|
Boost-Commit : |
From: john_at_[hidden]
Date: 2008-02-21 06:54:00
Author: johnmaddock
Date: 2008-02-21 06:53:59 EST (Thu, 21 Feb 2008)
New Revision: 43347
URL: http://svn.boost.org/trac/boost/changeset/43347
Log:
Update main overview page.
Text files modified:
trunk/libs/math/doc/html/index.html | 279 ++++++++++++++++++++++++---------------
trunk/libs/math/doc/math.qbk | 94 +++++++++---
2 files changed, 238 insertions(+), 135 deletions(-)
Modified: trunk/libs/math/doc/html/index.html
==============================================================================
--- trunk/libs/math/doc/html/index.html (original)
+++ trunk/libs/math/doc/html/index.html 2008-02-21 06:53:59 EST (Thu, 21 Feb 2008)
@@ -3,7 +3,7 @@
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<title>Boost.Math</title>
<link rel="stylesheet" href="../../../../doc/html/boostbook.css" type="text/css">
-<meta name="generator" content="DocBook XSL Stylesheets V1.66.1">
+<meta name="generator" content="DocBook XSL Stylesheets Vsnapshot_2006-12-17_0120">
<link rel="start" href="index.html" title="Boost.Math">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
@@ -11,8 +11,8 @@
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../boost.png"></td>
<td align="center">Home</td>
<td align="center">Libraries</td>
-<td align="center">People</td>
-<td align="center">FAQ</td>
+<td align="center">People</td>
+<td align="center">FAQ</td>
<td align="center">More</td>
</tr></table>
<hr>
@@ -25,7 +25,7 @@
<div><p class="copyright">Copyright © 2007 Paul A. Bristow, Hubert Holin, John Maddock, Daryle
Walker and Xiaogang Zhang</p></div>
<div><div class="legalnotice">
-<a name="id385767"></a><p>
+<a name="id437673"></a><p>
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
</p>
@@ -34,7 +34,7 @@
<hr>
</div>
<p>
- The following mathematical libraries are present in Boost:
+ The following libraries are present in Boost.Math:
</p>
<div class="informaltable"><table class="table">
<colgroup>
@@ -57,96 +57,63 @@
<tr>
<td>
<p>
- <a href="../complex/html/index.html" target="_top">Complex Number Inverse Trigonometric
- Functions</a>
+ Complex Number Inverse Trigonometric Functions
</p>
- </td>
-<td>
<p>
- These complex number algorithms are the inverses of trigonometric functions
- currently present in the C++ standard. Equivalents to these functions
- are part of the C99 standard, and are part of the <a href="http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1836.pdf" target="_top">Technical
- Report on C++ Library Extensions</a>.
+ HTML Docs
</p>
- </td>
-</tr>
-<tr>
-<td>
<p>
- <a href="../gcd/html/index.html" target="_top">Greatest Common Divisor and Least
- Common Multiple</a>
+ <a href="http:svn.boost.org/svn/boost/sandbox/pdf/math/release/complex-tr1.pdf" target="_top">PDF
+ Docs</a>
</p>
</td>
<td>
<p>
- The class and function templates in <boost/math/common_factor.hpp>
- provide run-time and compile-time evaluation of the greatest common divisor
- (GCD) or least common multiple (LCM) of two integers. These facilities
- are useful for many numeric-oriented generic programming problems.
- </p>
- </td>
-</tr>
-<tr>
-<td>
- <p>
- Integer
- </p>
- </td>
-<td>
- <p>
- Headers to ease dealing with integral types.
+ These complex number algorithms are the inverses of trigonometric functions
+ currently present in the C++ standard. Equivalents to these functions
+ are part of the C99 standard, and are part of the <a href="http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1836.pdf" target="_top">Technical
+ Report on C++ Library Extensions</a>.
</p>
</td>
</tr>
<tr>
<td>
<p>
- Interval
+ Greatest Common Divisor and Least Common Multiple
</p>
- </td>
-<td>
<p>
- As implied by its name, this library is intended to help manipulating
- mathematical intervals. It consists of a single header <boost/numeric/interval.hpp>
- and principally a type which can be used as interval<T>.
+ HTML Docs
</p>
- </td>
-</tr>
-<tr>
-<td>
<p>
- Multi Array
+ <a href="http:svn.boost.org/svn/boost/sandbox/pdf/math/release/math-gcd.pdf" target="_top">PDF
+ Docs</a>
</p>
</td>
<td>
<p>
- Boost.MultiArray provides a generic N-dimensional array concept definition
- and common implementations of that interface.
+ The class and function templates in <boost/math/common_factor.hpp>
+ provide run-time and compile-time evaluation of the greatest common divisor
+ (GCD) or least common multiple (LCM) of two integers. These facilities
+ are useful for many numeric-oriented generic programming problems.
</p>
</td>
</tr>
<tr>
<td>
<p>
- Numeric.Conversion
+ Octonions
</p>
- </td>
-<td>
<p>
- The Boost Numeric Conversion library is a collection of tools to describe
- and perform conversions between values of different numeric types.
+ HTML Docs
</p>
- </td>
-</tr>
-<tr>
-<td>
<p>
- Octonions
+ <a href="http:svn.boost.org/svn/boost/sandbox/pdf/math/release/octonion.pdf" target="_top">PDF
+ Docs</a>
</p>
</td>
<td>
<p>
- Octonions, like quaternions,
+ Octonions, like quaternions,
are a relative of complex numbers.
</p>
<p>
@@ -154,22 +121,22 @@
</p>
<p>
In practical terms, an octonion is simply an octuple of real numbers
- (α,β,γ,δ,ε,ζ,η,θ), which we can write in the form <span class="emphasis"><em><tt class="literal">o = α + βi + γj + δk + εe' + ζi' + ηj' + θk'</tt></em></span>,
- where <span class="emphasis"><em><tt class="literal">i</tt></em></span>, <span class="emphasis"><em><tt class="literal">j</tt></em></span>
- and <span class="emphasis"><em><tt class="literal">k</tt></em></span> are the same objects as
- for quaternions, and <span class="emphasis"><em><tt class="literal">e'</tt></em></span>, <span class="emphasis"><em><tt class="literal">i'</tt></em></span>,
- <span class="emphasis"><em><tt class="literal">j'</tt></em></span> and <span class="emphasis"><em><tt class="literal">k'</tt></em></span>
+ (α,β,γ,δ,ε,ζ,η,θ), which we can write in the form <span class="emphasis"><em><code class="literal">o = α + βi + γj + δk + εe' + ζi' + ηj' + θk'</code></em></span>,
+ where <span class="emphasis"><em><code class="literal">i</code></em></span>, <span class="emphasis"><em><code class="literal">j</code></em></span>
+ and <span class="emphasis"><em><code class="literal">k</code></em></span> are the same objects as
+ for quaternions, and <span class="emphasis"><em><code class="literal">e'</code></em></span>, <span class="emphasis"><em><code class="literal">i'</code></em></span>,
+ <span class="emphasis"><em><code class="literal">j'</code></em></span> and <span class="emphasis"><em><code class="literal">k'</code></em></span>
are distinct objects which play essentially the same kind of role as
- <span class="emphasis"><em><tt class="literal">i</tt></em></span> (or <span class="emphasis"><em><tt class="literal">j</tt></em></span>
- or <span class="emphasis"><em><tt class="literal">k</tt></em></span>).
+ <span class="emphasis"><em><code class="literal">i</code></em></span> (or <span class="emphasis"><em><code class="literal">j</code></em></span>
+ or <span class="emphasis"><em><code class="literal">k</code></em></span>).
</p>
<p>
Addition and a multiplication is defined on the set of octonions, which
generalize their quaternionic counterparts. The main novelty this time
- is that <span class="bold"><b>the multiplication is not only not commutative,
- is now not even associative</b></span> (i.e. there are quaternions <span class="emphasis"><em><tt class="literal">x</tt></em></span>,
- <span class="emphasis"><em><tt class="literal">y</tt></em></span> and <span class="emphasis"><em><tt class="literal">z</tt></em></span>
- such that <span class="emphasis"><em><tt class="literal">x(yz) ≠ (xy)z</tt></em></span>). A way
+ is that <span class="bold"><strong>the multiplication is not only not commutative,
+ is now not even associative</strong></span> (i.e. there are quaternions <span class="emphasis"><em><code class="literal">x</code></em></span>,
+ <span class="emphasis"><em><code class="literal">y</code></em></span> and <span class="emphasis"><em><code class="literal">z</code></em></span>
+ such that <span class="emphasis"><em><code class="literal">x(yz) ≠ (xy)z</code></em></span>). A way
of remembering things is by using the following multiplication table:
</p>
<p>
@@ -192,22 +159,14 @@
<tr>
<td>
<p>
- Operators
+ Special Functions
</p>
- </td>
-<td>
<p>
- The header <boost/operators.hpp> supplies several sets of class
- templates (in namespace boost). These templates define operators at namespace
- scope in terms of a minimal number of fundamental operators provided
- by the class.
+ HTML Docs
</p>
- </td>
-</tr>
-<tr>
-<td>
<p>
- Special Functions
+ <a href="http:svn.boost.org/svn/boost/sandbox/pdf/math/release/math.pdf" target="_top">PDF
+ Docs</a>
</p>
</td>
<td>
@@ -236,7 +195,14 @@
<tr>
<td>
<p>
- Statistical Distributions
+ Statistical Distributions
+ </p>
+ <p>
+ HTML Docs
+ </p>
+ <p>
+ <a href="http:svn.boost.org/svn/boost/sandbox/pdf/math/release/math.pdf" target="_top">PDF
+ Docs</a>
</p>
</td>
<td>
@@ -258,7 +224,14 @@
<tr>
<td>
<p>
- Quaternions
+ Quaternions
+ </p>
+ <p>
+ HTML Docs
+ </p>
+ <p>
+ <a href="http:svn.boost.org/svn/boost/sandbox/pdf/math/release/quaternion.pdf" target="_top">PDF
+ Docs</a>
</p>
</td>
<td>
@@ -268,41 +241,41 @@
<p>
Quaternions are in fact part of a small hierarchy of structures built
upon the real numbers, which comprise only the set of real numbers (traditionally
- named <span class="emphasis"><em><span class="bold"><b>R</b></span></em></span>), the set
- of complex numbers (traditionally named <span class="emphasis"><em><span class="bold"><b>C</b></span></em></span>),
- the set of quaternions (traditionally named <span class="emphasis"><em><span class="bold"><b>H</b></span></em></span>)
- and the set of octonions (traditionally named <span class="emphasis"><em><span class="bold"><b>O</b></span></em></span>),
+ named <span class="emphasis"><em><span class="bold"><strong>R</strong></span></em></span>), the set
+ of complex numbers (traditionally named <span class="emphasis"><em><span class="bold"><strong>C</strong></span></em></span>),
+ the set of quaternions (traditionally named <span class="emphasis"><em><span class="bold"><strong>H</strong></span></em></span>)
+ and the set of octonions (traditionally named <span class="emphasis"><em><span class="bold"><strong>O</strong></span></em></span>),
which possess interesting mathematical properties (chief among which
is the fact that they are <span class="emphasis"><em>division algebras</em></span>, <span class="emphasis"><em>i.e.</em></span>
- where the following property is true: if <span class="emphasis"><em><tt class="literal">y</tt></em></span>
- is an element of that algebra and is <span class="bold"><b>not equal
- to zero</b></span>, then <span class="emphasis"><em><tt class="literal">yx = yx'</tt></em></span>,
- where <span class="emphasis"><em><tt class="literal">x</tt></em></span> and <span class="emphasis"><em><tt class="literal">x'</tt></em></span>
- denote elements of that algebra, implies that <span class="emphasis"><em><tt class="literal">x =
- x'</tt></em></span>). Each member of the hierarchy is a super-set
+ where the following property is true: if <span class="emphasis"><em><code class="literal">y</code></em></span>
+ is an element of that algebra and is <span class="bold"><strong>not equal
+ to zero</strong></span>, then <span class="emphasis"><em><code class="literal">yx = yx'</code></em></span>,
+ where <span class="emphasis"><em><code class="literal">x</code></em></span> and <span class="emphasis"><em><code class="literal">x'</code></em></span>
+ denote elements of that algebra, implies that <span class="emphasis"><em><code class="literal">x =
+ x'</code></em></span>). Each member of the hierarchy is a super-set
of the former.
</p>
<p>
One of the most important aspects of quaternions is that they provide
- an efficient way to parameterize rotations in <span class="emphasis"><em><span class="bold"><b>R<sup>3</sup></b></span></em></span>
- (the usual three-dimensional space) and <span class="emphasis"><em><span class="bold"><b>R<sup>4</sup></b></span></em></span>.
+ an efficient way to parameterize rotations in <span class="emphasis"><em><span class="bold"><strong>R<sup>3</sup></strong></span></em></span>
+ (the usual three-dimensional space) and <span class="emphasis"><em><span class="bold"><strong>R<sup>4</sup></strong></span></em></span>.
</p>
<p>
In practical terms, a quaternion is simply a quadruple of real numbers
- (α,β,γ,δ), which we can write in the form <span class="emphasis"><em><tt class="literal">q = α + βi + γj + δk</tt></em></span>,
- where <span class="emphasis"><em><tt class="literal">i</tt></em></span> is the same object as
- for complex numbers, and <span class="emphasis"><em><tt class="literal">j</tt></em></span> and
- <span class="emphasis"><em><tt class="literal">k</tt></em></span> are distinct objects which
- play essentially the same kind of role as <span class="emphasis"><em><tt class="literal">i</tt></em></span>.
+ (α,β,γ,δ), which we can write in the form <span class="emphasis"><em><code class="literal">q = α + βi + γj + δk</code></em></span>,
+ where <span class="emphasis"><em><code class="literal">i</code></em></span> is the same object as
+ for complex numbers, and <span class="emphasis"><em><code class="literal">j</code></em></span> and
+ <span class="emphasis"><em><code class="literal">k</code></em></span> are distinct objects which
+ play essentially the same kind of role as <span class="emphasis"><em><code class="literal">i</code></em></span>.
</p>
<p>
An addition and a multiplication is defined on the set of quaternions,
which generalize their real and complex counterparts. The main novelty
- here is that <span class="bold"><b>the multiplication is not commutative</b></span>
- (i.e. there are quaternions <span class="emphasis"><em><tt class="literal">x</tt></em></span>
- and <span class="emphasis"><em><tt class="literal">y</tt></em></span> such that <span class="emphasis"><em><tt class="literal">xy
- ≠ yx</tt></em></span>). A good mnemotechnical way of remembering things
- is by using the formula <span class="emphasis"><em><tt class="literal">i*i = j*j = k*k = -1</tt></em></span>.
+ here is that <span class="bold"><strong>the multiplication is not commutative</strong></span>
+ (i.e. there are quaternions <span class="emphasis"><em><code class="literal">x</code></em></span>
+ and <span class="emphasis"><em><code class="literal">y</code></em></span> such that <span class="emphasis"><em><code class="literal">xy
+ ≠ yx</code></em></span>). A good mnemotechnical way of remembering things
+ is by using the formula <span class="emphasis"><em><code class="literal">i*i = j*j = k*k = -1</code></em></span>.
</p>
<p>
Quaternions (and their kin) are described in far more details in this
@@ -315,6 +288,96 @@
</p>
</td>
</tr>
+</tbody>
+</table></div>
+<p>
+ The following Boost libraries are also mathematically oriented:
+ </p>
+<div class="informaltable"><table class="table">
+<colgroup>
+<col>
+<col>
+</colgroup>
+<thead><tr>
+<th>
+ <p>
+ Library
+ </p>
+ </th>
+<th>
+ <p>
+ Description
+ </p>
+ </th>
+</tr></thead>
+<tbody>
+<tr>
+<td>
+ <p>
+ Integer
+ </p>
+ </td>
+<td>
+ <p>
+ Headers to ease dealing with integral types.
+ </p>
+ </td>
+</tr>
+<tr>
+<td>
+ <p>
+ Interval
+ </p>
+ </td>
+<td>
+ <p>
+ As implied by its name, this library is intended to help manipulating
+ mathematical intervals. It consists of a single header <boost/numeric/interval.hpp>
+ and principally a type which can be used as interval<T>.
+ </p>
+ </td>
+</tr>
+<tr>
+<td>
+ <p>
+ Multi Array
+ </p>
+ </td>
+<td>
+ <p>
+ Boost.MultiArray provides a generic N-dimensional array concept definition
+ and common implementations of that interface.
+ </p>
+ </td>
+</tr>
+<tr>
+<td>
+ <p>
+ Numeric.Conversion
+ </p>
+ </td>
+<td>
+ <p>
+ The Boost Numeric Conversion library is a collection of tools to describe
+ and perform conversions between values of different numeric types.
+ </p>
+ </td>
+</tr>
+<tr>
+<td>
+ <p>
+ Operators
+ </p>
+ </td>
+<td>
+ <p>
+ The header <boost/operators.hpp> supplies several sets of class
+ templates (in namespace boost). These templates define operators at namespace
+ scope in terms of a minimal number of fundamental operators provided
+ by the class.
+ </p>
+ </td>
+</tr>
<tr>
<td>
<p>
@@ -363,8 +426,8 @@
</table></div>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
-<td align="left"><p><small>Last revised: October 16, 2007 at 17:32:28 +0800</small></p></td>
-<td align="right"><div class="copyright-footer"><small></small></div></td>
+<td align="left"><p><small>Last revised: February 10, 2008 at 09:55:03 +0000</small></p></td>
+<td align="right"><div class="copyright-footer"></div></td>
</tr></table>
<hr>
<div class="spirit-nav"></div>
Modified: trunk/libs/math/doc/math.qbk
==============================================================================
--- trunk/libs/math/doc/math.qbk (original)
+++ trunk/libs/math/doc/math.qbk 2008-02-21 06:53:59 EST (Thu, 21 Feb 2008)
@@ -27,19 +27,29 @@
[def __oct_not_equal ['[^x(yz) '''≠''' (xy)z]]]
[template tr1[] [@http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1836.pdf Technical Report on C++ Library Extensions]]
-The following mathematical libraries are present in Boost:
+The following libraries are present in Boost.Math:
[table
[[Library][Description]]
- [[[@../complex/html/index.html Complex Number Inverse Trigonometric Functions]]
+ [[Complex Number Inverse Trigonometric Functions
+
+ [@../complex/html/index.html HTML Docs]
+
+ [@http:svn.boost.org/svn/boost/sandbox/pdf/math/release/complex-tr1.pdf
+ PDF Docs]]
[
These complex number algorithms are the inverses of trigonometric functions currently
present in the C++ standard. Equivalents to these functions are part of the C99 standard, and
are part of the [tr1].
]]
- [[[@../gcd/html/index.html Greatest Common Divisor and Least Common Multiple]]
+ [[Greatest Common Divisor and Least Common Multiple
+
+ [@../gcd/html/index.html HTML Docs]
+
+ [@http:svn.boost.org/svn/boost/sandbox/pdf/math/release/math-gcd.pdf
+ PDF Docs]]
[
The class and function templates in <boost/math/common_factor.hpp>
provide run-time and compile-time evaluation of the greatest common divisor
@@ -48,24 +58,12 @@
programming problems.
]]
- [[[@../../../integer/index.html Integer]]
- [Headers to ease dealing with integral types.]]
+[[Octonions
- [[[@../../../numeric/interval/doc/interval.htm Interval]]
- [As implied by its name, this library is intended to help manipulating
- mathematical intervals. It consists of a single header
- <boost/numeric/interval.hpp> and principally a type which can be
- used as interval<T>. ]]
-
- [[[@../../../multi_array/doc/index.html Multi Array]]
- [Boost.MultiArray provides a generic N-dimensional array concept
- definition and common implementations of that interface.]]
+[@../octonion/html/index.html HTML Docs]
- [[[@../../../numeric/conversion/doc/index.html Numeric.Conversion]]
- [The Boost Numeric Conversion library is a collection of tools to
- describe and perform conversions between values of different numeric types.]]
-
-[[[@../octonion/html/index.html Octonions]]
+[@http:svn.boost.org/svn/boost/sandbox/pdf/math/release/octonion.pdf
+PDF Docs]]
[
Octonions, like [@../quaternion/html/index.html quaternions], are a relative of complex numbers.
@@ -95,13 +93,13 @@
since quite a long time ago).
]]
- [[[@../../../utility/operators.htm Operators]]
- [The header <boost/operators.hpp> supplies several sets of class
- templates (in namespace boost). These templates define operators at
- namespace scope in terms of a minimal number of fundamental
- operators provided by the class.]]
+[[Special Functions
+
+[@../sf_and_dist/html/index.html HTML Docs]
+
+[@http:svn.boost.org/svn/boost/sandbox/pdf/math/release/math.pdf
+PDF Docs]]
-[[[@../sf_and_dist/html/index.html Special Functions]]
[ Provides a number of high quality special functions, initially
these were concentrated on functions used in statistical applications
along with those in the Technical Report on C++ Library Extensions.
@@ -120,7 +118,13 @@
use with types with known-about significand (or mantissa)
sizes: typically float, double or long double. ]]
-[[[@../sf_and_dist/html/index.html Statistical Distributions]]
+[[Statistical Distributions
+
+[@../sf_and_dist/html/index.html HTML Docs]
+
+[@http:svn.boost.org/svn/boost/sandbox/pdf/math/release/math.pdf
+PDF Docs]]
+
[Provides a reasonably comprehensive set of statistical distributions,
upon which higher level statistical tests can be built.
@@ -131,7 +135,13 @@
A comprehensive tutorial is provided, along with a series of worked
examples illustrating how the library is used to conduct statistical tests. ]]
-[[[@../quaternion/html/index.html Quaternions]]
+[[Quaternions
+
+[@../quaternion/html/index.html HTML Docs]
+
+[@http:svn.boost.org/svn/boost/sandbox/pdf/math/release/quaternion.pdf
+PDF Docs]]
+
[
Quaternions are a relative of complex numbers.
@@ -169,6 +179,36 @@
a square root, do not.
]]
+]
+
+The following Boost libraries are also mathematically oriented:
+
+[table
+[[Library][Description]]
+
+ [[[@../../../integer/index.html Integer]]
+ [Headers to ease dealing with integral types.]]
+
+ [[[@../../../numeric/interval/doc/interval.htm Interval]]
+ [As implied by its name, this library is intended to help manipulating
+ mathematical intervals. It consists of a single header
+ <boost/numeric/interval.hpp> and principally a type which can be
+ used as interval<T>. ]]
+
+ [[[@../../../multi_array/doc/index.html Multi Array]]
+ [Boost.MultiArray provides a generic N-dimensional array concept
+ definition and common implementations of that interface.]]
+
+ [[[@../../../numeric/conversion/index.html Numeric.Conversion]]
+ [The Boost Numeric Conversion library is a collection of tools to
+ describe and perform conversions between values of different numeric types.]]
+
+ [[[@../../../utility/operators.htm Operators]]
+ [The header <boost/operators.hpp> supplies several sets of class
+ templates (in namespace boost). These templates define operators at
+ namespace scope in terms of a minimal number of fundamental
+ operators provided by the class.]]
+
[[[@../../../random/index.html Random]]
[Random numbers are useful in a variety of applications. The Boost
Random Number Library (Boost.Random for short) provides a vast variety
Boost-Commit list run by bdawes at acm.org, david.abrahams at rcn.com, gregod at cs.rpi.edu, cpdaniel at pacbell.net, john at johnmaddock.co.uk