|
Boost-Commit : |
From: dgregor_at_[hidden]
Date: 2008-05-08 12:21:52
Author: dgregor
Date: 2008-05-08 12:21:51 EDT (Thu, 08 May 2008)
New Revision: 45217
URL: http://svn.boost.org/trac/boost/changeset/45217
Log:
Conceptualize std::complex
Text files modified:
sandbox/committee/concepts/stdlib/clib-concepts.tex | 1
sandbox/committee/concepts/stdlib/clib-numerics.tex | 1335 ++++++++++++++++++++++++++++++++++++++-
sandbox/committee/concepts/stdlib/macros.tex | 4
3 files changed, 1273 insertions(+), 67 deletions(-)
Modified: sandbox/committee/concepts/stdlib/clib-concepts.tex
==============================================================================
--- sandbox/committee/concepts/stdlib/clib-concepts.tex (original)
+++ sandbox/committee/concepts/stdlib/clib-concepts.tex 2008-05-08 12:21:51 EDT (Thu, 08 May 2008)
@@ -1288,6 +1288,7 @@
: Regular<T>, LessThanComparable<T>, HasPlus<T>, HasMinus<T>, HasMultiply<T>, HasDivide<T>,
HasUnaryPlus<T>, HasNegate<T> {
T::T(long long);
+ @\addedCC{T::T(long double);}@
T& operator++(T&);
T operator++(T& t, int) { T tmp(t); ++t; return tmp; }
Modified: sandbox/committee/concepts/stdlib/clib-numerics.tex
==============================================================================
--- sandbox/committee/concepts/stdlib/clib-numerics.tex (original)
+++ sandbox/committee/concepts/stdlib/clib-numerics.tex 2008-05-08 12:21:51 EDT (Thu, 08 May 2008)
@@ -55,7 +55,8 @@
\paragraph*{Changes from N2574}
\begin{itemize}
-\item TODO
+\item Added concepts to \tcode{valarray} (\ref{numarray}).
+\item Added concepts for the transcendental operations (\ref{numeric.concepts}).
\end{itemize}
\end{titlepage}
@@ -81,7 +82,7 @@
\color{black}
\setcounter{chapter}{25}
-\rSec0[lib.numerics]{Numerics library}
+\rSec0[numerics]{Numerics library}
\begin{paras}
\pnum
@@ -95,23 +96,23 @@
\textit{n}-at-a-time)
arrays, generalized numeric algorithms,
and facilities included from the ISO C library,
-as summarized in Table~\ref{tab:numerics.lib.summary}.
+as summarized in Table~\ref{tab:numerics.summary}.
-\begin{libsumtab}{Numerics library summary}{tab:numerics.lib.summary}
-\ref{lib.numeric.concepts} \changedCC{Requirements}{Concepts} & \addedCC{\mbox{\tcode{<numeric_concepts>}}} \\ \rowsep
-\ref{lib.complex.numbers} Complex Numbers & \tcode{<complex>} \\ \rowsep
-\ref{lib.rand} \addedB{Random number generation} & \tcode{<random>} \\ \rowsep
-\ref{lib.numarray} Numeric arrays & \tcode{<valarray>} \\ \rowsep
-\ref{lib.numeric.ops} Generalized numeric operations & \tcode{<numeric>} \\ \rowsep
-\ref{lib.c.math} C library & \tcode{<cmath>} \\
+\begin{libsumtab}{Numerics library summary}{tab:numerics.summary}
+\ref{numeric.concepts} \changedCC{Requirements}{Concepts} & \addedCC{\mbox{\tcode{<numeric_concepts>}}} \\ \rowsep
+\ref{complex.numbers} Complex Numbers & \tcode{<complex>} \\ \rowsep
+\ref{rand} \addedB{Random number generation} & \tcode{<random>} \\ \rowsep
+\ref{numarray} Numeric arrays & \tcode{<valarray>} \\ \rowsep
+\ref{numeric.ops} Generalized numeric operations & \tcode{<numeric>} \\ \rowsep
+\ref{c.math} C library & \tcode{<cmath>} \\
& \tcode{<ctgmath>} \\
& \tcode{<tgmath.h>}\\
& \tcode{<cstdlib>} \\
\end{libsumtab}
-\rSec1[lib.numeric.concepts]{Numeric type concepts}
+\rSec1[numeric.concepts]{Numeric type concepts}
\index{concepts!numeric type}
-\editorial{The name of this section has been changed from ``Numeric type requirements'' to ``Numeric type concepts'', and the label has been changed from [lib.numeric.requirements] to [lib.numeric.concepts].}
+\editorial{The name of this section has been changed from ``Numeric type requirements'' to ``Numeric type concepts'', and the label has been changed from [numeric.requirements] to [numeric.concepts].}
\pnum
The
@@ -174,7 +175,7 @@
for a class, or if it fails to satisfy any of
the other conditions listed above, the programmer should use
\mbox{\tcode{vector}}\
-(\mbox{\ref{lib.vector}})\ instead of
+(\mbox{\ref{vector}})\ instead of
\mbox{\tcode{valarray}}\
for that class;
\mbox{\exitnote}}
@@ -207,6 +208,1209 @@
does not have any ordering operators.
\exitexample\
+\color{addclr}
+\synopsis{Header \tcode{<numeric_concepts>}\ synopsis}
+\begin{codeblock}
+namespace std {
+ auto concept HasAbs<typename T> @\textit{see below}@;
+ auto concept HasAcos<typename T> @\textit{see below}@;
+ auto concept HasAsin<typename T> @\textit{see below}@;
+ auto concept HasAtan<typename T> @\textit{see below}@;
+ auto concept HasAtan2<typename T> @\textit{see below}@;
+ auto concept HasCos<typename T> @\textit{see below}@;
+ auto concept HasCosh<typename T> @\textit{see below}@;
+ auto concept HasExp<typename T> @\textit{see below}@;
+ auto concept HasLog<typename T> @\textit{see below}@;
+ auto concept HasLog10<typename T> @\textit{see below}@;
+ auto concept HasPow<typename T> @\textit{see below}@;
+ auto concept HasSin<typename T> @\textit{see below}@;
+ auto concept HasSinh<typename T> @\textit{see below}@;
+ auto concept HasSqrt<typename T> @\textit{see below}@;
+ auto concept HasTan<typename T> @\textit{see below}@;
+ auto concept HasTanh<typename T> @\textit{see below}@;
+}
+\end{codeblock}
+
+\editorial{These transcendental concepts are here to support the
+ transcendental operations of \mbox{\tcode{valarray}} and
+ \mbox{\tcode{complex}}. They are separate concepts---rather than a
+ single \mbox{\tcode{Transcendental}} concept---because the
+ \mbox{\tcode{valarray}} versions in C++03 specifically require only
+ the corresponding operation.}
+
+\begin{itemdecl}
+auto concept HasAbs<typename T> {
+ T abs(const T&);
+}
+\end{itemdecl}
+
+\begin{itemdescr}
+\pnum
+\addedCC{\mbox{\reallynote} describes types for which an absolute value can be computed.}
+\end{itemdescr}
+
+\begin{itemdecl}
+auto concept HasAcos<typename T> {
+ T acos(const T&);
+}
+\end{itemdecl}
+
+\begin{itemdescr}
+\pnum
+\addedCC{\mbox{\reallynote} describes types for which an arc cosine.}
+\end{itemdescr}
+
+\begin{itemdecl}
+auto concept HasAsin<typename T> {
+ T asin(const T&);
+}
+\end{itemdecl}
+
+\begin{itemdescr}
+\pnum
+\addedCC{\mbox{\reallynote} describes types for which an arc sine can be computed.}
+\end{itemdescr}
+
+\begin{itemdecl}
+auto concept HasAtan<typename T> {
+ T atan(const T&);
+}
+\end{itemdecl}
+
+\begin{itemdescr}
+\pnum
+\addedCC{\mbox{\reallynote} describes types for which an arc tangent can be computed.}
+\end{itemdescr}
+
+\begin{itemdecl}
+auto concept HasAtan2<typename T> {
+ T atan2(const T& y, const T& x);
+}
+\end{itemdecl}
+
+\begin{itemdescr}
+\pnum
+\addedCC{\mbox{\reallynote} describes types for which an arc tangent can be computed from \mbox{\farg{y}}/\mbox{\farg{x}}.}
+\end{itemdescr}
+
+\begin{itemdecl}
+auto concept HasCos<typename T> {
+ T cos(const T&);
+}
+\end{itemdecl}
+
+\begin{itemdescr}
+\pnum
+\addedCC{\mbox{\reallynote} describes types for which a cosine can be computed.}
+\end{itemdescr}
+
+\begin{itemdecl}
+auto concept HasCosh<typename T> {
+ T cosh(const T&);
+}
+\end{itemdecl}
+
+\begin{itemdescr}
+\pnum
+\addedCC{\mbox{\reallynote} describes types for which a hyperbolic cosine can be computed.}
+\end{itemdescr}
+
+\begin{itemdecl}
+auto concept HasExp<typename T> {
+ T exp(const T&);
+}
+\end{itemdecl}
+
+\begin{itemdescr}
+\pnum
+\addedCC{\mbox{\reallynote} describes types for which the base-\mbox{\farg{e}} exponential can be computed.}
+\end{itemdescr}
+
+\begin{itemdecl}
+auto concept HasLog<typename T> {
+ T log(const T&);
+}
+\end{itemdecl}
+
+\begin{itemdescr}
+\pnum
+\addedCC{\mbox{\reallynote} describes types for which the natural logarithm can be computed.}
+\end{itemdescr}
+
+\begin{itemdecl}
+auto concept HasLog10<typename T> {
+ T log10(const T&);
+}
+\end{itemdecl}
+
+\begin{itemdescr}
+\pnum
+\addedCC{\mbox{\reallynote} describes types for which a base-10 logarithm can be computed.}
+\end{itemdescr}
+
+\begin{itemdecl}
+auto concept HasPow<typename T> {
+ T pow(const T& x, const T& y);
+}
+\end{itemdecl}
+
+\begin{itemdescr}
+\pnum
+\addedCC{\mbox{\reallynote} describes types for which the exponential \mbox{$\farg{x}^\farg{y}$} can be computed.}
+\end{itemdescr}
+
+\begin{itemdecl}
+auto concept HasSin<typename T> {
+ T sin(const T&);
+}
+\end{itemdecl}
+
+\begin{itemdescr}
+\pnum
+\addedCC{\mbox{\reallynote} describes types for which the sine can be computed.}
+\end{itemdescr}
+
+\begin{itemdecl}
+auto concept HasSinh<typename T> {
+ T sinh(const T&);
+}
+\end{itemdecl}
+
+\begin{itemdescr}
+\pnum
+\addedCC{\mbox{\reallynote} describes types for which the hyperbolic sine can be computed.}
+\end{itemdescr}
+
+\begin{itemdecl}
+auto concept HasSqrt<typename T> {
+ T sqrt(const T&);
+}
+\end{itemdecl}
+
+\begin{itemdescr}
+\pnum
+\addedCC{\mbox{\reallynote} describes types for which the square root can be computed.}
+\end{itemdescr}
+
+\begin{itemdecl}
+auto concept HasTan<typename T> {
+ T tan(const T&);
+}
+\end{itemdecl}
+
+\begin{itemdescr}
+\pnum
+\addedCC{\mbox{\reallynote} describes types for which the tangent can be computed.}
+\end{itemdescr}
+
+\begin{itemdecl}
+auto concept HasTanh<typename T> {
+ T tanh(const T&);
+}
+\end{itemdecl}
+
+\begin{itemdescr}
+\pnum
+\addedCC{\mbox{\reallynote} describes types for which the hyperbolic tangent can be computed.}
+\end{itemdescr}
+\color{black}
+
+\rSec1[complex.numbers]{Complex numbers}
+
+\pnum
+The header
+\index{complex@\tcode{<complex>}}%
+\tcode{<complex>}
+defines a
+class template,
+and numerous functions for representing and manipulating complex numbers.
+
+\pnum
+The effect of instantiating the template
+\tcode{complex}\
+for any type other than float, double or long double is unspecified.
+\addedCC{\mbox{\enternote} In addition, for some
+ \mbox{\tcode{complex}} operations the concept requirements are
+ unspecified. \mbox{\exitnote}}
+
+\pnum
+If the result of a function is not mathematically defined or not in
+the range of representable values for its type, the behavior is
+undefined.
+
+\rSec2[complex.synopsis]{Header \tcode{<complex>}\ synopsis}
+
+\index{complex@\tcode{<complex>}}%
+\begin{codeblock}
+namespace std {
+ template<@\changedCC{class}{ArithmeticLike}@ T> class complex;
+ template<> class complex<float>;
+ template<> class complex<double>;
+ template<> class complex<long double>;
+
+ // \ref{complex.ops} operators:
+ template<@\changedCC{class}{ArithmeticLike}@ T>
+ complex<T> operator+(const complex<T>&, const complex<T>&);
+ template<@\changedCC{class}{ArithmeticLike}@ T> complex<T> operator+(const complex<T>&, const T&);
+ template<@\changedCC{class}{ArithmeticLike}@ T> complex<T> operator+(const T&, const complex<T>&);
+
+ template<@\changedCC{class}{ArithmeticLike}@ T> complex<T> operator-
+ (const complex<T>&, const complex<T>&);
+ template<@\changedCC{class}{ArithmeticLike}@ T> complex<T> operator-(const complex<T>&, const T&);
+ template<@\changedCC{class}{ArithmeticLike}@ T> complex<T> operator-(const T&, const complex<T>&);
+
+ template<@\changedCC{class}{ArithmeticLike}@ T> complex<T> operator*
+ (const complex<T>&, const complex<T>&);
+ template<@\changedCC{class}{ArithmeticLike}@ T> complex<T> operator*(const complex<T>&, const T&);
+ template<@\changedCC{class}{ArithmeticLike}@ T> complex<T> operator*(const T&, const complex<T>&);
+
+ template<@\changedCC{class}{ArithmeticLike}@ T> complex<T> operator/
+ (const complex<T>&, const complex<T>&);
+ template<@\changedCC{class}{ArithmeticLike}@ T> complex<T> operator/(const complex<T>&, const T&);
+ template<@\changedCC{class}{ArithmeticLike}@ T> complex<T> operator/(const T&, const complex<T>&);
+
+ template<@\changedCC{class}{ArithmeticLike}@ T> complex<T> operator+(const complex<T>&);
+ template<@\changedCC{class}{ArithmeticLike}@ T> complex<T> operator-(const complex<T>&);
+
+ template<@\changedCC{class}{ArithmeticLike}@ T> bool operator==
+ (const complex<T>&, const complex<T>&);
+ template<@\changedCC{class}{ArithmeticLike}@ T> bool operator==(const complex<T>&, const T&);
+ template<@\changedCC{class}{ArithmeticLike}@ T> bool operator==(const T&, const complex<T>&);
+
+ template<@\changedCC{class}{ArithmeticLike}@ T> bool operator!=(const complex<T>&, const complex<T>&);
+ template<@\changedCC{class}{ArithmeticLike}@ T> bool operator!=(const complex<T>&, const T&);
+ template<@\changedCC{class}{ArithmeticLike}@ T> bool operator!=(const T&, const complex<T>&);
+
+ template<class T, class charT, class traits>
+ basic_istream<charT, traits>&
+ operator>>(basic_istream<charT, traits>&, complex<T>&);
+
+ template<class T, class charT, class traits>
+ basic_ostream<charT, traits>&
+ operator<<(basic_ostream<charT, traits>&, const complex<T>&);
+
+ // \ref{complex.value.ops} values:
+ template<@\changedCC{class}{ArithmeticLike}@ T> T real(const complex<T>&);
+ template<@\changedCC{class}{ArithmeticLike}@ T> T imag(const complex<T>&);
+
+ template<class T> @\addedCC{requires \mbox{\textit{unspecified}}}@ T abs(const complex<T>&);
+ template<class T> @\addedCC{requires \mbox{\textit{unspecified}}}@ T arg(const complex<T>&);
+ template<class T> @\addedCC{requires \mbox{\textit{unspecified}}}@ T norm(const complex<T>&);
+
+ template<class T> @\addedCC{requires \mbox{\textit{unspecified}}}@ complex<T> conj(const complex<T>&);
+ @\ptr_at_template<class T> @\addedCC{requires \mbox{\textit{unspecified}}}@ complex<T> fabs(const complex<T>&);
+ template<class T> @\addedCC{requires \mbox{\textit{unspecified}}}@ complex<T> polar(const T&, const T& = 0);
+
+ // \ref{complex.transcendentals} transcendentals:
+ template<class T> @\addedCC{requires \mbox{\textit{unspecified}}}@ complex<T> acos(const complex<T>&);
+ template<class T> @\addedCC{requires \mbox{\textit{unspecified}}}@ complex<T> asin(const complex<T>&);
+ template<class T> @\addedCC{requires \mbox{\textit{unspecified}}}@ complex<T> atan(const complex<T>&);
+
+ template<class T> @\addedCC{requires \mbox{\textit{unspecified}}}@ complex<T> acosh(const complex<T>&);
+ template<class T> @\addedCC{requires \mbox{\textit{unspecified}}}@ complex<T> asinh(const complex<T>&);
+ template<class T> @\addedCC{requires \mbox{\textit{unspecified}}}@ complex<T> atanh(const complex<T>&);
+
+ template<class T> @\addedCC{requires \mbox{\textit{unspecified}}}@ complex<T> cos (const complex<T>&);
+ template<class T> @\addedCC{requires \mbox{\textit{unspecified}}}@ complex<T> cosh (const complex<T>&);
+ template<class T> @\addedCC{requires \mbox{\textit{unspecified}}}@ complex<T> exp (const complex<T>&);
+ template<class T> @\addedCC{requires \mbox{\textit{unspecified}}}@ complex<T> log (const complex<T>&);
+ template<class T> @\addedCC{requires \mbox{\textit{unspecified}}}@ complex<T> log10(const complex<T>&);
+
+ template<class T> @\addedCC{requires \mbox{\textit{unspecified}}}@ complex<T> pow(const complex<T>&, int);
+ template<class T> @\addedCC{requires \mbox{\textit{unspecified}}}@ complex<T> pow(const complex<T>&, const T&);
+ template<class T> @\addedCC{requires \mbox{\textit{unspecified}}}@ complex<T> pow(const complex<T>&, const complex<T>&);
+ template<class T> @\addedCC{requires \mbox{\textit{unspecified}}}@ complex<T> pow(const T&, const complex<T>&);
+
+ template<class T> @\addedCC{requires \mbox{\textit{unspecified}}}@ complex<T> sin (const complex<T>&);
+ template<class T> @\addedCC{requires \mbox{\textit{unspecified}}}@ complex<T> sinh (const complex<T>&);
+ template<class T> @\addedCC{requires \mbox{\textit{unspecified}}}@ complex<T> sqrt (const complex<T>&);
+ template<class T> @\addedCC{requires \mbox{\textit{unspecified}}}@ complex<T> tan (const complex<T>&);
+ template<class T> @\addedCC{requires \mbox{\textit{unspecified}}}@ complex<T> tanh (const complex<T>&);
+
+}
+\end{codeblock}
+
+\rSec2[complex]{Class template \tcode{complex}}
+
+\index{complex@\tcode{complex}}%
+\begin{codeblock}
+namespace std {
+ template<@\changedCC{class}{ArithmeticLike}@ T>
+ class complex {
+ public:
+ typedef T value_type;
+
+ complex(const T& @\farg{re}@ = T(), const T& @\farg{im}@ = T());
+ complex(const complex&);
+ template<@\changedCC{class}{ArithmeticLike}@ X> @\addedCC{requires Constructible<T, X>}@
+ complex(const complex<X>&);
+
+ T real() const;
+ T imag() const;
+
+ complex<T>& operator= (const T&);
+ complex<T>& operator+=(const T&);
+ complex<T>& operator-=(const T&);
+ complex<T>& operator*=(const T&);
+ complex<T>& operator/=(const T&);
+
+ complex& operator=(const complex&);
+ template<@\changedCC{class}{ArithmeticLike}@ X> @\addedCC{requires Convertible<X, T>}@
+ complex<T>& operator= (const complex<X>&);
+ template<@\changedCC{class}{ArithmeticLike}@ X> @\addedCC{requires Convertible<X, T>}@
+ complex<T>& operator+=(const complex<X>&);
+ template<@\changedCC{class}{ArithmeticLike}@ X> @\addedCC{requires Convertible<X, T>}@
+ complex<T>& operator-=(const complex<X>&);
+ template<@\changedCC{class}{ArithmeticLike}@ X> @\addedCC{requires Convertible<X, T>}@
+ complex<T>& operator*=(const complex<X>&);
+ template<@\changedCC{class}{ArithmeticLike}@ X> @\addedCC{requires Convertible<X, T>}@
+ complex<T>& operator/=(const complex<X>&);
+ };
+
+}
+\end{codeblock}
+
+\pnum
+The class
+\tcode{complex}\
+describes an object that can
+store the Cartesian components,
+\tcode{real()}\
+and
+\tcode{imag()},
+of a complex
+number.
+
+\rSec2[complex.special]{\tcode{complex}\ specializations}
+
+\begin{codeblock}
+ template<> class complex<float> {
+ public:
+ typedef float value_type;
+
+ complex(float re = 0.0f, float im = 0.0f);
+ explicit complex(const complex<double>&);
+ explicit complex(const complex<long double>&);
+
+ float real() const;
+ float imag() const;
+
+ complex<float>& operator= (float);
+ complex<float>& operator+=(float);
+ complex<float>& operator-=(float);
+ complex<float>& operator*=(float);
+ complex<float>& operator/=(float);
+
+ complex<float>& operator=(const complex<float>&);
+ template<@\changedCC{class}{ArithmeticLike}@ X> @\addedCC{requires Convertible<X, float>}@
+ complex<float>& operator= (const complex<X>&);
+ template<@\changedCC{class}{ArithmeticLike}@ X> @\addedCC{requires Convertible<X, float>}@
+ complex<float>& operator+=(const complex<X>&);
+ template<@\changedCC{class}{ArithmeticLike}@ X> @\addedCC{requires Convertible<X, float>}@
+ complex<float>& operator-=(const complex<X>&);
+ template<@\changedCC{class}{ArithmeticLike}@ X> @\addedCC{requires Convertible<X, float>}@
+ complex<float>& operator*=(const complex<X>&);
+ template<@\changedCC{class}{ArithmeticLike}@ X> @\addedCC{requires Convertible<X, float>}@
+ complex<float>& operator/=(const complex<X>&);
+ };
+
+ template<> class complex<double> {
+ public:
+ typedef double value_type;
+
+ complex(double re = 0.0, double im = 0.0);
+ complex(const complex<float>&);
+ explicit complex(const complex<long double>&);
+
+ double real() const;
+ double imag() const;
+
+ complex<double>& operator= (double);
+ complex<double>& operator+=(double);
+ complex<double>& operator-=(double);
+ complex<double>& operator*=(double);
+ complex<double>& operator/=(double);
+
+ complex<double>& operator=(const complex<double>&);
+ template<@\changedCC{class}{ArithmeticLike}@ X> @\addedCC{requires Convertible<X, double>}@
+ complex<double>& operator= (const complex<X>&);
+ template<@\changedCC{class}{ArithmeticLike}@ X> @\addedCC{requires Convertible<X, double>}@
+ complex<double>& operator+=(const complex<X>&);
+ template<@\changedCC{class}{ArithmeticLike}@ X> @\addedCC{requires Convertible<X, double>}@
+ complex<double>& operator-=(const complex<X>&);
+ template<@\changedCC{class}{ArithmeticLike}@ X> @\addedCC{requires Convertible<X, double>}@
+ complex<double>& operator*=(const complex<X>&);
+ template<@\changedCC{class}{ArithmeticLike}@ X> @\addedCC{requires Convertible<X, double>}@
+ complex<double>& operator/=(const complex<X>&);
+ };
+
+ template<> class complex<long double> {
+ public:
+ typedef long double value_type;
+
+ complex(long double re = 0.0L, long double im = 0.0L);
+ complex(const complex<float>&);
+ complex(const complex<double>&);
+
+ long double real() const;
+ long double imag() const;
+
+ complex<long double>& operator=(const complex<long double>&);
+ complex<long double>& operator= (long double);
+ complex<long double>& operator+=(long double);
+ complex<long double>& operator-=(long double);
+ complex<long double>& operator*=(long double);
+ complex<long double>& operator/=(long double);
+
+ template<@\changedCC{class}{ArithmeticLike}@ X> @\addedCC{requires Convertible<X, long double>}@
+ complex<long double>& operator= (const complex<X>&);
+ template<@\changedCC{class}{ArithmeticLike}@ X> @\addedCC{requires Convertible<X, long double>}@
+ complex<long double>& operator+=(const complex<X>&);
+ template<@\changedCC{class}{ArithmeticLike}@ X> @\addedCC{requires Convertible<X, long double>}@
+ complex<long double>& operator-=(const complex<X>&);
+ template<@\changedCC{class}{ArithmeticLike}@ X> @\addedCC{requires Convertible<X, long double>}@
+ complex<long double>& operator*=(const complex<X>&);
+ template<@\changedCC{class}{ArithmeticLike}@ X> @\addedCC{requires Convertible<X, long double>}@
+ complex<long double>& operator/=(const complex<X>&);
+ };
+\end{codeblock}
+
+\rSec2[complex.members]{\tcode{complex}\ member functions}
+
+\index{complex@\tcode{complex}!\tcode{complex}}%
+\begin{itemdecl}
+template<@\changedCC{class}{ArithmeticLike}@ T> @\addedCC{requires Constructible<T, X>}@
+ complex(const T& @\farg{re}@ = T(), const T& @\farg{im}@ = T());
+\end{itemdecl}
+
+\begin{itemdescr}
+\pnum
+\effects\
+Constructs an object of class
+\tcode{complex}.
+
+\pnum
+\postcondition\
+\tcode{real() == \farg{re}\ \&\& imag() == \farg{im}}.
+\end{itemdescr}
+
+\rSec2[complex.member.ops]{\tcode{complex}\ member operators}
+
+\index{operator+=@\tcode{operator+=}!\tcode{complex}}%
+\begin{itemdecl}
+@\removedCC{template <class T>}@ complex<T>& operator+=(const T& @\farg{rhs}@);
+\end{itemdecl}
+
+\begin{itemdescr}
+\pnum
+\effects\
+Adds the scalar value \farg{rhs}\ to the real part of the complex value
+\tcode{*this}\
+and stores the result in the real part of
+\tcode{*this},
+leaving the imaginary part unchanged.
+
+\pnum
+\returns\
+\tcode{*this}.
+\end{itemdescr}
+
+\index{operator-=@\tcode{operator-=}!\tcode{complex}}%
+\begin{itemdecl}
+@\removedCC{template <class T>}@ complex<T>& operator-=(const T& @\farg{rhs}@);
+\end{itemdecl}
+
+\begin{itemdescr}
+\pnum
+\effects\
+Subtracts the scalar value \farg{rhs}\ from the real part of the complex value
+\tcode{*this}\
+and stores the result in the real part of
+\tcode{*this},
+leaving the imaginary part unchanged.
+
+\pnum
+\returns\
+\tcode{*this}.
+\end{itemdescr}
+
+\index{operator*=@\tcode{operator*=}!\tcode{complex}}%
+\begin{itemdecl}
+@\removedCC{template <class T>}@ complex<T>& operator*=(const T& @\farg{rhs}@);
+\end{itemdecl}
+
+\begin{itemdescr}
+\pnum
+\effects\
+Multiplies the scalar value \farg{rhs}\ by the complex value
+\tcode{*this}\
+and stores the result in
+\tcode{*this}.
+
+\pnum
+\returns\
+\tcode{*this}.
+\end{itemdescr}
+
+\index{operator/=@\tcode{operator/=}!\tcode{complex}}%
+\begin{itemdecl}
+@\removedCC{template <class T>}@ complex<T>& operator/=(const T& @\farg{rhs}@);
+\end{itemdecl}
+
+\begin{itemdescr}
+\pnum
+\effects\
+Divides the scalar value \farg{rhs}\ into the complex value
+\tcode{*this}\
+and stores the result in
+\tcode{*this}.
+
+\pnum
+\returns\
+\tcode{*this}.
+\end{itemdescr}
+
+\index{operator+=@\tcode{operator+=}!\tcode{complex}}%
+\begin{itemdecl}
+@\removedCC{template<class T>}@ complex<T>& operator+=(const complex<T>& @\farg{rhs}@);
+\end{itemdecl}
+
+\begin{itemdescr}
+\pnum
+\effects\
+Adds the complex value \farg{rhs}\ to the complex value
+\tcode{*this}\
+and stores the sum in
+\tcode{*this}.
+
+\pnum
+\returns\
+\tcode{*this}.
+\end{itemdescr}
+
+\index{operator-=@\tcode{operator-=}!\tcode{complex}}%
+\begin{itemdecl}
+@\removedCC{template<class T>}@ complex<T>& operator-=(const complex<T>& @\farg{rhs}@);
+\end{itemdecl}
+
+\begin{itemdescr}
+\pnum
+\effects\
+Subtracts the complex value \farg{rhs}\ from the complex value
+\tcode{*this}\
+and stores the difference in
+\tcode{*this}.
+
+\pnum
+\returns\
+\tcode{*this}.
+\end{itemdescr}
+
+\index{operator*=@\tcode{operator*=}!\tcode{complex}}%
+\begin{itemdecl}
+@\removedCC{template<class T>}@ complex<T>& operator*=(const complex<T>& @\farg{rhs}@);
+\end{itemdecl}
+
+\begin{itemdescr}
+\pnum
+\effects\
+Multiplies the complex value \farg{rhs}\ by the complex value
+\tcode{*this}\
+and stores the product in
+\tcode{*this}.
+
+\returns\
+\tcode{*this}.
+\end{itemdescr}
+
+\index{operator/=@\tcode{operator/=}!\tcode{complex}}%
+\begin{itemdecl}
+@\removedCC{template<class T>}@ complex<T>& operator/=(const complex<T>& @\farg{rhs}@);
+\end{itemdecl}
+
+\begin{itemdescr}
+\pnum
+\effects\
+Divides the complex value \farg{rhs}\ into the complex value
+\tcode{*this}\
+and stores the quotient in
+\tcode{*this}.
+
+\pnum
+\returns\
+\tcode{*this}.
+\end{itemdescr}
+
+\rSec2[complex.ops]{\tcode{complex}\ non-member operations}
+
+\index{operator+@\tcode{operator+}!\tcode{complex}}%
+\begin{itemdecl}
+template<@\changedCC{class}{ArithmeticLike}@ T> complex<T> operator+(const complex<T>& @\farg{lhs}@);
+\end{itemdecl}
+
+\begin{itemdescr}
+\pnum
+\notes\
+unary operator.
+
+\pnum
+\returns\
+\tcode{complex<T>(\farg{lhs})}.
+\end{itemdescr}
+
+\begin{codeblock}
+template<@\changedCC{class}{ArithmeticLike}@ T>
+ complex<T> operator+(const complex<T>& @\farg{lhs}@, const complex<T>& @\farg{rhs}@);
+template<@\changedCC{class}{ArithmeticLike}@ T> complex<T> operator+(const complex<T>& @\farg{lhs}@, const T& @\farg{rhs}@);
+template<@\changedCC{class}{ArithmeticLike}@ T> complex<T> operator+(const T& @\farg{lhs}@, const complex<T>& @\farg{rhs}@);
+\end{codeblock}
+
+\begin{itemdescr}
+\pnum
+\returns\
+\tcode{complex<T>(\farg{lhs}) += \farg{rhs}}.
+\end{itemdescr}
+
+\index{operator-@\tcode{operator-}!\tcode{complex}}%
+\begin{itemdecl}
+template<@\changedCC{class}{ArithmeticLike}@ T> complex<T> operator-(const complex<T>& @\farg{lhs}@);
+\end{itemdecl}
+
+\begin{itemdescr}
+\pnum
+\notes\
+unary operator.
+
+\pnum
+\returns\
+\tcode{complex<T>(-\farg{lhs}.real(),-\farg{lhs}.imag())}.
+\end{itemdescr}
+
+\begin{itemdecl}
+template<@\changedCC{class}{ArithmeticLike}@ T>
+ complex<T> operator-(const complex<T>& @\farg{lhs}@, const complex<T>& @\farg{rhs}@);
+template<@\changedCC{class}{ArithmeticLike}@ T> complex<T> operator-(const complex<T>& @\farg{lhs}@, const T& @\farg{rhs}@);
+template<@\changedCC{class}{ArithmeticLike}@ T> complex<T> operator-(const T& @\farg{lhs}@, const complex<T>& @\farg{rhs}@);
+\end{itemdecl}
+
+\begin{itemdescr}
+\pnum
+\returns\
+\tcode{complex<T>(\farg{lhs}) -= \farg{rhs}}.
+\end{itemdescr}
+
+\index{operator*@\tcode{operator*}!\tcode{complex}}%
+\begin{itemdecl}
+template<@\changedCC{class}{ArithmeticLike}@ T>
+ complex<T> operator*(const complex<T>& @\farg{lhs}@, const complex<T>& @\farg{rhs}@);
+template<@\changedCC{class}{ArithmeticLike}@ T> complex<T> operator*(const complex<T>& @\farg{lhs}@, const T& @\farg{rhs}@);
+template<@\changedCC{class}{ArithmeticLike}@ T> complex<T> operator*(const T& @\farg{lhs}@, const complex<T>& @\farg{rhs}@);
+\end{itemdecl}
+
+\begin{itemdescr}
+\pnum
+\returns\
+\tcode{complex<T>(\farg{lhs}) *= \farg{rhs}}.
+\end{itemdescr}
+
+\begin{itemdecl}
+template<@\changedCC{class}{ArithmeticLike}@ T>
+ complex<T> operator/(const complex<T>& @\farg{lhs}@, const complex<T>& @\farg{rhs}@);
+template<@\changedCC{class}{ArithmeticLike}@ T> complex<T> operator/(const complex<T>& @\farg{lhs}@, const T& @\farg{rhs}@);
+template<@\changedCC{class}{ArithmeticLike}@ T> complex<T> operator/(const T& @\farg{lhs}@, const complex<T>& @\farg{rhs}@);
+\end{itemdecl}
+
+\begin{itemdescr}
+\pnum
+\returns\
+\tcode{complex<T>(\farg{lhs}) /= \farg{rhs}}.
+\end{itemdescr}
+
+\index{operator==@\tcode{operator==}!\tcode{complex}}%
+\begin{itemdecl}
+template<@\changedCC{class}{ArithmeticLike}@ T>
+ bool operator==(const complex<T>& @\farg{lhs}@, const complex<T>& @\farg{rhs}@);
+template<@\changedCC{class}{ArithmeticLike}@ T> bool operator==(const complex<T>& @\farg{lhs}@, const T& @\farg{rhs}@);
+template<@\changedCC{class}{ArithmeticLike}@ T> bool operator==(const T& @\farg{lhs}@, const complex<T>& @\farg{rhs}@);
+\end{itemdecl}
+
+\begin{itemdescr}
+\pnum
+\returns\
+\tcode{\farg{lhs}.real() == \farg{rhs}.real() \&\& \farg{lhs}.imag() == \farg{rhs}.imag()}.
+
+\pnum
+\notes\
+The imaginary part is assumed to be
+\tcode{T()},
+or 0.0, for the
+\tcode{T}\
+arguments.
+\end{itemdescr}
+
+\index{operator"!=@\tcode{operator"!=}!\tcode{complex}}%
+\begin{itemdecl}
+template<@\changedCC{class}{ArithmeticLike}@ T>
+ bool operator!=(const complex<T>& @\farg{lhs}@, const complex<T>& @\farg{rhs}@);
+template<@\changedCC{class}{ArithmeticLike}@ T> bool operator!=(const complex<T>& @\farg{lhs}@, const T& @\farg{rhs}@);
+template<@\changedCC{class}{ArithmeticLike}@ T> bool operator!=(const T& @\farg{lhs}@, const complex<T>& @\farg{rhs}@);
+\end{itemdecl}
+
+\begin{itemdescr}
+\pnum
+\returns\
+\tcode{\farg{rhs}.real() != \farg{lhs}.real() || \farg{rhs}.imag() != \farg{lhs}.imag()}.
+\end{itemdescr}
+
+\index{operator>>@\tcode{operator\shr}!\tcode{complex}}%
+\begin{itemdecl}
+template<class T, class charT, class traits>
+basic_istream<charT, traits>&
+operator>>(basic_istream<charT, traits>& @\farg{is}@, complex<T>& @\farg{x}@);
+\end{itemdecl}
+
+\begin{itemdescr}
+\pnum
+\effects\
+Extracts a complex number \farg{x} of the form:
+\tcode{u},
+\tcode{(u)},
+or
+\tcode{(u,v)},
+where
+\tcode{u}\
+is the real part and
+\tcode{v}\
+is the imaginary part (\ref{istream.formatted}).
+
+\pnum
+\requires\
+The input values be convertible to
+\tcode{T}.
+
+If bad input is encountered, calls
+\tcode{\farg{is}.setstate(ios::failbit)}\
+(which may throw
+\tcode{ios::failure}\
+(\ref{iostate.flags}).
+
+\pnum
+\returns\
+\farg{is}.
+
+\pnum
+\notes\
+This extraction is performed as a series of simpler
+extractions.
+Therefore, the skipping of whitespace is specified to be
+the same for each of the simpler extractions.
+\end{itemdescr}
+
+\index{operator<<@\tcode{operator\shl}!\tcode{complex}}%
+\begin{itemdecl}
+template<class T, class charT, class traits>
+basic_ostream<charT, traits>&
+operator<<(basic_ostream<charT, traits>& @\farg{o}@, const complex<T>& @\farg{x}@);
+\end{itemdecl}
+
+\begin{itemdescr}
+\pnum
+\effects\
+inserts the complex number \farg{x}\
+onto the stream \farg{o}\ as if it were implemented as follows:
+
+\begin{codeblock}
+template<class T, class charT, class traits>
+basic_ostream<charT, traits>&
+operator<<(basic_ostream<charT, traits>& o, const complex<T>& x)
+{
+ basic_ostringstream<charT, traits> s;
+ s.flags(o.flags());
+ s.imbue(o.getloc());
+ s.precision(o.precision());
+ s << '(' << x.real() << "," << x.imag() << ')';
+ return o << s.str();
+}
+\end{codeblock}
+\end{itemdescr}
+
+\rSec2[complex.value.ops]{\tcode{complex}\ value operations}
+
+\index{real@\tcode{real}!\tcode{complex}}%
+\begin{itemdecl}
+template<@\changedCC{class}{ArithmeticLike}@ T> T real(const complex<T>& @\farg{x}@);
+\end{itemdecl}
+
+\begin{itemdescr}
+\pnum
+\returns\
+\tcode{\farg{x}.real()}.
+\end{itemdescr}
+
+\index{imag@\tcode{imag}!\tcode{complex}}%
+\begin{itemdecl}
+template<@\changedCC{class}{ArithmeticLike}@ T> T imag(const complex<T>& @\farg{x}@);
+\end{itemdecl}
+
+\begin{itemdescr}
+\pnum
+\returns\
+\tcode{\farg{x}.imag()}.
+\end{itemdescr}
+
+\index{abs@\tcode{abs}!\tcode{complex}}%
+\begin{itemdecl}
+template<class T> @\addedCC{requires \mbox{\textit{unspecified}}}@ T abs(const complex<T>& @\farg{x}@);
+\end{itemdecl}
+
+\begin{itemdescr}
+\pnum
+\returns\
+the magnitude of \farg{x}.
+\end{itemdescr}
+
+\index{arg@\tcode{arg}!\tcode{complex}}%
+\begin{itemdecl}
+template<class T> @\addedCC{requires \mbox{\textit{unspecified}}}@ T arg(const complex<T>& @\farg{x}@);
+\end{itemdecl}
+
+\begin{itemdescr}
+\pnum
+\returns\
+the phase angle of \farg{x}, or \tcode{atan2(imag(\farg{x}), real(\farg{x}))}.
+\end{itemdescr}
+
+\index{norm@\tcode{norm}!\tcode{complex}}%
+\begin{itemdecl}
+template<class T> @\addedCC{requires \mbox{\textit{unspecified}}}@ T norm(const complex<T>& @\farg{x}@);
+\end{itemdecl}
+
+\begin{itemdescr}
+\pnum
+\returns\
+the squared magnitude of \farg{x}.
+\end{itemdescr}
+
+\index{conj@\tcode{conj}!\tcode{complex}}%
+\begin{itemdecl}
+template<class T> @\addedCC{requires \mbox{\textit{unspecified}}}@ complex<T> conj(const complex<T>& @\farg{x}@);
+\end{itemdecl}
+
+\begin{itemdescr}
+\pnum
+\returns\
+the complex conjugate of \farg{x}.
+\end{itemdescr}
+
+\index{fabs@\tcode{fabs}!\tcode{complex}}%
+\index{cabs@\tcode{cabs}!\tcode{complex}}%
+\begin{itemdecl}
+template<class T> @\addedCC{requires \mbox{\textit{unspecified}}}@ complex<T> fabs(const complex<T>& @\farg{x}@);
+\end{itemdecl}
+
+\begin{itemdescr}
+\pnum\effects\ Behaves the same as C99 function \tcode{cabs},
+defined in subclause 7.3.8.1.
+\end{itemdescr}
+
+\index{polar@\tcode{polar}!\tcode{complex}}%
+\begin{itemdecl}
+template<class T> @\addedCC{requires \mbox{\textit{unspecified}}}@ complex<T> polar(const T& @\farg{rho}@, const T& @\farg{theta}@ = 0);
+\end{itemdecl}
+
+\begin{itemdescr}
+\pnum
+\returns\
+the
+\tcode{complex}\
+value corresponding
+to a complex number whose magnitude is \farg{rho}\ and whose phase angle
+is \farg{theta}.
+\end{itemdescr}
+
+\rSec2[complex.transcendentals]{\tcode{complex}\ transcendentals}
+
+\index{acos@\tcode{acos}!\tcode{complex}}%
+\index{cacos@\tcode{cacos}!\tcode{complex}}%
+\begin{itemdecl}
+@\ptr_at_template<class T> @\addedCC{requires \mbox{\textit{unspecified}}}@ complex<T> acos(const complex<T>& @\farg{x}@);
+\end{itemdecl}
+
+\begin{itemdescr}
+\pnum\effects\ Behaves the same as C99 function \tcode{cacos},
+defined in subclause 7.3.5.1.
+\end{itemdescr}
+
+\index{asin@\tcode{asin}!\tcode{complex}}%
+\index{casin@\tcode{casin}!\tcode{complex}}%
+\begin{itemdecl}
+@\ptr_at_template<class T> @\addedCC{requires \mbox{\textit{unspecified}}}@ complex<T> asin(const complex<T>& @\farg{x}@);
+\end{itemdecl}
+
+\begin{itemdescr}
+\pnum\effects\ Behaves the same as C99 function \tcode{casin},
+defined in subclause 7.3.5.2.
+\end{itemdescr}
+
+\index{atan@\tcode{atan}!\tcode{complex}}%
+\index{catan@\tcode{catan}!\tcode{complex}}%
+\begin{itemdecl}
+@\ptr_at_template<class T> @\addedCC{requires \mbox{\textit{unspecified}}}@ complex<T> atan(const complex<T>& @\farg{x}@);
+\end{itemdecl}
+
+\begin{itemdescr}
+\pnum\effects\ Behaves the same as C99 function \tcode{catan},
+defined in subclause 7.3.5.3.
+\end{itemdescr}
+
+\index{acosh@\tcode{acosh}!\tcode{complex}}%
+\index{cacosh@\tcode{cacosh}!\tcode{complex}}%
+\begin{itemdecl}
+@\ptr_at_template<class T> @\addedCC{requires \mbox{\textit{unspecified}}}@ complex<T> acosh(const complex<T>& @\farg{x}@);
+\end{itemdecl}
+
+\begin{itemdescr}
+\pnum\effects\ Behaves the same as C99 function \tcode{cacosh},
+defined in subclause 7.3.6.1.
+\end{itemdescr}
+
+\index{asinh@\tcode{asinh}!\tcode{complex}}%
+\index{casinh@\tcode{casinh}!\tcode{complex}}%
+\begin{itemdecl}
+@\ptr_at_template<class T> @\addedCC{requires \mbox{\textit{unspecified}}}@ complex<T> asinh(const complex<T>& @\farg{x}@);
+\end{itemdecl}
+
+\begin{itemdescr}
+\pnum\effects\ Behaves the same as C99 function \tcode{casinh},
+defined in subclause 7.3.6.2.
+\end{itemdescr}
+
+\index{atanh@\tcode{atanh}!\tcode{complex}}%
+\index{catanh@\tcode{catanh}!\tcode{complex}}%
+\begin{itemdecl}
+@\ptr_at_template<class T> @\addedCC{requires \mbox{\textit{unspecified}}}@ complex<T> atanh(const complex<T>& @\farg{x}@);
+\end{itemdecl}
+
+\begin{itemdescr}
+\pnum\effects\ Behaves the same as C99 function \tcode{catanh},
+defined in subclause 7.3.6.3.
+\end{itemdescr}
+
+\index{cos@\tcode{cos}!\tcode{complex}}%
+\begin{itemdecl}
+template<class T> @\addedCC{requires \mbox{\textit{unspecified}}}@ complex<T> cos(const complex<T>& @\farg{x}@);
+\end{itemdecl}
+
+\begin{itemdescr}
+\pnum
+\returns\
+the complex cosine of \farg{x}.
+\end{itemdescr}
+
+\index{cosh@\tcode{cosh}!\tcode{complex}}%
+\begin{itemdecl}
+template<class T> @\addedCC{requires \mbox{\textit{unspecified}}}@ complex<T> cosh(const complex<T>& @\farg{x}@);
+\end{itemdecl}
+
+\begin{itemdescr}
+\pnum
+\returns\
+the complex hyperbolic cosine of \farg{x}.
+\end{itemdescr}
+
+\index{exp@\tcode{exp}!\tcode{complex}}%
+\begin{itemdecl}
+template<class T> @\addedCC{requires \mbox{\textit{unspecified}}}@ complex<T> exp(const complex<T>& @\farg{x}@);
+\end{itemdecl}
+
+\begin{itemdescr}
+\pnum
+\returns\
+the complex base e exponential of \farg{x}.
+\end{itemdescr}
+
+\index{log@\tcode{log}!\tcode{complex}}%
+\begin{itemdecl}
+template<class T> @\addedCC{requires \mbox{\textit{unspecified}}}@ complex<T> log(const complex<T>& @\farg{x}@);
+\end{itemdecl}
+
+\begin{itemdescr}
+\pnum
+\notes\
+the branch cuts are along the negative real axis.
+
+\pnum
+\returns\
+the complex natural (base e) logarithm of \farg{x},
+in the range of a strip mathematically unbounded along the
+real axis and in the interval \crange{-i times pi}{i times pi}\
+along the imaginary axis.
+When \farg{x} is a negative real
+number,
+\tcode{imag(log(\farg{x}))}\
+is pi.
+\end{itemdescr}
+
+\index{log10@\tcode{log10}!\tcode{complex}}%
+\begin{itemdecl}
+template<class T> @\addedCC{requires \mbox{\textit{unspecified}}}@ complex<T> log10(const complex<T>& @\farg{x}@);
+\end{itemdecl}
+
+\begin{itemdescr}
+\pnum
+\notes\
+the branch cuts are along the negative real axis.
+
+\pnum
+\returns\
+the complex common (base 10) logarithm of \farg{x}, defined as
+\tcode{log(\farg{x})/log(10)}.
+\end{itemdescr}
+
+\index{pow@\tcode{pow}!\tcode{complex}}%
+\begin{itemdecl}
+template<class T> @\addedCC{requires \mbox{\textit{unspecified}}}@ complex<T> pow(const complex<T>& @\farg{x}@, int @\farg{y}@);
+template<class T>
+ complex<T> @\addedCC{requires \mbox{\textit{unspecified}}}@ pow(const complex<T>& @\farg{x}@, const complex<T>& @\farg{y}@);
+template<class T> @\addedCC{requires \mbox{\textit{unspecified}}}@ complex<T> pow (const complex<T>& @\farg{x}@, const T& @\farg{y}@);
+template<class T> @\addedCC{requires \mbox{\textit{unspecified}}}@ complex<T> pow (const T& @\farg{x}@, const complex<T>& @\farg{y}@);
+\end{itemdecl}
+
+\begin{itemdescr}
+\pnum
+\notes\
+the branch cuts are along the negative real axis.
+
+\pnum
+\returns\
+the complex power of base \farg{x}\ raised to the \farg{y}-th power,
+defined as
+\tcode{exp(\farg{y}*log(\farg{x}))}.
+The value returned for
+\tcode{pow(0,0)}
+is implementation-defined.
+\end{itemdescr}
+
+\index{sin@\tcode{sin}!\tcode{complex}}%
+\begin{itemdecl}
+template<class T> @\addedCC{requires \mbox{\textit{unspecified}}}@ complex<T> sin (const complex<T>& @\farg{x}@);
+\end{itemdecl}
+
+\begin{itemdescr}
+\pnum
+\returns\
+the complex sine of \farg{x}.
+\end{itemdescr}
+
+\index{sinh@\tcode{sinh}!\tcode{complex}}%
+\begin{itemdecl}
+template<class T> @\addedCC{requires \mbox{\textit{unspecified}}}@ complex<T> sinh (const complex<T>& @\farg{x}@);
+\end{itemdecl}
+
+\begin{itemdescr}
+\pnum
+\returns\
+the complex hyperbolic sine of \farg{x}.
+\end{itemdescr}
+
+\index{sqrt@\tcode{sqrt}!\tcode{complex}}%
+\begin{itemdecl}
+template<class T> @\addedCC{requires \mbox{\textit{unspecified}}}@ complex<T> sqrt (const complex<T>& @\farg{x}@);
+\end{itemdecl}
+
+\begin{itemdescr}
+\pnum
+\notes\
+the branch cuts are along the negative real axis.
+
+\pnum
+\returns\
+the complex square root of \farg{x}, in the range of the right
+half-plane.
+If the argument is a negative real number, the
+value returned lies on the positive imaginary axis.
+\end{itemdescr}
+
+\index{tan@\tcode{tan}!\tcode{complex}}%
+\begin{itemdecl}
+template<class T> @\addedCC{requires \mbox{\textit{unspecified}}}@ complex<T> tan (const complex<T>& @\farg{x}@);
+\end{itemdecl}
+
+\begin{itemdescr}
+\pnum
+\returns\
+the complex tangent of \farg{x}.
+\end{itemdescr}
+
+\index{tanh@\tcode{tanh}!\tcode{complex}}%
+\begin{itemdecl}
+template<class T> @\addedCC{requires \mbox{\textit{unspecified}}}@ complex<T> tanh (const complex<T>& @\farg{x}@);
+\end{itemdecl}
+
+\begin{itemdescr}
+\pnum
+\returns\
+the complex hyperbolic tangent of \farg{x}.
+\end{itemdescr}
+
+\rSec2[cmplx.over]{\marktr{}Additional Overloads}
+
+\pnum
+\index{arg@\tcode{arg}}%
+\index{conj@\tcode{conj}}%
+\index{imag@\tcode{imag}}%
+\index{norm@\tcode{norm}}%
+\index{polar@\tcode{polar}}%
+\index{real@\tcode{real}}%
+The following function templates shall have additional overloads:
+\begin{codeblock}
+ arg norm
+ conj polar
+ imag real
+\end{codeblock}
+
+\pnum
+\index{overloads!floating point}%
+The additional overloads shall be sufficient to ensure:
+
+\begin{enumerate}
+ \item{If the argument has type \tcode{long double}, then it is effectively
+ cast to \tcode{complex<long double>}.}
+ \item{Otherwise, if the argument has type \tcode{double} or an integer type,
+ then it is effectively cast to \tcode{complex<double>}.}
+ \item{Otherwise, if the argument has type \tcode{float}, then it is
+ effectively cast to \tcode{complex<float>}.}
+\end{enumerate}
+
+\pnum
+\index{pow@\tcode{pow}}%
+Function template \tcode{pow} shall have additional overloads sufficient to
+ensure, for a call with at least one argument of type \tcode{complex<T>}:
+
+\begin{enumerate}
+
+ \item{If either argument has type \tcode{complex<long double>} or type \tcode{long
+ double}, then both arguments are effectively cast to
+ \tcode{complex<long double>}.}
+ \item{Otherwise, if either argument has type \tcode{complex<double>}, \tcode{double},
+ or an integer type, then both arguments are effectively cast to
+ \tcode{complex<double>}.}
+ \item{Otherwise, if either argument has type \tcode{complex<float>} or \tcode{float},
+ then both arguments are effectively cast to \tcode{complex<float>}.}
+\end{enumerate}
+
+\rSec2[ccmplx]{\marktr{}Header \tcode{<ccomplex>}}
+\pnum
+\index{ccomplex@\tcode{<ccomplex>}}%
+The header behaves as if it simply includes the header \tcode{<complex>}.
+
+\rSec2[cmplxh]{\marktr{}Header \tcode{<complex.h>}}
+\pnum
+\index{complex.h@\tcode{<complex.h>}}%
+The header behaves as if it includes the header \tcode{<ccomplex>}, and provides
+sufficient \textit{using} declarations to declare in the global namespace all
+function and type names declared or defined in the neader \tcode{<complex>}.
+
\setcounter{section}{4}
\rSec1[numarray]{Numeric arrays}
@@ -402,31 +1606,31 @@
@\addedCC{requires LessThanComparable<T>}@
valarray<bool> operator>=(const T&, const valarray<T>&);
- template<class T> valarray<T> abs (const valarray<T>&);
- template<class T> valarray<T> acos (const valarray<T>&);
- template<class T> valarray<T> asin (const valarray<T>&);
- template<class T> valarray<T> atan (const valarray<T>&);
+ template<@\changedCC{class}{HasAbs}@ T> valarray<T> abs (const valarray<T>&);
+ template<@\changedCC{class}{HasAcos}@ T> valarray<T> acos (const valarray<T>&);
+ template<@\changedCC{class}{HasAsin}@ T> valarray<T> asin (const valarray<T>&);
+ template<@\changedCC{class}{HasAtan}@ T> valarray<T> atan (const valarray<T>&);
- template<class T> valarray<T> atan2
+ template<@\changedCC{class}{Atan2}@ T> valarray<T> atan2
(const valarray<T>&, const valarray<T>&);
- template<class T> valarray<T> atan2(const valarray<T>&, const T&);
- template<class T> valarray<T> atan2(const T&, const valarray<T>&);
+ template<@\changedCC{class}{Atan2}@ T> valarray<T> atan2(const valarray<T>&, const T&);
+ template<@\changedCC{class}{Atan2}@ T> valarray<T> atan2(const T&, const valarray<T>&);
- template<class T> valarray<T> cos (const valarray<T>&);
- template<class T> valarray<T> cosh (const valarray<T>&);
- template<class T> valarray<T> exp (const valarray<T>&);
- template<class T> valarray<T> log (const valarray<T>&);
- template<class T> valarray<T> log10(const valarray<T>&);
-
- template<class T> valarray<T> pow(const valarray<T>&, const valarray<T>&);
- template<class T> valarray<T> pow(const valarray<T>&, const T&);
- template<class T> valarray<T> pow(const T&, const valarray<T>&);
-
- template<class T> valarray<T> sin (const valarray<T>&);
- template<class T> valarray<T> sinh (const valarray<T>&);
- template<class T> valarray<T> sqrt (const valarray<T>&);
- template<class T> valarray<T> tan (const valarray<T>&);
- template<class T> valarray<T> tanh (const valarray<T>&);
+ template<@\changedCC{class}{HasCos}@ T> valarray<T> cos (const valarray<T>&);
+ template<@\changedCC{class}{HasCosh}@ T> valarray<T> cosh (const valarray<T>&);
+ template<@\changedCC{class}{HasExp}@ T> valarray<T> exp (const valarray<T>&);
+ template<@\changedCC{class}{HasLog}@ T> valarray<T> log (const valarray<T>&);
+ template<@\changedCC{class}{HasLog10}@ T> valarray<T> log10(const valarray<T>&);
+
+ template<@\changedCC{class}{HasPow}@ T> valarray<T> pow(const valarray<T>&, const valarray<T>&);
+ template<@\changedCC{class}{HasPow}@ T> valarray<T> pow(const valarray<T>&, const T&);
+ template<@\changedCC{class}{HasPow}@ T> valarray<T> pow(const T&, const valarray<T>&);
+
+ template<@\changedCC{class}{HasSin}@ T> valarray<T> sin (const valarray<T>&);
+ template<@\changedCC{class}{HasSinh}@ T> valarray<T> sinh (const valarray<T>&);
+ template<@\changedCC{class}{HasSqrt}@ T> valarray<T> sqrt (const valarray<T>&);
+ template<@\changedCC{class}{HasTan}@ T> valarray<T> tan (const valarray<T>&);
+ template<@\changedCC{class}{HasTanh}@ T> valarray<T> tanh (const valarray<T>&);
}
\end{codeblock}
@@ -1521,36 +2725,39 @@
\index{tan@\tcode{tan}}%
\index{tanh@\tcode{tanh}}%
\begin{itemdecl}
-template<class T> valarray<T> abs (const valarray<T>&);
-template<class T> valarray<T> acos (const valarray<T>&);
-template<class T> valarray<T> asin (const valarray<T>&);
-template<class T> valarray<T> atan (const valarray<T>&);
-template<class T> valarray<T> atan2
+template<@\changedCC{class}{HasAbs}@ T> valarray<T> abs (const valarray<T>&);
+template<@\changedCC{class}{HasAcos}@ T> valarray<T> acos (const valarray<T>&);
+template<@\changedCC{class}{HasAsin}@ T> valarray<T> asin (const valarray<T>&);
+template<@\changedCC{class}{HasAtan}@ T> valarray<T> atan (const valarray<T>&);
+template<@\changedCC{class}{HasAtan2}@ T> valarray<T> atan2
(const valarray<T>&, const valarray<T>&);
-template<class T> valarray<T> atan2(const valarray<T>&, const T&);
-template<class T> valarray<T> atan2(const T&, const valarray<T>&);
-template<class T> valarray<T> cos (const valarray<T>&);
-template<class T> valarray<T> cosh (const valarray<T>&);
-template<class T> valarray<T> exp (const valarray<T>&);
-template<class T> valarray<T> log (const valarray<T>&);
-template<class T> valarray<T> log10(const valarray<T>&);
-template<class T> valarray<T> pow
+template<@\changedCC{class}{HasAtan2}@ T> valarray<T> atan2(const valarray<T>&, const T&);
+template<@\changedCC{class}{HasAtan2}@ T> valarray<T> atan2(const T&, const valarray<T>&);
+template<@\changedCC{class}{HasCos}@ T> valarray<T> cos (const valarray<T>&);
+template<@\changedCC{class}{HasCosh}@ T> valarray<T> cosh (const valarray<T>&);
+template<@\changedCC{class}{HasExp}@ T> valarray<T> exp (const valarray<T>&);
+template<@\changedCC{class}{HasLog}@ T> valarray<T> log (const valarray<T>&);
+template<@\changedCC{class}{HasLog10}@ T> valarray<T> log10(const valarray<T>&);
+template<@\changedCC{class}{HasPow}@ T> valarray<T> pow
(const valarray<T>&, const valarray<T>&);
-template<class T> valarray<T> pow (const valarray<T>&, const T&);
-template<class T> valarray<T> pow (const T&, const valarray<T>&);
-template<class T> valarray<T> sin (const valarray<T>&);
-template<class T> valarray<T> sinh (const valarray<T>&);
-template<class T> valarray<T> sqrt (const valarray<T>&);
-template<class T> valarray<T> tan (const valarray<T>&);
-template<class T> valarray<T> tanh (const valarray<T>&);
+template<@\changedCC{class}{HasPow}@ T> valarray<T> pow (const valarray<T>&, const T&);
+template<@\changedCC{class}{HasPow}@ T> valarray<T> pow (const T&, const valarray<T>&);
+template<@\changedCC{class}{HasSin}@ T> valarray<T> sin (const valarray<T>&);
+template<@\changedCC{class}{HasSinh}@ T> valarray<T> sinh (const valarray<T>&);
+template<@\changedCC{class}{HasSqrt}@ T> valarray<T> sqrt (const valarray<T>&);
+template<@\changedCC{class}{HasTan}@ T> valarray<T> tan (const valarray<T>&);
+template<@\changedCC{class}{HasTanh}@ T> valarray<T> tanh (const valarray<T>&);
\end{itemdecl}
\begin{itemdescr}
\pnum
-Each of these functions may only be instantiated for a type \farg{T}\
+\removedCC{Each of these functions may only be instantiated for a type \mbox{\farg{T}}\
to which a unique function with the indicated name can be applied (unqualified).
-This function shall return a value which is of type \farg{T}\
-or which can be unambiguously converted to type \farg{T}.
+This function shall return a value which is of type \mbox{\farg{T}}\
+or which can be unambiguously converted to type \mbox{\farg{T}}.}
+\addedCC{Each
+element of the returned array is initialized with the result of applying the indicated function to the non-array argument (if any) and corresponding
+element of the array argument or arguments.}
\end{itemdescr}
\rSec3[valarray.special]{\tcode{valarray}\ specialized algorithms}
@@ -2159,7 +3366,7 @@
\setcounter{section}{5}
-\rSec1[lib.numeric.ops]{Generalized numeric operations}
+\rSec1[numeric.ops]{Generalized numeric operations}
\synopsis{Header \tcode{<numeric>}\ synopsis}
\index{numeric@\tcode{<numeric>}}%
@@ -2222,10 +3429,10 @@
\pnum
The requirements on the types of algorithms' arguments that are
-described in the introduction to clause \ref{lib.algorithms}\ also
+described in the introduction to clause \ref{algorithms}\ also
apply to the following algorithms.
-\rSec2[lib.accumulate]{Accumulate}
+\rSec2[accumulate]{Accumulate}
\color{addclr}
\index{accumulate@\tcode{accumulate}}%
@@ -2273,7 +3480,7 @@
}
\end{itemdescr}
-\rSec2[lib.inner.product]{Inner product}
+\rSec2[inner.product]{Inner product}
\index{inner_product@\tcode{inner_product}}%
\color{addclr}
@@ -2334,7 +3541,7 @@
}
\end{itemdescr}
-\rSec2[lib.partial.sum]{Partial sum}
+\rSec2[partial.sum]{Partial sum}
\index{partial_sum@\tcode{partial_sum}}%
\color{addclr}
\begin{itemdecl}
@@ -2403,7 +3610,7 @@
\tcode{first}.
\end{itemdescr}
-\rSec2[lib.adjacent.difference]{Adjacent difference}
+\rSec2[adjacent.difference]{Adjacent difference}
\index{adjacent_difference@\tcode{adjacent_difference}}%
\color{addclr}
Modified: sandbox/committee/concepts/stdlib/macros.tex
==============================================================================
--- sandbox/committee/concepts/stdlib/macros.tex (original)
+++ sandbox/committee/concepts/stdlib/macros.tex 2008-05-08 12:21:51 EDT (Thu, 08 May 2008)
@@ -239,9 +239,7 @@
\newcommand{\removedB}[1]{}
\newcommand{\changedB}[2]{#2}
\newcommand{\marktr}{}
-\makeatletter
-\newcommand\ptr{\noindent\llap{{\footnotesize{TR1:}}\hspace{\@totalleftmargin}\quad}}
-\makeatother
+\newcommand{\ptr}{}
\newcommand{\addedC}[1]{#1}
\newcommand{\removedC}[1]{}
\newcommand{\changedC}[2]{#2}
Boost-Commit list run by bdawes at acm.org, david.abrahams at rcn.com, gregod at cs.rpi.edu, cpdaniel at pacbell.net, john at johnmaddock.co.uk