SMALL_CONSTANT(0.1482314006745992402392065908335891607562619332695970947910626860700838612133574022151344757253035352e-27227)), SC_(0.5745703266423053012388846296755759814458236575017295797872518233032217040765801424270951932343892656), SC_(1) },
{ SC_(1169.2916259765625), SC_(1), SC_(0.2211789888023831503246826752278734722240439253686325962175969884553455378953601789267541504616923277), SC_(1), SC_(0.0003148864236423753142799300005285283127912884357020962982280135041640804352403607375497608504709569992), SC_(0.1423672408249035673853164595912914309562984950734405225106779761662731230245426459145165372095669607e-3081) },
{ SC_(1169.2916259765625), SC_(584.64581298828125), SC_(0.2211789888023831503246826752278734722240439253686325962175969884553455378953601789267541504616923277), SC_(0.9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999998), SC_(0.4251581173713294990895228243877471105625206871093006314536841396842453368736997236563189985257137593), SC_(0.1922235559866835428767949912699689078565566007500741320105283086319101530842124947089114693215734909e-99) },
{ SC_(1169.2916259765625), SC_(1167.2916259765625), SC_(0.1148913148430660007404559319786710085496945916646259215810780041406350545777929034671173346191878257), SC_(0.5194494986398458229099025998514760815236833039291615271666420090780290283552325279002354379324796388), SC_(0.106287673959317149584226743249202463674349333704006674636518984314710483317567275459636815842504502), SC_(0.4805505013601541770900974001485239184763166960708384728333579909219709716447674720997645620675203612) },
{ SC_(1169.2916259765625), SC_(1169.2916259765625), SC_(0.1097293461334211936196186098765103513825912847901162614195092808968794457897461936852246112756938448), SC_(0.4961110760455691456152544829180582276831949404486516253736169842404434869834516021522451806309381424), SC_(0.1114496426689619567050640653513631208414526405785163347980877075584660921056139852415295391859984829), SC_(0.5038889239544308543847455170819417723168050595513483746263830157595565130165483978477548193690618576) },
{ SC_(1169.2916259765625), SC_(1171.2916259765625), SC_(0.1045761915724994772699317733451515392457114868019129222313801712339302377148535579285521591865594366), SC_(0.4728125042019031691903140623366099509942791065498616795361308461781345126406997089894375857466236069), SC_(0.1166027972298836730547509018827219329783324385667196739862168172214153001805066209982019912751328912), SC_(0.5271874957980968308096859376633900490057208934501383204638691538218654873593002910105624142533763931) },
{ SC_(1169.2916259765625), SC_(2338.583251953125), SC_(0.3853660517961866267548503750089203171857055088519007059620968150399652189311257677799267678599538164), SC_(0.1742326673445910972431954923648105731106713066341076374902708289141328648814063925289049214586889559e-157), SC_(0.2211789888023831503246826752278734722240439253686325962175969884553455378953601789267541504616923277), SC_(1) },
- { SC_(1169.2916259765625), SC_(116929.1640625), SC_(0.1334921973028690412368136130282362266211264532031309191211246173794760240250211434584800981343637091e-44860), SC_(0.6035482756553351914398657934266315863036146517683943373863531255923722374767324696235963112082335455e-47939), SC_(0.2211789888023831503246826752278734722240439253686325962175969884553455378953601789267541504616923277), SC_(1) },
- { SC_(2057.796630859375), SC_(1), SC_(0.2296607098745991351513439491999254015070811420500402999956642121725140715538280690982449249151182744), SC_(1), SC_(0.0001788603446415592472512376463686763352142734957575834349538723877570073123201456502328382989629296588), SC_(0.7788025419725549031043567928048587098198224051085568478803331745902750314471563131849915968668166695e-5927) },
+ { SC_(1169.2916259765625), SC_(116929.1640625), SC_(BOOST_MATH_SMALL_CONSTANT(0.1334921973028690412368136130282362266211264532031309191211246173794760240250211434584800981343637091e-44860)), SC_(BOOST_MATH_SMALL_CONSTANT(0.6035482756553351914398657934266315863036146517683943373863531255923722374767324696235963112082335455e-47939)), SC_(0.2211789888023831503246826752278734722240439253686325962175969884553455378953601789267541504616923277), SC_(1) },
+ { SC_(2057.796630859375), SC_(1), SC_(0.2296607098745991351513439491999254015070811420500402999956642121725140715538280690982449249151182744), SC_(1), SC_(0.0001788603446415592472512376463686763352142734957575834349538723877570073123201456502328382989629296588), SC_(BOOST_MATH_SMALL_CONSTANT(0.7788025419725549031043567928048587098198224051085568478803331745902750314471563131849915968668166695e-5927)) },
{ SC_(2057.796630859375), SC_(1028.8983154296875), SC_(0.2296607098745991351513439491999254015070811420500402999956642121725140715538280690982449249151182744), SC_(1), SC_(0.9822844006807419524699774209176095928147927787459050881127600530947159125340637625888955323105924994), SC_(0.4277111227327893392956905805573130925190053689139455240870060837560269563451544938490472860053531939e-174) },
{ SC_(2057.796630859375), SC_(2055.796630859375), SC_(0.1181970778393469944551585447788996343247484863125676497955892509032681427741390030228718216377717021), SC_(0.5146595510563637431071584380665041151517840985243959943271211766126099181752511155269841800877407187), SC_(0.1114636320352521406961854044210257671823326557374726502000749612692459287796890660753731032773465723), SC_(0.4853404489436362568928415619334958848482159014756040056728788233873900818247488844730158199122592813) },
{ SC_(2057.796630859375), SC_(2057.796630859375), SC_(0.1141571063368333335549056714887837836223093960256471510446261076349612596796785907592276653667764085), SC_(0.4970685077093341491049428149069921151108953421435248479241067800168777919786478963838719883781055889), SC_(0.1155036035377658015964382777111416178847717460243931489510381045375528118741494783390172595483418659), SC_(0.5029314922906658508950571850930078848891046578564751520758932199831222080213521036161280116218944111) },
{ SC_(2057.796630859375), SC_(2059.796630859375), SC_(0.1101210575241523286005972733062095852404319473645093682804326140992694666629481735607350959283621991), SC_(0.4794945447320151505244609247943138810471077522080625919866429085483861553259121554634814161108765226), SC_(0.1195396523504468065507466758937158162666491946855309317152315980732446048908798955375098289867560753), SC_(0.5205054552679848494755390752056861189528922477919374080133570914516138446740878445365185838891234774) },
{ SC_(2057.796630859375), SC_(4115.59326171875), SC_(0.1184802275824791022571834680209296613447564684666621309564053455602973525777492482319187677060560432), SC_(0.5158924556454278242195499999686615277394459408484310942606310759251402814732192780093913845058465035e-276), SC_(0.2296607098745991351513439491999254015070811420500402999956642121725140715538280690982449249151182744), SC_(1) },
- { SC_(2057.796630859375), SC_(205779.65625), SC_(0.4201428634932982855590128692571495505659212593160178569139973150589427696759188605068591915292645523e-78440), SC_(0.1829406796324488764221415721149535896951274162966389404491557586743437861782808243268924184165028864e-84363), SC_(0.2296607098745991351513439491999254015070811420500402999956642121725140715538280690982449249151182744), SC_(1) },
- { SC_(5823.5341796875), SC_(1), SC_(0.1204395397514337475423786621774349420062760132029898805362923119619100468071321611679283901089428652), SC_(1), SC_(0.6318201301512319242829917005636884943368220526214159580849901321408186241292901627433210404056827978e-4), SC_(0.5245952711669263519210693557964617436547132969346871040581963321734735795313612558534271821781318411e-19400) },
+ { SC_(2057.796630859375), SC_(205779.65625), SC_(BOOST_MATH_SMALL_CONSTANT(0.4201428634932982855590128692571495505659212593160178569139973150589427696759188605068591915292645523e-78440)), SC_(BOOST_MATH_SMALL_CONSTANT(0.1829406796324488764221415721149535896951274162966389404491557586743437861782808243268924184165028864e-84363)), SC_(0.2296607098745991351513439491999254015070811420500402999956642121725140715538280690982449249151182744), SC_(1) },
+ { SC_(5823.5341796875), SC_(1), SC_(0.1204395397514337475423786621774349420062760132029898805362923119619100468071321611679283901089428652), SC_(1), SC_(0.6318201301512319242829917005636884943368220526214159580849901321408186241292901627433210404056827978e-4), SC_(BOOST_MATH_SMALL_CONSTANT(0.5245952711669263519210693557964617436547132969346871040581963321734735795313612558534271821781318411e-19400)) },
{ SC_(5823.5341796875), SC_(2911.76708984375), SC_(0.1204395397514337475423786621774349420062760132029898805362923119619100468071321611679283901089428652), SC_(1), SC_(0.4035259729288404343552749435692175466685338188811768319423095321055726721842742984032087143214236599), SC_(0.3350444328844562385775121047850168127494131430195647748520977802476677594087402915363606825742343083e-490) },
{ SC_(5823.5341796875), SC_(5821.5341796875), SC_(0.6126920809889162048883575147692727204635949058113441363539761562854353553260508847605536631622514472), SC_(0.5087134028022741086387529518673768528172426138087777028759999654326711259860222847941770091355247484), SC_(0.5917033165254212705354291070050766995991652262185546690089469633336651127452707269187302379271772049), SC_(0.4912865971977258913612470481326231471827573861912222971240000345673288740139777152058229908644752516) },
{ SC_(5823.5341796875), SC_(5823.5341796875), SC_(0.6000989280305561918308588121091415609770180970873138723602626680145344318925207189486424421186686595), SC_(0.4982574072178089990585121217647990047541960897876785713029080474657389735630621455528428027141859677), SC_(0.6042964694837812835929278096652078590857420349425849330026604516045660361788008927306414589707599927), SC_(0.5017425927821910009414878782352009952458039102123214286970919525342610264369378544471571972858140323) },
{ SC_(5823.5341796875), SC_(5825.5341796875), SC_(0.5875100985050789481864072831420352596099318466445228673422078429397158588973815853817471380143431533), SC_(0.48780500134556936977004263447238945560454812532198011665953206594566719692149899347013902778973964), SC_(0.6168852990092585272373793386323141604528282853853759380207152766793846091739400262975367630750854988), SC_(0.51219499865443063022995736552761054439545187467801988334046793405433280307850100652986097221026036) },
{ SC_(5823.5341796875), SC_(11647.068359375), SC_(0.5353527302842454914572421462782089453923068596623200437216734225930083166517293351090646020310494752), SC_(0.4444991498548735493821113261413094182993223786289714525114040696846695823566433886781875769143935322e-778), SC_(0.1204395397514337475423786621774349420062760132029898805362923119619100468071321611679283901089428652), SC_(1) },
- { SC_(5823.5341796875), SC_(582353.4375), SC_(0.1306843628941291279596587214414256236728415340542843841458695749930348339470885205941165569646322079e-219344), SC_(0.1085061958588009491652051793216903806290512061576938386117858324035783177763463890242081951747644651e-238740), SC_(0.1204395397514337475423786621774349420062760132029898805362923119619100468071321611679283901089428652), SC_(1) },
- { SC_(9113.3095703125), SC_(1), SC_(0.2058284735294648231534673957777340107191538633051240481422777650293706102527136539254313499140613425), SC_(1), SC_(0.4037170092859947171051886914823887325296146261863938904807985526887128393010583619637026093856940876e-4), SC_(0.1961424492749792906069609223922162691035648940014810214081197868423196767074778143387553776773884785e-32130) },
+ { SC_(5823.5341796875), SC_(582353.4375), SC_(BOOST_MATH_SMALL_CONSTANT(0.1306843628941291279596587214414256236728415340542843841458695749930348339470885205941165569646322079e-219344)), SC_(BOOST_MATH_SMALL_CONSTANT(0.1085061958588009491652051793216903806290512061576938386117858324035783177763463890242081951747644651e-238740)), SC_(0.1204395397514337475423786621774349420062760132029898805362923119619100468071321611679283901089428652), SC_(1) },
+ { SC_(9113.3095703125), SC_(1), SC_(0.2058284735294648231534673957777340107191538633051240481422777650293706102527136539254313499140613425), SC_(1), SC_(0.4037170092859947171051886914823887325296146261863938904807985526887128393010583619637026093856940876e-4), SC_(BOOST_MATH_SMALL_CONSTANT(0.1961424492749792906069609223922162691035648940014810214081197868423196767074778143387553776773884785e-32130)) },
{ SC_(9113.3095703125), SC_(4556.65478515625), SC_(0.2058284735294648231534673957777340107191538633051240481422777650293706102527136539254313499140613425), SC_(1), SC_(0.6109377214187031022316054159922887207113747225714451450654131455750653440696736591254903504865772707), SC_(0.2968188564694602134756320513815309578474741421887761461484741830281935296582920785928397009274511509e-766) },
{ SC_(9113.3095703125), SC_(9111.3095703125), SC_(0.1043478778903032904507254378873664862163967379105136115494921359540150657805686187420775552682050699), SC_(0.5069652225515127761139756648006698185865481908723864989191437142873208577668041858919621519562798842), SC_(0.1014805956391615327027419578903675245027571253946104365927856290753555444721450351833537946458562726), SC_(0.4930347774484872238860243351993301814134518091276135010808562857126791422331958141080378480437201158) },
{ SC_(9113.3095703125), SC_(9113.3095703125), SC_(0.1026275177685656364890949896204867326423388372804577577731301989347594536047854290961838095177720948), SC_(0.4986070003277475086621436243232816155603962044739470943558278267678784076324835549046763593951499622), SC_(0.1032009557608991866643724061572472780768150260246662903691475660946111566479282248292475403962892477), SC_(0.5013929996722524913378563756767183844396037955260529056441721732321215923675164450953236406048500378) },
{ SC_(9113.3095703125), SC_(9115.3095703125), SC_(0.1009075351129165861035492191302916783244651730318660685395897540635511698554749260656934916726778491), SC_(0.4902506119906264500395580518169463900862860214613231920536378253585336247100111218942361723610119757), SC_(0.1049209384165482370499181766474423323946886902732579796026880109658194403972387278597378582413834934), SC_(0.5097493880093735499604419481830536099137139785386768079463621746414663752899888781057638276389880243) },
{ SC_(9113.3095703125), SC_(18226.619140625), SC_(0.2844201695607462461046288417599451943410582108941500320299291215678803002029948089751534122462413978), SC_(0.1381831020186965723509796431234180433841791957413460611775479295093149059469403680680588975239641139e-1216), SC_(0.2058284735294648231534673957777340107191538633051240481422777650293706102527136539254313499140613425), SC_(1) },
- { SC_(9113.3095703125), SC_(911330.9375), SC_(0.2634558899021205314041532677186125127324533196940061567254967357798886751103797693911325418379331619e-341479), SC_(0.127997786401698310219717935271258163287422251796870023632726955567030034172504342639656107002595249e-373605), SC_(0.2058284735294648231534673957777340107191538633051240481422777650293706102527136539254313499140613425), SC_(1) },
- { SC_(31387.41015625), SC_(1), SC_(0.1907153914260137766081242520060232376058679739088173806739260816310109592191535200104259238502823114), SC_(1), SC_(0.1172097856896058268698780001377136569290991309340363479889876878658000708291760860866831167807270228e-4), SC_(0.6145795827657478246713528055954877980223660793035074463222390108567932746239676554864860396068354328e-127513) },
+ { SC_(9113.3095703125), SC_(911330.9375), SC_(BOOST_MATH_SMALL_CONSTANT(0.2634558899021205314041532677186125127324533196940061567254967357798886751103797693911325418379331619e-341479)), SC_(BOOST_MATH_SMALL_CONSTANT(0.127997786401698310219717935271258163287422251796870023632726955567030034172504342639656107002595249e-373605)), SC_(0.2058284735294648231534673957777340107191538633051240481422777650293706102527136539254313499140613425), SC_(1) },
+ { SC_(31387.41015625), SC_(1), SC_(0.1907153914260137766081242520060232376058679739088173806739260816310109592191535200104259238502823114), SC_(1), SC_(0.1172097856896058268698780001377136569290991309340363479889876878658000708291760860866831167807270228e-4), SC_(BOOST_MATH_SMALL_CONSTANT(0.6145795827657478246713528055954877980223660793035074463222390108567932746239676554864860396068354328e-127513)) },
{ SC_(31387.41015625), SC_(15693.705078125), SC_(0.1907153914260137766081242520060232376058679739088173806739260816310109592191535200104259238502823114), SC_(1), SC_(0.1178940944440575118484057547609480198287057753687344488602125702168138518988852818906560456377655828), SC_(0.6181676977539246234778546964931531171263852830030672634254567333844990255403536962432314618520183912e-2635) },
{ SC_(31387.41015625), SC_(31385.41015625), SC_(0.9607346152919525199880979895188512454515764100687040469903581036630732159159887778018753399814702988), SC_(0.5037530574267574950285346598748481476034239981169588651898103217495670654430574683807499422545184211), SC_(0.9464192989681852460931445305413811306071033290194697597489027126470363762755464223023838985213528154), SC_(0.4962469425732425049714653401251518523965760018830411348101896782504329345569425316192500577454815789) },
{ SC_(31387.41015625), SC_(31387.41015625), SC_(0.9521454388761436323609355018051756475974072518959609739004957130130269970551939745267389118331132782), SC_(0.4992493955295262078624630020406504359970108488437383103275210393051794296194033332729085717661902896), SC_(0.955008475383994133720307018255056728461272487192212832838765103297082595136341225577520326669709836), SC_(0.5007506044704737921375369979593495640029891511562616896724789606948205703805966667270914282338097104) },
{ SC_(31387.41015625), SC_(31389.41015625), SC_(0.9435568097262039923404683068116690883643670926776098133654518635680589408058715489960845828809997579), SC_(0.4947460205865177317657787953702156470879097009546148598250336067254482340200731084198867465150117276), SC_(0.9635971045339337737407742132485632876943126464105639933738089527420506513856636511081746556218233563), SC_(0.5052539794134822682342212046297843529120902990453851401749663932745517659799268915801132534849882724) },
{ SC_(31387.41015625), SC_(62774.8203125), SC_(0.639440870992195110243168891395043075970119175325222539369097746057899381944623539419388796691846333), SC_(0.3352854041883977247774206822492896029430517273753461135918538525190213990661515897439781385194335162e-4185), SC_(0.1907153914260137766081242520060232376058679739088173806739260816310109592191535200104259238502823114), SC_(1) },
- { SC_(31387.41015625), SC_(3138741), SC_(0.8712340128913840990158681888626366121803871270318591176775961058292458205022056834607179300912579579e-1159228), SC_(0.4568241746914123883971626233329316053998069787008932952589706205337117010465312411468070532148356825e-1286736), SC_(0.1907153914260137766081242520060232376058679739088173806739260816310109592191535200104259238502823114), SC_(1) },
- { SC_(53731.765625), SC_(1), SC_(0.1968375061316474051696679914969989794166523446713072964017484226785290381190494752446686823589822611), SC_(1), SC_(0.6846718760933685833021646032164728730373454920630880010700244576412946459126644872424651974762617329e-5), SC_(0.3478360854843646528005950030296176413493884510395694421618624709007598051252449019794914871773442384e-230831) },
+ { SC_(31387.41015625), SC_(3138741), SC_(BOOST_MATH_SMALL_CONSTANT(0.8712340128913840990158681888626366121803871270318591176775961058292458205022056834607179300912579579e-1159228)), SC_(BOOST_MATH_SMALL_CONSTANT(0.4568241746914123883971626233329316053998069787008932952589706205337117010465312411468070532148356825e-1286736)), SC_(0.1907153914260137766081242520060232376058679739088173806739260816310109592191535200104259238502823114), SC_(1) },
+ { SC_(53731.765625), SC_(1), SC_(0.1968375061316474051696679914969989794166523446713072964017484226785290381190494752446686823589822611), SC_(1), SC_(0.6846718760933685833021646032164728730373454920630880010700244576412946459126644872424651974762617329e-5), SC_(BOOST_MATH_SMALL_CONSTANT(0.3478360854843646528005950030296176413493884510395694421618624709007598051252449019794914871773442384e-230831)) },
{ SC_(53731.765625), SC_(26865.8828125), SC_(0.1968375061316474051696679914969989794166523446713072964017484226785290381190494752446686823589822611), SC_(1), SC_(0.4596204454239807853790732663423567816759432173785340424309074767567519221051637504214333998617934737), SC_(0.2335024734140762981026837224978008762575936206362713332576404458305954499600642343912165066945157393e-4509) },
{ SC_(53731.765625), SC_(53729.765625), SC_(0.9898336951885252520260938613285785464035396900705476186477833018587239309299831484654462523016012066), SC_(0.5028684393748171144639183376370325602727658807295180617202372561848623433680228389050363745414042978), SC_(0.9785413661279487996705860536414112477629837566425253453697009249265664502605116039812405712882214042), SC_(0.4971315606251828855360816623629674397272341192704819382797627438151376566319771610949636254585957022) },
{ SC_(53731.765625), SC_(53731.765625), SC_(0.9830583039168975325307605275070567301075887193360096847489237445380506065822885212933536241265585848), SC_(0.4994263152569184389892349690243164177907483429757537595214928334958766883412534478021012611761406009), SC_(0.985316757399576519165919387462933064058934727377063279268560482247239774608206231153333199463264026), SC_(0.5005736847430815610107650309756835822092516570242462404785071665041233116587465521978987388238593991) },
{ SC_(53731.765625), SC_(53733.765625), SC_(0.97628316482902031647854485716302419515105170546283958951870828792200970695273562786028952581753817), SC_(0.4959843192567527400639733542343360232035266718796637178642939191793549740917081309022729249590482264), SC_(0.9920918964874537352181350578069655990154717412502333744987759388632806742377591245863972977722844408), SC_(0.5040156807432472599360266457656639767964733281203362821357060808206450259082918690977270750409517736) },
- { SC_(53731.765625), SC_(107463.53125), SC_(0.9857000573732164937380523004169343050694041258310103979727730835148474946175436750885160009501077337), SC_(0.5007684138783834575499330461565279986066528056814362965625964516201140516349885790241319685256190109e-7163), SC_(0.1968375061316474051696679914969989794166523446713072964017484226785290381190494752446686823589822611), SC_(1) },
- { SC_(53731.765625), SC_(5373176.5), SC_(0.3718061873698555444448063789266736654059535208915550950860496543206793529115247245781925385442586833e-1971920), SC_(0.1888899095892765882957244319190855136922162514010618617401162857457945289825998923759689962325214871e-2202746), SC_(0.1968375061316474051696679914969989794166523446713072964017484226785290381190494752446686823589822611), SC_(1) },
- { SC_(117454.09375), SC_(1), SC_(0.9318118105062591002929457015325712659659543801643169834185264964234249069692069364865148866469370692), SC_(1), SC_(0.313213921744632971050579853869676581728906891724484285710033076001673183535297248385604569944902853e-5), SC_(0.3361343118998050869634246624964916040167904082273682960527262239208359804459089238240999775478833994e-544470) },
- { SC_(117454.09375), SC_(58727.046875), SC_(0.9318118105062591002929457015325712659659543801643169834185264964234249069692069364865148866469370692), SC_(1), SC_(0.9191586889607675560018325512164330792065221712018362595259346904441468428861721496925241967346843064), SC_(0.9864209474457969948221715384559498587958215887291280078996110294207932757072463789506127465999022247e-9855) },
+ { SC_(53731.765625), SC_(107463.53125), SC_(0.9857000573732164937380523004169343050694041258310103979727730835148474946175436750885160009501077337), SC_(BOOST_MATH_SMALL_CONSTANT(0.5007684138783834575499330461565279986066528056814362965625964516201140516349885790241319685256190109e-7163)), SC_(0.1968375061316474051696679914969989794166523446713072964017484226785290381190494752446686823589822611), SC_(1) },
+ { SC_(53731.765625), SC_(5373176.5), SC_(BOOST_MATH_SMALL_CONSTANT(0.3718061873698555444448063789266736654059535208915550950860496543206793529115247245781925385442586833e-1971920)), SC_(BOOST_MATH_SMALL_CONSTANT(0.1888899095892765882957244319190855136922162514010618617401162857457945289825998923759689962325214871e-2202746)), SC_(0.1968375061316474051696679914969989794166523446713072964017484226785290381190494752446686823589822611), SC_(1) },
+ { SC_(117454.09375), SC_(1), SC_(0.9318118105062591002929457015325712659659543801643169834185264964234249069692069364865148866469370692), SC_(1), SC_(0.313213921744632971050579853869676581728906891724484285710033076001673183535297248385604569944902853e-5), SC_(BOOST_MATH_SMALL_CONSTANT(0.3361343118998050869634246624964916040167904082273682960527262239208359804459089238240999775478833994e-544470)) },
+ { SC_(117454.09375), SC_(58727.046875), SC_(0.9318118105062591002929457015325712659659543801643169834185264964234249069692069364865148866469370692), SC_(1), SC_(0.9191586889607675560018325512164330792065221712018362595259346904441468428861721496925241967346843064), SC_(BOOST_MATH_SMALL_CONSTANT(0.9864209474457969948221715384559498587958215887291280078996110294207932757072463789506127465999022247e-9855)) },
{ SC_(117454.09375), SC_(117452.09375), SC_(0.4677137205305140734081198423668819310551597308270642385460447347821821628461339537856199850875464552), SC_(0.5019401077095195070323848313576574442812198192986467929838617161888974569553340375704576649153144829), SC_(0.464098089975745026884825859165689334910794649337252744872481761641242744123072982700894901559390614), SC_(0.4980598922904804929676151686423425557187801807013532070161382838111025430446659624295423350846855171) },
{ SC_(117454.09375), SC_(117454.09375), SC_(0.465544343100630356053620730347685891129180124181192306543195806422400059864981029492940362835899938), SC_(0.499611979427151974874897833905897697363907477678490396979994271179885705982324624234690235502943969), SC_(0.4662674674056287442393249711848853748367742559831246768753306900010248471042259069935745238110371312), SC_(0.500388020572848025125102166094102302636092522321509603020005728820114294017675375765309764497056031) },
{ SC_(117454.09375), SC_(117456.09375), SC_(0.4633750026101230583781220405717433582374619595678524934079773142234579837891564729114009490865727437), SC_(0.4972838907873131198433312739984807998957012913706772498633297552685545410772772846679655645399634758), SC_(0.4684368078961360419148236609608279077284924205964644900105491821999669231800504635751139375603643255), SC_(0.5027161092126868801566687260015192001042987086293227501366702447314454589227227153320344354600365242) },
- { SC_(117454.09375), SC_(234908.1875), SC_(0.3765617481860321182118792720765163211623400846148178858934295299139956899505817861365275762655792927), SC_(0.404117809991530155979898593834626437803581387079414920652000290931175084399705146249771222798155904e-15655), SC_(0.9318118105062591002929457015325712659659543801643169834185264964234249069692069364865148866469370692), SC_(1) },
- { SC_(117454.09375), SC_(11745409), SC_(0.3749176167726247694377808265587192673148265695757522828792546112184190157670775661741020190770516912e-4270588), SC_(0.4023533642151731445326576999699563877739832531592590216076808854373945772374572855320821690142966099e-4815053), SC_(0.9318118105062591002929457015325712659659543801643169834185264964234249069692069364865148866469370692), SC_(1) },
- { SC_(246209.65625), SC_(1), SC_(0.3795461409907903896345422567793322831580321819313465092025723355362953841755017486543011371443499473), SC_(1), SC_(0.1494177527177717178022651459992286345909806690553400632385568861175245603174043469215394922999027597e-5), SC_(0.3936748041429758848717153565348260765290237773916575292463198233814160246751477180472839298294153066e-1220467) },
- { SC_(246209.65625), SC_(123104.828125), SC_(0.3795461409907903896345422567793322831580321819313465092025723355362953841755017486543011371443499473), SC_(1), SC_(0.1099880225198186642903575602493957065333235204076062878495498226949140924550581413780754772537288714), SC_(0.2897882777379825906774307898713470531328730940467466937976093354792190803827781885124627244219939374e-20655) },
+ { SC_(117454.09375), SC_(234908.1875), SC_(0.3765617481860321182118792720765163211623400846148178858934295299139956899505817861365275762655792927), SC_(BOOST_MATH_SMALL_CONSTANT(0.404117809991530155979898593834626437803581387079414920652000290931175084399705146249771222798155904e-15655)), SC_(0.9318118105062591002929457015325712659659543801643169834185264964234249069692069364865148866469370692), SC_(1) },
+ { SC_(117454.09375), SC_(11745409), SC_(BOOST_MATH_SMALL_CONSTANT(0.3749176167726247694377808265587192673148265695757522828792546112184190157670775661741020190770516912e-4270588)), SC_(BOOST_MATH_SMALL_CONSTANT(0.4023533642151731445326576999699563877739832531592590216076808854373945772374572855320821690142966099e-4815053)), SC_(0.9318118105062591002929457015325712659659543801643169834185264964234249069692069364865148866469370692), SC_(1) },
+ { SC_(246209.65625), SC_(1), SC_(0.3795461409907903896345422567793322831580321819313465092025723355362953841755017486543011371443499473), SC_(1), SC_(0.1494177527177717178022651459992286345909806690553400632385568861175245603174043469215394922999027597e-5), SC_(BOOST_MATH_SMALL_CONSTANT(0.3936748041429758848717153565348260765290237773916575292463198233814160246751477180472839298294153066e-1220467)) },
+ { SC_(246209.65625), SC_(123104.828125), SC_(0.3795461409907903896345422567793322831580321819313465092025723355362953841755017486543011371443499473), SC_(1), SC_(0.1099880225198186642903575602493957065333235204076062878495498226949140924550581413780754772537288714), SC_(BOOST_MATH_SMALL_CONSTANT(0.2897882777379825906774307898713470531328730940467466937976093354792190803827781885124627244219939374e-20655)) },
{ SC_(246209.65625), SC_(246207.65625), SC_(0.1902816646704517630357467941804100090646746413808322194033944591897791683237366858242769223987429451), SC_(0.501340006181406305362208182086691817029256585472066242900372017261364294652322499081532560989068282), SC_(0.1892644763203386265987954625989222740933575405505142897991778763465162158517650628300242147456070023), SC_(0.498659993818593694637791817913308182970743414527933757099627982738635705347677500918467439010931718) },
{ SC_(246209.65625), SC_(246209.65625), SC_(0.1896713517815713127245493484616099274345676239686359608007363708235397890202647710003825319379093487), SC_(0.4997319990830143882908170503627598371539437356320335970815080360238724867210261514858758596804507521), SC_(0.1898747892092190769099929083177223557234645579627105484018359647127555951552369776539186052064405986), SC_(0.5002680009169856117091829496372401628460562643679664029184919639761275132789738485141241403195492479) },
{ SC_(246209.65625), SC_(246211.65625), SC_(0.1890610438503187682368919983483183956151051384043983286737369622166833408570431154485100095513248129), SC_(0.4981240050466124914099774918899995777543692453345887329244388038491507106647647777524494210424240252), SC_(0.1904850971404716213976502584310138875429270435269481805288353733196120433184586332057911275930251345), SC_(0.5018759949533875085900225081100004222456307546654112670755611961508492893352352222475505789575759748) },
- { SC_(246209.65625), SC_(492419.3125), SC_(0.3028106368525605792533815094012307413502326516792414546986435189331818430898812546597463686315212235), SC_(0.7978229894844543239003397587270469382229335073444162983048262954417740318171509197684583742725146624e-32814), SC_(0.3795461409907903896345422567793322831580321819313465092025723355362953841755017486543011371443499473), SC_(1) },
- { SC_(246209.65625), SC_(24620966), SC_(0.4218795130057598537892994786340712622578174601909957638667112927337404423218835974564954011299333039e-8872946), SC_(0.1111536826338056944878094416758566250614970740769053202708092623400624092701546619232542474200597198e-10093407), SC_(0.3795461409907903896345422567793322831580321819313465092025723355362953841755017486543011371443499473), SC_(1) },
- { SC_(513669.1875), SC_(1), SC_(0.1026762455478787231848021279669200901989201648818956533640028599511278074166334792418412467632444988), SC_(1), SC_(0.7161810875625776919149453032960193795284794690428570619324428055126959546925115687394362341113623494e-6), SC_(0.6975139027932385209985700478995386866834770542910755702232497033765481032627476632277947185763659989e-2710322) },
- { SC_(513669.1875), SC_(256834.59375), SC_(0.1026762455478787231848021279669200901989201648818956533640028599511278074166334792418412467632444988), SC_(1), SC_(0.1179256191243649493831993743640418317298811821795430361888926604340800596592353697112775763521543988), SC_(0.1148519002570807149221546626327644677390044371986909218318793705480156216422385159554639234488107623e-43090) },
+ { SC_(246209.65625), SC_(492419.3125), SC_(0.3028106368525605792533815094012307413502326516792414546986435189331818430898812546597463686315212235), SC_(BOOST_MATH_SMALL_CONSTANT(0.7978229894844543239003397587270469382229335073444162983048262954417740318171509197684583742725146624e-32814)), SC_(0.3795461409907903896345422567793322831580321819313465092025723355362953841755017486543011371443499473), SC_(1) },
+ { SC_(246209.65625), SC_(24620966), SC_(BOOST_MATH_SMALL_CONSTANT(0.4218795130057598537892994786340712622578174601909957638667112927337404423218835974564954011299333039e-8872946)), SC_(BOOST_MATH_SMALL_CONSTANT(0.1111536826338056944878094416758566250614970740769053202708092623400624092701546619232542474200597198e-10093407)), SC_(0.3795461409907903896345422567793322831580321819313465092025723355362953841755017486543011371443499473), SC_(1) },
+ { SC_(513669.1875), SC_(1), SC_(0.1026762455478787231848021279669200901989201648818956533640028599511278074166334792418412467632444988), SC_(1), SC_(0.7161810875625776919149453032960193795284794690428570619324428055126959546925115687394362341113623494e-6), SC_(BOOST_MATH_SMALL_CONSTANT(0.6975139027932385209985700478995386866834770542910755702232497033765481032627476632277947185763659989e-2710322)) },
+ { SC_(513669.1875), SC_(256834.59375), SC_(0.1026762455478787231848021279669200901989201648818956533640028599511278074166334792418412467632444988), SC_(1), SC_(0.1179256191243649493831993743640418317298811821795430361888926604340800596592353697112775763521543988), SC_(BOOST_MATH_SMALL_CONSTANT(0.1148519002570807149221546626327644677390044371986909218318793705480156216422385159554639234488107623e-43090)) },
{ SC_(513669.1875), SC_(513667.1875), SC_(0.5143337766625515754329179034524882655009493028013958771386522493338908966015454144364713090116144692), SC_(0.5009277208355985110675899414981370183301000099671155624683102665494895878885434589591042983062216035), SC_(0.5124286788162356564151033762167126364882523460175606565013763501773871775647893779819411586208305185), SC_(0.4990722791644014889324100585018629816698999900328844375316897334505104121114565410408957016937783965) },
{ SC_(513669.1875), SC_(513669.1875), SC_(0.513190718063553564130040168577537778516363342785796579467535763268909112927188480469216134219027671), SC_(0.4998144559388361978364898291206210101144861575499062946445741052920369397398298507664833795665274182), SC_(0.5135717374152336677179811110916631234728383060331599541724928362423689612391463119491963334134173167), SC_(0.5001855440611638021635101708793789898855138424500937053554258947079630602601701492335166204334725818) },
{ SC_(513669.1875), SC_(513671.1875), SC_(0.5120476639151014538416521123801457361015160733924052036088039434031905274122651457869413162280154569), SC_(0.4987011953766167745079679008028061016888578219761375469627524901736850480086714928528588625770267132), SC_(0.5147147915636857780063691672890551658876855754265513300312246561080875467540696466314711514044295309), SC_(0.5012988046233832254920320991971938983111421780238624530372475098263149519913285071471411374229732868) },
- { SC_(513669.1875), SC_(1027338.375), SC_(0.7882562004488893531792380896763559346521793801402340843242125104839381998149118866123437196614608104), SC_(0.7677103854380022328284291764195301824754129513473442461734939397474939700912174426752498922553981473e-68457), SC_(0.1026762455478787231848021279669200901989201648818956533640028599511278074166334792418412467632444988), SC_(1) },
- { SC_(513669.1875), SC_(51366920), SC_(0.8455141442594780273582857781742586590386122698859368213816566938022783163150883258176324338235587287e-18347637), SC_(0.8234759069615652019245476397172569750885541471334500479714655987220876801411179354025002722103325368e-21057953), SC_(0.1026762455478787231848021279669200901989201648818956533640028599511278074166334792418412467632444988), SC_(1) },
- { SC_(788352.3125), SC_(1), SC_(0.3254350252275514924133907801285120979971963169854519087242435548802716922496825809327006216635954494), SC_(1), SC_(0.4666440397038730095030131088923330001395921365337505093937538015695853474965515882892883491065022498e-6), SC_(0.1433908471829622508376220400714432285652733465995812102127318484064704211691023381454450301792300023e-4306319) },
- { SC_(788352.3125), SC_(394176.15625), SC_(0.3254350252275514924133907801285120979971963169854519087242435548802716922496825809327006216635954494), SC_(1), SC_(0.2006257520633973004844236201403980302780110902909388684784270381180202010418543872474966575049005566), SC_(0.6164848172783960800240480360461358265727377175617248578986815365384881763390067655148178076072402911e-66132) },
+ { SC_(513669.1875), SC_(1027338.375), SC_(0.7882562004488893531792380896763559346521793801402340843242125104839381998149118866123437196614608104), SC_(BOOST_MATH_SMALL_CONSTANT(0.7677103854380022328284291764195301824754129513473442461734939397474939700912174426752498922553981473e-68457)), SC_(0.1026762455478787231848021279669200901989201648818956533640028599511278074166334792418412467632444988), SC_(1) },
+ { SC_(513669.1875), SC_(51366920), SC_(BOOST_MATH_SMALL_CONSTANT(0.8455141442594780273582857781742586590386122698859368213816566938022783163150883258176324338235587287e-18347637)), SC_(BOOST_MATH_SMALL_CONSTANT(0.8234759069615652019245476397172569750885541471334500479714655987220876801411179354025002722103325368e-21057953)), SC_(0.1026762455478787231848021279669200901989201648818956533640028599511278074166334792418412467632444988), SC_(1) },
+ { SC_(788352.3125), SC_(1), SC_(0.3254350252275514924133907801285120979971963169854519087242435548802716922496825809327006216635954494), SC_(1), SC_(0.4666440397038730095030131088923330001395921365337505093937538015695853474965515882892883491065022498e-6), SC_(BOOST_MATH_SMALL_CONSTANT(0.1433908471829622508376220400714432285652733465995812102127318484064704211691023381454450301792300023e-4306319)) },
+ { SC_(788352.3125), SC_(394176.15625), SC_(0.3254350252275514924133907801285120979971963169854519087242435548802716922496825809327006216635954494), SC_(1), SC_(0.2006257520633973004844236201403980302780110902909388684784270381180202010418543872474966575049005566), SC_(BOOST_MATH_SMALL_CONSTANT(0.6164848172783960800240480360461358265727377175617248578986815365384881763390067655148178076072402911e-66132)) },
{ SC_(788352.3125), SC_(788350.3125), SC_(0.162961216861866486196123635890099179907765436181771479621640418745608625572387287597608545912315394), SC_(0.5007488568506734531584407973208886646226494394047062415392632213315407911442369980288546641886893887), SC_(0.1624738083656850062172671442384129180894308808036804291026031361346630666772952933350920757512800554), SC_(0.4992511431493265468415592026791113353773505605952937584607367786684592088557630019711453358113106113) },
{ SC_(788352.3125), SC_(788352.3125), SC_(0.1626687717822932899593035312904247710866671194963517534486901004447793852560311314241268483442598936), SC_(0.4998502286855928443434206403315169955579486533591805378314370596112904256380207126657714482687295139), SC_(0.1627662534452582024540872488380873269105291974891001552755534544354923069936514495085737733193355558), SC_(0.5001497713144071556565793596684830044420513466408194621685629403887095743619792873342285517312704861) },
{ SC_(788352.3125), SC_(788354.3125), SC_(0.1623763274446328985015387393773169322760017933096679464665287143383813538555079409462603516012733209), SC_(0.4989516028002693214791004285569604766689865869988938477436476252444986636812350914588652370815612146), SC_(0.1630586977829185939118520407511951657211945236757839622577148405418903383941746399864402700623221286), SC_(0.5010483971997306785208995714430395233310134130011061522563523747555013363187649085411347629184387854) },
- { SC_(788352.3125), SC_(1576704.625), SC_(0.62966881391456604663265189232296651965212021691993178179931323658375951801607008550560163062833006), SC_(0.1934852628337369167484390536774609470572595166386051921886173923840391906771189648683653522231175771e-105062), SC_(0.3254350252275514924133907801285120979971963169854519087242435548802716922496825809327006216635954494), SC_(1) },
- { SC_(788352.3125), SC_(78835232), SC_(0.4164740077948943840500786922849307561907212018086545639004814350805550398839532201156819761152062039e-28012316), SC_(0.1279745496059271390694582975257723346837265207507390129414161314216004095755396957400977650588924393e-32318629), SC_(0.3254350252275514924133907801285120979971963169854519087242435548802716922496825809327006216635954494), SC_(1) },
- { SC_(1736170), SC_(1), SC_(0.1262281517971042004488252985099758947734405887636182671673445904506523435537050416445084616475212426), SC_(1), SC_(0.2118914928047443977144200433110895948573532788053230331876929560838004923241637943455403176192920957e-6), SC_(0.1678638954845296242754981240024346426980228514280855063671268705695352948287648087179192945942541815e-10078987) },
- { SC_(1736170), SC_(868085), SC_(0.1262281517971042004488252985099758947734405887636182671673445904506523435537050416445084616475212426), SC_(1), SC_(0.1448940961583454163407547513975813077281954384418820421315934004081116003090269523192520567562712675), SC_(0.1147874654706537747553860317681134464810452807999399860509102977323900833593912850990760752412482674e-145637) },
+ { SC_(788352.3125), SC_(1576704.625), SC_(0.62966881391456604663265189232296651965212021691993178179931323658375951801607008550560163062833006), SC_(BOOST_MATH_SMALL_CONSTANT(0.1934852628337369167484390536774609470572595166386051921886173923840391906771189648683653522231175771e-105062)), SC_(0.3254350252275514924133907801285120979971963169854519087242435548802716922496825809327006216635954494), SC_(1) },
+ { SC_(788352.3125), SC_(78835232), SC_(BOOST_MATH_SMALL_CONSTANT(0.4164740077948943840500786922849307561907212018086545639004814350805550398839532201156819761152062039e-28012316)), SC_(BOOST_MATH_SMALL_CONSTANT(0.1279745496059271390694582975257723346837265207507390129414161314216004095755396957400977650588924393e-32318629)), SC_(0.3254350252275514924133907801285120979971963169854519087242435548802716922496825809327006216635954494), SC_(1) },
+ { SC_(1736170), SC_(1), SC_(0.1262281517971042004488252985099758947734405887636182671673445904506523435537050416445084616475212426), SC_(1), SC_(0.2118914928047443977144200433110895948573532788053230331876929560838004923241637943455403176192920957e-6), SC_(BOOST_MATH_SMALL_CONSTANT(0.1678638954845296242754981240024346426980228514280855063671268705695352948287648087179192945942541815e-10078987)) },
+ { SC_(1736170), SC_(868085), SC_(0.1262281517971042004488252985099758947734405887636182671673445904506523435537050416445084616475212426), SC_(1), SC_(0.1448940961583454163407547513975813077281954384418820421315934004081116003090269523192520567562712675), SC_(BOOST_MATH_SMALL_CONSTANT(0.1147874654706537747553860317681134464810452807999399860509102977323900833593912850990760752412482674e-145637)) },
{ SC_(1736170), SC_(1736168), SC_(0.6317777290022475594523330311129906002358832226132013915031845078518775760353610272181933223363237277), SC_(0.500504618033028326360191641057343755999405997498206839871815176619438983969420893139030447209664989), SC_(0.6305037889687944450359199539867683474985226650229812801702613966546458595016893892268912941388886983), SC_(0.499495381966971673639808358942656244000594002501793160128184823380561016030579106860969552790335011) },
{ SC_(1736170), SC_(1736170), SC_(0.6310133650036994505936467834743236622047002119530026486269595591827934240774463130132409395432514033), SC_(0.49989907641044580817879562048675209725080620507540160516376663057508236554638837205467803575236936), SC_(0.6312681529673425538946062016254352855297056756831800230464863453237300114596041034318436769319610226), SC_(0.50010092358955419182120437951324790274919379492459839483623336942491763445361162794532196424763064) },
{ SC_(1736170), SC_(1736172), SC_(0.63024900188566778658967343804876836928228054774250423301619921925975649543556103050219224039778483), SC_(0.4992935354854227744062593568501916692180042004614849112072827608836331168589189268904245367712978671), SC_(0.632032516085374217898579547050990578452125339893678438657246685246766940101489385942892376077427596), SC_(0.5007064645145772255937406431498083307819957995385150887927172391163668831410810731095754632287021329) },
- { SC_(1736170), SC_(3472340), SC_(0.6014445720839096678691921265326588051367345601002845203175453094832083718879547519600219908634900144), SC_(0.4764741965410820548147263974496875110171884751124591798801059384427379413001614590138374358389181743e-231373), SC_(0.1262281517971042004488252985099758947734405887636182671673445904506523435537050416445084616475212426), SC_(1) },
- { SC_(1736170), SC_(173616992), SC_(0.1028718049106474382663595835099645962497203244264180111334446299544683261400046764833876858973945412e-61095576), SC_(0.8149672117199407490039815813486797316083480325648451121983304934903758539219857770713382104685664004e-71174558), SC_(0.1262281517971042004488252985099758947734405887636182671673445904506523435537050416445084616475212426), SC_(1) }
+ { SC_(1736170), SC_(3472340), SC_(0.6014445720839096678691921265326588051367345601002845203175453094832083718879547519600219908634900144), SC_(BOOST_MATH_SMALL_CONSTANT(0.4764741965410820548147263974496875110171884751124591798801059384427379413001614590138374358389181743e-231373)), SC_(0.1262281517971042004488252985099758947734405887636182671673445904506523435537050416445084616475212426), SC_(1) },
+ { SC_(1736170), SC_(173616992), SC_(BOOST_MATH_SMALL_CONSTANT(0.1028718049106474382663595835099645962497203244264180111334446299544683261400046764833876858973945412e-61095576)), SC_(BOOST_MATH_SMALL_CONSTANT(0.8149672117199407490039815813486797316083480325648451121983304934903758539219857770713382104685664004e-71174558)), SC_(0.1262281517971042004488252985099758947734405887636182671673445904506523435537050416445084616475212426), SC_(1) }
} };
#undef SC_
Modified: sandbox/math_toolkit/libs/math/test/igamma_int_data.ipp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/igamma_int_data.ipp (original)
+++ sandbox/math_toolkit/libs/math/test/igamma_int_data.ipp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,3 +1,8 @@
+// (C) Copyright John Maddock 2006-7.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
#define SC_(x) static_cast<T>(BOOST_JOIN(x, L))
static const boost::array<boost::array<T, 6>, 140> igamma_int_data = { {
{ SC_(0.5), SC_(0.004999999888241291046142578125), SC_(1.631267845368323485191815380032984903074365412587098308286220239190324188420710121791871591309590004), SC_(0.9203443263332001265162236927545643793578786527087679769237787431564844748135321134774112708209554194), SC_(0.1411860055371925421063521033081602797231840435352888199275875506625870961703220596656577919527041757), SC_(0.07965567366679987348377630724543562064212134729123202307622125684351552518646788652258872917904458057) },
Modified: sandbox/math_toolkit/libs/math/test/igamma_inva_data.ipp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/igamma_inva_data.ipp (original)
+++ sandbox/math_toolkit/libs/math/test/igamma_inva_data.ipp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,3 +1,8 @@
+// (C) Copyright John Maddock 2006-7.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
#define SC_(x) static_cast<T>(BOOST_JOIN(x, L))
static const boost::array<boost::array<T, 4>, 435> igamma_inva_data = { {
{ SC_(0.11342023313045501708984375), SC_(0.097540400922298431396484375), SC_(1.035869900800721563193351335409353423054156223778352824799732510014114331303190861923913851617789576), SC_(0.05862165929221091309602935851268320728966552926925608108837955463403857541085640683871851098187935567) },
Modified: sandbox/math_toolkit/libs/math/test/laguerre2.ipp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/laguerre2.ipp (original)
+++ sandbox/math_toolkit/libs/math/test/laguerre2.ipp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,3 +1,8 @@
+// (C) Copyright John Maddock 2006-7.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
#define SC_(x) static_cast<T>(BOOST_JOIN(x, L))
static const boost::array<boost::array<T, 3>, 280> laguerre2 = {
SC_(0.5e1), SC_(0.9754039764404296875e2), SC_(-0.56218428868911115998451316426215010600803852349048e8),
Modified: sandbox/math_toolkit/libs/math/test/laguerre3.ipp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/laguerre3.ipp (original)
+++ sandbox/math_toolkit/libs/math/test/laguerre3.ipp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,3 +1,8 @@
+// (C) Copyright John Maddock 2006-7.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
#define SC_(x) static_cast<T>(BOOST_JOIN(x, L))
static const boost::array<boost::array<T, 4>, 2240> laguerre3 = {
SC_(0.6e1), SC_(0.4e1), SC_(0.9754039764404296875e2), SC_(0.61248773400035441372705568899743424188675775638604e9),
Modified: sandbox/math_toolkit/libs/math/test/legendre_p.ipp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/legendre_p.ipp (original)
+++ sandbox/math_toolkit/libs/math/test/legendre_p.ipp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,3 +1,8 @@
+// (C) Copyright John Maddock 2006-7.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
#define SC_(x) static_cast<T>(BOOST_JOIN(x, L))
static const boost::array<boost::array<T, 4>, 140> legendre_p = {
SC_(3), SC_(-0.804919183254241943359375), SC_(-0.09637879251279735399302410605920296560178428535437), SC_(-0.84585603807674271376114723023136351467791030262194),
Modified: sandbox/math_toolkit/libs/math/test/legendre_p_large.ipp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/legendre_p_large.ipp (original)
+++ sandbox/math_toolkit/libs/math/test/legendre_p_large.ipp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,3 +1,8 @@
+// (C) Copyright John Maddock 2006-7.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
#define SC_(x) static_cast<T>(BOOST_JOIN(x, L))
static const boost::array<boost::array<T, 4>, 160> legendre_p_large = {
SC_(29), SC_(-0.74602639675140380859375), SC_(0.050915219643735786802064817454102557266509665552523), SC_(-0.27118035040452065163236941090242943684321195237749),
Modified: sandbox/math_toolkit/libs/math/test/log1p_expm1_data.ipp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/log1p_expm1_data.ipp (original)
+++ sandbox/math_toolkit/libs/math/test/log1p_expm1_data.ipp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,3 +1,8 @@
+// (C) Copyright John Maddock 2006-7.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
#define SC_(x) static_cast<T>(BOOST_JOIN(x, L))
static const boost::array<boost::array<T, 3>, 80> log1p_expm1_data = { {
{ SC_(-0.69330310821533203125e0), SC_(-0.1181895342296499380302723361817935835636e1), SC_(-0.5000779577496508480606742934033661111325e0) },
Modified: sandbox/math_toolkit/libs/math/test/log1p_expm1_test.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/log1p_expm1_test.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/log1p_expm1_test.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -11,10 +11,7 @@
#include <boost/math/special_functions/log1p.hpp>
#include <boost/math/special_functions/expm1.hpp>
#include <boost/array.hpp>
-#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
-#include <boost/lambda/lambda.hpp>
-#include <boost/lambda/bind.hpp>
-#endif
+#include "functor.hpp"
#include "handle_test_result.hpp"
@@ -69,12 +66,11 @@
template <class T>
void do_test(const T& data, const char* type_name, const char* test_name)
{
-#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
typedef typename T::value_type row_type;
typedef typename row_type::value_type value_type;
typedef value_type (*pg)(value_type);
- pg funcp = boost::math::log1p;
+ pg funcp = &boost::math::log1p;
boost::math::tools::test_result<value_type> result;
std::cout << "Testing " << test_name << " with type " << type_name
@@ -82,12 +78,11 @@
//
// test log1p against data:
//
- funcp = boost::math::log1p;
+ funcp = &boost::math::log1p;
result = boost::math::tools::test(
data,
- boost::lambda::bind(funcp,
- boost::lambda::ret<value_type>(boost::lambda::_1[0])),
- boost::lambda::ret<value_type>(boost::lambda::_1[1]));
+ bind_func(funcp, 0),
+ extract_result(1));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::log1p", "log1p and expm1");
std::cout << std::endl;
//
@@ -96,12 +91,10 @@
funcp = boost::math::expm1;
result = boost::math::tools::test(
data,
- boost::lambda::bind(funcp,
- boost::lambda::ret<value_type>(boost::lambda::_1[0])),
- boost::lambda::ret<value_type>(boost::lambda::_1[2]));
+ bind_func(funcp, 0),
+ extract_result(2));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::expm1", "log1p and expm1");
std::cout << std::endl;
-#endif
}
template <class T>
@@ -130,6 +123,7 @@
int test_main(int, char* [])
{
expected_results();
+ BOOST_MATH_CONTROL_FP;
test(float(0), "float");
test(double(0), "double");
//
@@ -137,7 +131,7 @@
// due to poor std lib support (not enough digits returned from
// std::log and std::exp):
//
-#if !defined(__CYGWIN__) && !defined(__FreeBSD__) && !(defined(__GNUC__) && defined(__sun))
+#if !defined(BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS)
test((long double)(0), "long double");
#ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS
test((boost::math::concepts::real_concept)(0), "real_concept");
Modified: sandbox/math_toolkit/libs/math/test/negative_binomial_quantile.ipp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/negative_binomial_quantile.ipp (original)
+++ sandbox/math_toolkit/libs/math/test/negative_binomial_quantile.ipp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,3 +1,8 @@
+// (C) Copyright John Maddock 2006-7.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
#define SC_(x) static_cast<T>(BOOST_JOIN(x, L))
static const boost::array<boost::array<T, 5>, 792> negative_binomial_quantile_data = {{
{ SC_(4.285762786865234375), SC_(0.12698681652545928955078125), SC_(0.097540400922298431396484375), SC_(11.568381290037563253305975817351444024377036234904), SC_(49.67581419477884086070549390307050513757197652133) },
Modified: sandbox/math_toolkit/libs/math/test/poisson_quantile.ipp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/poisson_quantile.ipp (original)
+++ sandbox/math_toolkit/libs/math/test/poisson_quantile.ipp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,3 +1,8 @@
+// (C) Copyright John Maddock 2006-7.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
#define SC_(x) static_cast<T>(BOOST_JOIN(x, L))
static const boost::array<boost::array<T, 4>, 619> poisson_quantile_data = {{
{ SC_(2.539736270904541015625), SC_(0.097540400922298431396484375), SC_(0.1236392659323415267286721455855935332272165776019), SC_(4.1794244675777288954971650240102219690023733491107) },
Modified: sandbox/math_toolkit/libs/math/test/powm1_sqrtp1m1_test.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/powm1_sqrtp1m1_test.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/powm1_sqrtp1m1_test.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -9,9 +9,8 @@
#include <boost/math/special_functions/sqrt1pm1.hpp>
#include <boost/math/special_functions/powm1.hpp>
#include <boost/math/tools/test.hpp>
-#include <boost/lambda/lambda.hpp>
-#include <boost/lambda/bind.hpp>
#include <boost/array.hpp>
+#include "functor.hpp"
#include "handle_test_result.hpp"
@@ -1613,7 +1612,6 @@
#undef SC_
- using namespace boost::lambda;
using namespace std;
typedef T (*func_t)(const T&);
@@ -1621,25 +1619,26 @@
boost::math::tools::test_result<T> result = boost::math::tools::test(
sqrtp1m1_data,
- bind(f, ret<T>(_1[0])),
- ret<T>(_1[1]));
+ bind_func(f, 0),
+ extract_result(1));
std::cout << "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n"
"Test results for type " << type_name << std::endl << std::endl;
handle_test_result(result, sqrtp1m1_data[result.worst()], result.worst(), type_name, "boost::math::sqrt1pm1", "sqrt1pm1");
typedef T (*func2_t)(T const, T const);
- func2_t f2 = &boost::math::powm1<T>;
+ func2_t f2 = &boost::math::powm1<T,T>;
result = boost::math::tools::test(
powm1_data,
- bind(f2, ret<T>(_1[0]), ret<T>(_1[1])),
- ret<T>(_1[2]));
+ bind_func(f2, 0, 1),
+ extract_result(2));
handle_test_result(result, powm1_data[result.worst()], result.worst(), type_name, "boost::math::powm1", "powm1");
}
int test_main(int, char* [])
{
expected_results();
+ BOOST_MATH_CONTROL_FP;
test_powm1_sqrtp1m1(1.0F, "float");
test_powm1_sqrtp1m1(1.0, "double");
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
Modified: sandbox/math_toolkit/libs/math/test/spherical_harmonic.ipp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/spherical_harmonic.ipp (original)
+++ sandbox/math_toolkit/libs/math/test/spherical_harmonic.ipp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,3 +1,8 @@
+// (C) Copyright John Maddock 2006-7.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
#define SC_(x) static_cast<T>(BOOST_JOIN(x, L))
static const boost::array<boost::array<T, 6>, 1000> spherical_harmonic = {
SC_(0.2e1), SC_(0), SC_(-0.6223074436187744140625e1), SC_(-0.983176708221435546875e0), SC_(0.62736841735769885881246893757736785347239567286304e0), SC_(0),
Modified: sandbox/math_toolkit/libs/math/test/test_bernoulli.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_bernoulli.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_bernoulli.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -209,9 +209,10 @@
int test_main(int, char* [])
{
- // Check that can generate bernoulli distribution using both convenience methods:
- bernoulli_distribution<double> bn1(0.5); // Using default RealType double.
- boost::math::bernoulli bn2(0.5); // Using typedef.
+ BOOST_MATH_CONTROL_FP;
+ // Check that can generate bernoulli distribution using both convenience methods:
+ bernoulli_distribution<double> bn1(0.5); // Using default RealType double.
+ boost::math::bernoulli bn2(0.5); // Using typedef.
BOOST_CHECK_EQUAL(bn1.success_fraction(), 0.5);
BOOST_CHECK_EQUAL(bn2.success_fraction(), 0.5);
Modified: sandbox/math_toolkit/libs/math/test/test_bessel_i.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_bessel_i.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_bessel_i.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -10,8 +10,7 @@
#include <boost/math/special_functions/bessel.hpp>
#include <boost/type_traits/is_floating_point.hpp>
#include <boost/array.hpp>
-#include <boost/lambda/lambda.hpp>
-#include <boost/lambda/bind.hpp>
+#include "functor.hpp"
#include "handle_test_result.hpp"
#include "test_bessel_hooks.hpp"
@@ -126,10 +125,8 @@
//
result = boost::math::tools::test(
data,
- boost::lambda::bind(funcp,
- boost::lambda::ret<value_type>(boost::lambda::_1[0]),
- boost::lambda::ret<value_type>(boost::lambda::_1[1])),
- boost::lambda::ret<value_type>(boost::lambda::_1[2]));
+ bind_func(funcp, 0, 1),
+ extract_result(2));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::cyl_bessel_i", test_name);
std::cout << std::endl;
@@ -172,10 +169,8 @@
//
result = boost::math::tools::test(
data,
- boost::lambda::bind(funcp,
- boost::lambda::ret<value_type>(boost::lambda::_1[0]),
- boost::lambda::ret<value_type>(boost::lambda::_1[1])),
- boost::lambda::ret<value_type>(boost::lambda::_1[2]));
+ bind_func(funcp, 0, 1),
+ extract_result(2));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::cyl_bessel_i", test_name);
std::cout << std::endl;
}
@@ -257,6 +252,7 @@
gsl_set_error_handler_off();
#endif
expected_results();
+ BOOST_MATH_CONTROL_FP;
#ifndef BOOST_MATH_BUGGY_LARGE_FLOAT_CONSTANTS
test_bessel(0.1F, "float");
Modified: sandbox/math_toolkit/libs/math/test/test_bessel_j.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_bessel_j.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_bessel_j.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -9,8 +9,7 @@
#include <boost/math/special_functions/bessel.hpp>
#include <boost/type_traits/is_floating_point.hpp>
#include <boost/array.hpp>
-#include <boost/lambda/lambda.hpp>
-#include <boost/lambda/bind.hpp>
+#include "functor.hpp"
#include "handle_test_result.hpp"
#include "test_bessel_hooks.hpp"
@@ -255,10 +254,8 @@
//
result = boost::math::tools::test(
data,
- boost::lambda::bind(funcp,
- boost::lambda::ret<value_type>(boost::lambda::_1[0]),
- boost::lambda::ret<value_type>(boost::lambda::_1[1])),
- boost::lambda::ret<value_type>(boost::lambda::_1[2]));
+ bind_func(funcp, 0, 1),
+ extract_result(2));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::cyl_bessel_j", test_name);
std::cout << std::endl;
@@ -272,10 +269,8 @@
//
result = boost::math::tools::test(
data,
- boost::lambda::bind(funcp,
- boost::lambda::ret<value_type>(boost::lambda::_1[0]),
- boost::lambda::ret<value_type>(boost::lambda::_1[1])),
- boost::lambda::ret<value_type>(boost::lambda::_1[2]));
+ bind_func(funcp, 0, 1),
+ extract_result(2));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "other::cyl_bessel_j", test_name);
std::cout << std::endl;
}
@@ -308,10 +303,8 @@
//
result = boost::math::tools::test(
data,
- boost::lambda::bind(funcp,
- boost::lambda::ret<value_type>(boost::lambda::_1[0]),
- boost::lambda::ret<value_type>(boost::lambda::_1[1])),
- boost::lambda::ret<value_type>(boost::lambda::_1[2]));
+ bind_func(funcp, 0, 1),
+ extract_result(2));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::cyl_bessel_j", test_name);
std::cout << std::endl;
}
@@ -326,7 +319,6 @@
pg funcp = boost::math::sph_bessel;
typedef int (*cast_t)(value_type);
- cast_t rc = &boost::math::tools::real_cast<int, value_type>;
boost::math::tools::test_result<value_type> result;
@@ -338,13 +330,8 @@
//
result = boost::math::tools::test(
data,
- boost::lambda::bind(funcp,
- boost::lambda::ret<int>(
- boost::lambda::bind(
- rc,
- boost::lambda::ret<value_type>(boost::lambda::_1[0]))),
- boost::lambda::ret<value_type>(boost::lambda::_1[1])),
- boost::lambda::ret<value_type>(boost::lambda::_1[2]));
+ bind_func_int1(funcp, 0, 1),
+ extract_result(2));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::sph_bessel", test_name);
std::cout << std::endl;
}
@@ -472,6 +459,7 @@
gsl_set_error_handler_off();
#endif
expected_results();
+ BOOST_MATH_CONTROL_FP;
test_bessel(0.1F, "float");
test_bessel(0.1, "double");
Modified: sandbox/math_toolkit/libs/math/test/test_bessel_k.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_bessel_k.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_bessel_k.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -17,8 +17,7 @@
#include <boost/math/special_functions/bessel.hpp>
#include <boost/type_traits/is_floating_point.hpp>
#include <boost/array.hpp>
-#include <boost/lambda/lambda.hpp>
-#include <boost/lambda/bind.hpp>
+#include "functor.hpp"
#include "handle_test_result.hpp"
#include "test_bessel_hooks.hpp"
@@ -114,10 +113,8 @@
//
result = boost::math::tools::test(
data,
- boost::lambda::bind(funcp,
- boost::lambda::ret<value_type>(boost::lambda::_1[0]),
- boost::lambda::ret<value_type>(boost::lambda::_1[1])),
- boost::lambda::ret<value_type>(boost::lambda::_1[2]));
+ bind_func(funcp, 0, 1),
+ extract_result(2));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::cyl_bessel_k", test_name);
std::cout << std::endl;
@@ -131,10 +128,8 @@
//
result = boost::math::tools::test(
data,
- boost::lambda::bind(funcp,
- boost::lambda::ret<value_type>(boost::lambda::_1[0]),
- boost::lambda::ret<value_type>(boost::lambda::_1[1])),
- boost::lambda::ret<value_type>(boost::lambda::_1[2]));
+ bind_func(funcp, 0, 1),
+ extract_result(2));
print_test_result(result, data[result.worst()], result.worst(), type_name, "other::cyl_bessel_k");
std::cout << std::endl;
}
@@ -160,10 +155,8 @@
//
result = boost::math::tools::test(
data,
- boost::lambda::bind(funcp,
- boost::lambda::ret<value_type>(boost::lambda::_1[0]),
- boost::lambda::ret<value_type>(boost::lambda::_1[1])),
- boost::lambda::ret<value_type>(boost::lambda::_1[2]));
+ bind_func(funcp, 0, 1),
+ extract_result(2));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::cyl_bessel_k", test_name);
std::cout << std::endl;
}
@@ -243,6 +236,7 @@
gsl_set_error_handler_off();
#endif
expected_results();
+ BOOST_MATH_CONTROL_FP;
#ifndef BOOST_MATH_BUGGY_LARGE_FLOAT_CONSTANTS
test_bessel(0.1F, "float");
Modified: sandbox/math_toolkit/libs/math/test/test_bessel_y.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_bessel_y.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_bessel_y.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -10,8 +10,7 @@
#include <boost/math/special_functions/bessel.hpp>
#include <boost/type_traits/is_floating_point.hpp>
#include <boost/array.hpp>
-#include <boost/lambda/lambda.hpp>
-#include <boost/lambda/bind.hpp>
+#include "functor.hpp"
#include "handle_test_result.hpp"
#include "test_bessel_hooks.hpp"
@@ -143,6 +142,17 @@
largest_type, // test type(s)
".*Yn.*", // test data group
".*", 30000, 30000); // test function
+ //
+ // Solaris version of long double has it's own error rates,
+ // again just a touch higher than msvc's 64-bit double:
+ //
+ add_expected_result(
+ "GNU.*", // compiler
+ ".*", // stdlib
+ "Sun.*", // platform
+ largest_type, // test type(s)
+ "Y[0N].*Mathworld.*", // test data group
+ ".*", 2000, 2000); // test function
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
if((std::numeric_limits<double>::digits != std::numeric_limits<long double>::digits)
@@ -189,6 +199,19 @@
largest_type, // test type(s)
".*(Y[nv]|y).*Random.*", // test data group
".*", 1500, 1000); // test function
+ //
+ // Fallback for sun has to go after the general cases above:
+ //
+ add_expected_result(
+ "GNU.*", // compiler
+ ".*", // stdlib
+ "Sun.*", // platform
+ largest_type, // test type(s)
+ "Y[0N].*", // test data group
+ ".*", 200, 200); // test function
+ //
+ // General fallback:
+ //
add_expected_result(
".*", // compiler
".*", // stdlib
@@ -223,10 +246,8 @@
//
result = boost::math::tools::test(
data,
- boost::lambda::bind(funcp,
- boost::lambda::ret<value_type>(boost::lambda::_1[0]),
- boost::lambda::ret<value_type>(boost::lambda::_1[1])),
- boost::lambda::ret<value_type>(boost::lambda::_1[2]));
+ bind_func(funcp, 0, 1),
+ extract_result(2));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::cyl_neumann", test_name);
std::cout << std::endl;
@@ -240,10 +261,8 @@
//
result = boost::math::tools::test(
data,
- boost::lambda::bind(funcp,
- boost::lambda::ret<value_type>(boost::lambda::_1[0]),
- boost::lambda::ret<value_type>(boost::lambda::_1[1])),
- boost::lambda::ret<value_type>(boost::lambda::_1[2]));
+ bind_func(funcp, 0, 1),
+ extract_result(2));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "other::cyl_neumann", test_name);
std::cout << std::endl;
}
@@ -275,10 +294,8 @@
//
result = boost::math::tools::test(
data,
- boost::lambda::bind(funcp,
- boost::lambda::ret<value_type>(boost::lambda::_1[0]),
- boost::lambda::ret<value_type>(boost::lambda::_1[1])),
- boost::lambda::ret<value_type>(boost::lambda::_1[2]));
+ bind_func(funcp, 0, 1),
+ extract_result(2));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::cyl_neumann", test_name);
std::cout << std::endl;
}
@@ -293,7 +310,6 @@
pg funcp = boost::math::sph_neumann;
typedef int (*cast_t)(value_type);
- cast_t rc = &boost::math::tools::real_cast<int, value_type>;
boost::math::tools::test_result<value_type> result;
@@ -305,13 +321,8 @@
//
result = boost::math::tools::test(
data,
- boost::lambda::bind(funcp,
- boost::lambda::ret<int>(
- boost::lambda::bind(
- rc,
- boost::lambda::ret<value_type>(boost::lambda::_1[0]))),
- boost::lambda::ret<value_type>(boost::lambda::_1[1])),
- boost::lambda::ret<value_type>(boost::lambda::_1[2]));
+ bind_func_int1(funcp, 0, 1),
+ extract_result(2));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::cyl_neumann", test_name);
std::cout << std::endl;
}
@@ -398,6 +409,7 @@
gsl_set_error_handler_off();
#endif
expected_results();
+ BOOST_MATH_CONTROL_FP;
#ifndef BOOST_MATH_BUGGY_LARGE_FLOAT_CONSTANTS
test_bessel(0.1F, "float");
Modified: sandbox/math_toolkit/libs/math/test/test_beta.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_beta.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_beta.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -14,10 +14,7 @@
#include <boost/math/constants/constants.hpp>
#include <boost/type_traits/is_floating_point.hpp>
#include <boost/array.hpp>
-#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
-#include <boost/lambda/lambda.hpp>
-#include <boost/lambda/bind.hpp>
-#endif
+#include "functor.hpp"
#include "test_beta_hooks.hpp"
#include "handle_test_result.hpp"
@@ -116,7 +113,6 @@
template <class T>
void do_test_beta(const T& data, const char* type_name, const char* test_name)
{
-#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
typedef typename T::value_type row_type;
typedef typename row_type::value_type value_type;
@@ -133,25 +129,20 @@
//
result = boost::math::tools::test(
data,
- boost::lambda::bind(funcp,
- boost::lambda::ret<value_type>(boost::lambda::_1[0]),
- boost::lambda::ret<value_type>(boost::lambda::_1[1])),
- boost::lambda::ret<value_type>(boost::lambda::_1[2]));
+ bind_func(funcp, 0, 1),
+ extract_result(2));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::beta", test_name);
#ifdef TEST_OTHER
if(::boost::is_floating_point<value_type>::value){
funcp = other::beta;
result = boost::math::tools::test(
data,
- boost::lambda::bind(funcp,
- boost::lambda::ret<value_type>(boost::lambda::_1[0]),
- boost::lambda::ret<value_type>(boost::lambda::_1[1])),
- boost::lambda::ret<value_type>(boost::lambda::_1[2]));
+ bind_func(funcp, 0, 1),
+ extract_result(2));
print_test_result(result, data[result.worst()], result.worst(), type_name, "other::beta");
}
#endif
std::cout << std::endl;
-#endif
}
template <class T>
void test_beta(T, const char* name)
@@ -196,6 +187,7 @@
int test_main(int, char* [])
{
expected_results();
+ BOOST_MATH_CONTROL_FP;
test_spots(0.0F);
test_spots(0.0);
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
Modified: sandbox/math_toolkit/libs/math/test/test_beta_dist.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_beta_dist.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_beta_dist.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -21,7 +21,7 @@
// provided 40 decimal digits accuracy incomplete beta aka beta regularized == cdf
// http://www.ausvet.com.au/pprev/content.php?page=PPscript
-// mode 0.75 5/95% 0.9 alpha 7.39 beta 3.13
+// mode 0.75 5/95% 0.9 alpha 7.39 beta 3.13
// http://www.epi.ucdavis.edu/diagnostictests/betabuster.html
// Beta Buster also calculates alpha and beta from mode & percentile estimates.
// This is NOT (yet) implemented.
@@ -457,6 +457,7 @@
int test_main(int, char* [])
{
+ BOOST_MATH_CONTROL_FP;
// Check that can generate beta distribution using one convenience methods:
beta_distribution<> mybeta11(1., 1.); // Using default RealType double.
// but that
Modified: sandbox/math_toolkit/libs/math/test/test_binomial.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_binomial.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_binomial.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -12,6 +12,13 @@
#define BOOST_MATH_DISCRETE_QUANTILE_POLICY real
+#if !defined(TEST_FLOAT) && !defined(TEST_DOUBLE) && !defined(TEST_LDOUBLE) && !defined(TEST_REAL_CONCEPT)
+# define TEST_FLOAT
+# define TEST_DOUBLE
+# define TEST_LDOUBLE
+# define TEST_REAL_CONCEPT
+#endif
+
#ifdef _MSC_VER
# pragma warning(disable: 4127) // conditional expression is constant.
#endif
@@ -347,27 +354,27 @@
// so useful for testing 64-bit double accuracy.
// P = 0.25, n = 20, k = 0 to 20
- //0 C(20,0) * 0.25^0 * 0.75^20 0.00317121193893399322405457496643
- //1 C(20,1) * 0.25^1 * 0.75^19 0.02114141292622662149369716644287
- //2 C(20,2) * 0.25^2 * 0.75^18 0.06694780759971763473004102706909
- //3 C(20,3) * 0.25^3 * 0.75^17 0.13389561519943526946008205413818
- //4 C(20,4) * 0.25^4 * 0.75^16 0.18968545486586663173511624336242
- //5 C(20,5) * 0.25^5 * 0.75^15 0.20233115185692440718412399291992
- //6 C(20,6) * 0.25^6 * 0.75^14 0.16860929321410367265343666076660
- //7 C(20,7) * 0.25^7 * 0.75^13 0.11240619547606911510229110717773
- //8 C(20,8) * 0.25^8 * 0.75^12 0.06088668921620410401374101638793
- //9 C(20,9) * 0.25^9 * 0.75^11 0.02706075076275737956166267395019
- //10 C(20,10) * 0.25^10 * 0.75^10 0.00992227527967770583927631378173
- //11 C(20,11) * 0.25^11 * 0.75^9 0.00300675008475081995129585266113
- //12 C(20,12) * 0.25^12 * 0.75^8 0.00075168752118770498782396316528
- //13 C(20,13) * 0.25^13 * 0.75^7 0.00015419231203850358724594116210
- //14 C(20,14) * 0.25^14 * 0.75^6 0.00002569871867308393120765686035
- //15 C(20,15) * 0.25^15 * 0.75^5 0.00000342649582307785749435424804
- //16 C(20,16) * 0.25^16 * 0.75^4 0.00000035692664823727682232856750
- //17 C(20,17) * 0.25^17 * 0.75^3 0.00000002799424692057073116302490
- //18 C(20,18) * 0.25^18 * 0.75^2 0.00000000155523594003170728683471
- //19 C(20,19) * 0.25^19 * 0.75^1 0.00000000005456968210637569427490
- //20 C(20,20) * 0.25^20 * 0.75^0 0.00000000000090949470177292823791
+ //0 C(20,0) * 0.25^0 * 0.75^20 0.00317121193893399322405457496643
+ //1 C(20,1) * 0.25^1 * 0.75^19 0.02114141292622662149369716644287
+ //2 C(20,2) * 0.25^2 * 0.75^18 0.06694780759971763473004102706909
+ //3 C(20,3) * 0.25^3 * 0.75^17 0.13389561519943526946008205413818
+ //4 C(20,4) * 0.25^4 * 0.75^16 0.18968545486586663173511624336242
+ //5 C(20,5) * 0.25^5 * 0.75^15 0.20233115185692440718412399291992
+ //6 C(20,6) * 0.25^6 * 0.75^14 0.16860929321410367265343666076660
+ //7 C(20,7) * 0.25^7 * 0.75^13 0.11240619547606911510229110717773
+ //8 C(20,8) * 0.25^8 * 0.75^12 0.06088668921620410401374101638793
+ //9 C(20,9) * 0.25^9 * 0.75^11 0.02706075076275737956166267395019
+ //10 C(20,10) * 0.25^10 * 0.75^10 0.00992227527967770583927631378173
+ //11 C(20,11) * 0.25^11 * 0.75^9 0.00300675008475081995129585266113
+ //12 C(20,12) * 0.25^12 * 0.75^8 0.00075168752118770498782396316528
+ //13 C(20,13) * 0.25^13 * 0.75^7 0.00015419231203850358724594116210
+ //14 C(20,14) * 0.25^14 * 0.75^6 0.00002569871867308393120765686035
+ //15 C(20,15) * 0.25^15 * 0.75^5 0.00000342649582307785749435424804
+ //16 C(20,16) * 0.25^16 * 0.75^4 0.00000035692664823727682232856750
+ //17 C(20,17) * 0.25^17 * 0.75^3 0.00000002799424692057073116302490
+ //18 C(20,18) * 0.25^18 * 0.75^2 0.00000000155523594003170728683471
+ //19 C(20,19) * 0.25^19 * 0.75^1 0.00000000005456968210637569427490
+ //20 C(20,20) * 0.25^20 * 0.75^0 0.00000000000090949470177292823791
BOOST_CHECK_CLOSE(
@@ -476,7 +483,7 @@
kurtosis_excess(dist)
, static_cast<RealType>(-0.08333333333333333333333333333333333333L), tol2);
// Check kurtosis_excess == kurtosis -3;
- BOOST_CHECK_EQUAL(kurtosis(dist), static_cast<RealType>(3) + kurtosis_excess(dist));
+ BOOST_CHECK_EQUAL(kurtosis(dist), static_cast<RealType>(3) + kurtosis_excess(dist));
// special cases for PDF:
BOOST_CHECK_EQUAL(
@@ -685,22 +692,31 @@
int test_main(int, char* [])
{
- // Check that can generate binomial distribution using one convenience methods:
- binomial_distribution<> mybn2(1., 0.5); // Using default RealType double.
+ BOOST_MATH_CONTROL_FP;
+ // Check that can generate binomial distribution using one convenience methods:
+ binomial_distribution<> mybn2(1., 0.5); // Using default RealType double.
// but that
- // boost::math::binomial mybn1(1., 0.5); // Using typedef fails
+ // boost::math::binomial mybn1(1., 0.5); // Using typedef fails
// error C2039: 'binomial' : is not a member of 'boost::math'
// Basic sanity-check spot values.
// (Parameter value, arbitrarily zero, only communicates the floating point type).
+#ifdef TEST_FLOAT
test_spots(0.0F); // Test float.
+#endif
+#ifdef TEST_DOUBLE
test_spots(0.0); // Test double.
+#endif
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
+#ifdef TEST_LDOUBLE
test_spots(0.0L); // Test long double.
+#endif
#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
+#ifdef TEST_REAL_CONCEPT
test_spots(boost::math::concepts::real_concept(0.)); // Test real concept.
#endif
+#endif
#else
std::cout << "<note>The long double tests have been disabled on this platform "
"either because the long double overloads of the usual math functions are "
Modified: sandbox/math_toolkit/libs/math/test/test_binomial_coeff.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_binomial_coeff.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_binomial_coeff.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -8,8 +8,7 @@
#include <boost/test/floating_point_comparison.hpp>
#include <boost/math/special_functions/binomial.hpp>
#include <boost/math/tools/test.hpp>
-#include <boost/lambda/lambda.hpp>
-#include <boost/lambda/bind.hpp>
+#include "functor.hpp"
#include <boost/array.hpp>
#include "handle_test_result.hpp"
@@ -60,7 +59,7 @@
".*", // platform
largest_type, // test type(s)
".*large.*", // test data group
- ".*", 70, 20); // test function
+ ".*", 100, 20); // test function
add_expected_result(
".*", // compiler
".*", // stdlib
@@ -102,18 +101,17 @@
template <class T>
void test_binomial(T, const char* type_name)
{
- using namespace boost::lambda;
using namespace std;
typedef T (*func_t)(T, T);
- func_t f = &binomial_wrapper<T>;
+ func_t f = &binomial_wrapper;
#include "binomial_data.ipp"
boost::math::tools::test_result<T> result = boost::math::tools::test(
binomial_data,
- bind(f, ret<T>(_1[0]), ret<T>(_1[1])),
- ret<T>(_1[2]));
+ bind_func(f, 0, 1),
+ extract_result(2));
std::cout << "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n"
"Test results for small arguments and type " << type_name << std::endl << std::endl;
@@ -125,8 +123,8 @@
result = boost::math::tools::test(
binomial_large_data,
- bind(f, ret<T>(_1[0]), ret<T>(_1[1])),
- ret<T>(_1[2]));
+ bind_func(f, 0, 1),
+ extract_result(2));
std::cout << "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n"
"Test results for large arguments and type " << type_name << std::endl << std::endl;
@@ -166,6 +164,7 @@
int test_main(int, char* [])
{
expected_results();
+ BOOST_MATH_CONTROL_FP;
test_spots(1.0F, "float");
test_spots(1.0, "double");
Modified: sandbox/math_toolkit/libs/math/test/test_carlson.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_carlson.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_carlson.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -14,9 +14,8 @@
#include <boost/math/special_functions/ellint_rd.hpp>
#include <boost/math/constants/constants.hpp>
#include <boost/array.hpp>
-#include <boost/lambda/lambda.hpp>
-#include <boost/lambda/bind.hpp>
#include <boost/tr1/random.hpp>
+#include "functor.hpp"
#include "handle_test_result.hpp"
//
@@ -135,11 +134,8 @@
result = boost::math::tools::test(
data,
- boost::lambda::bind(fp,
- boost::lambda::ret<value_type>(boost::lambda::_1[0]),
- boost::lambda::ret<value_type>(boost::lambda::_1[1]),
- boost::lambda::ret<value_type>(boost::lambda::_1[2])),
- boost::lambda::ret<value_type>(boost::lambda::_1[3]));
+ bind_func(fp, 0, 1, 2),
+ extract_result(3));
handle_test_result(result, data[result.worst()], result.worst(),
type_name, "boost::math::ellint_rf", test);
@@ -160,10 +156,8 @@
result = boost::math::tools::test(
data,
- boost::lambda::bind(fp,
- boost::lambda::ret<value_type>(boost::lambda::_1[0]),
- boost::lambda::ret<value_type>(boost::lambda::_1[1])),
- boost::lambda::ret<value_type>(boost::lambda::_1[2]));
+ bind_func(fp, 0, 1),
+ extract_result(2));
handle_test_result(result, data[result.worst()], result.worst(),
type_name, "boost::math::ellint_rc", test);
@@ -184,12 +178,8 @@
result = boost::math::tools::test(
data,
- boost::lambda::bind(fp,
- boost::lambda::ret<value_type>(boost::lambda::_1[0]),
- boost::lambda::ret<value_type>(boost::lambda::_1[1]),
- boost::lambda::ret<value_type>(boost::lambda::_1[2]),
- boost::lambda::ret<value_type>(boost::lambda::_1[3])),
- boost::lambda::ret<value_type>(boost::lambda::_1[4]));
+ bind_func(fp, 0, 1, 2, 3),
+ extract_result(4));
handle_test_result(result, data[result.worst()], result.worst(),
type_name, "boost::math::ellint_rf", test);
@@ -210,11 +200,8 @@
result = boost::math::tools::test(
data,
- boost::lambda::bind(fp,
- boost::lambda::ret<value_type>(boost::lambda::_1[0]),
- boost::lambda::ret<value_type>(boost::lambda::_1[1]),
- boost::lambda::ret<value_type>(boost::lambda::_1[2])),
- boost::lambda::ret<value_type>(boost::lambda::_1[3]));
+ bind_func(fp, 0, 1, 2),
+ extract_result(3));
handle_test_result(result, data[result.worst()], result.worst(),
type_name, "boost::math::ellint_rd", test);
@@ -318,6 +305,10 @@
int test_main(int, char* [])
{
expected_results();
+ BOOST_MATH_CONTROL_FP;
+
+ boost::math::ellint_rj(1.778e-31, 1.407e+18, 10.05, -4.83e-10);
+
test_spots(0.0F, "float");
test_spots(0.0, "double");
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
@@ -401,4 +392,4 @@
{ 2.111e-020, 8.757e-026, 1.923e-023, 1.004e+033 }
*** No errors detected
-*/
\ No newline at end of file
+*/
Modified: sandbox/math_toolkit/libs/math/test/test_cauchy.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_cauchy.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_cauchy.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -21,21 +21,21 @@
#include <boost/math/concepts/real_concept.hpp> // for real_concept
#include <boost/math/distributions/cauchy.hpp>
- using boost::math::cauchy_distribution;
+ using boost::math::cauchy_distribution;
#include <boost/test/included/test_exec_monitor.hpp> // Boost.Test
#include <boost/test/floating_point_comparison.hpp>
#include <iostream>
- using std::cout;
- using std::endl;
+ using std::cout;
+ using std::endl;
template <class RealType>
void test_spots(RealType T)
{
// Check some bad parameters to the distribution,
- BOOST_CHECK_THROW(boost::math::cauchy_distribution<RealType> nbad1(0, 0), std::domain_error); // zero sd
- BOOST_CHECK_THROW(boost::math::cauchy_distribution<RealType> nbad1(0, -1), std::domain_error); // negative scale (shape)
+ BOOST_CHECK_THROW(boost::math::cauchy_distribution<RealType> nbad1(0, 0), std::domain_error); // zero sd
+ BOOST_CHECK_THROW(boost::math::cauchy_distribution<RealType> nbad1(0, -1), std::domain_error); // negative scale (shape)
cauchy_distribution<RealType> C01;
BOOST_CHECK_EQUAL(C01.location(), 0); // Check standard values.
@@ -51,8 +51,8 @@
BOOST_CHECK_EQUAL(cdf(complement(C01, +std::numeric_limits<RealType>::infinity())), 0); // x = + infinity, cdf = 0
BOOST_CHECK_EQUAL(cdf(complement(C01, -std::numeric_limits<RealType>::infinity())), 1); // x = - infinity, cdf = 1
BOOST_CHECK_THROW(boost::math::cauchy_distribution<RealType> nbad1(std::numeric_limits<RealType>::infinity(), static_cast<RealType>(1)), std::domain_error); // +infinite mean
- BOOST_CHECK_THROW(boost::math::cauchy_distribution<RealType> nbad1(-std::numeric_limits<RealType>::infinity(), static_cast<RealType>(1)), std::domain_error); // -infinite mean
- BOOST_CHECK_THROW(boost::math::cauchy_distribution<RealType> nbad1(static_cast<RealType>(0), std::numeric_limits<RealType>::infinity()), std::domain_error); // infinite sd
+ BOOST_CHECK_THROW(boost::math::cauchy_distribution<RealType> nbad1(-std::numeric_limits<RealType>::infinity(), static_cast<RealType>(1)), std::domain_error); // -infinite mean
+ BOOST_CHECK_THROW(boost::math::cauchy_distribution<RealType> nbad1(static_cast<RealType>(0), std::numeric_limits<RealType>::infinity()), std::domain_error); // infinite sd
}
if (std::numeric_limits<RealType>::has_quiet_NaN)
@@ -85,61 +85,61 @@
cauchy_distribution<RealType>(),
static_cast<RealType>(0.125)), // x
static_cast<RealType>(0.53958342416056554201085167134004L), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::cdf(
cauchy_distribution<RealType>(),
static_cast<RealType>(-0.125)), // x
static_cast<RealType>(0.46041657583943445798914832865996L), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::cdf(
cauchy_distribution<RealType>(),
static_cast<RealType>(0.5)), // x
static_cast<RealType>(0.64758361765043327417540107622474L), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::cdf(
cauchy_distribution<RealType>(),
static_cast<RealType>(-0.5)), // x
static_cast<RealType>(0.35241638234956672582459892377526L), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::cdf(
cauchy_distribution<RealType>(),
static_cast<RealType>(1.0)), // x
static_cast<RealType>(0.75), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::cdf(
cauchy_distribution<RealType>(),
static_cast<RealType>(-1.0)), // x
static_cast<RealType>(0.25), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::cdf(
cauchy_distribution<RealType>(),
static_cast<RealType>(2.0)), // x
static_cast<RealType>(0.85241638234956672582459892377526L), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::cdf(
cauchy_distribution<RealType>(),
static_cast<RealType>(-2.0)), // x
static_cast<RealType>(0.14758361765043327417540107622474L), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::cdf(
cauchy_distribution<RealType>(),
static_cast<RealType>(10.0)), // x
static_cast<RealType>(0.9682744825694464304850228813987L), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::cdf(
cauchy_distribution<RealType>(),
static_cast<RealType>(-10.0)), // x
static_cast<RealType>(0.031725517430553569514977118601302L), // probability.
- tolerance); // %
+ tolerance); // %
//
// Complements:
@@ -149,61 +149,61 @@
complement(cauchy_distribution<RealType>(),
static_cast<RealType>(0.125))), // x
static_cast<RealType>(0.46041657583943445798914832865996L), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::cdf(
complement(cauchy_distribution<RealType>(),
static_cast<RealType>(-0.125))), // x
static_cast<RealType>(0.53958342416056554201085167134004L), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::cdf(
complement(cauchy_distribution<RealType>(),
static_cast<RealType>(0.5))), // x
static_cast<RealType>(0.35241638234956672582459892377526L), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::cdf(
complement(cauchy_distribution<RealType>(),
static_cast<RealType>(-0.5))), // x
static_cast<RealType>(0.64758361765043327417540107622474L), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::cdf(
complement(cauchy_distribution<RealType>(),
static_cast<RealType>(1.0))), // x
static_cast<RealType>(0.25), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::cdf(
complement(cauchy_distribution<RealType>(),
static_cast<RealType>(-1.0))), // x
static_cast<RealType>(0.75), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::cdf(
complement(cauchy_distribution<RealType>(),
static_cast<RealType>(2.0))), // x
static_cast<RealType>(0.14758361765043327417540107622474L), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::cdf(
complement(cauchy_distribution<RealType>(),
static_cast<RealType>(-2.0))), // x
static_cast<RealType>(0.85241638234956672582459892377526L), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::cdf(
complement(cauchy_distribution<RealType>(),
static_cast<RealType>(10.0))), // x
static_cast<RealType>(0.031725517430553569514977118601302L), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::cdf(
complement(cauchy_distribution<RealType>(),
static_cast<RealType>(-10.0))), // x
static_cast<RealType>(0.9682744825694464304850228813987L), // probability.
- tolerance); // %
+ tolerance); // %
//
// Quantiles:
@@ -213,61 +213,61 @@
cauchy_distribution<RealType>(),
static_cast<RealType>(0.53958342416056554201085167134004L)),
static_cast<RealType>(0.125),
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::quantile(
cauchy_distribution<RealType>(),
static_cast<RealType>(0.46041657583943445798914832865996L)),
static_cast<RealType>(-0.125),
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::quantile(
cauchy_distribution<RealType>(),
static_cast<RealType>(0.64758361765043327417540107622474L)),
static_cast<RealType>(0.5),
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::quantile(
cauchy_distribution<RealType>(),
static_cast<RealType>(0.35241638234956672582459892377526)),
static_cast<RealType>(-0.5),
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::quantile(
cauchy_distribution<RealType>(),
static_cast<RealType>(0.75)),
static_cast<RealType>(1.0),
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::quantile(
cauchy_distribution<RealType>(),
static_cast<RealType>(0.25)),
static_cast<RealType>(-1.0),
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::quantile(
cauchy_distribution<RealType>(),
static_cast<RealType>(0.85241638234956672582459892377526L)),
static_cast<RealType>(2.0),
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::quantile(
cauchy_distribution<RealType>(),
static_cast<RealType>(0.14758361765043327417540107622474L)),
static_cast<RealType>(-2.0),
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::quantile(
cauchy_distribution<RealType>(),
static_cast<RealType>(0.9682744825694464304850228813987L)),
static_cast<RealType>(10.0),
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::quantile(
cauchy_distribution<RealType>(),
static_cast<RealType>(0.031725517430553569514977118601302L)),
static_cast<RealType>(-10.0),
- tolerance); // %
+ tolerance); // %
//
// Quantile from complement:
@@ -277,61 +277,61 @@
complement(cauchy_distribution<RealType>(),
static_cast<RealType>(0.46041657583943445798914832865996L))),
static_cast<RealType>(0.125),
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::quantile(
complement(cauchy_distribution<RealType>(),
static_cast<RealType>(0.53958342416056554201085167134004L))),
static_cast<RealType>(-0.125),
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::quantile(
complement(cauchy_distribution<RealType>(),
static_cast<RealType>(0.35241638234956672582459892377526L))),
static_cast<RealType>(0.5),
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::quantile(
complement(cauchy_distribution<RealType>(),
static_cast<RealType>(0.64758361765043327417540107622474L))),
static_cast<RealType>(-0.5),
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::quantile(
complement(cauchy_distribution<RealType>(),
static_cast<RealType>(0.25))),
static_cast<RealType>(1.0),
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::quantile(
complement(cauchy_distribution<RealType>(),
static_cast<RealType>(0.75))),
static_cast<RealType>(-1.0),
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::quantile(
complement(cauchy_distribution<RealType>(),
static_cast<RealType>(0.14758361765043327417540107622474L))),
static_cast<RealType>(2.0),
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::quantile(
complement(cauchy_distribution<RealType>(),
static_cast<RealType>(0.85241638234956672582459892377526L))),
static_cast<RealType>(-2.0),
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::quantile(
complement(cauchy_distribution<RealType>(),
static_cast<RealType>(0.031725517430553569514977118601302L))),
static_cast<RealType>(10.0),
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::quantile(
complement(cauchy_distribution<RealType>(),
static_cast<RealType>(0.9682744825694464304850228813987L))),
static_cast<RealType>(-10.0),
- tolerance); // %
+ tolerance); // %
//
// PDF
@@ -341,73 +341,73 @@
cauchy_distribution<RealType>(),
static_cast<RealType>(0.125)), // x
static_cast<RealType>(0.31341281101173235351410956479511L), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::pdf(
cauchy_distribution<RealType>(),
static_cast<RealType>(-0.125)), // x
static_cast<RealType>(0.31341281101173235351410956479511L), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::pdf(
cauchy_distribution<RealType>(),
static_cast<RealType>(0.5)), // x
static_cast<RealType>(0.25464790894703253723021402139602L), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::pdf(
cauchy_distribution<RealType>(),
static_cast<RealType>(-0.5)), // x
static_cast<RealType>(0.25464790894703253723021402139602L), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::pdf(
cauchy_distribution<RealType>(),
static_cast<RealType>(1.0)), // x
static_cast<RealType>(0.15915494309189533576888376337251L), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::pdf(
cauchy_distribution<RealType>(),
static_cast<RealType>(-1.0)), // x
static_cast<RealType>(0.15915494309189533576888376337251L), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::pdf(
cauchy_distribution<RealType>(),
static_cast<RealType>(2.0)), // x
static_cast<RealType>(0.063661977236758134307553505349006L), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::pdf(
cauchy_distribution<RealType>(),
static_cast<RealType>(-2.0)), // x
static_cast<RealType>(0.063661977236758134307553505349006L), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::pdf(
cauchy_distribution<RealType>(),
static_cast<RealType>(10.0)), // x
static_cast<RealType>(0.0031515830315226799162155200667825L), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::pdf(
cauchy_distribution<RealType>(),
static_cast<RealType>(-10.0)), // x
static_cast<RealType>(0.0031515830315226799162155200667825L), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::pdf(
cauchy_distribution<RealType>(2, 5),
static_cast<RealType>(1)), // x
static_cast<RealType>(0.061213439650728975295724524374044L), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::pdf(
cauchy_distribution<RealType>(-2, 0.25),
static_cast<RealType>(1)), // x
static_cast<RealType>(0.0087809623774838805941453110826215L), // probability.
- tolerance); // %
+ tolerance); // %
//
// The following test values were calculated using MathCad,
@@ -419,250 +419,250 @@
cauchy_distribution<RealType>(1, 1),
static_cast<RealType>(0.125)), // x
static_cast<RealType>(0.271189304634946L), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::cdf(
complement(cauchy_distribution<RealType>(1, 1),
static_cast<RealType>(0.125))), // x
static_cast<RealType>(1 - 0.271189304634946L), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::quantile(
cauchy_distribution<RealType>(1, 1),
static_cast<RealType>(0.271189304634946L)), // x
static_cast<RealType>(0.125), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::quantile(
complement(cauchy_distribution<RealType>(1, 1),
static_cast<RealType>(1 - 0.271189304634946L))), // x
static_cast<RealType>(0.125), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::cdf(
cauchy_distribution<RealType>(0, 1),
static_cast<RealType>(0.125)), // x
static_cast<RealType>(0.539583424160566L), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::cdf(
cauchy_distribution<RealType>(0, 1),
static_cast<RealType>(0.5)), // x
static_cast<RealType>(0.647583617650433L), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::cdf(
cauchy_distribution<RealType>(0, 1),
static_cast<RealType>(1)), // x
static_cast<RealType>(0.750000000000000), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::cdf(
cauchy_distribution<RealType>(0, 1),
static_cast<RealType>(2)), // x
static_cast<RealType>(0.852416382349567), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::cdf(
cauchy_distribution<RealType>(0, 1),
static_cast<RealType>(10)), // x
static_cast<RealType>(0.968274482569447), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::cdf(
cauchy_distribution<RealType>(0, 1),
static_cast<RealType>(100)), // x
static_cast<RealType>(0.996817007235092), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::cdf(
cauchy_distribution<RealType>(0, 1),
static_cast<RealType>(-0.125)), // x
static_cast<RealType>(0.460416575839434), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::cdf(
cauchy_distribution<RealType>(0, 1),
static_cast<RealType>(-0.5)), // x
static_cast<RealType>(0.352416382349567), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::cdf(
cauchy_distribution<RealType>(0, 1),
static_cast<RealType>(-1)), // x
static_cast<RealType>(0.2500000000000000), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::cdf(
cauchy_distribution<RealType>(0, 1),
static_cast<RealType>(-2)), // x
static_cast<RealType>(0.147583617650433), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::cdf(
cauchy_distribution<RealType>(0, 1),
static_cast<RealType>(-10)), // x
static_cast<RealType>(0.031725517430554), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::cdf(
cauchy_distribution<RealType>(0, 1),
static_cast<RealType>(-100)), // x
static_cast<RealType>(3.18299276490824E-3), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::cdf(
cauchy_distribution<RealType>(1, 5),
static_cast<RealType>(1.25)), // x
static_cast<RealType>(0.515902251256176), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::cdf(
cauchy_distribution<RealType>(2, 2),
static_cast<RealType>(1.25)), // x
static_cast<RealType>(0.385799748780092), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::cdf(
cauchy_distribution<RealType>(4, 0.125),
static_cast<RealType>(3)), // x
static_cast<RealType>(0.039583424160566), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::cdf(
cauchy_distribution<RealType>(-2, static_cast<RealType>(0.0001)),
static_cast<RealType>(-3)), // x
static_cast<RealType>(3.1830988512275777e-5), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::cdf(
cauchy_distribution<RealType>(4, 50),
static_cast<RealType>(-3)), // x
static_cast<RealType>(0.455724386698215), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::cdf(
cauchy_distribution<RealType>(-4, 50),
static_cast<RealType>(-3)), // x
static_cast<RealType>(0.506365349100973), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::cdf(
complement(cauchy_distribution<RealType>(1, 5),
static_cast<RealType>(1.25))), // x
static_cast<RealType>(1-0.515902251256176), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::cdf(
complement(cauchy_distribution<RealType>(2, 2),
static_cast<RealType>(1.25))), // x
static_cast<RealType>(1-0.385799748780092), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::cdf(
complement(cauchy_distribution<RealType>(4, 0.125),
static_cast<RealType>(3))), // x
static_cast<RealType>(1-0.039583424160566), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::cdf(
cauchy_distribution<RealType>(-2, static_cast<RealType>(0.001)),
static_cast<RealType>(-3)), // x
static_cast<RealType>(0.000318309780080539), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::cdf(
complement(cauchy_distribution<RealType>(4, 50),
static_cast<RealType>(-3))), // x
static_cast<RealType>(1-0.455724386698215), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::cdf(
complement(cauchy_distribution<RealType>(-4, 50),
static_cast<RealType>(-3))), // x
static_cast<RealType>(1-0.506365349100973), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::quantile(
cauchy_distribution<RealType>(1, 5),
static_cast<RealType>(0.515902251256176)), // x
static_cast<RealType>(1.25), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::quantile(
cauchy_distribution<RealType>(2, 2),
static_cast<RealType>(0.385799748780092)), // x
static_cast<RealType>(1.25), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::quantile(
cauchy_distribution<RealType>(4, 0.125),
static_cast<RealType>(0.039583424160566)), // x
static_cast<RealType>(3), // probability.
- tolerance); // %
+ tolerance); // %
/*
BOOST_CHECK_CLOSE(
::boost::math::quantile(
cauchy_distribution<RealType>(-2, 0.0001),
static_cast<RealType>(-3)), // x
static_cast<RealType>(0.000015915494296), // probability.
- tolerance); // %
+ tolerance); // %
*/
BOOST_CHECK_CLOSE(
::boost::math::quantile(
cauchy_distribution<RealType>(4, 50),
static_cast<RealType>(0.455724386698215)), // x
static_cast<RealType>(-3), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::quantile(
cauchy_distribution<RealType>(-4, 50),
static_cast<RealType>(0.506365349100973)), // x
static_cast<RealType>(-3), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::quantile(
complement(cauchy_distribution<RealType>(1, 5),
static_cast<RealType>(1-0.515902251256176))), // x
static_cast<RealType>(1.25), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::quantile(
complement(cauchy_distribution<RealType>(2, 2),
static_cast<RealType>(1-0.385799748780092))), // x
static_cast<RealType>(1.25), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::quantile(
complement(cauchy_distribution<RealType>(4, 0.125),
static_cast<RealType>(1-0.039583424160566))), // x
static_cast<RealType>(3), // probability.
- tolerance); // %
+ tolerance); // %
/*
BOOST_CHECK_CLOSE(
::boost::math::quantile(
cauchy_distribution<RealType>(-2, 0.0001),
static_cast<RealType>(-3)), // x
static_cast<RealType>(0.000015915494296), // probability.
- tolerance); // %
+ tolerance); // %
*/
BOOST_CHECK_CLOSE(
::boost::math::quantile(
complement(cauchy_distribution<RealType>(4, 50),
static_cast<RealType>(1-0.455724386698215))), // x
static_cast<RealType>(-3), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::quantile(
complement(cauchy_distribution<RealType>(-4, 50),
static_cast<RealType>(1-0.506365349100973))), // x
static_cast<RealType>(-3), // probability.
- tolerance); // %
+ tolerance); // %
cauchy_distribution<RealType> dist; // default (0, 1)
BOOST_CHECK_EQUAL(
@@ -714,15 +714,16 @@
int test_main(int, char* [])
{
- // Check that can generate cauchy distribution using the two convenience methods:
- boost::math::cauchy mycd1(1.); // Using typedef
- cauchy_distribution<> mycd2(1.); // Using default RealType double.
- cauchy_distribution<> C01; // Using default RealType double for Standard Cauchy.
+ BOOST_MATH_CONTROL_FP;
+ // Check that can generate cauchy distribution using the two convenience methods:
+ boost::math::cauchy mycd1(1.); // Using typedef
+ cauchy_distribution<> mycd2(1.); // Using default RealType double.
+ cauchy_distribution<> C01; // Using default RealType double for Standard Cauchy.
BOOST_CHECK_EQUAL(C01.location(), 0); // Check standard values.
BOOST_CHECK_EQUAL(C01.scale(), 1);
- // Basic sanity-check spot values.
- // (Parameter value, arbitrarily zero, only communicates the floating point type).
+ // Basic sanity-check spot values.
+ // (Parameter value, arbitrarily zero, only communicates the floating point type).
test_spots(0.0F); // Test float. OK at decdigits = 0 tolerance = 0.0001 %
test_spots(0.0); // Test double. OK at decdigits 7, tolerance = 1e07 %
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
Modified: sandbox/math_toolkit/libs/math/test/test_cbrt.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_cbrt.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_cbrt.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -10,9 +10,8 @@
#include <boost/math/tools/test.hpp>
#include <boost/type_traits/is_floating_point.hpp>
#include <boost/array.hpp>
-#include <boost/lambda/lambda.hpp>
-#include <boost/lambda/bind.hpp>
#include <boost/math/special_functions/cbrt.hpp>
+#include "functor.hpp"
#include "handle_test_result.hpp"
@@ -49,8 +48,27 @@
//
std::cout << "Tests run with " << BOOST_COMPILER << ", "
<< BOOST_STDLIB << ", " << BOOST_PLATFORM << std::endl;
+
+ add_expected_result(
+ "Borland.*", // compiler
+ ".*", // stdlib
+ ".*", // platform
+ "long double", // test type(s)
+ ".*", // test data group
+ ".*", 10, 6); // test function
}
+struct negative_cbrt
+{
+ negative_cbrt(){}
+
+ template <class S>
+ typename S::value_type operator()(const S& row)
+ {
+ return boost::math::cbrt(-row[1]);
+ }
+};
+
template <class T>
void do_test_cbrt(const T& data, const char* type_name, const char* test_name)
@@ -71,14 +89,12 @@
//
result = boost::math::tools::test(
data,
- boost::lambda::bind(funcp,
- boost::lambda::ret<value_type>(boost::lambda::_1[1])),
- boost::lambda::ret<value_type>(boost::lambda::_1[0]));
+ bind_func(funcp, 1),
+ extract_result(0));
result += boost::math::tools::test(
data,
- boost::lambda::bind(funcp,
- -boost::lambda::ret<value_type>(boost::lambda::_1[1])),
- -boost::lambda::ret<value_type>(boost::lambda::_1[0]));
+ negative_cbrt(),
+ negate(extract_result(0)));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::cbrt", test_name);
std::cout << std::endl;
}
@@ -99,6 +115,8 @@
int test_main(int, char* [])
{
+ expected_results();
+ BOOST_MATH_CONTROL_FP;
test_cbrt(0.1F, "float");
test_cbrt(0.1, "double");
test_cbrt(0.1L, "long double");
Modified: sandbox/math_toolkit/libs/math/test/test_chi_squared.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_chi_squared.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_chi_squared.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -523,7 +523,8 @@
int test_main(int, char* [])
{
- // Check that can generate chi_squared distribution using the two convenience methods:
+ BOOST_MATH_CONTROL_FP;
+ // Check that can generate chi_squared distribution using the two convenience methods:
chi_squared_distribution<> mychisqr(8);
chi_squared mychisqr2(8);
@@ -532,10 +533,12 @@
// (Parameter value, arbitrarily zero, only communicates the floating point type).
test_spots(0.0F); // Test float.
test_spots(0.0); // Test double.
+#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
test_spots(0.0L); // Test long double.
#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
test_spots(boost::math::concepts::real_concept(0.)); // Test real concept.
#endif
+#endif
return 0;
} // int test_main(int, char* [])
Modified: sandbox/math_toolkit/libs/math/test/test_classify.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_classify.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_classify.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -114,6 +114,7 @@
int test_main(int, char* [] )
{
+ BOOST_MATH_CONTROL_FP;
// start by printing some information:
#ifdef isnan
std::cout << "Platform has isnan macro." << std::endl;
@@ -133,8 +134,10 @@
// then run the tests:
test_classify(float(0), "float");
test_classify(double(0), "double");
+#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
test_classify((long double)(0), "long double");
test_classify((boost::math::concepts::real_concept)(0), "real_concept");
+#endif
return 0;
}
Modified: sandbox/math_toolkit/libs/math/test/test_constants.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_constants.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_constants.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -20,10 +20,10 @@
{
// Basic sanity checks for constants.
- RealType tolerance = static_cast<RealType>(2e-15); // double
- //cout << "Tolerance for type " << typeid(T).name() << " is " << tolerance << "." << endl;
+ RealType tolerance = static_cast<RealType>(2e-15); // double
+ //cout << "Tolerance for type " << typeid(T).name() << " is " << tolerance << "." << endl;
- using namespace boost::math::constants;
+ using namespace boost::math::constants;
using namespace std; // Help ADL of std exp, log...
using std::exp;
Modified: sandbox/math_toolkit/libs/math/test/test_digamma.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_digamma.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_digamma.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -8,8 +8,7 @@
#include <boost/test/floating_point_comparison.hpp>
#include <boost/math/special_functions/digamma.hpp>
#include <boost/array.hpp>
-#include <boost/lambda/lambda.hpp>
-#include <boost/lambda/bind.hpp>
+#include "functor.hpp"
#include "handle_test_result.hpp"
@@ -48,7 +47,7 @@
".*", // platform
".*", // test type(s)
".*Negative.*", // test data group
- ".*", 250, 40); // test function
+ ".*", 300, 40); // test function
add_expected_result(
".*", // compiler
".*", // stdlib
@@ -83,9 +82,8 @@
//
result = boost::math::tools::test(
data,
- boost::lambda::bind(funcp,
- boost::lambda::ret<value_type>(boost::lambda::_1[0])),
- boost::lambda::ret<value_type>(boost::lambda::_1[1]));
+ bind_func(funcp, 0),
+ extract_result(1));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::digamma", test_name);
std::cout << std::endl;
}
@@ -151,6 +149,7 @@
int test_main(int, char* [])
{
+ BOOST_MATH_CONTROL_FP;
test_spots(0.0F, "float");
test_spots(0.0, "double");
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
Modified: sandbox/math_toolkit/libs/math/test/test_dist_overloads.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_dist_overloads.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_dist_overloads.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -10,15 +10,15 @@
#include <boost/math/concepts/real_concept.hpp> // for real_concept
#include <boost/math/distributions/normal.hpp>
- using boost::math::normal_distribution;
+ using boost::math::normal_distribution;
#include <boost/test/included/test_exec_monitor.hpp> // Boost.Test
#include <boost/test/floating_point_comparison.hpp>
#include <iostream>
- using std::cout;
- using std::endl;
- using std::setprecision;
+ using std::cout;
+ using std::endl;
+ using std::setprecision;
template <class RealType>
void test_spots(RealType)
@@ -27,7 +27,7 @@
// 2 eps as a percentage:
RealType tolerance = boost::math::tools::epsilon<RealType>() * 2 * 100;
- cout << "Tolerance for type " << typeid(RealType).name() << " is " << tolerance << " %" << endl;
+ cout << "Tolerance for type " << typeid(RealType).name() << " is " << tolerance << " %" << endl;
for(int i = -4; i <= 4; ++i)
{
@@ -67,8 +67,8 @@
int test_main(int, char* [])
{
- // Basic sanity-check spot values.
- // (Parameter value, arbitrarily zero, only communicates the floating point type).
+ // Basic sanity-check spot values.
+ // (Parameter value, arbitrarily zero, only communicates the floating point type).
test_spots(0.0F); // Test float. OK at decdigits = 0 tolerance = 0.0001 %
test_spots(0.0); // Test double. OK at decdigits 7, tolerance = 1e07 %
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
Modified: sandbox/math_toolkit/libs/math/test/test_ellint_1.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_ellint_1.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_ellint_1.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -16,8 +16,7 @@
#include <boost/test/floating_point_comparison.hpp>
#include <boost/math/special_functions/ellint_1.hpp>
#include <boost/array.hpp>
-#include <boost/lambda/lambda.hpp>
-#include <boost/lambda/bind.hpp>
+#include "functor.hpp"
#include "handle_test_result.hpp"
//
@@ -103,11 +102,9 @@
result = boost::math::tools::test(
data,
- boost::lambda::bind(fp2,
- boost::lambda::ret<value_type>(boost::lambda::_1[1]),
- boost::lambda::ret<value_type>(boost::lambda::_1[0])),
- boost::lambda::ret<value_type>(boost::lambda::_1[2]));
- handle_test_result(result, data[result.worst()], result.worst(),
+ bind_func(fp2, 1, 0),
+ extract_result(2));
+ handle_test_result(result, data[result.worst()], result.worst(),
type_name, "boost::math::ellint_1", test);
std::cout << std::endl;
@@ -126,9 +123,8 @@
value_type (*fp1)(value_type) = boost::math::ellint_1;
result = boost::math::tools::test(
data,
- boost::lambda::bind(fp1,
- boost::lambda::ret<value_type>(boost::lambda::_1[0])),
- boost::lambda::ret<value_type>(boost::lambda::_1[1]));
+ bind_func(fp1, 0),
+ extract_result(1));
handle_test_result(result, data[result.worst()], result.worst(),
type_name, "boost::math::ellint_1", test);
@@ -196,6 +192,7 @@
int test_main(int, char* [])
{
expected_results();
+ BOOST_MATH_CONTROL_FP;
test_spots(0.0F, "float");
test_spots(0.0, "double");
Modified: sandbox/math_toolkit/libs/math/test/test_ellint_2.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_ellint_2.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_ellint_2.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -16,8 +16,7 @@
#include <boost/test/floating_point_comparison.hpp>
#include <boost/math/special_functions/ellint_2.hpp>
#include <boost/array.hpp>
-#include <boost/lambda/lambda.hpp>
-#include <boost/lambda/bind.hpp>
+#include "functor.hpp"
#include "handle_test_result.hpp"
//
@@ -103,10 +102,8 @@
result = boost::math::tools::test(
data,
- boost::lambda::bind(fp2,
- boost::lambda::ret<value_type>(boost::lambda::_1[1]),
- boost::lambda::ret<value_type>(boost::lambda::_1[0])),
- boost::lambda::ret<value_type>(boost::lambda::_1[2]));
+ bind_func(fp2, 1, 0),
+ extract_result(2));
handle_test_result(result, data[result.worst()], result.worst(),
type_name, "boost::math::ellint_2", test);
@@ -125,9 +122,8 @@
value_type (*fp1)(value_type) = boost::math::ellint_2;
result = boost::math::tools::test(
data,
- boost::lambda::bind(fp1,
- boost::lambda::ret<value_type>(boost::lambda::_1[0])),
- boost::lambda::ret<value_type>(boost::lambda::_1[1]));
+ bind_func(fp1, 0),
+ extract_result(1));
handle_test_result(result, data[result.worst()], result.worst(),
type_name, "boost::math::ellint_2", test);
@@ -187,6 +183,7 @@
int test_main(int, char* [])
{
expected_results();
+ BOOST_MATH_CONTROL_FP;
#ifndef BOOST_MATH_BUGGY_LARGE_FLOAT_CONSTANTS
test_spots(0.0F, "float");
#endif
Modified: sandbox/math_toolkit/libs/math/test/test_ellint_3.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_ellint_3.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_ellint_3.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -16,8 +16,7 @@
#include <boost/test/floating_point_comparison.hpp>
#include <boost/math/special_functions/ellint_3.hpp>
#include <boost/array.hpp>
-#include <boost/lambda/lambda.hpp>
-#include <boost/lambda/bind.hpp>
+#include "functor.hpp"
#include "handle_test_result.hpp"
//
@@ -116,11 +115,8 @@
result = boost::math::tools::test(
data,
- boost::lambda::bind(fp2,
- boost::lambda::ret<value_type>(boost::lambda::_1[2]),
- boost::lambda::ret<value_type>(boost::lambda::_1[0]),
- boost::lambda::ret<value_type>(boost::lambda::_1[1])),
- boost::lambda::ret<value_type>(boost::lambda::_1[3]));
+ bind_func(fp2, 2, 0, 1),
+ extract_result(3));
handle_test_result(result, data[result.worst()], result.worst(),
type_name, "boost::math::ellint_3", test);
@@ -141,10 +137,8 @@
result = boost::math::tools::test(
data,
- boost::lambda::bind(fp2,
- boost::lambda::ret<value_type>(boost::lambda::_1[1]),
- boost::lambda::ret<value_type>(boost::lambda::_1[0])),
- boost::lambda::ret<value_type>(boost::lambda::_1[2]));
+ bind_func(fp2, 1, 0),
+ extract_result(2));
handle_test_result(result, data[result.worst()], result.worst(),
type_name, "boost::math::ellint_3", test);
@@ -226,6 +220,7 @@
int test_main(int, char* [])
{
expected_results();
+ BOOST_MATH_CONTROL_FP;
test_spots(0.0F, "float");
test_spots(0.0, "double");
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
Modified: sandbox/math_toolkit/libs/math/test/test_erf.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_erf.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_erf.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -11,10 +11,7 @@
#include <boost/math/constants/constants.hpp>
#include <boost/type_traits/is_floating_point.hpp>
#include <boost/array.hpp>
-#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
-#include <boost/lambda/lambda.hpp>
-#include <boost/lambda/bind.hpp>
-#endif
+#include "functor.hpp"
#include "test_erf_hooks.hpp"
#include "handle_test_result.hpp"
@@ -101,7 +98,6 @@
template <class T>
void do_test_erf(const T& data, const char* type_name, const char* test_name)
{
-#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
typedef typename T::value_type row_type;
typedef typename row_type::value_type value_type;
@@ -118,18 +114,16 @@
//
result = boost::math::tools::test(
data,
- boost::lambda::bind(funcp,
- boost::lambda::ret<value_type>(boost::lambda::_1[0])),
- boost::lambda::ret<value_type>(boost::lambda::_1[1]));
+ bind_func(funcp, 0),
+ extract_result(1));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::erf", test_name);
#ifdef TEST_OTHER
if(::boost::is_floating_point<value_type>::value){
funcp = other::erf;
result = boost::math::tools::test(
data,
- boost::lambda::bind(funcp,
- boost::lambda::ret<value_type>(boost::lambda::_1[0])),
- boost::lambda::ret<value_type>(boost::lambda::_1[1]));
+ bind_func(funcp, 0),
+ extract_result(1));
print_test_result(result, data[result.worst()], result.worst(), type_name, "other::erf");
}
#endif
@@ -139,29 +133,25 @@
funcp = boost::math::erfc;
result = boost::math::tools::test(
data,
- boost::lambda::bind(funcp,
- boost::lambda::ret<value_type>(boost::lambda::_1[0])),
- boost::lambda::ret<value_type>(boost::lambda::_1[2]));
+ bind_func(funcp, 0),
+ extract_result(2));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::erfc", test_name);
#ifdef TEST_OTHER
if(::boost::is_floating_point<value_type>::value){
funcp = other::erfc;
result = boost::math::tools::test(
data,
- boost::lambda::bind(funcp,
- boost::lambda::ret<value_type>(boost::lambda::_1[0])),
- boost::lambda::ret<value_type>(boost::lambda::_1[2]));
+ bind(funcp, 0),
+ extract_result(2));
print_test_result(result, data[result.worst()], result.worst(), type_name, "other::erfc");
}
#endif
std::cout << std::endl;
-#endif
}
template <class T>
void do_test_erf_inv(const T& data, const char* type_name, const char* test_name)
{
-#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
typedef typename T::value_type row_type;
typedef typename row_type::value_type value_type;
@@ -177,18 +167,15 @@
funcp = boost::math::erf_inv;
result = boost::math::tools::test(
data,
- boost::lambda::bind(funcp,
- boost::lambda::ret<value_type>(boost::lambda::_1[0])),
- boost::lambda::ret<value_type>(boost::lambda::_1[1]));
+ bind_func(funcp, 0),
+ extract_result(1));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::erf_inv", test_name);
std::cout << std::endl;
-#endif
}
template <class T>
void do_test_erfc_inv(const T& data, const char* type_name, const char* test_name)
{
-#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
typedef typename T::value_type row_type;
typedef typename row_type::value_type value_type;
@@ -204,12 +191,10 @@
funcp = boost::math::erfc_inv;
result = boost::math::tools::test(
data,
- boost::lambda::bind(funcp,
- boost::lambda::ret<value_type>(boost::lambda::_1[0])),
- boost::lambda::ret<value_type>(boost::lambda::_1[1]));
+ bind_func(funcp, 0),
+ extract_result(1));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::erfc_inv", test_name);
std::cout << std::endl;
-#endif
}
template <class T>
@@ -296,6 +281,7 @@
int test_main(int, char* [])
{
+ BOOST_MATH_CONTROL_FP;
test_spots(0.0F, "float");
test_spots(0.0, "double");
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
Modified: sandbox/math_toolkit/libs/math/test/test_error_handling.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_error_handling.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_error_handling.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -126,13 +126,13 @@
int test_main(int, char* [])
{
- // Test error handling.
- // (Parameter value, arbitrarily zero, only communicates the floating point type FPT).
- test_error(0.0F); // Test float.
- test_error(0.0); // Test double.
- test_error(0.0L); // Test long double.
+ // Test error handling.
+ // (Parameter value, arbitrarily zero, only communicates the floating point type FPT).
+ test_error(0.0F); // Test float.
+ test_error(0.0); // Test double.
+ test_error(0.0L); // Test long double.
test_error(boost::math::concepts::real_concept(0.0L)); // Test concepts.
- return 0;
+ return 0;
} // int test_main(int, char* [])
/*
Modified: sandbox/math_toolkit/libs/math/test/test_exponential_dist.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_exponential_dist.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_exponential_dist.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -10,15 +10,15 @@
#include <boost/math/concepts/real_concept.hpp> // for real_concept
#include <boost/math/distributions/exponential.hpp>
- using boost::math::exponential_distribution;
+ using boost::math::exponential_distribution;
#include <boost/test/included/test_exec_monitor.hpp> // Boost.Test
#include <boost/test/floating_point_comparison.hpp>
#include <iostream>
- using std::cout;
- using std::endl;
- using std::setprecision;
+ using std::cout;
+ using std::endl;
+ using std::setprecision;
template <class RealType>
void test_spot(RealType l, RealType x, RealType p, RealType q, RealType tolerance)
@@ -28,13 +28,13 @@
exponential_distribution<RealType>(l),
x),
p,
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::cdf(
complement(exponential_distribution<RealType>(l),
x)),
q,
- tolerance); // %
+ tolerance); // %
if(p < 0.999)
{
BOOST_CHECK_CLOSE(
@@ -42,7 +42,7 @@
exponential_distribution<RealType>(l),
p),
x,
- tolerance); // %
+ tolerance); // %
}
if(q < 0.999)
{
@@ -51,7 +51,7 @@
complement(exponential_distribution<RealType>(l),
q)),
x,
- tolerance); // %
+ tolerance); // %
}
}
@@ -72,7 +72,7 @@
{
cout << "Expect parameter T == 0!" << endl;
}
- cout << "Tolerance for type " << typeid(T).name() << " is " << tolerance << " %" << endl;
+ cout << "Tolerance for type " << typeid(T).name() << " is " << tolerance << " %" << endl;
test_spot(
static_cast<RealType>(0.5), // lambda
@@ -166,63 +166,63 @@
exponential_distribution<RealType>(0.5),
static_cast<RealType>(0.125)), // x
static_cast<RealType>(0.46970653140673789305985541231115L), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::pdf(
exponential_distribution<RealType>(0.5),
static_cast<RealType>(5)), // x
static_cast<RealType>(0.04104249931194939758476433723358L), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::pdf(
exponential_distribution<RealType>(2),
static_cast<RealType>(0.125)), // x
static_cast<RealType>(1.5576015661428097364903405339566L), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::pdf(
exponential_distribution<RealType>(2),
static_cast<RealType>(5)), // x
static_cast<RealType>(9.0799859524969703071183031121101e-5L), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::mean(
exponential_distribution<RealType>(2)),
static_cast<RealType>(0.5),
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::standard_deviation(
exponential_distribution<RealType>(2)),
static_cast<RealType>(0.5),
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::mode(
exponential_distribution<RealType>(2)),
static_cast<RealType>(0),
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::median(
exponential_distribution<RealType>(4)),
static_cast<RealType>(0.693147180559945309417232121458176568075500134360255254) / 4,
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::skewness(
exponential_distribution<RealType>(2)),
static_cast<RealType>(2),
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::kurtosis(
exponential_distribution<RealType>(2)),
static_cast<RealType>(9),
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::kurtosis_excess(
exponential_distribution<RealType>(2)),
static_cast<RealType>(6),
- tolerance); // %
+ tolerance); // %
//
// Things that are errors:
@@ -255,11 +255,11 @@
int test_main(int, char* [])
{
// Check that can generate exponential distribution using the two convenience methods:
- boost::math::exponential mycexp1(1.); // Using typedef
- exponential_distribution<> myexp2(1.); // Using default RealType double.
+ boost::math::exponential mycexp1(1.); // Using typedef
+ exponential_distribution<> myexp2(1.); // Using default RealType double.
- // Basic sanity-check spot values.
- // (Parameter value, arbitrarily zero, only communicates the floating point type).
+ // Basic sanity-check spot values.
+ // (Parameter value, arbitrarily zero, only communicates the floating point type).
test_spots(0.0F); // Test float. OK at decdigits = 0 tolerance = 0.0001 %
test_spots(0.0); // Test double. OK at decdigits 7, tolerance = 1e07 %
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
Modified: sandbox/math_toolkit/libs/math/test/test_extreme_value.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_extreme_value.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_extreme_value.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -9,15 +9,15 @@
#include <boost/math/concepts/real_concept.hpp> // for real_concept
#include <boost/math/distributions/extreme_value.hpp>
- using boost::math::extreme_value_distribution;
+ using boost::math::extreme_value_distribution;
#include <boost/test/included/test_exec_monitor.hpp> // Boost.Test
#include <boost/test/floating_point_comparison.hpp>
#include <iostream>
- using std::cout;
- using std::endl;
- using std::setprecision;
+ using std::cout;
+ using std::endl;
+ using std::setprecision;
template <class RealType>
void test_spot(RealType a, RealType b, RealType x, RealType p, RealType q, RealType tolerance)
@@ -27,13 +27,13 @@
extreme_value_distribution<RealType>(a, b),
x),
p,
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::cdf(
complement(extreme_value_distribution<RealType>(a, b),
x)),
q,
- tolerance); // %
+ tolerance); // %
if((p < 0.999) && (p > 0))
{
BOOST_CHECK_CLOSE(
@@ -41,7 +41,7 @@
extreme_value_distribution<RealType>(a, b),
p),
x,
- tolerance); // %
+ tolerance); // %
}
if((q < 0.999) && (q > 0))
{
@@ -50,7 +50,7 @@
complement(extreme_value_distribution<RealType>(a, b),
q)),
x,
- tolerance); // %
+ tolerance); // %
}
}
@@ -65,7 +65,7 @@
boost::math::tools::epsilon<RealType>());
tolerance *= 50 * 100;
- cout << "Tolerance for type " << typeid(RealType).name() << " is " << tolerance << " %" << endl;
+ cout << "Tolerance for type " << typeid(RealType).name() << " is " << tolerance << " %" << endl;
// Results calculated by punching numbers into a calculator,
// and using the formula at http://mathworld.wolfram.com/ExtremeValueDistribution.html
@@ -103,56 +103,56 @@
extreme_value_distribution<RealType>(0.5, 2),
static_cast<RealType>(0.125)), // x
static_cast<RealType>(0.18052654830890205978204427757846L), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::pdf(
extreme_value_distribution<RealType>(1, 3),
static_cast<RealType>(5)), // x
static_cast<RealType>(0.0675057324099851209129017326286L), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::pdf(
extreme_value_distribution<RealType>(1, 3),
static_cast<RealType>(0)), // x
static_cast<RealType>(0.11522236828583456431277265757312L), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::mean(
extreme_value_distribution<RealType>(2, 3)),
static_cast<RealType>(3.731646994704598581819536270246L),
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::standard_deviation(
extreme_value_distribution<RealType>(-1, 0.5)),
static_cast<RealType>(0.6412749150809320477720181798355L),
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::mode(
extreme_value_distribution<RealType>(2, 3)),
static_cast<RealType>(2),
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::median(
extreme_value_distribution<RealType>(0, 1)),
static_cast<RealType>(+0.36651292058166432701243915823266946945426344783710526305367771367056),
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::skewness(
extreme_value_distribution<RealType>(2, 3)),
static_cast<RealType>(1.1395470994046486574927930193898461120875997958366L),
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::kurtosis(
extreme_value_distribution<RealType>(2, 3)),
static_cast<RealType>(5.4),
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::kurtosis_excess(
extreme_value_distribution<RealType>(2, 3)),
static_cast<RealType>(2.4),
- tolerance); // %
+ tolerance); // %
//
// Things that are errors:
@@ -185,11 +185,11 @@
{
// Check that can generate extreme_value distribution using the two convenience methods:
- boost::math::extreme_value mycev1(1.); // Using typedef
- extreme_value_distribution<> myev2(1.); // Using default RealType double.
+ boost::math::extreme_value mycev1(1.); // Using typedef
+ extreme_value_distribution<> myev2(1.); // Using default RealType double.
- // Basic sanity-check spot values.
- // (Parameter value, arbitrarily zero, only communicates the floating point type).
+ // Basic sanity-check spot values.
+ // (Parameter value, arbitrarily zero, only communicates the floating point type).
test_spots(0.0F); // Test float. OK at decdigits = 0 tolerance = 0.0001 %
test_spots(0.0); // Test double. OK at decdigits 7, tolerance = 1e07 %
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
Modified: sandbox/math_toolkit/libs/math/test/test_factorials.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_factorials.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_factorials.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -132,7 +132,7 @@
static_cast<T>(1.28674092710208810281923019294164707555099052561945725535047e-26L), tolerance);
BOOST_CHECK_CLOSE(
::boost::math::rising_factorial(static_cast<T>(30.25), 21),
- static_cast<T>(3.93286957998925490693364184100209193343633629069699964020401e33L), tolerance);
+ static_cast<T>(3.93286957998925490693364184100209193343633629069699964020401e33L), tolerance * 2);
BOOST_CHECK_CLOSE(
::boost::math::rising_factorial(static_cast<T>(30.25), -21),
static_cast<T>(3.35010902064291983728782493133164809108646650368560147505884e-27L), tolerance);
@@ -286,6 +286,7 @@
int test_main(int, char* [])
{
+ BOOST_MATH_CONTROL_FP;
test_spots(0.0F);
test_spots(0.0);
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
Modified: sandbox/math_toolkit/libs/math/test/test_find_location.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_find_location.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_find_location.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -64,7 +64,7 @@
BOOST_CHECK_EQUAL(n.location(), 0); // aka mean.
BOOST_CHECK_EQUAL(n.scale(), 1); // aka standard_deviation.
- // Check for 'bad' arguments.
+ // Check for 'bad' arguments.
BOOST_CHECK_THROW(find_location<normal>(0., -1., 0.), std::domain_error); // p below 0 to 1.
BOOST_CHECK_THROW(find_location<normal>(0., 2., 0.), std::domain_error); // p above 0 to 1.
BOOST_CHECK_THROW(find_location<normal>(numeric_limits<double>::infinity(), 0.5, 0.),
Modified: sandbox/math_toolkit/libs/math/test/test_find_scale.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_find_scale.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_find_scale.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -64,7 +64,7 @@
BOOST_CHECK_EQUAL(n.location(), 0); // aka mean.
BOOST_CHECK_EQUAL(n.scale(), 1); // aka standard_deviation.
- // Check for 'bad' arguments.
+ // Check for 'bad' arguments.
BOOST_CHECK_THROW(find_scale<normal>(0., -1., 0.), std::domain_error); // p below 0 to 1.
BOOST_CHECK_THROW(find_scale<normal>(0., 2., 0.), std::domain_error); // p above 0 to 1.
BOOST_CHECK_THROW(find_scale<normal>(numeric_limits<double>::infinity(), 0.5, 0.),
Modified: sandbox/math_toolkit/libs/math/test/test_fisher_f.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_fisher_f.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_fisher_f.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -215,18 +215,18 @@
}
}
- // http://www.vias.org/simulations/simusoft_distcalc.html
- // Distcalc version 1.2 Copyright 2002 H Lohninger, TU Wein
- // H.Lohninger: Teach/Me Data Analysis, Springer-Verlag, Berlin-New York-Tokyo, 1999. ISBN 3-540-14743-8
- // The Windows calculator is available zipped distcalc.exe for download at:
- // http://www.vias.org/simulations/simu_stat.html
-
- // This interactive Windows program was used to find some combination for which the
- // result appears to be exact. No doubt this can be done analytically too,
- // by mathematicians!
+ // http://www.vias.org/simulations/simusoft_distcalc.html
+ // Distcalc version 1.2 Copyright 2002 H Lohninger, TU Wein
+ // H.Lohninger: Teach/Me Data Analysis, Springer-Verlag, Berlin-New York-Tokyo, 1999. ISBN 3-540-14743-8
+ // The Windows calculator is available zipped distcalc.exe for download at:
+ // http://www.vias.org/simulations/simu_stat.html
+
+ // This interactive Windows program was used to find some combination for which the
+ // result appears to be exact. No doubt this can be done analytically too,
+ // by mathematicians!
- // Some combinations for which the result is 'exact', or at least is to 40 decimal digits.
- // 40 decimal digits includes 128-bit significand User Defined Floating-Point types.
+ // Some combinations for which the result is 'exact', or at least is to 40 decimal digits.
+ // 40 decimal digits includes 128-bit significand User Defined Floating-Point types.
// These all pass tests at near epsilon accuracy for the floating-point type.
tolerance = boost::math::tools::epsilon<RealType>() * 5 * 100;
cout << "Tolerance = " << tolerance << "%." << endl;
@@ -236,7 +236,7 @@
static_cast<RealType>(2.)), // df2
static_cast<RealType>(2.)/static_cast<RealType>(3.) ), // F
static_cast<RealType>(0.5), // probability.
- tolerance);
+ tolerance);
BOOST_CHECK_CLOSE(
cdf(complement(fisher_f_distribution<RealType>(
@@ -244,7 +244,7 @@
static_cast<RealType>(2.)), // df2
static_cast<RealType>(1.6L))), // F
static_cast<RealType>(0.333333333333333333333333333333333333L), // probability.
- tolerance * 100); // needs higher tolerance at 128-bit precision - value not exact?
+ tolerance * 100); // needs higher tolerance at 128-bit precision - value not exact?
BOOST_CHECK_CLOSE(
cdf(complement(fisher_f_distribution<RealType>(
@@ -252,7 +252,7 @@
static_cast<RealType>(2.)), // df2
static_cast<RealType>(6.5333333333333333333333333333333333L))), // F
static_cast<RealType>(0.125L), // probability.
- tolerance);
+ tolerance);
BOOST_CHECK_CLOSE(
cdf(complement(fisher_f_distribution<RealType>(
@@ -260,7 +260,7 @@
static_cast<RealType>(2.)), // df2
static_cast<RealType>(1.))), // F
static_cast<RealType>(0.5L), // probability.
- tolerance);
+ tolerance);
BOOST_CHECK_CLOSE(
cdf(complement(fisher_f_distribution<RealType>(
@@ -268,7 +268,7 @@
static_cast<RealType>(2.)), // df2
static_cast<RealType>(3.))), // F
static_cast<RealType>(0.25L), // probability.
- tolerance);
+ tolerance);
BOOST_CHECK_CLOSE(
cdf(complement(fisher_f_distribution<RealType>(
@@ -276,7 +276,7 @@
static_cast<RealType>(2.)), // df2
static_cast<RealType>(3.))), // F
static_cast<RealType>(0.25L), // probability.
- tolerance);
+ tolerance);
BOOST_CHECK_CLOSE(
cdf(complement(fisher_f_distribution<RealType>(
@@ -284,7 +284,7 @@
static_cast<RealType>(2.)), // df2
static_cast<RealType>(7.))), // F
static_cast<RealType>(0.125L), // probability.
- tolerance);
+ tolerance);
BOOST_CHECK_CLOSE(
cdf(complement(fisher_f_distribution<RealType>(
@@ -292,7 +292,7 @@
static_cast<RealType>(2.)), // df2
static_cast<RealType>(9.))), // F
static_cast<RealType>(0.1L), // probability.
- tolerance);
+ tolerance);
BOOST_CHECK_CLOSE(
cdf(complement(fisher_f_distribution<RealType>(
@@ -300,7 +300,7 @@
static_cast<RealType>(2.)), // df2
static_cast<RealType>(19.))), // F
static_cast<RealType>(0.05L), // probability.
- tolerance);
+ tolerance);
BOOST_CHECK_CLOSE(
cdf(complement(fisher_f_distribution<RealType>(
@@ -308,7 +308,7 @@
static_cast<RealType>(2.)), // df2
static_cast<RealType>(29.))), // F
static_cast<RealType>(0.03333333333333333333333333333333333333333L), // probability.
- tolerance);
+ tolerance);
BOOST_CHECK_CLOSE(
cdf(complement(fisher_f_distribution<RealType>(
@@ -316,7 +316,7 @@
static_cast<RealType>(2.)), // df2
static_cast<RealType>(99.))), // F
static_cast<RealType>(0.01L), // probability.
- tolerance);
+ tolerance);
BOOST_CHECK_CLOSE(
cdf(complement(fisher_f_distribution<RealType>(
@@ -324,7 +324,7 @@
static_cast<RealType>(4.)), // df2
static_cast<RealType>(9.))), // F
static_cast<RealType>(0.028L), // probability.
- tolerance*10); // not quite exact???
+ tolerance*10); // not quite exact???
BOOST_CHECK_CLOSE(
cdf(complement(fisher_f_distribution<RealType>(
@@ -332,7 +332,7 @@
static_cast<RealType>(8.)), // df2
static_cast<RealType>(1.))), // F
static_cast<RealType>(0.5L), // probability.
- tolerance);
+ tolerance);
// Inverse tests
@@ -342,7 +342,7 @@
static_cast<RealType>(2.)), // df2
static_cast<RealType>(0.03333333333333333333333333333333333333333L))), // probability
static_cast<RealType>(29.), // F expected.
- tolerance*10);
+ tolerance*10);
BOOST_CHECK_CLOSE(
quantile(fisher_f_distribution<RealType>(
@@ -350,7 +350,7 @@
static_cast<RealType>(2.)), // df2
static_cast<RealType>(1.0L - 0.03333333333333333333333333333333333333333L)), // probability
static_cast<RealType>(29.), // F expected.
- tolerance*10);
+ tolerance*10);
// Also note limit cases for F(1, infinity) == normal distribution
@@ -505,8 +505,8 @@
{
// Check that can generate fisher distribution using the two convenience methods:
- boost::math::fisher_f myf1(1., 2); // Using typedef
- fisher_f_distribution<> myf2(1., 2); // Using default RealType double.
+ boost::math::fisher_f myf1(1., 2); // Using typedef
+ fisher_f_distribution<> myf2(1., 2); // Using default RealType double.
// Basic sanity-check spot values.
Modified: sandbox/math_toolkit/libs/math/test/test_gamma.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_gamma.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_gamma.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -14,10 +14,7 @@
#include <boost/math/constants/constants.hpp>
#include <boost/type_traits/is_floating_point.hpp>
#include <boost/array.hpp>
-#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
-#include <boost/lambda/lambda.hpp>
-#include <boost/lambda/bind.hpp>
-#endif
+#include "functor.hpp"
#include "test_gamma_hooks.hpp"
#include "handle_test_result.hpp"
@@ -110,7 +107,7 @@
"linux", // platform
largest_type, // test type(s)
"near (1|2|-10)", // test data group
- "boost::math::lgamma", 50, 30); // test function
+ "boost::math::lgamma", 50, 50); // test function
add_expected_result(
".*", // compiler
".*", // stdlib
@@ -131,7 +128,7 @@
"linux", // platform
"real_concept", // test type(s)
"near (0|-55)", // test data group
- "boost::math::(t|l)gamma", 130, 60); // test function
+ "boost::math::(t|l)gamma", 130, 80); // test function
add_expected_result(
".*", // compiler
".*", // stdlib
@@ -176,7 +173,24 @@
"HP-UX", // platform
"real_concept", // test type(s)
"tgamma1pm1.*", // test data group
- "boost::math::tgamma1pm1", 200, 60); // test function
+ "boost::math::tgamma1pm1", 200, 80); // test function
+ //
+ // Sun OS:
+ //
+ add_expected_result(
+ ".*", // compiler
+ ".*", // stdlib
+ "Sun.*", // platform
+ largest_type, // test type(s)
+ "factorials", // test data group
+ "boost::math::tgamma", 300, 50); // test function
+ add_expected_result(
+ ".*", // compiler
+ ".*", // stdlib
+ "Sun.*", // platform
+ "real_concept", // test type(s)
+ "factorials", // test data group
+ "boost::math::tgamma", 300, 50); // test function
//
// Catch all cases come last:
@@ -244,7 +258,7 @@
".*", // platform
"real_concept", // test type(s)
"near.*", // test data group
- "boost::math::tgamma", 60, 30); // test function
+ "boost::math::tgamma", 80, 60); // test function
add_expected_result(
".*", // compiler
".*", // stdlib
@@ -271,7 +285,6 @@
template <class T>
void do_test_gamma(const T& data, const char* type_name, const char* test_name)
{
-#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
typedef typename T::value_type row_type;
typedef typename row_type::value_type value_type;
@@ -288,16 +301,16 @@
//
result = boost::math::tools::test(
data,
- boost::lambda::bind(funcp, boost::lambda::ret<value_type>(boost::lambda::_1[0])),
- boost::lambda::ret<value_type>(boost::lambda::_1[1]));
+ bind_func(funcp, 0),
+ extract_result(1));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::tgamma", test_name);
#ifdef TEST_OTHER
if(::boost::is_floating_point<value_type>::value){
funcp = other::tgamma;
result = boost::math::tools::test(
data,
- boost::lambda::bind(funcp, boost::lambda::ret<value_type>(boost::lambda::_1[0])),
- boost::lambda::ret<value_type>(boost::lambda::_1[1]));
+ bind_func(funcp, 0),
+ extract_result(1));
print_test_result(result, data[result.worst()], result.worst(), type_name, "other::tgamma");
}
#endif
@@ -307,28 +320,26 @@
funcp = boost::math::lgamma;
result = boost::math::tools::test(
data,
- boost::lambda::bind(funcp, boost::lambda::ret<value_type>(boost::lambda::_1[0])),
- boost::lambda::ret<value_type>(boost::lambda::_1[2]));
+ bind_func(funcp, 0),
+ extract_result(2));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::lgamma", test_name);
#ifdef TEST_OTHER
if(::boost::is_floating_point<value_type>::value){
funcp = other::lgamma;
result = boost::math::tools::test(
data,
- boost::lambda::bind(funcp, boost::lambda::ret<value_type>(boost::lambda::_1[0])),
- boost::lambda::ret<value_type>(boost::lambda::_1[2]));
+ bind_func(funcp, 0),
+ extract_result(2));
print_test_result(result, data[result.worst()], result.worst(), type_name, "other::lgamma");
}
#endif
std::cout << std::endl;
-#endif
}
template <class T>
void do_test_gammap1m1(const T& data, const char* type_name, const char* test_name)
{
-#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
typedef typename T::value_type row_type;
typedef typename row_type::value_type value_type;
@@ -345,11 +356,10 @@
//
result = boost::math::tools::test(
data,
- boost::lambda::bind(funcp, boost::lambda::ret<value_type>(boost::lambda::_1[0])),
- boost::lambda::ret<value_type>(boost::lambda::_1[1]));
+ bind_func(funcp, 0),
+ extract_result(1));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::tgamma1pm1", test_name);
std::cout << std::endl;
-#endif
}
template <class T>
@@ -430,6 +440,7 @@
int test_main(int, char* [])
{
expected_results();
+ BOOST_MATH_CONTROL_FP;
#ifndef BOOST_MATH_BUGGY_LARGE_FLOAT_CONSTANTS
test_spots(0.0F);
Modified: sandbox/math_toolkit/libs/math/test/test_gamma_dist.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_gamma_dist.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_gamma_dist.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -20,13 +20,13 @@
#include <boost/test/floating_point_comparison.hpp>
#include <boost/math/distributions/gamma.hpp>
- using boost::math::gamma_distribution;
+ using boost::math::gamma_distribution;
#include <boost/math/tools/test.hpp>
#include <iostream>
- using std::cout;
- using std::endl;
- using std::setprecision;
+ using std::cout;
+ using std::endl;
+ using std::setprecision;
#include <limits>
using std::numeric_limits;
@@ -49,14 +49,14 @@
gamma_distribution<RealType>(shape, scale), // distribution.
x), // random variable.
p, // probability.
- tol); // %tolerance.
+ tol); // %tolerance.
BOOST_CHECK_CLOSE(
::boost::math::cdf(
complement(
gamma_distribution<RealType>(shape, scale), // distribution.
x)), // random variable.
q, // probability complement.
- tol); // %tolerance.
+ tol); // %tolerance.
if(p < 0.999)
{
BOOST_CHECK_CLOSE(
@@ -64,7 +64,7 @@
gamma_distribution<RealType>(shape, scale), // distribution.
p), // probability.
x, // random variable.
- tol); // %tolerance.
+ tol); // %tolerance.
}
if(q < 0.999)
{
@@ -74,7 +74,7 @@
gamma_distribution<RealType>(shape, scale), // distribution.
q)), // probability complement.
x, // random variable.
- tol); // %tolerance.
+ tol); // %tolerance.
}
// PDF:
BOOST_CHECK_CLOSE(
@@ -82,7 +82,7 @@
gamma_distribution<RealType>(shape, scale), // distribution.
x), // random variable.
NaivePDF(shape, scale, x), // PDF
- tol); // %tolerance.
+ tol); // %tolerance.
}
template <class RealType>
@@ -90,12 +90,12 @@
{
// Basic sanity checks
//
- // 15 decimal places expressed as a persentage.
+ // 15 decimal places expressed as a persentage.
// The first tests use values generated by MathCAD,
// and should be accurate to around double precision.
//
RealType tolerance = (std::max)(5e-14f, boost::math::tools::real_cast<float>(std::numeric_limits<RealType>::epsilon() * 20)) * 100;
- cout << "Tolerance for type " << typeid(RealType).name() << " is " << tolerance << " %" << endl;
+ cout << "Tolerance for type " << typeid(RealType).name() << " is " << tolerance << " %" << endl;
check_gamma(
static_cast<RealType>(0.5),
@@ -128,8 +128,8 @@
// (it doesn't agree with MathCAD or this implementation).
// To be fair the incomplete gamma is tricky to get right in this area...
//
- tolerance = 1e-5f * 100; // 5 decimal places as a persentage
- cout << "Tolerance for type " << typeid(RealType).name() << " is " << tolerance << " %" << endl;
+ tolerance = 1e-5f * 100; // 5 decimal places as a persentage
+ cout << "Tolerance for type " << typeid(RealType).name() << " is " << tolerance << " %" << endl;
check_gamma(
static_cast<RealType>(2),
@@ -216,7 +216,7 @@
int test_main(int, char* [])
{
// Basic sanity-check spot values.
- // (Parameter value, arbitrarily zero, only communicates the floating point type).
+ // (Parameter value, arbitrarily zero, only communicates the floating point type).
test_spots(0.0F); // Test float. OK at decdigits = 0 tolerance = 0.0001 %
test_spots(0.0); // Test double. OK at decdigits 7, tolerance = 1e07 %
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
Modified: sandbox/math_toolkit/libs/math/test/test_hermite.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_hermite.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_hermite.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -18,8 +18,7 @@
#include <boost/math/special_functions/hermite.hpp>
#include <boost/math/constants/constants.hpp>
#include <boost/array.hpp>
-#include <boost/lambda/lambda.hpp>
-#include <boost/lambda/bind.hpp>
+#include "functor.hpp"
#include "handle_test_result.hpp"
#include "test_legendre_hooks.hpp"
@@ -103,7 +102,6 @@
pg funcp = boost::math::hermite;
typedef unsigned (*cast_t)(value_type);
- cast_t rc = &boost::math::tools::real_cast<unsigned, value_type>;
boost::math::tools::test_result<value_type> result;
@@ -115,13 +113,8 @@
//
result = boost::math::tools::test(
data,
- boost::lambda::bind(funcp,
- boost::lambda::ret<int>(
- boost::lambda::bind(
- rc,
- boost::lambda::ret<value_type>(boost::lambda::_1[0]))),
- boost::lambda::ret<value_type>(boost::lambda::_1[1])),
- boost::lambda::ret<value_type>(boost::lambda::_1[2]));
+ bind_func_int1(funcp, 0, 1),
+ extract_result(2));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::hermite", test_name);
std::cout << std::endl;
@@ -173,6 +166,10 @@
int test_main(int, char* [])
{
+ BOOST_MATH_CONTROL_FP;
+
+ boost::math::hermite(51, 915.0);
+
#ifndef BOOST_MATH_BUGGY_LARGE_FLOAT_CONSTANTS
test_spots(0.0F, "float");
#endif
Modified: sandbox/math_toolkit/libs/math/test/test_ibeta.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_ibeta.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_ibeta.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -12,14 +12,18 @@
#include <boost/math/constants/constants.hpp>
#include <boost/type_traits/is_floating_point.hpp>
#include <boost/array.hpp>
-#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
-#include <boost/lambda/lambda.hpp>
-#include <boost/lambda/bind.hpp>
-#endif
+#include "functor.hpp"
#include "test_beta_hooks.hpp"
#include "handle_test_result.hpp"
+#if !defined(TEST_FLOAT) && !defined(TEST_DOUBLE) && !defined(TEST_LDOUBLE) && !defined(TEST_REAL_CONCEPT)
+# define TEST_FLOAT
+# define TEST_DOUBLE
+# define TEST_LDOUBLE
+# define TEST_REAL_CONCEPT
+#endif
+
//
// DESCRIPTION:
// ~~~~~~~~~~~~
@@ -102,7 +106,7 @@
add_expected_result(
"[^|]*", // compiler
"[^|]*", // stdlib
- "linux|Mac OS", // platform
+ "linux|Mac OS|Sun.*", // platform
"double", // test type(s)
"(?i).*large.*", // test data group
".*", 40, 20); // test function
@@ -135,7 +139,44 @@
largest_type, // test type(s)
"(?i).*large.*", // test data group
".*", 200000, 10000); // test function
-
+ //
+ // Sun OS:
+ //
+ add_expected_result(
+ "[^|]*", // compiler
+ "[^|]*", // stdlib
+ "Sun.*", // platform
+ largest_type, // test type(s)
+ "(?i).*large.*", // test data group
+ ".*", 110000, 10000); // test function
+ add_expected_result(
+ "[^|]*", // compiler
+ "[^|]*", // stdlib
+ "Sun.*", // platform
+ largest_type, // test type(s)
+ "(?i).*small.*", // test data group
+ ".*", 130, 30); // test function
+ add_expected_result(
+ "[^|]*", // compiler
+ "[^|]*", // stdlib
+ "Sun.*", // platform
+ largest_type, // test type(s)
+ "(?i).*medium.*", // test data group
+ ".*", 200, 40); // test function
+ add_expected_result(
+ "[^|]*", // compiler
+ "[^|]*", // stdlib
+ "Sun.*", // platform
+ "real_concept", // test type(s)
+ "(?i).*medium.*", // test data group
+ ".*", 200, 40); // test function
+ add_expected_result(
+ "[^|]*", // compiler
+ "[^|]*", // stdlib
+ "Sun.*", // platform
+ "real_concept", // test type(s)
+ "(?i).*small.*", // test data group
+ ".*", 130, 30); // test function
//
// MinGW:
//
@@ -204,7 +245,7 @@
"[^|]*", // platform
"real_concept", // test type(s)
"(?i).*medium.*", // test data group
- ".*", 100, 50); // test function
+ ".*", 200, 50); // test function
add_expected_result(
"[^|]*", // compiler
"[^|]*", // stdlib
@@ -232,7 +273,6 @@
template <class T>
void do_test_beta(const T& data, const char* type_name, const char* test_name)
{
-#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
typedef typename T::value_type row_type;
typedef typename row_type::value_type value_type;
@@ -249,57 +289,41 @@
//
result = boost::math::tools::test(
data,
- boost::lambda::bind(funcp,
- boost::lambda::ret<value_type>(boost::lambda::_1[0]),
- boost::lambda::ret<value_type>(boost::lambda::_1[1]),
- boost::lambda::ret<value_type>(boost::lambda::_1[2])),
- boost::lambda::ret<value_type>(boost::lambda::_1[3]));
+ bind_func(funcp, 0, 1, 2),
+ extract_result(3));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::beta", test_name);
funcp = boost::math::betac;
result = boost::math::tools::test(
data,
- boost::lambda::bind(funcp,
- boost::lambda::ret<value_type>(boost::lambda::_1[0]),
- boost::lambda::ret<value_type>(boost::lambda::_1[1]),
- boost::lambda::ret<value_type>(boost::lambda::_1[2])),
- boost::lambda::ret<value_type>(boost::lambda::_1[4]));
+ bind_func(funcp, 0, 1, 2),
+ extract_result(4));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::betac", test_name);
funcp = boost::math::ibeta;
result = boost::math::tools::test(
data,
- boost::lambda::bind(funcp,
- boost::lambda::ret<value_type>(boost::lambda::_1[0]),
- boost::lambda::ret<value_type>(boost::lambda::_1[1]),
- boost::lambda::ret<value_type>(boost::lambda::_1[2])),
- boost::lambda::ret<value_type>(boost::lambda::_1[5]));
+ bind_func(funcp, 0, 1, 2),
+ extract_result(5));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::ibeta", test_name);
funcp = boost::math::ibetac;
result = boost::math::tools::test(
data,
- boost::lambda::bind(funcp,
- boost::lambda::ret<value_type>(boost::lambda::_1[0]),
- boost::lambda::ret<value_type>(boost::lambda::_1[1]),
- boost::lambda::ret<value_type>(boost::lambda::_1[2])),
- boost::lambda::ret<value_type>(boost::lambda::_1[6]));
+ bind_func(funcp, 0, 1, 2),
+ extract_result(6));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::ibetac", test_name);
#ifdef TEST_OTHER
if(::boost::is_floating_point<value_type>::value){
funcp = other::ibeta;
result = boost::math::tools::test(
data,
- boost::lambda::bind(funcp,
- boost::lambda::ret<value_type>(boost::lambda::_1[0]),
- boost::lambda::ret<value_type>(boost::lambda::_1[1]),
- boost::lambda::ret<value_type>(boost::lambda::_1[2])),
- boost::lambda::ret<value_type>(boost::lambda::_1[5]));
+ bind_func(funcp, 0, 1, 2),
+ extract_result(5));
print_test_result(result, data[result.worst()], result.worst(), type_name, "other::ibeta");
}
#endif
std::cout << std::endl;
-#endif
}
template <class T>
@@ -479,24 +503,39 @@
int test_main(int, char* [])
{
expected_results();
+ BOOST_MATH_CONTROL_FP;
#ifdef TEST_GSL
gsl_set_error_handler_off();
#endif
+#ifdef TEST_FLOAT
test_spots(0.0F);
+#endif
+#ifdef TEST_DOUBLE
test_spots(0.0);
+#endif
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
+#ifdef TEST_LDOUBLE
test_spots(0.0L);
+#endif
#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
+#ifdef TEST_REAL_CONCEPT
test_spots(boost::math::concepts::real_concept(0.1));
#endif
#endif
+#endif
+#ifdef TEST_FLOAT
test_beta(0.1F, "float");
+#endif
+#ifdef TEST_DOUBLE
test_beta(0.1, "double");
+#endif
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
+#ifdef TEST_LDOUBLE
test_beta(0.1L, "long double");
+#endif
#ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS
-#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
+#ifdef TEST_REAL_CONCEPT
test_beta(boost::math::concepts::real_concept(0.1), "real_concept");
#endif
#endif
Modified: sandbox/math_toolkit/libs/math/test/test_ibeta_inv.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_ibeta_inv.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_ibeta_inv.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -12,12 +12,18 @@
#include <boost/math/constants/constants.hpp>
#include <boost/type_traits/is_floating_point.hpp>
#include <boost/array.hpp>
-#include <boost/lambda/lambda.hpp>
-#include <boost/lambda/bind.hpp>
+#include "functor.hpp"
#include "test_beta_hooks.hpp"
#include "handle_test_result.hpp"
+#if !defined(TEST_FLOAT) && !defined(TEST_DOUBLE) && !defined(TEST_LDOUBLE) && !defined(TEST_REAL_CONCEPT)
+# define TEST_FLOAT
+# define TEST_DOUBLE
+# define TEST_LDOUBLE
+# define TEST_REAL_CONCEPT
+#endif
+
//
// DESCRIPTION:
// ~~~~~~~~~~~~
@@ -210,8 +216,6 @@
typedef value_type (*pg)(value_type, value_type, value_type);
pg funcp = boost::math::ibeta_inv;
- using namespace boost::lambda;
-
boost::math::tools::test_result<value_type> result;
std::cout << "Testing " << test_name << " with type " << type_name
@@ -222,8 +226,8 @@
//
result = boost::math::tools::test(
data,
- bind(funcp, ret<value_type>(_1[0]), ret<value_type>(_1[1]), ret<value_type>(_1[2])),
- ret<value_type>(_1[3]));
+ bind_func(funcp, 0, 1, 2),
+ extract_result(3));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::ibeta_inv", test_name);
//
// test ibetac_inv(T, T, T) against data:
@@ -231,8 +235,8 @@
funcp = boost::math::ibetac_inv;
result = boost::math::tools::test(
data,
- bind(funcp, ret<value_type>(_1[0]), ret<value_type>(_1[1]), ret<value_type>(_1[2])),
- ret<value_type>(_1[4]));
+ bind_func(funcp, 0, 1, 2),
+ extract_result(4));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::ibetac_inv", test_name);
}
@@ -298,24 +302,41 @@
int test_main(int, char* [])
{
+ BOOST_MATH_CONTROL_FP;
expected_results();
#ifdef TEST_GSL
gsl_set_error_handler_off();
#endif
+#ifdef TEST_FLOAT
test_spots(0.0F);
+#endif
+#ifdef TEST_DOUBLE
test_spots(0.0);
+#endif
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
+#ifdef TEST_LDOUBLE
test_spots(0.0L);
+#endif
+#ifdef TEST_REAL_CONCEPT
test_spots(boost::math::concepts::real_concept(0.1));
#endif
+#endif
+#ifdef TEST_FLOAT
test_beta(0.1F, "float");
+#endif
+#ifdef TEST_DOUBLE
test_beta(0.1, "double");
+#endif
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
+#ifdef TEST_LDOUBLE
test_beta(0.1L, "long double");
+#endif
#ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS
+#ifdef TEST_REAL_CONCEPT
test_beta(boost::math::concepts::real_concept(0.1), "real_concept");
#endif
+#endif
#else
std::cout << "<note>The long double tests have been disabled on this platform "
"either because the long double overloads of the usual math functions are "
Modified: sandbox/math_toolkit/libs/math/test/test_ibeta_inv_ab.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_ibeta_inv_ab.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_ibeta_inv_ab.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -12,8 +12,7 @@
#include <boost/math/constants/constants.hpp>
#include <boost/type_traits/is_floating_point.hpp>
#include <boost/array.hpp>
-#include <boost/lambda/lambda.hpp>
-#include <boost/lambda/bind.hpp>
+#include "functor.hpp"
#ifdef TEST_GSL
#include <gsl/gsl_errno.h>
@@ -22,6 +21,12 @@
#include "handle_test_result.hpp"
+#if !defined(TEST_FLOAT) && !defined(TEST_DOUBLE) && !defined(TEST_LDOUBLE) && !defined(TEST_REAL_CONCEPT)
+# define TEST_FLOAT
+# define TEST_DOUBLE
+# define TEST_LDOUBLE
+# define TEST_REAL_CONCEPT
+#endif
//
// DESCRIPTION:
// ~~~~~~~~~~~~
@@ -174,8 +179,6 @@
typedef value_type (*pg)(value_type, value_type, value_type);
pg funcp = boost::math::ibeta_inva;
- using namespace boost::lambda;
-
boost::math::tools::test_result<value_type> result;
std::cout << "Testing " << test_name << " with type " << type_name
@@ -186,8 +189,8 @@
//
result = boost::math::tools::test(
data,
- bind(funcp, ret<value_type>(_1[0]), ret<value_type>(_1[1]), ret<value_type>(_1[2])),
- ret<value_type>(_1[3]));
+ bind_func(funcp, 0, 1, 2),
+ extract_result(3));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::ibeta_inva", test_name);
//
// test ibetac_inva(T, T, T) against data:
@@ -195,8 +198,8 @@
funcp = boost::math::ibetac_inva;
result = boost::math::tools::test(
data,
- bind(funcp, ret<value_type>(_1[0]), ret<value_type>(_1[1]), ret<value_type>(_1[2])),
- ret<value_type>(_1[4]));
+ bind_func(funcp, 0, 1, 2),
+ extract_result(4));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::ibetac_inva", test_name);
//
// test ibeta_invb(T, T, T) against data:
@@ -204,8 +207,8 @@
funcp = boost::math::ibeta_invb;
result = boost::math::tools::test(
data,
- bind(funcp, ret<value_type>(_1[0]), ret<value_type>(_1[1]), ret<value_type>(_1[2])),
- ret<value_type>(_1[5]));
+ bind_func(funcp, 0, 1, 2),
+ extract_result(5));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::ibeta_invb", test_name);
//
// test ibetac_invb(T, T, T) against data:
@@ -213,8 +216,8 @@
funcp = boost::math::ibetac_invb;
result = boost::math::tools::test(
data,
- bind(funcp, ret<value_type>(_1[0]), ret<value_type>(_1[1]), ret<value_type>(_1[2])),
- ret<value_type>(_1[6]));
+ bind_func(funcp, 0, 1, 2),
+ extract_result(6));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::ibetac_invb", test_name);
}
@@ -260,19 +263,25 @@
int test_main(int, char* [])
{
expected_results();
- boost::math::ibetac_invb(15.3268413543701171875f, 0.3082362115383148193359375f, 0.913384497165679931640625f);
- boost::math::ibetac(15.3268413543701171875f, 21.432123240471673235001418f, 0.3082362115383148193359375f);
#ifdef TEST_GSL
gsl_set_error_handler_off();
#endif
+#ifdef TEST_FLOAT
test_beta(0.1F, "float");
+#endif
+#ifdef TEST_DOUBLE
test_beta(0.1, "double");
+#endif
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
+#ifdef TEST_LDOUBLE
test_beta(0.1L, "long double");
+#endif
#ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS
+#ifdef TEST_REAL_CONCEPT
test_beta(boost::math::concepts::real_concept(0.1), "real_concept");
#endif
+#endif
#else
std::cout << "<note>The long double tests have been disabled on this platform "
"either because the long double overloads of the usual math functions are "
Modified: sandbox/math_toolkit/libs/math/test/test_igamma.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_igamma.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_igamma.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -14,10 +14,7 @@
#include <boost/math/constants/constants.hpp>
#include <boost/type_traits/is_floating_point.hpp>
#include <boost/array.hpp>
-#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
-#include <boost/lambda/lambda.hpp>
-#include <boost/lambda/bind.hpp>
-#endif
+#include "functor.hpp"
#include "test_gamma_hooks.hpp"
#include "handle_test_result.hpp"
@@ -167,6 +164,37 @@
"real_concept", // test type(s)
"[^|]*medium[^|]*", // test data group
"[^|]*", 500, 100); // test function
+ //
+ // Sun OS:
+ //
+ add_expected_result(
+ "[^|]*", // compiler
+ "[^|]*", // stdlib
+ "Sun.*", // platform
+ largest_type, // test type(s)
+ "[^|]*medium[^|]*", // test data group
+ "[^|]*", 500, 100); // test function
+ add_expected_result(
+ "[^|]*", // compiler
+ "[^|]*", // stdlib
+ "Sun.*", // platform
+ largest_type, // test type(s)
+ "[^|]*integer[^|]*", // test data group
+ "[^|]*", 100, 30); // test function
+ add_expected_result(
+ "[^|]*", // compiler
+ "[^|]*", // stdlib
+ "Sun.*", // platform
+ "real_concept", // test type(s)
+ "[^|]*medium[^|]*", // test data group
+ "[^|]*", 500, 100); // test function
+ add_expected_result(
+ "[^|]*", // compiler
+ "[^|]*", // stdlib
+ "Sun.*", // platform
+ "real_concept", // test type(s)
+ "[^|]*integer[^|]*", // test data group
+ "[^|]*", 100, 30); // test function
//
// Mac OS X:
@@ -279,15 +307,12 @@
template <class T>
void do_test_gamma_2(const T& data, const char* type_name, const char* test_name)
{
-#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
typedef typename T::value_type row_type;
typedef typename row_type::value_type value_type;
typedef value_type (*pg)(value_type, value_type);
pg funcp = boost::math::tgamma;
- using namespace boost::lambda;
-
boost::math::tools::test_result<value_type> result;
std::cout << "Testing " << test_name << " with type " << type_name
@@ -300,8 +325,8 @@
{
result = boost::math::tools::test(
data,
- bind(funcp, ret<value_type>(_1[0]), ret<value_type>(_1[1])),
- ret<value_type>(_1[2]));
+ bind_func(funcp, 0, 1),
+ extract_result(2));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::tgamma", test_name);
//
// test tgamma_lower(T, T) against data:
@@ -309,8 +334,8 @@
funcp = boost::math::tgamma_lower;
result = boost::math::tools::test(
data,
- bind(funcp, ret<value_type>(_1[0]), ret<value_type>(_1[1])),
- ret<value_type>(_1[4]));
+ bind_func(funcp, 0, 1),
+ extract_result(4));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::tgamma_lower", test_name);
}
//
@@ -319,8 +344,8 @@
funcp = boost::math::gamma_q;
result = boost::math::tools::test(
data,
- bind(funcp, ret<value_type>(_1[0]), ret<value_type>(_1[1])),
- ret<value_type>(_1[3]));
+ bind_func(funcp, 0, 1),
+ extract_result(3));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::gamma_q", test_name);
#if defined(TEST_CEPHES) || defined(TEST_GSL)
//
@@ -331,8 +356,8 @@
funcp = other::gamma_q;
result = boost::math::tools::test(
data,
- bind(funcp, ret<value_type>(_1[0]), ret<value_type>(_1[1])),
- ret<value_type>(_1[3]));
+ bind_func(funcp, 0, 1),
+ extract_result(3));
print_test_result(result, data[result.worst()], result.worst(), type_name, "other::gamma_q");
}
#endif
@@ -342,8 +367,8 @@
funcp = boost::math::gamma_p;
result = boost::math::tools::test(
data,
- bind(funcp, ret<value_type>(_1[0]), ret<value_type>(_1[1])),
- ret<value_type>(_1[5]));
+ bind_func(funcp, 0, 1),
+ extract_result(5));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::gamma_p", test_name);
#if defined(TEST_CEPHES) || defined(TEST_GSL)
//
@@ -354,13 +379,12 @@
funcp = other::gamma_p;
result = boost::math::tools::test(
data,
- bind(funcp, ret<value_type>(_1[0]), ret<value_type>(_1[1])),
- ret<value_type>(_1[5]));
+ bind_func(funcp, 0, 1),
+ extract_result(5));
print_test_result(result, data[result.worst()], result.worst(), type_name, "other::gamma_p");
}
#endif
std::cout << std::endl;
-#endif
}
template <class T>
@@ -441,6 +465,7 @@
int test_main(int, char* [])
{
expected_results();
+ BOOST_MATH_CONTROL_FP;
#ifndef BOOST_MATH_BUGGY_LARGE_FLOAT_CONSTANTS
test_spots(0.0F);
Modified: sandbox/math_toolkit/libs/math/test/test_igamma_inv.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_igamma_inv.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_igamma_inv.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -12,14 +12,18 @@
#include <boost/math/constants/constants.hpp>
#include <boost/type_traits/is_floating_point.hpp>
#include <boost/array.hpp>
-#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
-#include <boost/lambda/lambda.hpp>
-#include <boost/lambda/bind.hpp>
-#endif
+#include "functor.hpp"
#include "test_gamma_hooks.hpp"
#include "handle_test_result.hpp"
+#if !defined(TEST_FLOAT) && !defined(TEST_DOUBLE) && !defined(TEST_LDOUBLE) && !defined(TEST_REAL_CONCEPT)
+# define TEST_FLOAT
+# define TEST_DOUBLE
+# define TEST_LDOUBLE
+# define TEST_REAL_CONCEPT
+#endif
+
//
// DESCRIPTION:
// ~~~~~~~~~~~~
@@ -171,7 +175,7 @@
"[^|]*", // platform
"real_concept", // test type(s)
"[^|]*small[^|]*", // test data group
- "[^|]*", 3500, 500); // test function
+ "[^|]*", 3700, 500); // test function
//
// Finish off by printing out the compiler/stdlib/platform names,
@@ -256,15 +260,12 @@
template <class T>
void do_test_gamma_inv(const T& data, const char* type_name, const char* test_name)
{
-#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
typedef typename T::value_type row_type;
typedef typename row_type::value_type value_type;
typedef value_type (*pg)(value_type, value_type);
pg funcp = boost::math::gamma_p_inv;
- using namespace boost::lambda;
-
boost::math::tools::test_result<value_type> result;
std::cout << "Testing " << test_name << " with type " << type_name
@@ -275,8 +276,8 @@
//
result = boost::math::tools::test(
data,
- bind(funcp, ret<value_type>(_1[0]), ret<value_type>(_1[1])),
- ret<value_type>(_1[2]));
+ bind_func(funcp, 0, 1),
+ extract_result(2));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::gamma_p_inv", test_name);
//
// test gamma_q_inv(T, T) against data:
@@ -284,10 +285,9 @@
funcp = boost::math::gamma_q_inv;
result = boost::math::tools::test(
data,
- bind(funcp, ret<value_type>(_1[0]), ret<value_type>(_1[1])),
- ret<value_type>(_1[3]));
+ bind_func(funcp, 0, 1),
+ extract_result(3));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::gamma_q_inv", test_name);
-#endif
}
template <class T>
@@ -364,29 +364,46 @@
int test_main(int, char* [])
{
expected_results();
+ BOOST_MATH_CONTROL_FP;
#ifndef BOOST_MATH_BUGGY_LARGE_FLOAT_CONSTANTS
+#ifdef TEST_FLOAT
test_spots(0.0F, "float");
#endif
+#endif
+#ifdef TEST_DOUBLE
test_spots(0.0, "double");
+#endif
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
+#ifdef TEST_LDOUBLE
test_spots(0.0L, "long double");
+#endif
#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
+#ifdef TEST_REAL_CONCEPT
test_spots(boost::math::concepts::real_concept(0.1), "real_concept");
#endif
#endif
+#endif
#ifndef BOOST_MATH_BUGGY_LARGE_FLOAT_CONSTANTS
+#ifdef TEST_FLOAT
test_gamma(0.1F, "float");
#endif
+#endif
+#ifdef TEST_DOUBLE
test_gamma(0.1, "double");
+#endif
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
+#ifdef TEST_LDOUBLE
test_gamma(0.1L, "long double");
+#endif
#ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS
#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
+#ifdef TEST_REAL_CONCEPT
test_gamma(boost::math::concepts::real_concept(0.1), "real_concept");
#endif
#endif
+#endif
#else
std::cout << "<note>The long double tests have been disabled on this platform "
"either because the long double overloads of the usual math functions are "
Modified: sandbox/math_toolkit/libs/math/test/test_igamma_inva.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_igamma_inva.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_igamma_inva.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -12,13 +12,17 @@
#include <boost/math/constants/constants.hpp>
#include <boost/type_traits/is_floating_point.hpp>
#include <boost/array.hpp>
-#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
-#include <boost/lambda/lambda.hpp>
-#include <boost/lambda/bind.hpp>
-#endif
+#include "functor.hpp"
#include "handle_test_result.hpp"
+#if !defined(TEST_FLOAT) && !defined(TEST_DOUBLE) && !defined(TEST_LDOUBLE) && !defined(TEST_REAL_CONCEPT)
+# define TEST_FLOAT
+# define TEST_DOUBLE
+# define TEST_LDOUBLE
+# define TEST_REAL_CONCEPT
+#endif
+
//
// DESCRIPTION:
// ~~~~~~~~~~~~
@@ -182,15 +186,12 @@
template <class T>
void do_test_gamma_inva(const T& data, const char* type_name, const char* test_name)
{
-#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
typedef typename T::value_type row_type;
typedef typename row_type::value_type value_type;
typedef value_type (*pg)(value_type, value_type);
pg funcp = boost::math::gamma_p_inva;
- using namespace boost::lambda;
-
boost::math::tools::test_result<value_type> result;
std::cout << "Testing " << test_name << " with type " << type_name
@@ -201,8 +202,8 @@
//
result = boost::math::tools::test(
data,
- bind(funcp, ret<value_type>(_1[0]), ret<value_type>(_1[1])),
- ret<value_type>(_1[2]));
+ bind_func(funcp, 0, 1),
+ extract_result(2));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::gamma_p_inva", test_name);
//
// test gamma_q_inva(T, T) against data:
@@ -210,10 +211,9 @@
funcp = boost::math::gamma_q_inva;
result = boost::math::tools::test(
data,
- bind(funcp, ret<value_type>(_1[0]), ret<value_type>(_1[1])),
- ret<value_type>(_1[3]));
+ bind_func(funcp, 0, 1),
+ extract_result(3));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::gamma_q_inva", test_name);
-#endif
}
template <class T>
@@ -248,18 +248,27 @@
int test_main(int, char* [])
{
expected_results();
+ BOOST_MATH_CONTROL_FP;
#ifndef BOOST_MATH_BUGGY_LARGE_FLOAT_CONSTANTS
+#ifdef TEST_FLOAT
test_gamma(0.1F, "float");
#endif
+#endif
+#ifdef TEST_DOUBLE
test_gamma(0.1, "double");
+#endif
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
+#ifdef TEST_LDOUBLE
test_gamma(0.1L, "long double");
+#endif
#ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS
#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
+#ifdef TEST_REAL_CONCEPT
test_gamma(boost::math::concepts::real_concept(0.1), "real_concept");
#endif
#endif
+#endif
#else
std::cout << "<note>The long double tests have been disabled on this platform "
"either because the long double overloads of the usual math functions are "
Modified: sandbox/math_toolkit/libs/math/test/test_laguerre.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_laguerre.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_laguerre.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -9,8 +9,7 @@
#include <boost/math/special_functions/laguerre.hpp>
#include <boost/math/constants/constants.hpp>
#include <boost/array.hpp>
-#include <boost/lambda/lambda.hpp>
-#include <boost/lambda/bind.hpp>
+#include "functor.hpp"
#include "handle_test_result.hpp"
#include "test_legendre_hooks.hpp"
@@ -79,31 +78,31 @@
add_expected_result(
".*", // compiler
".*", // stdlib
- "linux.*|Mac OS", // platform
+ "linux.*|Mac OS|Sun.*", // platform
largest_type, // test type(s)
- ".*", // test data group
- ".*", 40000, 1000); // test function
+ ".*", // test data group
+ ".*", 40000, 1000); // test function
add_expected_result(
".*", // compiler
".*", // stdlib
- "linux.*|Mac OS", // platform
- "real_concept", // test type(s)
- ".*", // test data group
- ".*", 40000, 1000); // test function
+ "linux.*|Mac OS|Sun.*", // platform
+ "real_concept", // test type(s)
+ ".*", // test data group
+ ".*", 40000, 1000); // test function
add_expected_result(
- ".*mingw.*", // compiler
+ ".*mingw.*", // compiler
".*", // stdlib
".*", // platform
largest_type, // test type(s)
- ".*", // test data group
- ".*", 40000, 1000); // test function
+ ".*", // test data group
+ ".*", 40000, 1000); // test function
add_expected_result(
- ".*mingw.*", // compiler
+ ".*mingw.*", // compiler
".*", // stdlib
".*", // platform
- "real_concept", // test type(s)
- ".*", // test data group
- ".*", 40000, 1000); // test function
+ "real_concept", // test type(s)
+ ".*", // test data group
+ ".*", 40000, 1000); // test function
//
// Catch all cases come last:
@@ -140,9 +139,6 @@
typedef value_type (*pg)(unsigned, value_type);
pg funcp = boost::math::laguerre;
- typedef unsigned (*cast_t)(value_type);
- cast_t rc = &boost::math::tools::real_cast<unsigned, value_type>;
-
boost::math::tools::test_result<value_type> result;
std::cout << "Testing " << test_name << " with type " << type_name
@@ -153,13 +149,8 @@
//
result = boost::math::tools::test(
data,
- boost::lambda::bind(funcp,
- boost::lambda::ret<unsigned>(
- boost::lambda::bind(
- rc,
- boost::lambda::ret<value_type>(boost::lambda::_1[0]))),
- boost::lambda::ret<value_type>(boost::lambda::_1[1])),
- boost::lambda::ret<value_type>(boost::lambda::_1[2]));
+ bind_func_int1(funcp, 0, 1),
+ extract_result(2));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::laguerre(n, x)", test_name);
std::cout << std::endl;
@@ -174,9 +165,6 @@
typedef value_type (*pg)(unsigned, unsigned, value_type);
pg funcp = boost::math::laguerre;
- typedef unsigned (*cast_t)(value_type);
- cast_t rc = &boost::math::tools::real_cast<unsigned, value_type>;
-
boost::math::tools::test_result<value_type> result;
std::cout << "Testing " << test_name << " with type " << type_name
@@ -187,17 +175,8 @@
//
result = boost::math::tools::test(
data,
- boost::lambda::bind(funcp,
- boost::lambda::ret<unsigned>(
- boost::lambda::bind(
- rc,
- boost::lambda::ret<value_type>(boost::lambda::_1[0]))),
- boost::lambda::ret<unsigned>(
- boost::lambda::bind(
- rc,
- boost::lambda::ret<value_type>(boost::lambda::_1[1]))),
- boost::lambda::ret<value_type>(boost::lambda::_1[2])),
- boost::lambda::ret<value_type>(boost::lambda::_1[3]));
+ bind_func_int2(funcp, 0, 1, 2),
+ extract_result(3));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::laguerre(n, m, x)", test_name);
std::cout << std::endl;
}
@@ -256,6 +235,8 @@
int test_main(int, char* [])
{
+ BOOST_MATH_CONTROL_FP;
+
#ifndef BOOST_MATH_BUGGY_LARGE_FLOAT_CONSTANTS
test_spots(0.0F, "float");
#endif
Modified: sandbox/math_toolkit/libs/math/test/test_legendre.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_legendre.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_legendre.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -9,8 +9,7 @@
#include <boost/math/special_functions/legendre.hpp>
#include <boost/math/constants/constants.hpp>
#include <boost/array.hpp>
-#include <boost/lambda/lambda.hpp>
-#include <boost/lambda/bind.hpp>
+#include "functor.hpp"
#include "handle_test_result.hpp"
#include "test_legendre_hooks.hpp"
@@ -196,9 +195,6 @@
typedef value_type (*pg)(int, value_type);
pg funcp = boost::math::legendre_p;
- typedef int (*cast_t)(value_type);
- cast_t rc = &boost::math::tools::real_cast<int, value_type>;
-
boost::math::tools::test_result<value_type> result;
std::cout << "Testing " << test_name << " with type " << type_name
@@ -209,26 +205,16 @@
//
result = boost::math::tools::test(
data,
- boost::lambda::bind(funcp,
- boost::lambda::ret<int>(
- boost::lambda::bind(
- rc,
- boost::lambda::ret<value_type>(boost::lambda::_1[0]))),
- boost::lambda::ret<value_type>(boost::lambda::_1[1])),
- boost::lambda::ret<value_type>(boost::lambda::_1[2]));
+ bind_func_int1(funcp, 0, 1),
+ extract_result(2));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::legendre_p", test_name);
#ifdef TEST_OTHER
if(::boost::is_floating_point<value_type>::value){
funcp = other::legendre_p;
result = boost::math::tools::test(
data,
- boost::lambda::bind(funcp,
- boost::lambda::ret<int>(
- boost::lambda::bind(
- rc,
- boost::lambda::ret<value_type>(boost::lambda::_1[0]))),
- boost::lambda::ret<value_type>(boost::lambda::_1[1])),
- boost::lambda::ret<value_type>(boost::lambda::_1[2]));
+ bind_func_int1(funcp, 0, 1),
+ extract_result(2));
print_test_result(result, data[result.worst()], result.worst(), type_name, "other::legendre_p");
}
#endif
@@ -241,26 +227,16 @@
//
result = boost::math::tools::test(
data,
- boost::lambda::bind(funcp2,
- boost::lambda::ret<int>(
- boost::lambda::bind(
- rc,
- boost::lambda::ret<value_type>(boost::lambda::_1[0]))),
- boost::lambda::ret<value_type>(boost::lambda::_1[1])),
- boost::lambda::ret<value_type>(boost::lambda::_1[3]));
+ bind_func_int1(funcp2, 0, 1),
+ extract_result(3));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::legendre_q", test_name);
#ifdef TEST_OTHER
if(::boost::is_floating_point<value_type>::value){
funcp = other::legendre_q;
result = boost::math::tools::test(
data,
- boost::lambda::bind(funcp2,
- boost::lambda::ret<int>(
- boost::lambda::bind(
- rc,
- boost::lambda::ret<value_type>(boost::lambda::_1[0]))),
- boost::lambda::ret<value_type>(boost::lambda::_1[1])),
- boost::lambda::ret<value_type>(boost::lambda::_1[3]));
+ bind_func_int1(funcp2, 0, 1),
+ extract_result(3));
print_test_result(result, data[result.worst()], result.worst(), type_name, "other::legendre_q");
}
#endif
@@ -278,9 +254,6 @@
typedef value_type (*pg)(int, int, value_type);
pg funcp = boost::math::legendre_p;
- typedef int (*cast_t)(value_type);
- cast_t rc = &boost::math::tools::real_cast<int, value_type>;
-
boost::math::tools::test_result<value_type> result;
std::cout << "Testing " << test_name << " with type " << type_name
@@ -291,17 +264,8 @@
//
result = boost::math::tools::test(
data,
- boost::lambda::bind(funcp,
- boost::lambda::ret<int>(
- boost::lambda::bind(
- rc,
- boost::lambda::ret<value_type>(boost::lambda::_1[0]))),
- boost::lambda::ret<int>(
- boost::lambda::bind(
- rc,
- boost::lambda::ret<value_type>(boost::lambda::_1[1]))),
- boost::lambda::ret<value_type>(boost::lambda::_1[2])),
- boost::lambda::ret<value_type>(boost::lambda::_1[3]));
+ bind_func_int2(funcp, 0, 1, 2),
+ extract_result(3));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::legendre_p", test_name);
std::cout << std::endl;
}
@@ -379,6 +343,7 @@
int test_main(int, char* [])
{
+ BOOST_MATH_CONTROL_FP;
test_spots(0.0F, "float");
test_spots(0.0, "double");
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
Modified: sandbox/math_toolkit/libs/math/test/test_lognormal.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_lognormal.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_lognormal.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -13,13 +13,13 @@
#include <boost/test/floating_point_comparison.hpp>
#include <boost/math/distributions/lognormal.hpp>
- using boost::math::lognormal_distribution;
+ using boost::math::lognormal_distribution;
#include <boost/math/tools/test.hpp>
#include <iostream>
- using std::cout;
- using std::endl;
- using std::setprecision;
+ using std::cout;
+ using std::endl;
+ using std::setprecision;
#include <limits>
using std::numeric_limits;
#include <cassert>
@@ -32,27 +32,27 @@
lognormal_distribution<RealType>(loc, scale), // distribution.
x), // random variable.
p, // probability.
- tol); // %tolerance.
+ tol); // %tolerance.
BOOST_CHECK_CLOSE(
::boost::math::cdf(
complement(
lognormal_distribution<RealType>(loc, scale), // distribution.
x)), // random variable.
q, // probability complement.
- tol); // %tolerance.
+ tol); // %tolerance.
BOOST_CHECK_CLOSE(
::boost::math::quantile(
lognormal_distribution<RealType>(loc, scale), // distribution.
p), // probability.
x, // random variable.
- tol); // %tolerance.
+ tol); // %tolerance.
BOOST_CHECK_CLOSE(
::boost::math::quantile(
complement(
lognormal_distribution<RealType>(loc, scale), // distribution.
q)), // probability complement.
x, // random variable.
- tol); // %tolerance.
+ tol); // %tolerance.
}
template <class RealType>
@@ -60,12 +60,12 @@
{
// Basic sanity checks.
- RealType tolerance = 5e-3 * 100;
- // Some tests only pass at 1e-4 because values generated by
+ RealType tolerance = 5e-3 * 100;
+ // Some tests only pass at 1e-4 because values generated by
// http://faculty.vassar.edu/lowry/VassarStats.html
// give only 5 or 6 *fixed* places, so small values have fewer digits.
- cout << "Tolerance for type " << typeid(RealType).name() << " is " << tolerance << " %" << endl;
+ cout << "Tolerance for type " << typeid(RealType).name() << " is " << tolerance << " %" << endl;
using std::exp;
@@ -144,7 +144,7 @@
// Tests for PDF
//
tolerance = boost::math::tools::epsilon<RealType>() * 5 * 100; // 5 eps as a percentage
- cout << "Tolerance for type " << typeid(RealType).name() << " is " << tolerance << " %" << endl;
+ cout << "Tolerance for type " << typeid(RealType).name() << " is " << tolerance << " %" << endl;
BOOST_CHECK_CLOSE(
pdf(lognormal_distribution<RealType>(), static_cast<RealType>(1)),
static_cast<RealType>(0.3989422804014326779399460599343818684759L), // 1/sqrt(2*pi)
@@ -176,7 +176,7 @@
tolerance = (std::max)(
boost::math::tools::epsilon<RealType>(),
static_cast<RealType>(boost::math::tools::epsilon<double>())) * 5 * 100; // 5 eps as a percentage
- cout << "Tolerance for type " << typeid(RealType).name() << " is " << tolerance << " %" << endl;
+ cout << "Tolerance for type " << typeid(RealType).name() << " is " << tolerance << " %" << endl;
lognormal_distribution<RealType> dist(8, 3);
RealType x = static_cast<RealType>(0.125);
using namespace std; // ADL of std names.
@@ -258,9 +258,9 @@
int test_main(int, char* [])
{
- // Check that can generate lognormal distribution using the two convenience methods:
- boost::math::lognormal myf1(1., 2); // Using typedef
- lognormal_distribution<> myf2(1., 2); // Using default RealType double.
+ // Check that can generate lognormal distribution using the two convenience methods:
+ boost::math::lognormal myf1(1., 2); // Using typedef
+ lognormal_distribution<> myf2(1., 2); // Using default RealType double.
// Test range and support using double only,
// because it supports numeric_limits max for a pseudo-infinity.
@@ -269,8 +269,8 @@
BOOST_CHECK_EQUAL(support(myf2).first, 0); // support 0 to + infinity.
BOOST_CHECK_EQUAL(support(myf2).second, (std::numeric_limits<double>::max)());
- // Basic sanity-check spot values.
- // (Parameter value, arbitrarily zero, only communicates the floating point type).
+ // Basic sanity-check spot values.
+ // (Parameter value, arbitrarily zero, only communicates the floating point type).
test_spots(0.0F); // Test float. OK at decdigits = 0 tolerance = 0.0001 %
test_spots(0.0); // Test double. OK at decdigits 7, tolerance = 1e07 %
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
Modified: sandbox/math_toolkit/libs/math/test/test_negative_binomial.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_negative_binomial.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_negative_binomial.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -19,6 +19,13 @@
# pragma warning(disable: 4127) // conditional expression is constant.
#endif
+#if !defined(TEST_FLOAT) && !defined(TEST_DOUBLE) && !defined(TEST_LDOUBLE) && !defined(TEST_REAL_CONCEPT)
+# define TEST_FLOAT
+# define TEST_DOUBLE
+# define TEST_LDOUBLE
+# define TEST_REAL_CONCEPT
+#endif
+
#include <boost/math/distributions/negative_binomial.hpp> // for negative_binomial_distribution
using boost::math::negative_binomial_distribution;
@@ -786,8 +793,8 @@
{
// Check that can generate negative_binomial distribution using the two convenience methods:
using namespace boost::math;
- negative_binomial mynb1(2., 0.5); // Using typedef - default type is double.
- negative_binomial_distribution<> myf2(2., 0.5); // Using default RealType double.
+ negative_binomial mynb1(2., 0.5); // Using typedef - default type is double.
+ negative_binomial_distribution<> myf2(2., 0.5); // Using default RealType double.
// Basic sanity-check spot values.
@@ -801,12 +808,20 @@
BOOST_CHECK_EQUAL(my8dist.success_fraction(), static_cast<double>(1./4.));
// (Parameter value, arbitrarily zero, only communicates the floating point type).
+#ifdef TEST_FLOAT
test_spots(0.0F); // Test float.
+#endif
+#ifdef TEST_DOUBLE
test_spots(0.0); // Test double.
+#endif
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
+#ifdef TEST_LDOUBLE
test_spots(0.0L); // Test long double.
+#endif
#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
+#ifdef TEST_REAL_CONCEPT
test_spots(boost::math::concepts::real_concept(0.)); // Test real concept.
+#endif
#endif
#else
std::cout << "<note>The long double tests have been disabled on this platform "
Modified: sandbox/math_toolkit/libs/math/test/test_normal.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_normal.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_normal.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -26,13 +26,13 @@
#include <boost/test/floating_point_comparison.hpp>
#include <boost/math/distributions/normal.hpp>
- using boost::math::normal_distribution;
+ using boost::math::normal_distribution;
#include <boost/math/tools/test.hpp>
#include <iostream>
- using std::cout;
- using std::endl;
- using std::setprecision;
+ using std::cout;
+ using std::endl;
+ using std::setprecision;
#include <limits>
using std::numeric_limits;
@@ -54,41 +54,41 @@
normal_distribution<RealType>(mean, sd), // distribution.
x), // random variable.
p, // probability.
- tol); // %tolerance.
+ tol); // %tolerance.
BOOST_CHECK_CLOSE(
::boost::math::cdf(
complement(
normal_distribution<RealType>(mean, sd), // distribution.
x)), // random variable.
q, // probability complement.
- tol); // %tolerance.
+ tol); // %tolerance.
BOOST_CHECK_CLOSE(
::boost::math::quantile(
normal_distribution<RealType>(mean, sd), // distribution.
p), // probability.
x, // random variable.
- tol); // %tolerance.
+ tol); // %tolerance.
BOOST_CHECK_CLOSE(
::boost::math::quantile(
complement(
normal_distribution<RealType>(mean, sd), // distribution.
q)), // probability complement.
x, // random variable.
- tol); // %tolerance.
+ tol); // %tolerance.
}
template <class RealType>
void test_spots(RealType)
{
// Basic sanity checks
- RealType tolerance = static_cast<RealType>(std::pow(10., -(4-2))); // 1e-4 (as %)
- // Some tests only pass at 1e-4 because values generated by
+ RealType tolerance = static_cast<RealType>(std::pow(10., -(4-2))); // 1e-4 (as %)
+ // Some tests only pass at 1e-4 because values generated by
// http://faculty.vassar.edu/lowry/VassarStats.html
// give only 5 or 6 *fixed* places, so small values have fewer digits.
// Check some bad parameters to the distribution,
- BOOST_CHECK_THROW(boost::math::normal_distribution<RealType> nbad1(0, 0), std::domain_error); // zero sd
- BOOST_CHECK_THROW(boost::math::normal_distribution<RealType> nbad1(0, -1), std::domain_error); // negative sd
+ BOOST_CHECK_THROW(boost::math::normal_distribution<RealType> nbad1(0, 0), std::domain_error); // zero sd
+ BOOST_CHECK_THROW(boost::math::normal_distribution<RealType> nbad1(0, -1), std::domain_error); // negative sd
// Tests on extreme values of random variate x, if has numeric_limit infinity etc.
normal_distribution<RealType> N01;
@@ -101,8 +101,8 @@
BOOST_CHECK_EQUAL(cdf(complement(N01, +std::numeric_limits<RealType>::infinity())), 0); // x = + infinity, c cdf = 0
BOOST_CHECK_EQUAL(cdf(complement(N01, -std::numeric_limits<RealType>::infinity())), 1); // x = - infinity, c cdf = 1
BOOST_CHECK_THROW(boost::math::normal_distribution<RealType> nbad1(std::numeric_limits<RealType>::infinity(), static_cast<RealType>(1)), std::domain_error); // +infinite mean
- BOOST_CHECK_THROW(boost::math::normal_distribution<RealType> nbad1(-std::numeric_limits<RealType>::infinity(), static_cast<RealType>(1)), std::domain_error); // -infinite mean
- BOOST_CHECK_THROW(boost::math::normal_distribution<RealType> nbad1(static_cast<RealType>(0), std::numeric_limits<RealType>::infinity()), std::domain_error); // infinite sd
+ BOOST_CHECK_THROW(boost::math::normal_distribution<RealType> nbad1(-std::numeric_limits<RealType>::infinity(), static_cast<RealType>(1)), std::domain_error); // -infinite mean
+ BOOST_CHECK_THROW(boost::math::normal_distribution<RealType> nbad1(static_cast<RealType>(0), std::numeric_limits<RealType>::infinity()), std::domain_error); // infinite sd
}
if (std::numeric_limits<RealType>::has_quiet_NaN)
@@ -115,7 +115,7 @@
BOOST_CHECK_THROW(quantile(complement(N01, +std::numeric_limits<RealType>::quiet_NaN())), std::domain_error); // p = + infinity
}
- cout << "Tolerance for type " << typeid(RealType).name() << " is " << tolerance << " %" << endl;
+ cout << "Tolerance for type " << typeid(RealType).name() << " is " << tolerance << " %" << endl;
check_normal(
static_cast<RealType>(5),
@@ -284,8 +284,8 @@
int test_main(int, char* [])
{
// Check that can generate normal distribution using the two convenience methods:
- boost::math::normal myf1(1., 2); // Using typedef
- normal_distribution<> myf2(1., 2); // Using default RealType double.
+ boost::math::normal myf1(1., 2); // Using typedef
+ normal_distribution<> myf2(1., 2); // Using default RealType double.
boost::math::normal myn01; // Use default values.
// Note NOT myn01() as the compiler will interpret as a function!
@@ -293,8 +293,8 @@
BOOST_CHECK_EQUAL(myn01.mean(), myn01.location());
BOOST_CHECK_EQUAL(myn01.standard_deviation(), myn01.scale());
- // Basic sanity-check spot values.
- // (Parameter value, arbitrarily zero, only communicates the floating point type).
+ // Basic sanity-check spot values.
+ // (Parameter value, arbitrarily zero, only communicates the floating point type).
test_spots(0.0F); // Test float. OK at decdigits = 0 tolerance = 0.0001 %
test_spots(0.0); // Test double. OK at decdigits 7, tolerance = 1e07 %
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
Modified: sandbox/math_toolkit/libs/math/test/test_pareto.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_pareto.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_pareto.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -24,13 +24,13 @@
#include <boost/test/floating_point_comparison.hpp>
#include <boost/math/distributions/pareto.hpp>
- using boost::math::pareto_distribution;
+ using boost::math::pareto_distribution;
#include <boost/math/tools/test.hpp>
#include <iostream>
- using std::cout;
- using std::endl;
- using std::setprecision;
+ using std::cout;
+ using std::endl;
+ using std::setprecision;
#include <limits>
using std::numeric_limits;
@@ -233,11 +233,11 @@
int test_main(int, char* [])
{
// Check that can generate pareto distribution using the two convenience methods:
- boost::math::pareto myp1(1., 1); // Using typedef
- pareto_distribution<> myp2(1., 1); // Using default RealType double.
+ boost::math::pareto myp1(1., 1); // Using typedef
+ pareto_distribution<> myp2(1., 1); // Using default RealType double.
boost::math::pareto pareto11; // Use default values (location = 1, shape = 1).
// Note NOT pareto11() as the compiler will interpret as a function!
- // Basic sanity-check spot values.
+ // Basic sanity-check spot values.
BOOST_CHECK_EQUAL(pareto11.location(), 1); // Check defaults again.
BOOST_CHECK_EQUAL(pareto11.shape(), 1);
@@ -254,10 +254,10 @@
BOOST_CHECK_EQUAL(support(myp2).second, (numeric_limits<double>::max)());
// Check some bad parameters to the distribution.
- BOOST_CHECK_THROW(boost::math::pareto mypm1(-1, 1), std::domain_error); // Using typedef
- BOOST_CHECK_THROW(boost::math::pareto myp0(0, 1), std::domain_error); // Using typedef
- BOOST_CHECK_THROW(boost::math::pareto myp1m1(1, -1), std::domain_error); // Using typedef
- BOOST_CHECK_THROW(boost::math::pareto myp10(1, 0), std::domain_error); // Using typedef
+ BOOST_CHECK_THROW(boost::math::pareto mypm1(-1, 1), std::domain_error); // Using typedef
+ BOOST_CHECK_THROW(boost::math::pareto myp0(0, 1), std::domain_error); // Using typedef
+ BOOST_CHECK_THROW(boost::math::pareto myp1m1(1, -1), std::domain_error); // Using typedef
+ BOOST_CHECK_THROW(boost::math::pareto myp10(1, 0), std::domain_error); // Using typedef
// Check some moments that should fail because shape not big enough.
BOOST_CHECK_THROW(variance(myp2), std::domain_error);
@@ -268,9 +268,9 @@
// Test on extreme values of distribution parameters,
// using just double because it has numeric_limit infinity etc.
- BOOST_CHECK_THROW(boost::math::pareto mypinf1(+std::numeric_limits<double>::infinity(), 1), std::domain_error); // Using typedef
- BOOST_CHECK_THROW(boost::math::pareto myp1inf(1, +std::numeric_limits<double>::infinity()), std::domain_error); // Using typedef
- BOOST_CHECK_THROW(boost::math::pareto mypinf1(+std::numeric_limits<double>::infinity(), +std::numeric_limits<double>::infinity()), std::domain_error); // Using typedef
+ BOOST_CHECK_THROW(boost::math::pareto mypinf1(+std::numeric_limits<double>::infinity(), 1), std::domain_error); // Using typedef
+ BOOST_CHECK_THROW(boost::math::pareto myp1inf(1, +std::numeric_limits<double>::infinity()), std::domain_error); // Using typedef
+ BOOST_CHECK_THROW(boost::math::pareto mypinf1(+std::numeric_limits<double>::infinity(), +std::numeric_limits<double>::infinity()), std::domain_error); // Using typedef
// Test on extreme values of random variate x, using just double because it has numeric_limit infinity etc..
// No longer allow x to be + or - infinity, then these tests should throw.
@@ -296,7 +296,7 @@
BOOST_CHECK_THROW(cdf(pareto11, -(std::numeric_limits<double>::min)()), std::domain_error); // x = - min,
BOOST_CHECK_THROW(cdf(pareto11, -(std::numeric_limits<double>::max)()), std::domain_error); // x = - max,
- // (Parameter value, arbitrarily zero, only communicates the floating point type).
+ // (Parameter value, arbitrarily zero, only communicates the floating point type).
test_spots(0.0F); // Test float. OK at decdigits = 0 tol5eps = 0.0001 %
test_spots(0.0); // Test double. OK at decdigits 7, tol5eps = 1e07 %
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
Modified: sandbox/math_toolkit/libs/math/test/test_poisson.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_poisson.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_poisson.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -12,6 +12,13 @@
#define BOOST_MATH_DISCRETE_QUANTILE_POLICY real
+#if !defined(TEST_FLOAT) && !defined(TEST_DOUBLE) && !defined(TEST_LDOUBLE) && !defined(TEST_REAL_CONCEPT)
+# define TEST_FLOAT
+# define TEST_DOUBLE
+# define TEST_LDOUBLE
+# define TEST_REAL_CONCEPT
+#endif
+
#ifdef _MSC_VER
# pragma warning(disable: 4127) // conditional expression is constant.
#endif
@@ -20,7 +27,7 @@
#include <boost/test/floating_point_comparison.hpp>
#include <boost/math/distributions/poisson.hpp>
- using boost::math::poisson_distribution;
+ using boost::math::poisson_distribution;
#include <boost/math/concepts/real_concept.hpp> // for real_concept
#include <boost/math/tools/test.hpp> // for real_concept
@@ -28,11 +35,11 @@
// using boost::math::qamma_Q;
#include <iostream>
- using std::cout;
- using std::endl;
- using std::setprecision;
- using std::showpoint;
- using std::ios;
+ using std::cout;
+ using std::endl;
+ using std::setprecision;
+ using std::showpoint;
+ using std::ios;
#include <limits>
using std::numeric_limits;
@@ -40,10 +47,10 @@
void test_spots(RealType)
{
// Basic sanity checks, tolerance is about numeric_limits<RealType>::digits10 decimal places,
- // guaranteed for type RealType, eg 6 for float, 15 for double,
- // expressed as a percentage (so -2) for BOOST_CHECK_CLOSE,
+ // guaranteed for type RealType, eg 6 for float, 15 for double,
+ // expressed as a percentage (so -2) for BOOST_CHECK_CLOSE,
- int decdigits = numeric_limits<RealType>::digits10;
+ int decdigits = numeric_limits<RealType>::digits10;
// May eb >15 for 80 and 128-bit FP typtes.
if (decdigits <= 0)
{ // decdigits is not defined, for example real concept,
@@ -55,21 +62,21 @@
decdigits = 15; // numeric_limits<double>::digits10;
}
- decdigits -= 1; // Perhaps allow some decimal digit(s) margin of numerical error.
- RealType tolerance = static_cast<RealType>(std::pow(10., -(decdigits-2))); // 1e-6 (-2 so as %)
- tolerance *= 2; // Allow some bit(s) small margin (2 means + or - 1 bit) of numerical error.
- // Typically 2e-13% = 2e-15 as fraction for double.
+ decdigits -= 1; // Perhaps allow some decimal digit(s) margin of numerical error.
+ RealType tolerance = static_cast<RealType>(std::pow(10., -(decdigits-2))); // 1e-6 (-2 so as %)
+ tolerance *= 2; // Allow some bit(s) small margin (2 means + or - 1 bit) of numerical error.
+ // Typically 2e-13% = 2e-15 as fraction for double.
- // Sources of spot test values:
+ // Sources of spot test values:
// Many be some combinations for which the result is 'exact',
// or at least is good to 40 decimal digits.
- // 40 decimal digits includes 128-bit significand User Defined Floating-Point types,
-
- // Best source of accurate values is:
- // Mathworld online calculator (40 decimal digits precision, suitable for up to 128-bit significands)
- // http://functions.wolfram.com/webMathematica/FunctionEvaluation.jsp?name=GammaRegularized
- // GammaRegularized is same as gamma incomplete, gamma or gamma_q(a, x) or Q(a, z).
+ // 40 decimal digits includes 128-bit significand User Defined Floating-Point types,
+
+ // Best source of accurate values is:
+ // Mathworld online calculator (40 decimal digits precision, suitable for up to 128-bit significands)
+ // http://functions.wolfram.com/webMathematica/FunctionEvaluation.jsp?name=GammaRegularized
+ // GammaRegularized is same as gamma incomplete, gamma or gamma_q(a, x) or Q(a, z).
// http://documents.wolfram.com/calculationcenter/v2/Functions/ListsMatrices/Statistics/PoissonDistribution.html
@@ -141,177 +148,177 @@
BOOST_CHECK_CLOSE( // mode
mode(poisson_distribution<RealType>(static_cast<RealType>(4))), // mode = mean = 4.
static_cast<RealType>(4), // mode.
- tolerance);
+ tolerance);
//BOOST_CHECK_CLOSE( // mode
// median(poisson_distribution<RealType>(static_cast<RealType>(4))), // mode = mean = 4.
// static_cast<RealType>(4), // mode.
- // tolerance);
+ // tolerance);
poisson_distribution<RealType> dist4(static_cast<RealType>(40));
BOOST_CHECK_CLOSE( // median
median(dist4), // mode = mean = 4. median = 40.328333333333333
quantile(dist4, static_cast<RealType>(0.5)), // 39.332839138842637
- tolerance);
+ tolerance);
// PDF
BOOST_CHECK_CLOSE(
pdf(poisson_distribution<RealType>(static_cast<RealType>(4)), // mean 4.
static_cast<RealType>(0)),
static_cast<RealType>(1.831563888873410E-002), // probability.
- tolerance);
+ tolerance);
BOOST_CHECK_CLOSE(
pdf(poisson_distribution<RealType>(static_cast<RealType>(4)), // mean 4.
static_cast<RealType>(2)),
static_cast<RealType>(1.465251111098740E-001), // probability.
- tolerance);
+ tolerance);
BOOST_CHECK_CLOSE(
pdf(poisson_distribution<RealType>(static_cast<RealType>(20)), // mean big.
static_cast<RealType>(1)), // k small
static_cast<RealType>(4.122307244877130E-008), // probability.
- tolerance);
+ tolerance);
BOOST_CHECK_CLOSE(
pdf(poisson_distribution<RealType>(static_cast<RealType>(4)), // mean 4.
static_cast<RealType>(20)), // K>> mean
static_cast<RealType>(8.277463646553730E-009), // probability.
- tolerance);
+ tolerance);
// CDF
BOOST_CHECK_CLOSE(
cdf(poisson_distribution<RealType>(static_cast<RealType>(1)), // mean unity.
static_cast<RealType>(0)), // zero k events.
static_cast<RealType>(3.678794411714420E-1), // probability.
- tolerance);
+ tolerance);
BOOST_CHECK_CLOSE(
cdf(poisson_distribution<RealType>(static_cast<RealType>(1)), // mean unity.
static_cast<RealType>(1)), // one k event.
static_cast<RealType>(7.357588823428830E-1), // probability.
- tolerance);
+ tolerance);
BOOST_CHECK_CLOSE(
cdf(poisson_distribution<RealType>(static_cast<RealType>(1)), // mean unity.
static_cast<RealType>(2)), // two k events.
static_cast<RealType>(9.196986029286060E-1), // probability.
- tolerance);
+ tolerance);
BOOST_CHECK_CLOSE(
cdf(poisson_distribution<RealType>(static_cast<RealType>(1)), // mean unity.
static_cast<RealType>(10)), // two k events.
static_cast<RealType>(9.999999899522340E-1), // probability.
- tolerance);
+ tolerance);
BOOST_CHECK_CLOSE(
cdf(poisson_distribution<RealType>(static_cast<RealType>(1)), // mean unity.
static_cast<RealType>(15)), // two k events.
static_cast<RealType>(9.999999999999810E-1), // probability.
- tolerance);
+ tolerance);
BOOST_CHECK_CLOSE(
cdf(poisson_distribution<RealType>(static_cast<RealType>(1)), // mean unity.
static_cast<RealType>(16)), // two k events.
static_cast<RealType>(9.999999999999990E-1), // probability.
- tolerance);
+ tolerance);
BOOST_CHECK_CLOSE(
cdf(poisson_distribution<RealType>(static_cast<RealType>(1)), // mean unity.
static_cast<RealType>(17)), // two k events.
static_cast<RealType>(1.), // probability unity for double.
- tolerance);
+ tolerance);
BOOST_CHECK_CLOSE(
cdf(poisson_distribution<RealType>(static_cast<RealType>(1)), // mean unity.
static_cast<RealType>(33)), // k events at limit for float unchecked_factorial table.
static_cast<RealType>(1.), // probability.
- tolerance);
+ tolerance);
BOOST_CHECK_CLOSE(
cdf(poisson_distribution<RealType>(static_cast<RealType>(100)), // mean 100.
static_cast<RealType>(33)), // k events at limit for float unchecked_factorial table.
static_cast<RealType>(6.328271240363390E-15), // probability is tiny.
- tolerance * static_cast<RealType>(2e11)); // 6.3495253382825722e-015 MathCAD
+ tolerance * static_cast<RealType>(2e11)); // 6.3495253382825722e-015 MathCAD
// Note that there two tiny probability are much more different.
BOOST_CHECK_CLOSE(
cdf(poisson_distribution<RealType>(static_cast<RealType>(100)), // mean 100.
static_cast<RealType>(34)), // k events at limit for float unchecked_factorial table.
static_cast<RealType>(1.898481372109020E-14), // probability is tiny.
- tolerance*static_cast<RealType>(2e11)); // 1.8984813721090199e-014 MathCAD
+ tolerance*static_cast<RealType>(2e11)); // 1.8984813721090199e-014 MathCAD
BOOST_CHECK_CLOSE(
cdf(poisson_distribution<RealType>(static_cast<RealType>(33)), // mean = k
static_cast<RealType>(33)), // k events above limit for float unchecked_factorial table.
static_cast<RealType>(5.461191812386560E-1), // probability.
- tolerance);
+ tolerance);
BOOST_CHECK_CLOSE(
cdf(poisson_distribution<RealType>(static_cast<RealType>(33)), // mean = k-1
static_cast<RealType>(34)), // k events above limit for float unchecked_factorial table.
static_cast<RealType>(6.133535681502950E-1), // probability.
- tolerance);
+ tolerance);
BOOST_CHECK_CLOSE(
cdf(poisson_distribution<RealType>(static_cast<RealType>(1)), // mean unity.
static_cast<RealType>(34)), // k events above limit for float unchecked_factorial table.
static_cast<RealType>(1.), // probability.
- tolerance);
+ tolerance);
BOOST_CHECK_CLOSE(
cdf(poisson_distribution<RealType>(static_cast<RealType>(5.)), // mean
static_cast<RealType>(5)), // k events.
static_cast<RealType>(0.615960654833065), // probability.
- tolerance);
+ tolerance);
BOOST_CHECK_CLOSE(
cdf(poisson_distribution<RealType>(static_cast<RealType>(5.)), // mean
static_cast<RealType>(1)), // k events.
static_cast<RealType>(0.040427681994512805), // probability.
- tolerance);
+ tolerance);
BOOST_CHECK_CLOSE(
cdf(poisson_distribution<RealType>(static_cast<RealType>(5.)), // mean
static_cast<RealType>(0)), // k events (uses special case formula, not gamma).
static_cast<RealType>(0.006737946999085467), // probability.
- tolerance);
+ tolerance);
BOOST_CHECK_CLOSE(
cdf(poisson_distribution<RealType>(static_cast<RealType>(1.)), // mean
static_cast<RealType>(0)), // k events (uses special case formula, not gamma).
static_cast<RealType>(0.36787944117144233), // probability.
- tolerance);
+ tolerance);
BOOST_CHECK_CLOSE(
cdf(poisson_distribution<RealType>(static_cast<RealType>(10.)), // mean
static_cast<RealType>(10)), // k events.
static_cast<RealType>(0.5830397501929856), // probability.
- tolerance);
+ tolerance);
BOOST_CHECK_CLOSE(
cdf(poisson_distribution<RealType>(static_cast<RealType>(4.)), // mean
static_cast<RealType>(5)), // k events.
static_cast<RealType>(0.785130387030406), // probability.
- tolerance);
+ tolerance);
// complement CDF
BOOST_CHECK_CLOSE( // Complement CDF
cdf(complement(poisson_distribution<RealType>(static_cast<RealType>(4.)), // mean
static_cast<RealType>(5))), // k events.
static_cast<RealType>(1 - 0.785130387030406), // probability.
- tolerance);
+ tolerance);
BOOST_CHECK_CLOSE( // Complement CDF
cdf(complement(poisson_distribution<RealType>(static_cast<RealType>(4.)), // mean
static_cast<RealType>(0))), // Zero k events (uses special case formula, not gamma).
static_cast<RealType>(0.98168436111126578), // probability.
- tolerance);
+ tolerance);
BOOST_CHECK_CLOSE( // Complement CDF
cdf(complement(poisson_distribution<RealType>(static_cast<RealType>(1.)), // mean
static_cast<RealType>(0))), // Zero k events (uses special case formula, not gamma).
static_cast<RealType>(0.63212055882855767), // probability.
- tolerance);
+ tolerance);
// Example where k is bigger than max_factorial (>34 for float)
// (therefore using log gamma so perhaps less accurate).
@@ -319,7 +326,7 @@
cdf(poisson_distribution<RealType>(static_cast<RealType>(40.)), // mean
static_cast<RealType>(40)), // k events.
static_cast<RealType>(0.5419181783625430), // probability.
- tolerance);
+ tolerance);
// Quantile & complement.
BOOST_CHECK_CLOSE(
@@ -346,7 +353,7 @@
cdf(poisson_distribution<RealType>(static_cast<RealType>(10.)), // mean
static_cast<RealType>(10)), // k events.
static_cast<RealType>(0.5830397501929856), // probability.
- tolerance);
+ tolerance);
BOOST_CHECK_CLOSE(boost::math::quantile( // inverse of cdf above.
poisson_distribution<RealType>(10.), // mean.
@@ -359,7 +366,7 @@
cdf(poisson_distribution<RealType>(static_cast<RealType>(4.)), // mean
static_cast<RealType>(5)), // k events.
static_cast<RealType>(0.785130387030406), // probability.
- tolerance);
+ tolerance);
BOOST_CHECK_CLOSE(boost::math::quantile( // inverse of cdf above.
poisson_distribution<RealType>(4.), // mean.
@@ -487,9 +494,9 @@
// Check that can construct normal distribution using the two convenience methods:
using namespace boost::math;
poisson myp1(2); // Using typedef
- poisson_distribution<> myp2(2); // Using default RealType double.
+ poisson_distribution<> myp2(2); // Using default RealType double.
- // Basic sanity-check spot values.
+ // Basic sanity-check spot values.
// Some plain double examples & tests:
cout.precision(17); // double max_digits10
@@ -516,12 +523,12 @@
BOOST_CHECK_CLOSE(
pdf(mypoisson, 2.), // k events = 2.
1.465251111098740E-001, // probability.
- 5e-13);
+ 5e-13);
BOOST_CHECK_CLOSE(
cdf(mypoisson, 2.), // k events = 2.
0.238103305553545, // probability.
- 5e-13);
+ 5e-13);
#if 0
@@ -555,7 +562,7 @@
BOOST_CHECK_CLOSE(
cdf(mypoisson, static_cast<double>(i)),
sum, // of pdfs.
- 4e-14); // Fails at 2e-14
+ 4e-14); // Fails at 2e-14
// This call puts the precision etc back to default 6 !!!
cout << setprecision(17) << showpoint;
@@ -577,20 +584,28 @@
}
#endif
- // (Parameter value, arbitrarily zero, only communicates the floating-point type).
+ // (Parameter value, arbitrarily zero, only communicates the floating-point type).
+#ifdef TEST_POISSON
test_spots(0.0F); // Test float.
+#endif
+#ifdef TEST_DOUBLE
test_spots(0.0); // Test double.
+#endif
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
if (numeric_limits<long double>::digits10 > numeric_limits<double>::digits10)
{ // long double is better than double (so not MSVC where they are same).
- test_spots(0.0L); // Test long double.
+#ifdef TEST_LDOUBLE
+ test_spots(0.0L); // Test long double.
+#endif
}
#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
+#ifdef TEST_REAL_CONCEPT
test_spots(boost::math::concepts::real_concept(0.)); // Test real concept.
+#endif
#endif
#endif
- return 0;
+ return 0;
} // int test_main(int, char* [])
/*
Modified: sandbox/math_toolkit/libs/math/test/test_policy.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_policy.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_policy.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -35,7 +35,7 @@
BOOST_CHECK((is_same<policy<>::domain_error_type, domain_error<BOOST_MATH_DOMAIN_ERROR_POLICY> >::value));
BOOST_CHECK((is_same<policy<>::evaluation_error_type, evaluation_error<BOOST_MATH_EVALUATION_ERROR_POLICY> >::value));
-
+
BOOST_CHECK((is_same<policy<domain_error<ignore_error> >::domain_error_type, domain_error<ignore_error> >::value));
BOOST_CHECK((is_same<policy<domain_error<ignore_error> >::pole_error_type, pole_error<BOOST_MATH_POLE_ERROR_POLICY> >::value));
BOOST_CHECK((is_same<policy<domain_error<ignore_error> >::overflow_error_type, overflow_error<BOOST_MATH_OVERFLOW_ERROR_POLICY> >::value));
Modified: sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational.hpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational.hpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational.hpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,3 +1,8 @@
+// (C) Copyright John Maddock 2006-7.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
#ifndef BOOST_MATH_TEST_RATIONAL_HPP
#define BOOST_MATH_TEST_RATIONAL_HPP
Modified: sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_double1.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_double1.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_double1.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,3 +1,8 @@
+// (C) Copyright John Maddock 2006-7.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
#include "test_rational.hpp"
Modified: sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_double2.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_double2.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_double2.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,3 +1,8 @@
+// (C) Copyright John Maddock 2006-7.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
#include "test_rational.hpp"
Modified: sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_double3.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_double3.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_double3.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,3 +1,8 @@
+// (C) Copyright John Maddock 2006-7.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
#include "test_rational.hpp"
Modified: sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_double4.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_double4.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_double4.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,3 +1,7 @@
+// (C) Copyright John Maddock 2006-7.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include "test_rational.hpp"
Modified: sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_double5.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_double5.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_double5.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,3 +1,8 @@
+// (C) Copyright John Maddock 2006-7.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
#include "test_rational.hpp"
Modified: sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_float1.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_float1.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_float1.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,3 +1,8 @@
+// (C) Copyright John Maddock 2006-7.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
#include "test_rational.hpp"
Modified: sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_float2.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_float2.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_float2.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,3 +1,8 @@
+// (C) Copyright John Maddock 2006-7.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
#include "test_rational.hpp"
Modified: sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_float3.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_float3.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_float3.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,3 +1,8 @@
+// (C) Copyright John Maddock 2006-7.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
#include "test_rational.hpp"
Modified: sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_float4.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_float4.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_float4.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,3 +1,8 @@
+// (C) Copyright John Maddock 2006-7.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
#include "test_rational.hpp"
Modified: sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_ldouble1.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_ldouble1.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_ldouble1.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,3 +1,8 @@
+// (C) Copyright John Maddock 2006-7.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
#include "test_rational.hpp"
Modified: sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_ldouble2.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_ldouble2.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_ldouble2.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,3 +1,8 @@
+// (C) Copyright John Maddock 2006-7.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
#include "test_rational.hpp"
Modified: sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_ldouble3.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_ldouble3.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_ldouble3.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,3 +1,8 @@
+// (C) Copyright John Maddock 2006-7.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
#include "test_rational.hpp"
Modified: sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_ldouble4.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_ldouble4.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_ldouble4.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,3 +1,8 @@
+// (C) Copyright John Maddock 2006-7.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
#include "test_rational.hpp"
Modified: sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_ldouble5.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_ldouble5.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_ldouble5.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,3 +1,8 @@
+// (C) Copyright John Maddock 2006-7.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
#include "test_rational.hpp"
Modified: sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_real_concept1.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_real_concept1.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_real_concept1.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,6 +1,15 @@
+// (C) Copyright John Maddock 2006-7.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+
+#include <boost/detail/workaround.hpp>
+#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
#include "test_rational.hpp"
#include <boost/math/concepts/real_concept.hpp>
template void do_test_spots<boost::math::concepts::real_concept, boost::math::concepts::real_concept>(boost::math::concepts::real_concept, boost::math::concepts::real_concept);
+#endif
Modified: sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_real_concept2.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_real_concept2.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_real_concept2.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,6 +1,15 @@
+// (C) Copyright John Maddock 2006-7.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+
+#include <boost/detail/workaround.hpp>
+#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
#include "test_rational.hpp"
#include <boost/math/concepts/real_concept.hpp>
template void do_test_spots<boost::math::concepts::real_concept, int>(boost::math::concepts::real_concept, int);
+#endif
Modified: sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_real_concept3.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_real_concept3.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_real_concept3.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,6 +1,15 @@
+// (C) Copyright John Maddock 2006-7.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+
+#include <boost/detail/workaround.hpp>
+#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
#include "test_rational.hpp"
#include <boost/math/concepts/real_concept.hpp>
template void do_test_spots<boost::math::concepts::real_concept, unsigned>(boost::math::concepts::real_concept, unsigned);
+#endif
Modified: sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_real_concept4.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_real_concept4.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_real_concept4.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,3 +1,11 @@
+// (C) Copyright John Maddock 2006-7.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+
+#include <boost/detail/workaround.hpp>
+#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
#include "test_rational.hpp"
#include <boost/math/concepts/real_concept.hpp>
@@ -5,3 +13,4 @@
#ifdef BOOST_HAS_LONG_LONG
template void do_test_spots<boost::math::concepts::real_concept, unsigned long long>(boost::math::concepts::real_concept, unsigned long long);
#endif
+#endif
Modified: sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_real_concept5.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_real_concept5.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_rational_instances/test_rational_real_concept5.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,5 +1,15 @@
+// (C) Copyright John Maddock 2006-7.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+
+#include <boost/detail/workaround.hpp>
+#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
#include "test_rational.hpp"
#include <boost/math/concepts/real_concept.hpp>
template void do_test_spots<boost::math::concepts::real_concept, float>(boost::math::concepts::real_concept, float);
+
+#endif
Modified: sandbox/math_toolkit/libs/math/test/test_rayleigh.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_rayleigh.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_rayleigh.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -14,15 +14,15 @@
#include <boost/math/concepts/real_concept.hpp> // for real_concept
#include <boost/math/distributions/rayleigh.hpp>
- using boost::math::rayleigh_distribution;
+ using boost::math::rayleigh_distribution;
#include <boost/test/included/test_exec_monitor.hpp> // Boost.Test
#include <boost/test/floating_point_comparison.hpp>
#include <iostream>
- using std::cout;
- using std::endl;
- using std::setprecision;
+ using std::cout;
+ using std::endl;
+ using std::setprecision;
template <class RealType>
void test_spot(RealType s, RealType x, RealType p, RealType q, RealType tolerance)
@@ -32,13 +32,13 @@
rayleigh_distribution<RealType>(s),
x),
p,
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::cdf(
complement(rayleigh_distribution<RealType>(s),
x)),
q,
- tolerance); // %
+ tolerance); // %
// Special extra tests for p and q near to unity.
if(p < 0.999)
{
@@ -47,7 +47,7 @@
rayleigh_distribution<RealType>(s),
p),
x,
- tolerance); // %
+ tolerance); // %
}
if(q < 0.999)
{
@@ -56,7 +56,7 @@
complement(rayleigh_distribution<RealType>(s),
q)),
x,
- tolerance); // %
+ tolerance); // %
}
} // void test_spot
@@ -72,7 +72,7 @@
static_cast<RealType>(boost::math::tools::epsilon<double>()),
boost::math::tools::epsilon<RealType>());
tolerance *= 10 * 100; // 10 eps as a percent
- cout << "Tolerance for type " << typeid(T).name() << " is " << tolerance << " %" << endl;
+ cout << "Tolerance for type " << typeid(T).name() << " is " << tolerance << " %" << endl;
using namespace boost::math::constants;
@@ -134,72 +134,72 @@
rayleigh_distribution<RealType>(1.L),
static_cast<RealType>(1.L)), // x
static_cast<RealType>(exp_minus_half<RealType>()), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::pdf(
rayleigh_distribution<RealType>(0.5L),
static_cast<RealType>(0.5L)), // x
static_cast<RealType>(2 * exp_minus_half<RealType>()), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::pdf(
rayleigh_distribution<RealType>(2.L),
static_cast<RealType>(2.L)), // x
static_cast<RealType>(exp_minus_half<RealType>() /2), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::mean(
rayleigh_distribution<RealType>(1.L)),
static_cast<RealType>(root_half_pi<RealType>()),
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::variance(
rayleigh_distribution<RealType>(root_two<RealType>())),
static_cast<RealType>(four_minus_pi<RealType>()),
- tolerance * 100); // %
+ tolerance * 100); // %
BOOST_CHECK_CLOSE(
::boost::math::mode(
rayleigh_distribution<RealType>(1.L)),
static_cast<RealType>(1.L),
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::median(
rayleigh_distribution<RealType>(1.L)),
static_cast<RealType>(sqrt(log(4.L))), // sigma * sqrt(log_four)
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::skewness(
rayleigh_distribution<RealType>(1.L)),
static_cast<RealType>(2.L * root_pi<RealType>()) * (pi<RealType>() - 3) / (pow((4 - pi<RealType>()), static_cast<RealType>(1.5L))),
- tolerance * 100); // %
+ tolerance * 100); // %
BOOST_CHECK_CLOSE(
::boost::math::skewness(
rayleigh_distribution<RealType>(1.L)),
static_cast<RealType>(0.63111065781893713819189935154422777984404221106391L),
- tolerance * 100); // %
+ tolerance * 100); // %
BOOST_CHECK_CLOSE(
::boost::math::kurtosis_excess(
rayleigh_distribution<RealType>(1.L)),
static_cast<RealType>(0.2450893006876380628486604106197544154170667057995L),
- tolerance * 1000); // %
+ tolerance * 1000); // %
BOOST_CHECK_CLOSE(
::boost::math::kurtosis(
rayleigh_distribution<RealType>(1.L)),
static_cast<RealType>(3.2450893006876380628486604106197544154170667057995L),
- tolerance * 100); // %
+ tolerance * 100); // %
BOOST_CHECK_CLOSE(
::boost::math::kurtosis_excess(rayleigh_distribution<RealType>(2)),
::boost::math::kurtosis(rayleigh_distribution<RealType>(2)) -3,
- tolerance* 100); // %
+ tolerance* 100); // %
return;
} // template <class RealType>void test_spots(RealType)
@@ -207,11 +207,11 @@
int test_main(int, char* [])
{
// Check that can generate rayleigh distribution using the two convenience methods:
- boost::math::rayleigh ray1(1.); // Using typedef
- rayleigh_distribution<> ray2(1.); // Using default RealType double.
+ boost::math::rayleigh ray1(1.); // Using typedef
+ rayleigh_distribution<> ray2(1.); // Using default RealType double.
using namespace boost::math::constants;
- // Basic sanity-check spot values.
+ // Basic sanity-check spot values.
// Double only tests.
BOOST_CHECK_CLOSE_FRACTION(
@@ -219,72 +219,72 @@
rayleigh_distribution<double>(1.),
static_cast<double>(1)), // x
static_cast<double>(exp_minus_half<double>()), // p
- 1e-15); // %
+ 1e-15); // %
BOOST_CHECK_CLOSE_FRACTION(
::boost::math::pdf(
rayleigh_distribution<double>(0.5),
static_cast<double>(0.5)), // x
static_cast<double>(2 * exp_minus_half<double>()), // p
- 1e-15); // %
+ 1e-15); // %
BOOST_CHECK_CLOSE_FRACTION(
::boost::math::pdf(
rayleigh_distribution<double>(2.),
static_cast<double>(2)), // x
static_cast<double>(exp_minus_half<double>() /2 ), // p
- 1e-15); // %
+ 1e-15); // %
BOOST_CHECK_CLOSE_FRACTION(
::boost::math::cdf(
rayleigh_distribution<double>(1.),
static_cast<double>(1)), // x
static_cast<double>(1- exp_minus_half<double>()), // p
- 1e-15); // %
+ 1e-15); // %
BOOST_CHECK_CLOSE_FRACTION(
::boost::math::cdf(
rayleigh_distribution<double>(2.),
static_cast<double>(2)), // x
static_cast<double>(1- exp_minus_half<double>()), // p
- 1e-15); // %
+ 1e-15); // %
BOOST_CHECK_CLOSE_FRACTION(
::boost::math::cdf(
rayleigh_distribution<double>(3.),
static_cast<double>(3)), // x
static_cast<double>(1- exp_minus_half<double>()), // p
- 1e-15); // %
+ 1e-15); // %
BOOST_CHECK_CLOSE_FRACTION(
::boost::math::cdf(
rayleigh_distribution<double>(4.),
static_cast<double>(4)), // x
static_cast<double>(1- exp_minus_half<double>()), // p
- 1e-15); // %
+ 1e-15); // %
BOOST_CHECK_CLOSE_FRACTION(
::boost::math::cdf(complement(
rayleigh_distribution<double>(4.),
static_cast<double>(4))), // x
static_cast<double>(exp_minus_half<double>()), // q = 1 - p
- 1e-15); // %
+ 1e-15); // %
BOOST_CHECK_CLOSE_FRACTION(
::boost::math::quantile(
rayleigh_distribution<double>(4.),
static_cast<double>(1- exp_minus_half<double>())), // x
static_cast<double>(4), // p
- 1e-15); // %
+ 1e-15); // %
BOOST_CHECK_CLOSE_FRACTION(
::boost::math::quantile(complement(
rayleigh_distribution<double>(4.),
static_cast<double>(exp_minus_half<double>()))), // x
static_cast<double>(4), // p
- 1e-15); // %
+ 1e-15); // %
- // (Parameter value, arbitrarily zero, only communicates the floating point type).
+ // (Parameter value, arbitrarily zero, only communicates the floating point type).
test_spots(0.0F); // Test float. OK at decdigits = 0 tolerance = 0.0001 %
test_spots(0.0); // Test double. OK at decdigits 7, tolerance = 1e07 %
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
Modified: sandbox/math_toolkit/libs/math/test/test_spherical_harmonic.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_spherical_harmonic.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_spherical_harmonic.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -9,8 +9,7 @@
#include <boost/math/special_functions/spherical_harmonic.hpp>
#include <boost/math/constants/constants.hpp>
#include <boost/array.hpp>
-#include <boost/lambda/lambda.hpp>
-#include <boost/lambda/bind.hpp>
+#include "functor.hpp"
#include "handle_test_result.hpp"
@@ -103,8 +102,6 @@
typedef value_type (*pg)(unsigned, int, value_type, value_type);
pg funcp = boost::math::spherical_harmonic_r;
- typedef unsigned (*cast_t)(value_type);
- cast_t cf = &boost::math::tools::real_cast<unsigned, value_type>;
boost::math::tools::test_result<value_type> result;
@@ -116,18 +113,8 @@
//
result = boost::math::tools::test(
data,
- boost::lambda::bind(funcp,
- boost::lambda::ret<unsigned>(
- boost::lambda::bind(
- cf,
- boost::lambda::ret<value_type>(boost::lambda::_1[0]))),
- boost::lambda::ret<unsigned>(
- boost::lambda::bind(
- cf,
- boost::lambda::ret<value_type>(boost::lambda::_1[1]))),
- boost::lambda::ret<value_type>(boost::lambda::_1[2]),
- boost::lambda::ret<value_type>(boost::lambda::_1[3])),
- boost::lambda::ret<value_type>(boost::lambda::_1[4]));
+ bind_func_int2(funcp, 0, 1, 2, 3),
+ extract_result(4));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::spherical_harmonic_r", test_name);
funcp = boost::math::spherical_harmonic_i;
@@ -136,18 +123,8 @@
//
result = boost::math::tools::test(
data,
- boost::lambda::bind(funcp,
- boost::lambda::ret<unsigned>(
- boost::lambda::bind(
- cf,
- boost::lambda::ret<value_type>(boost::lambda::_1[0]))),
- boost::lambda::ret<unsigned>(
- boost::lambda::bind(
- cf,
- boost::lambda::ret<value_type>(boost::lambda::_1[1]))),
- boost::lambda::ret<value_type>(boost::lambda::_1[2]),
- boost::lambda::ret<value_type>(boost::lambda::_1[3])),
- boost::lambda::ret<value_type>(boost::lambda::_1[5]));
+ bind_func_int2(funcp, 0, 1, 2, 3),
+ extract_result(5));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::spherical_harmonic_i", test_name);
std::cout << std::endl;
@@ -299,6 +276,7 @@
int test_main(int, char* [])
{
+ BOOST_MATH_CONTROL_FP;
test_spots(0.0F, "float");
test_spots(0.0, "double");
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
Modified: sandbox/math_toolkit/libs/math/test/test_students_t.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_students_t.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_students_t.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -18,14 +18,14 @@
#include <boost/test/floating_point_comparison.hpp>
#include <boost/math/distributions/students_t.hpp>
- using boost::math::students_t_distribution;
+ using boost::math::students_t_distribution;
#include <boost/math/concepts/real_concept.hpp> // for real_concept
#include <boost/math/tools/test.hpp> // for real_concept
#include <iostream>
- using std::cout;
- using std::endl;
- using std::setprecision;
+ using std::cout;
+ using std::endl;
+ using std::setprecision;
#include <limits>
using std::numeric_limits;
@@ -54,29 +54,29 @@
void test_spots(RealType)
{
// Basic sanity checks
- RealType tolerance = static_cast<RealType>(std::pow(10., -(6-2))); // 1e-6 (as %)
- // Some tests only pass at 1e-5 because probability value is less accurate,
- // a digit in 6th decimal place, although calculated using
- // a t-distribution generator (claimed 6 decimal digits) at
+ RealType tolerance = static_cast<RealType>(std::pow(10., -(6-2))); // 1e-6 (as %)
+ // Some tests only pass at 1e-5 because probability value is less accurate,
+ // a digit in 6th decimal place, although calculated using
+ // a t-distribution generator (claimed 6 decimal digits) at
// http://faculty.vassar.edu/lowry/VassarStats.html
- // http://faculty.vassar.edu/lowry/tsamp.html
- // df = 5, +/-t = 2.0, 1-tailed = 0.050970, 2-tailed = 0.101939
+ // http://faculty.vassar.edu/lowry/tsamp.html
+ // df = 5, +/-t = 2.0, 1-tailed = 0.050970, 2-tailed = 0.101939
- cout << "Tolerance for type " << typeid(RealType).name() << " is " << tolerance << " %" << endl;
+ cout << "Tolerance for type " << typeid(RealType).name() << " is " << tolerance << " %" << endl;
- // http://en.wikipedia.org/wiki/Student%27s_t_distribution#Table_of_selected_values
+ // http://en.wikipedia.org/wiki/Student%27s_t_distribution#Table_of_selected_values
// Using tabulated value of t = 3.182 for 0.975, 3 df, one-sided.
- // http://www.mth.kcl.ac.uk/~shaww/web_page/papers/Tdistribution06.pdf refers to:
+ // http://www.mth.kcl.ac.uk/~shaww/web_page/papers/Tdistribution06.pdf refers to:
- // A lookup table of quantiles of the RealType distribution
+ // A lookup table of quantiles of the RealType distribution
// for 1 to 25 in steps of 0.1 is provided in CSV form at:
// www.mth.kcl.ac.uk/~shaww/web_page/papers/Tsupp/tquantiles.csv
- // gives accurate t of -3.1824463052837 and 3 degrees of freedom.
- // Values below are from this source, saved as tquantiles.xls.
- // DF are across the columns, probabilities down the rows
- // and the t- values (quantiles) are shown.
- // These values are probably accurate to nearly 64-bit double
+ // gives accurate t of -3.1824463052837 and 3 degrees of freedom.
+ // Values below are from this source, saved as tquantiles.xls.
+ // DF are across the columns, probabilities down the rows
+ // and the t- values (quantiles) are shown.
+ // These values are probably accurate to nearly 64-bit double
// (perhaps 14 decimal digits).
BOOST_CHECK_CLOSE(
@@ -84,63 +84,63 @@
students_t_distribution<RealType>(2), // degrees_of_freedom
static_cast<RealType>(-6.96455673428326)), // t
static_cast<RealType>(0.01), // probability.
- tolerance); // %
+ tolerance); // %
BOOST_CHECK_CLOSE(
::boost::math::cdf(
students_t_distribution<RealType>(5), // degrees_of_freedom
static_cast<RealType>(-3.36492999890721)), // t
static_cast<RealType>(0.01), // probability.
- tolerance);
+ tolerance);
BOOST_CHECK_CLOSE(
::boost::math::cdf(
students_t_distribution<RealType>(1), // degrees_of_freedom
static_cast<RealType>(-31830.988607907)), // t
static_cast<RealType>(0.00001), // probability.
- tolerance);
+ tolerance);
BOOST_CHECK_CLOSE(
::boost::math::cdf(
students_t_distribution<RealType>(25.), // degrees_of_freedom
static_cast<RealType>(-5.2410429995425)), // t
static_cast<RealType>(0.00001), // probability.
- tolerance);
+ tolerance);
BOOST_CHECK_CLOSE(
::boost::math::cdf(
students_t_distribution<RealType>(1), // degrees_of_freedom
static_cast<RealType>(-63661.97723)), // t
static_cast<RealType>(0.000005), // probability.
- tolerance);
+ tolerance);
BOOST_CHECK_CLOSE(
::boost::math::cdf(
students_t_distribution<RealType>(5.), // degrees_of_freedom
static_cast<RealType>(-17.89686614)), // t
static_cast<RealType>(0.000005), // probability.
- tolerance);
+ tolerance);
BOOST_CHECK_CLOSE(
::boost::math::cdf(
students_t_distribution<RealType>(25.), // degrees_of_freedom
static_cast<RealType>(-5.510848412)), // t
static_cast<RealType>(0.000005), // probability.
- tolerance);
+ tolerance);
BOOST_CHECK_CLOSE(
::boost::math::cdf(
students_t_distribution<RealType>(10.), // degrees_of_freedom
static_cast<RealType>(-1.812461123)), // t
static_cast<RealType>(0.05), // probability.
- tolerance);
+ tolerance);
BOOST_CHECK_CLOSE(
::boost::math::cdf(
students_t_distribution<RealType>(10), // degrees_of_freedom
static_cast<RealType>(1.812461123)), // t
static_cast<RealType>(0.95), // probability.
- tolerance);
+ tolerance);
BOOST_CHECK_CLOSE(
::boost::math::cdf(
@@ -148,24 +148,24 @@
students_t_distribution<RealType>(10), // degrees_of_freedom
static_cast<RealType>(1.812461123))), // t
static_cast<RealType>(0.05), // probability.
- tolerance);
+ tolerance);
BOOST_CHECK_CLOSE(
::boost::math::cdf(
students_t_distribution<RealType>(10), // degrees_of_freedom
static_cast<RealType>(9.751995491)), // t
static_cast<RealType>(0.999999), // probability.
- tolerance);
+ tolerance);
BOOST_CHECK_CLOSE(
::boost::math::cdf(
students_t_distribution<RealType>(10.), // degrees_of_freedom - for ALL degrees_of_freedom!
static_cast<RealType>(0.)), // t
static_cast<RealType>(0.5), // probability.
- tolerance);
+ tolerance);
- // Student's t Inverse function tests.
+ // Student's t Inverse function tests.
// Special cases
BOOST_CHECK_THROW(boost::math::quantile(
@@ -191,20 +191,20 @@
students_t_distribution<RealType>(1.), // degrees_of_freedom (ignored).
static_cast<RealType>(0.5)), // probability == half - special case.
static_cast<RealType>(0), // t == zero.
- tolerance);
+ tolerance);
BOOST_CHECK_CLOSE( // Tests of p middling.
::boost::math::cdf(
students_t_distribution<RealType>(5.), // degrees_of_freedom
static_cast<RealType>(-0.559429644)), // t
static_cast<RealType>(0.3), // probability.
- tolerance);
+ tolerance);
BOOST_CHECK_CLOSE(
::boost::math::quantile(
students_t_distribution<RealType>(5.), // degrees_of_freedom
static_cast<RealType>(0.3)), // probability.
static_cast<RealType>(-0.559429644), // t
- tolerance);
+ tolerance);
BOOST_CHECK_CLOSE(
::boost::math::quantile(
@@ -212,47 +212,47 @@
students_t_distribution<RealType>(5.), // degrees_of_freedom
static_cast<RealType>(0.7))), // probability.
static_cast<RealType>(-0.559429644), // t
- tolerance);
+ tolerance);
BOOST_CHECK_CLOSE( // Tests of p high.
::boost::math::cdf(
students_t_distribution<RealType>(5.), // degrees_of_freedom
static_cast<RealType>(1.475884049)), // t
static_cast<RealType>(0.9), // probability.
- tolerance);
+ tolerance);
BOOST_CHECK_CLOSE(
::boost::math::quantile(
students_t_distribution<RealType>(5.), // degrees_of_freedom
static_cast<RealType>(0.9)), // probability.
static_cast<RealType>(1.475884049), // t
- tolerance);
+ tolerance);
BOOST_CHECK_CLOSE( // Tests of p low.
::boost::math::cdf(
students_t_distribution<RealType>(5.), // degrees_of_freedom
static_cast<RealType>(-1.475884049)), // t
static_cast<RealType>(0.1), // probability.
- tolerance);
+ tolerance);
BOOST_CHECK_CLOSE(
::boost::math::quantile(
students_t_distribution<RealType>(5.), // degrees_of_freedom
static_cast<RealType>(0.1)), // probability.
static_cast<RealType>(-1.475884049), // t
- tolerance);
+ tolerance);
BOOST_CHECK_CLOSE(
::boost::math::cdf(
students_t_distribution<RealType>(2.), // degrees_of_freedom
static_cast<RealType>(-6.96455673428326)), // t
static_cast<RealType>(0.01), // probability.
- tolerance);
+ tolerance);
BOOST_CHECK_CLOSE(
::boost::math::quantile(
students_t_distribution<RealType>(2.), // degrees_of_freedom
static_cast<RealType>(0.01)), // probability.
static_cast<RealType>(-6.96455673428326), // t
- tolerance);
+ tolerance);
// Student's t pdf tests.
@@ -379,11 +379,11 @@
// Check that can construct students_t distribution using the two convenience methods:
using namespace boost::math;
students_t myst1(2); // Using typedef
- students_t_distribution<> myst2(2); // Using default RealType double.
- //students_t_distribution<double> myst3(2); // Using explicit RealType double.
+ students_t_distribution<> myst2(2); // Using default RealType double.
+ //students_t_distribution<double> myst3(2); // Using explicit RealType double.
- // Basic sanity-check spot values.
- // (Parameter value, arbitrarily zero, only communicates the floating point type).
+ // Basic sanity-check spot values.
+ // (Parameter value, arbitrarily zero, only communicates the floating point type).
test_spots(0.0F); // Test float. OK at decdigits = 0 tolerance = 0.0001 %
test_spots(0.0); // Test double. OK at decdigits 7, tolerance = 1e07 %
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
Modified: sandbox/math_toolkit/libs/math/test/test_tgamma_ratio.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_tgamma_ratio.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_tgamma_ratio.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -12,10 +12,7 @@
#include <boost/math/tools/stats.hpp>
#include <boost/math/tools/test.hpp>
#include <boost/array.hpp>
-#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
-#include <boost/lambda/lambda.hpp>
-#include <boost/lambda/bind.hpp>
-#endif
+#include "functor.hpp"
#include "handle_test_result.hpp"
@@ -73,7 +70,23 @@
"float", // test type(s)
"[^|]*", // test data group
"boost::math::tgamma_ratio[^|]*", 35, 8); // test function
-
+ //
+ // Linux AMD x86em64 has slightly higher rates:
+ //
+ add_expected_result(
+ "[^|]*", // compiler
+ "[^|]*", // stdlib
+ "linux.*", // platform
+ largest_type, // test type(s)
+ "[^|]*", // test data group
+ "boost::math::tgamma_ratio[^|]*", 300, 100); // test function
+ add_expected_result(
+ "[^|]*", // compiler
+ "[^|]*", // stdlib
+ "linux.*", // platform
+ "real_concept", // test type(s)
+ "[^|]*", // test data group
+ "boost::math::tgamma_ratio[^|]*", 300, 100); // test function
//
// Catch all cases come last:
//
@@ -114,10 +127,18 @@
<< BOOST_STDLIB << ", " << BOOST_PLATFORM << std::endl;
}
+struct negative_tgamma_ratio
+{
+ template <class Row>
+ typename Row::value_type operator()(const Row& row)
+ {
+ return boost::math::tgamma_delta_ratio(row[0], -row[1]);
+ }
+};
+
template <class T>
void do_test_tgamma_delta_ratio(const T& data, const char* type_name, const char* test_name)
{
-#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
typedef typename T::value_type row_type;
typedef typename row_type::value_type value_type;
@@ -134,19 +155,14 @@
//
result = boost::math::tools::test(
data,
- boost::lambda::bind(funcp,
- boost::lambda::ret<value_type>(boost::lambda::_1[0]),
- boost::lambda::ret<value_type>(boost::lambda::_1[1])),
- boost::lambda::ret<value_type>(boost::lambda::_1[2]));
+ bind_func(funcp, 0, 1),
+ extract_result(2));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::tgamma_delta_ratio(a, delta)", test_name);
result = boost::math::tools::test(
data,
- boost::lambda::bind(funcp,
- boost::lambda::ret<value_type>(boost::lambda::_1[0]),
- -boost::lambda::ret<value_type>(boost::lambda::_1[1])),
- boost::lambda::ret<value_type>(boost::lambda::_1[3]));
+ negative_tgamma_ratio(),
+ extract_result(3));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::tgamma_delta_ratio(a -delta)", test_name);
-#endif
}
template <class T>
@@ -168,10 +184,8 @@
//
result = boost::math::tools::test(
data,
- boost::lambda::bind(funcp,
- boost::lambda::ret<value_type>(boost::lambda::_1[0]),
- boost::lambda::ret<value_type>(boost::lambda::_1[1])),
- boost::lambda::ret<value_type>(boost::lambda::_1[2]));
+ bind_func(funcp, 0, 1),
+ extract_result(2));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::tgamma_ratio(a, b)", test_name);
}
@@ -201,6 +215,7 @@
int test_main(int, char* [])
{
+ BOOST_MATH_CONTROL_FP;
expected_results();
#ifndef BOOST_MATH_BUGGY_LARGE_FLOAT_CONSTANTS
Modified: sandbox/math_toolkit/libs/math/test/test_uniform.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_uniform.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_uniform.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -18,13 +18,13 @@
#include <boost/test/floating_point_comparison.hpp>
#include <boost/math/distributions/uniform.hpp>
- using boost::math::uniform_distribution;
+ using boost::math::uniform_distribution;
#include <boost/math/tools/test.hpp>
#include <iostream>
- using std::cout;
- using std::endl;
- using std::setprecision;
+ using std::cout;
+ using std::endl;
+ using std::setprecision;
#include <limits>
using std::numeric_limits;
@@ -36,27 +36,27 @@
uniform_distribution<RealType>(lower, upper), // distribution.
x), // random variable.
p, // probability.
- tol); // tolerance.
+ tol); // tolerance.
BOOST_CHECK_CLOSE_FRACTION(
::boost::math::cdf(
complement(
uniform_distribution<RealType>(lower, upper), // distribution.
x)), // random variable.
q, // probability complement.
- tol); // tolerance.
+ tol); // tolerance.
BOOST_CHECK_CLOSE_FRACTION(
::boost::math::quantile(
uniform_distribution<RealType>(lower, upper), // distribution.
p), // probability.
x, // random variable.
- tol); // tolerance.
+ tol); // tolerance.
BOOST_CHECK_CLOSE_FRACTION(
::boost::math::quantile(
complement(
uniform_distribution<RealType>(lower, upper), // distribution.
q)), // probability complement.
x, // random variable.
- tol); // tolerance.
+ tol); // tolerance.
} // void check_uniform
template <class RealType>
@@ -70,8 +70,8 @@
//
// Tolerance is just over 5 decimal digits expressed as a fraction:
// that's the limit of the test data.
- RealType tolerance = 2e-5f;
- cout << "Tolerance for type " << typeid(RealType).name() << " is " << tolerance << "." << endl;
+ RealType tolerance = 2e-5f;
+ cout << "Tolerance for type " << typeid(RealType).name() << " is " << tolerance << "." << endl;
using std::exp;
@@ -283,7 +283,7 @@
tolerance = (std::max)(
boost::math::tools::epsilon<RealType>(),
static_cast<RealType>(boost::math::tools::epsilon<double>())) * 5; // 5 eps as a fraction.
- cout << "Tolerance (as fraction) for type " << typeid(RealType).name() << " is " << tolerance << "." << endl;
+ cout << "Tolerance (as fraction) for type " << typeid(RealType).name() << " is " << tolerance << "." << endl;
uniform_distribution<RealType> distu01(0, 1);
RealType x = static_cast<RealType>(0.5);
using namespace std; // ADL of std names.
@@ -375,7 +375,7 @@
// == uniform_distribution<double> unistd;
BOOST_CHECK_EQUAL(unistd.lower(), 0); // Check defaults.
BOOST_CHECK_EQUAL(unistd.upper(), 1);
- uniform_distribution<> myu01(0, 1); // Using default RealType double.
+ uniform_distribution<> myu01(0, 1); // Using default RealType double.
BOOST_CHECK_EQUAL(myu01.lower(), 0); // Check defaults again.
BOOST_CHECK_EQUAL(myu01.upper(), 1);
@@ -393,7 +393,7 @@
BOOST_CHECK_THROW(uniform_distribution<> zinf(0, +std::numeric_limits<double>::infinity()), std::domain_error); // zero to infinity using default RealType double.
- uniform_distribution<> zmax(0, +(std::numeric_limits<double>::max)()); // zero to max using default RealType double.
+ uniform_distribution<> zmax(0, +(std::numeric_limits<double>::max)()); // zero to max using default RealType double.
BOOST_CHECK_EQUAL(zmax.lower(), 0); // Check defaults again.
BOOST_CHECK_EQUAL(zmax.upper(), +(std::numeric_limits<double>::max)());
@@ -409,8 +409,8 @@
BOOST_CHECK_THROW(uniform_distribution<> zNaN(0, std::numeric_limits<double>::quiet_NaN()), std::domain_error);
BOOST_CHECK_THROW(pdf(unistd, std::numeric_limits<double>::quiet_NaN()), std::domain_error);
- // Basic sanity-check spot values.
- // (Parameter value, arbitrarily zero, only communicates the floating point type).
+ // Basic sanity-check spot values.
+ // (Parameter value, arbitrarily zero, only communicates the floating point type).
test_spots(0.0F); // Test float. OK at decdigits = 0 tolerance = 0.0001 %
test_spots(0.0); // Test double. OK at decdigits 7, tolerance = 1e07 %
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
Modified: sandbox/math_toolkit/libs/math/test/test_weibull.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/test_weibull.cpp (original)
+++ sandbox/math_toolkit/libs/math/test/test_weibull.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -13,13 +13,13 @@
#include <boost/test/floating_point_comparison.hpp>
#include <boost/math/distributions/weibull.hpp>
- using boost::math::weibull_distribution;
+ using boost::math::weibull_distribution;
#include <boost/math/tools/test.hpp>
#include <iostream>
- using std::cout;
- using std::endl;
- using std::setprecision;
+ using std::cout;
+ using std::endl;
+ using std::setprecision;
#include <limits>
using std::numeric_limits;
@@ -31,27 +31,27 @@
weibull_distribution<RealType>(shape, scale), // distribution.
x), // random variable.
p, // probability.
- tol); // %tolerance.
+ tol); // %tolerance.
BOOST_CHECK_CLOSE(
::boost::math::cdf(
complement(
weibull_distribution<RealType>(shape, scale), // distribution.
x)), // random variable.
q, // probability complement.
- tol); // %tolerance.
+ tol); // %tolerance.
BOOST_CHECK_CLOSE(
::boost::math::quantile(
weibull_distribution<RealType>(shape, scale), // distribution.
p), // probability.
x, // random variable.
- tol); // %tolerance.
+ tol); // %tolerance.
BOOST_CHECK_CLOSE(
::boost::math::quantile(
complement(
weibull_distribution<RealType>(shape, scale), // distribution.
q)), // probability complement.
x, // random variable.
- tol); // %tolerance.
+ tol); // %tolerance.
}
template <class RealType>
@@ -65,8 +65,8 @@
//
// Tolerance is just over 5 decimal digits expressed as a persentage:
// that's the limit of the test data.
- RealType tolerance = 2e-5f * 100;
- cout << "Tolerance for type " << typeid(RealType).name() << " is " << tolerance << " %" << endl;
+ RealType tolerance = 2e-5f * 100;
+ cout << "Tolerance for type " << typeid(RealType).name() << " is " << tolerance << " %" << endl;
using std::exp;
@@ -251,7 +251,7 @@
tolerance = (std::max)(
boost::math::tools::epsilon<RealType>(),
static_cast<RealType>(boost::math::tools::epsilon<double>())) * 5 * 100; // 5 eps as a percentage
- cout << "Tolerance for type " << typeid(RealType).name() << " is " << tolerance << " %" << endl;
+ cout << "Tolerance for type " << typeid(RealType).name() << " is " << tolerance << " %" << endl;
weibull_distribution<RealType> dist(2, 3);
RealType x = static_cast<RealType>(0.125);
using namespace std; // ADL of std names.
@@ -334,10 +334,10 @@
// Check that can construct weibull distribution using the two convenience methods:
using namespace boost::math;
weibull myw1(2); // Using typedef
- weibull_distribution<> myw2(2); // Using default RealType double.
+ weibull_distribution<> myw2(2); // Using default RealType double.
- // Basic sanity-check spot values.
- // (Parameter value, arbitrarily zero, only communicates the floating point type).
+ // Basic sanity-check spot values.
+ // (Parameter value, arbitrarily zero, only communicates the floating point type).
test_spots(0.0F); // Test float. OK at decdigits = 0 tolerance = 0.0001 %
test_spots(0.0); // Test double. OK at decdigits 7, tolerance = 1e07 %
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
Modified: sandbox/math_toolkit/libs/math/test/tgamma_delta_ratio_data.ipp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/tgamma_delta_ratio_data.ipp (original)
+++ sandbox/math_toolkit/libs/math/test/tgamma_delta_ratio_data.ipp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,3 +1,8 @@
+// (C) Copyright John Maddock 2006-7.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
#define SC_(x) static_cast<T>(BOOST_JOIN(x, L))
static const boost::array<boost::array<T, 4>, 560> tgamma_delta_ratio_data = { {
{ SC_(0.2585242462158203125e2), SC_(0.5408298164866209845058619976043701171875e-7), SC_(0.9999998251530248995276873521622051469349e0), SC_(0.1000000174847005556584935896873247717521e1) },
Modified: sandbox/math_toolkit/libs/math/test/tgamma_delta_ratio_int.ipp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/tgamma_delta_ratio_int.ipp (original)
+++ sandbox/math_toolkit/libs/math/test/tgamma_delta_ratio_int.ipp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,3 +1,8 @@
+// (C) Copyright John Maddock 2006-7.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
#define SC_(x) static_cast<T>(BOOST_JOIN(x, L))
static const boost::array<boost::array<T, 4>, 344> tgamma_delta_ratio_int = { {
{ SC_(0.24302618503570556640625e1), SC_(0.1e1), SC_(0.4114782939349022594054088894256271572472e0), SC_(0.14302618503570556640625e1) },
Modified: sandbox/math_toolkit/libs/math/test/tgamma_delta_ratio_int2.ipp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/tgamma_delta_ratio_int2.ipp (original)
+++ sandbox/math_toolkit/libs/math/test/tgamma_delta_ratio_int2.ipp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,3 +1,8 @@
+// (C) Copyright John Maddock 2006-7.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
#define SC_(x) static_cast<T>(BOOST_JOIN(x, L))
static const boost::array<boost::array<T, 4>, 190> tgamma_delta_ratio_int2 = { {
{ SC_(0.11e2), SC_(0.1e2), SC_(0.1491552059147518383844493235618106619139e-11), SC_(0.36288e7) },
Modified: sandbox/math_toolkit/libs/math/test/tgamma_ratio_data.ipp
==============================================================================
--- sandbox/math_toolkit/libs/math/test/tgamma_ratio_data.ipp (original)
+++ sandbox/math_toolkit/libs/math/test/tgamma_ratio_data.ipp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,3 +1,8 @@
+// (C) Copyright John Maddock 2006-7.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
#define SC_(x) static_cast<T>(BOOST_JOIN(x, L))
static const boost::array<boost::array<T, 3>, 400> tgamma_ratio_data = { {
{ SC_(6.68193912506103515625), SC_(6.68193912506103515625), SC_(1) },
Modified: sandbox/math_toolkit/libs/math/tools/ellint_e_data.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/tools/ellint_e_data.cpp (original)
+++ sandbox/math_toolkit/libs/math/tools/ellint_e_data.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,3 +1,8 @@
+// (C) Copyright John Maddock 2007.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
#include <boost/math/bindings/rr.hpp>
#include <boost/math/tools/test_data.hpp>
#include <boost/test/included/test_exec_monitor.hpp>
Modified: sandbox/math_toolkit/libs/math/tools/ellint_f_data.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/tools/ellint_f_data.cpp (original)
+++ sandbox/math_toolkit/libs/math/tools/ellint_f_data.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,3 +1,8 @@
+// (C) Copyright John Maddock 2007.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
#include <boost/math/bindings/rr.hpp>
#include <boost/math/tools/test_data.hpp>
#include <boost/test/included/test_exec_monitor.hpp>
Modified: sandbox/math_toolkit/libs/math/tools/ellint_k_data.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/tools/ellint_k_data.cpp (original)
+++ sandbox/math_toolkit/libs/math/tools/ellint_k_data.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,3 +1,8 @@
+// (C) Copyright John Maddock 2007.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
#include <boost/math/bindings/rr.hpp>
#include <boost/math/tools/test_data.hpp>
#include <boost/test/included/test_exec_monitor.hpp>
Modified: sandbox/math_toolkit/libs/math/tools/factorial_tables.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/tools/factorial_tables.cpp (original)
+++ sandbox/math_toolkit/libs/math/tools/factorial_tables.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,3 +1,7 @@
+// (C) Copyright John Maddock 2007.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/math/bindings/rr.hpp>
#include <boost/limits.hpp>
Modified: sandbox/math_toolkit/libs/math/tools/generate_rational_test.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/tools/generate_rational_test.cpp (original)
+++ sandbox/math_toolkit/libs/math/tools/generate_rational_test.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,3 +1,7 @@
+// (C) Copyright John Maddock 2007.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#define BOOST_MATH_POLY_METHOD 0
#define BOOST_MATH_RATIONAL_METHOD 0
Modified: sandbox/math_toolkit/libs/math/tools/hermite_data.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/tools/hermite_data.cpp (original)
+++ sandbox/math_toolkit/libs/math/tools/hermite_data.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,3 +1,7 @@
+// (C) Copyright John Maddock 2007.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/math/bindings/rr.hpp>
#include <boost/math/tools/test_data.hpp>
Modified: sandbox/math_toolkit/libs/math/tools/laguerre_data.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/tools/laguerre_data.cpp (original)
+++ sandbox/math_toolkit/libs/math/tools/laguerre_data.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,3 +1,7 @@
+// (C) Copyright John Maddock 2007.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/math/bindings/rr.hpp>
#include <boost/math/tools/test_data.hpp>
Modified: sandbox/math_toolkit/libs/math/tools/legendre_data.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/tools/legendre_data.cpp (original)
+++ sandbox/math_toolkit/libs/math/tools/legendre_data.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,3 +1,7 @@
+// (C) Copyright John Maddock 2007.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/math/bindings/rr.hpp>
#include <boost/math/tools/test_data.hpp>
Modified: sandbox/math_toolkit/libs/math/tools/rational_tests.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/tools/rational_tests.cpp (original)
+++ sandbox/math_toolkit/libs/math/tools/rational_tests.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,3 +1,7 @@
+// (C) Copyright John Maddock 2007.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/math/bindings/rr.hpp>
#include <boost/tr1/random.hpp>
Modified: sandbox/math_toolkit/libs/math/tools/spherical_harmonic_data.cpp
==============================================================================
--- sandbox/math_toolkit/libs/math/tools/spherical_harmonic_data.cpp (original)
+++ sandbox/math_toolkit/libs/math/tools/spherical_harmonic_data.cpp 2007-10-18 14:05:13 EDT (Thu, 18 Oct 2007)
@@ -1,3 +1,7 @@
+// (C) Copyright John Maddock 2007.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/math/bindings/rr.hpp>
#include <boost/math/tools/test_data.hpp>
Boost-Commit list run by bdawes at acm.org, david.abrahams at rcn.com, gregod at cs.rpi.edu, cpdaniel at pacbell.net, john at johnmaddock.co.uk