Boost logo

Boost-Commit :

Subject: [Boost-commit] svn:boost r51291 - in sandbox/boost/interprocess: . allocators allocators/detail containers containers/detail detail indexes ipc mem_algo mem_algo/detail smart_ptr smart_ptr/detail streams sync sync/emulation sync/posix
From: igaztanaga_at_[hidden]
Date: 2009-02-17 13:05:17


Author: igaztanaga
Date: 2009-02-17 13:04:56 EST (Tue, 17 Feb 2009)
New Revision: 51291
URL: http://svn.boost.org/trac/boost/changeset/51291

Log:
Added move_semantics library
Added:
   sandbox/boost/interprocess/
   sandbox/boost/interprocess/allocators/
   sandbox/boost/interprocess/allocators/adaptive_pool.hpp (contents, props changed)
   sandbox/boost/interprocess/allocators/allocation_type.hpp (contents, props changed)
   sandbox/boost/interprocess/allocators/allocator.hpp (contents, props changed)
   sandbox/boost/interprocess/allocators/cached_adaptive_pool.hpp (contents, props changed)
   sandbox/boost/interprocess/allocators/cached_node_allocator.hpp (contents, props changed)
   sandbox/boost/interprocess/allocators/detail/
   sandbox/boost/interprocess/allocators/detail/adaptive_node_pool.hpp (contents, props changed)
   sandbox/boost/interprocess/allocators/detail/allocator_common.hpp (contents, props changed)
   sandbox/boost/interprocess/allocators/detail/node_pool.hpp (contents, props changed)
   sandbox/boost/interprocess/allocators/detail/node_tools.hpp (contents, props changed)
   sandbox/boost/interprocess/allocators/node_allocator.hpp (contents, props changed)
   sandbox/boost/interprocess/allocators/private_adaptive_pool.hpp (contents, props changed)
   sandbox/boost/interprocess/allocators/private_node_allocator.hpp (contents, props changed)
   sandbox/boost/interprocess/anonymous_shared_memory.hpp (contents, props changed)
   sandbox/boost/interprocess/containers/
   sandbox/boost/interprocess/containers/deque.hpp (contents, props changed)
   sandbox/boost/interprocess/containers/detail/
   sandbox/boost/interprocess/containers/detail/flat_tree.hpp (contents, props changed)
   sandbox/boost/interprocess/containers/detail/node_alloc_holder.hpp (contents, props changed)
   sandbox/boost/interprocess/containers/detail/tree.hpp (contents, props changed)
   sandbox/boost/interprocess/containers/flat_map.hpp (contents, props changed)
   sandbox/boost/interprocess/containers/flat_set.hpp (contents, props changed)
   sandbox/boost/interprocess/containers/list.hpp (contents, props changed)
   sandbox/boost/interprocess/containers/map.hpp (contents, props changed)
   sandbox/boost/interprocess/containers/set.hpp (contents, props changed)
   sandbox/boost/interprocess/containers/slist.hpp (contents, props changed)
   sandbox/boost/interprocess/containers/stable_vector.hpp (contents, props changed)
   sandbox/boost/interprocess/containers/string.hpp (contents, props changed)
   sandbox/boost/interprocess/containers/vector.hpp (contents, props changed)
   sandbox/boost/interprocess/creation_tags.hpp (contents, props changed)
   sandbox/boost/interprocess/detail/
   sandbox/boost/interprocess/detail/advanced_insert_int.hpp (contents, props changed)
   sandbox/boost/interprocess/detail/algorithms.hpp (contents, props changed)
   sandbox/boost/interprocess/detail/atomic.hpp (contents, props changed)
   sandbox/boost/interprocess/detail/cast_tags.hpp (contents, props changed)
   sandbox/boost/interprocess/detail/config_begin.hpp (contents, props changed)
   sandbox/boost/interprocess/detail/config_end.hpp (contents, props changed)
   sandbox/boost/interprocess/detail/file_wrapper.hpp (contents, props changed)
   sandbox/boost/interprocess/detail/in_place_interface.hpp (contents, props changed)
   sandbox/boost/interprocess/detail/interprocess_tester.hpp (contents, props changed)
   sandbox/boost/interprocess/detail/intersegment_ptr.hpp (contents, props changed)
   sandbox/boost/interprocess/detail/iterators.hpp (contents, props changed)
   sandbox/boost/interprocess/detail/managed_memory_impl.hpp (contents, props changed)
   sandbox/boost/interprocess/detail/managed_multi_shared_memory.hpp (contents, props changed)
   sandbox/boost/interprocess/detail/managed_open_or_create_impl.hpp (contents, props changed)
   sandbox/boost/interprocess/detail/math_functions.hpp (contents, props changed)
   sandbox/boost/interprocess/detail/min_max.hpp (contents, props changed)
   sandbox/boost/interprocess/detail/mpl.hpp (contents, props changed)
   sandbox/boost/interprocess/detail/multi_segment_services.hpp (contents, props changed)
   sandbox/boost/interprocess/detail/named_proxy.hpp (contents, props changed)
   sandbox/boost/interprocess/detail/os_file_functions.hpp (contents, props changed)
   sandbox/boost/interprocess/detail/os_thread_functions.hpp (contents, props changed)
   sandbox/boost/interprocess/detail/pointer_type.hpp (contents, props changed)
   sandbox/boost/interprocess/detail/posix_time_types_wrk.hpp (contents, props changed)
   sandbox/boost/interprocess/detail/preprocessor.hpp (contents, props changed)
   sandbox/boost/interprocess/detail/ptime_wrk.hpp (contents, props changed)
   sandbox/boost/interprocess/detail/segment_manager_helper.hpp (contents, props changed)
   sandbox/boost/interprocess/detail/tmp_dir_helpers.hpp (contents, props changed)
   sandbox/boost/interprocess/detail/type_traits.hpp (contents, props changed)
   sandbox/boost/interprocess/detail/utilities.hpp (contents, props changed)
   sandbox/boost/interprocess/detail/variadic_templates_tools.hpp (contents, props changed)
   sandbox/boost/interprocess/detail/version_type.hpp (contents, props changed)
   sandbox/boost/interprocess/detail/win32_api.hpp (contents, props changed)
   sandbox/boost/interprocess/detail/workaround.hpp (contents, props changed)
   sandbox/boost/interprocess/errors.hpp (contents, props changed)
   sandbox/boost/interprocess/exceptions.hpp (contents, props changed)
   sandbox/boost/interprocess/file_mapping.hpp (contents, props changed)
   sandbox/boost/interprocess/indexes/
   sandbox/boost/interprocess/indexes/flat_map_index.hpp (contents, props changed)
   sandbox/boost/interprocess/indexes/iset_index.hpp (contents, props changed)
   sandbox/boost/interprocess/indexes/iunordered_set_index.hpp (contents, props changed)
   sandbox/boost/interprocess/indexes/map_index.hpp (contents, props changed)
   sandbox/boost/interprocess/indexes/null_index.hpp (contents, props changed)
   sandbox/boost/interprocess/indexes/unordered_map_index.hpp (contents, props changed)
   sandbox/boost/interprocess/interprocess_fwd.hpp (contents, props changed)
   sandbox/boost/interprocess/ipc/
   sandbox/boost/interprocess/ipc/message_queue.hpp (contents, props changed)
   sandbox/boost/interprocess/managed_external_buffer.hpp (contents, props changed)
   sandbox/boost/interprocess/managed_heap_memory.hpp (contents, props changed)
   sandbox/boost/interprocess/managed_mapped_file.hpp (contents, props changed)
   sandbox/boost/interprocess/managed_shared_memory.hpp (contents, props changed)
   sandbox/boost/interprocess/managed_windows_shared_memory.hpp (contents, props changed)
   sandbox/boost/interprocess/mapped_region.hpp (contents, props changed)
   sandbox/boost/interprocess/mem_algo/
   sandbox/boost/interprocess/mem_algo/detail/
   sandbox/boost/interprocess/mem_algo/detail/mem_algo_common.hpp (contents, props changed)
   sandbox/boost/interprocess/mem_algo/detail/multi_simple_seq_fit.hpp (contents, props changed)
   sandbox/boost/interprocess/mem_algo/detail/multi_simple_seq_fit_impl.hpp (contents, props changed)
   sandbox/boost/interprocess/mem_algo/detail/simple_seq_fit_impl.hpp (contents, props changed)
   sandbox/boost/interprocess/mem_algo/rbtree_best_fit.hpp (contents, props changed)
   sandbox/boost/interprocess/mem_algo/simple_seq_fit.hpp (contents, props changed)
   sandbox/boost/interprocess/offset_ptr.hpp (contents, props changed)
   sandbox/boost/interprocess/segment_manager.hpp (contents, props changed)
   sandbox/boost/interprocess/shared_memory_object.hpp (contents, props changed)
   sandbox/boost/interprocess/smart_ptr/
   sandbox/boost/interprocess/smart_ptr/deleter.hpp (contents, props changed)
   sandbox/boost/interprocess/smart_ptr/detail/
   sandbox/boost/interprocess/smart_ptr/detail/bad_weak_ptr.hpp (contents, props changed)
   sandbox/boost/interprocess/smart_ptr/detail/shared_count.hpp (contents, props changed)
   sandbox/boost/interprocess/smart_ptr/detail/sp_counted_base.hpp (contents, props changed)
   sandbox/boost/interprocess/smart_ptr/detail/sp_counted_base_atomic.hpp (contents, props changed)
   sandbox/boost/interprocess/smart_ptr/detail/sp_counted_impl.hpp (contents, props changed)
   sandbox/boost/interprocess/smart_ptr/enable_shared_from_this.hpp (contents, props changed)
   sandbox/boost/interprocess/smart_ptr/intrusive_ptr.hpp (contents, props changed)
   sandbox/boost/interprocess/smart_ptr/scoped_ptr.hpp (contents, props changed)
   sandbox/boost/interprocess/smart_ptr/shared_ptr.hpp (contents, props changed)
   sandbox/boost/interprocess/smart_ptr/unique_ptr.hpp (contents, props changed)
   sandbox/boost/interprocess/smart_ptr/weak_ptr.hpp (contents, props changed)
   sandbox/boost/interprocess/streams/
   sandbox/boost/interprocess/streams/bufferstream.hpp (contents, props changed)
   sandbox/boost/interprocess/streams/vectorstream.hpp (contents, props changed)
   sandbox/boost/interprocess/sync/
   sandbox/boost/interprocess/sync/emulation/
   sandbox/boost/interprocess/sync/emulation/interprocess_barrier.hpp (contents, props changed)
   sandbox/boost/interprocess/sync/emulation/interprocess_condition.hpp (contents, props changed)
   sandbox/boost/interprocess/sync/emulation/interprocess_mutex.hpp (contents, props changed)
   sandbox/boost/interprocess/sync/emulation/interprocess_recursive_mutex.hpp (contents, props changed)
   sandbox/boost/interprocess/sync/emulation/interprocess_semaphore.hpp (contents, props changed)
   sandbox/boost/interprocess/sync/emulation/named_creation_functor.hpp (contents, props changed)
   sandbox/boost/interprocess/sync/file_lock.hpp (contents, props changed)
   sandbox/boost/interprocess/sync/interprocess_barrier.hpp (contents, props changed)
   sandbox/boost/interprocess/sync/interprocess_condition.hpp (contents, props changed)
   sandbox/boost/interprocess/sync/interprocess_mutex.hpp (contents, props changed)
   sandbox/boost/interprocess/sync/interprocess_recursive_mutex.hpp (contents, props changed)
   sandbox/boost/interprocess/sync/interprocess_semaphore.hpp (contents, props changed)
   sandbox/boost/interprocess/sync/interprocess_upgradable_mutex.hpp (contents, props changed)
   sandbox/boost/interprocess/sync/lock_options.hpp (contents, props changed)
   sandbox/boost/interprocess/sync/mutex_family.hpp (contents, props changed)
   sandbox/boost/interprocess/sync/named_condition.hpp (contents, props changed)
   sandbox/boost/interprocess/sync/named_mutex.hpp (contents, props changed)
   sandbox/boost/interprocess/sync/named_recursive_mutex.hpp (contents, props changed)
   sandbox/boost/interprocess/sync/named_semaphore.hpp (contents, props changed)
   sandbox/boost/interprocess/sync/named_upgradable_mutex.hpp (contents, props changed)
   sandbox/boost/interprocess/sync/null_mutex.hpp (contents, props changed)
   sandbox/boost/interprocess/sync/posix/
   sandbox/boost/interprocess/sync/posix/interprocess_barrier.hpp (contents, props changed)
   sandbox/boost/interprocess/sync/posix/interprocess_condition.hpp (contents, props changed)
   sandbox/boost/interprocess/sync/posix/interprocess_mutex.hpp (contents, props changed)
   sandbox/boost/interprocess/sync/posix/interprocess_recursive_mutex.hpp (contents, props changed)
   sandbox/boost/interprocess/sync/posix/interprocess_semaphore.hpp (contents, props changed)
   sandbox/boost/interprocess/sync/posix/pthread_helpers.hpp (contents, props changed)
   sandbox/boost/interprocess/sync/posix/ptime_to_timespec.hpp (contents, props changed)
   sandbox/boost/interprocess/sync/posix/semaphore_wrapper.hpp (contents, props changed)
   sandbox/boost/interprocess/sync/scoped_lock.hpp (contents, props changed)
   sandbox/boost/interprocess/sync/sharable_lock.hpp (contents, props changed)
   sandbox/boost/interprocess/sync/upgradable_lock.hpp (contents, props changed)
   sandbox/boost/interprocess/windows_shared_memory.hpp (contents, props changed)

Added: sandbox/boost/interprocess/allocators/adaptive_pool.hpp
==============================================================================
--- (empty file)
+++ sandbox/boost/interprocess/allocators/adaptive_pool.hpp 2009-02-17 13:04:56 EST (Tue, 17 Feb 2009)
@@ -0,0 +1,463 @@
+//////////////////////////////////////////////////////////////////////////////
+//
+// (C) Copyright Ion Gaztanaga 2005-2008. Distributed under the Boost
+// Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+//
+// See http://www.boost.org/libs/interprocess for documentation.
+//
+//////////////////////////////////////////////////////////////////////////////
+
+#ifndef BOOST_INTERPROCESS_ADAPTIVE_POOL_HPP
+#define BOOST_INTERPROCESS_ADAPTIVE_POOL_HPP
+
+#if (defined _MSC_VER) && (_MSC_VER >= 1200)
+# pragma once
+#endif
+
+#include <boost/interprocess/detail/config_begin.hpp>
+#include <boost/interprocess/detail/workaround.hpp>
+
+#include <boost/interprocess/interprocess_fwd.hpp>
+#include <boost/assert.hpp>
+#include <boost/utility/addressof.hpp>
+#include <boost/interprocess/detail/utilities.hpp>
+#include <boost/interprocess/detail/type_traits.hpp>
+#include <boost/interprocess/allocators/detail/adaptive_node_pool.hpp>
+#include <boost/interprocess/exceptions.hpp>
+#include <boost/interprocess/allocators/detail/allocator_common.hpp>
+#include <boost/interprocess/detail/mpl.hpp>
+#include <memory>
+#include <algorithm>
+#include <cstddef>
+
+//!\file
+//!Describes adaptive_pool pooled shared memory STL compatible allocator
+
+namespace boost {
+namespace interprocess {
+
+/// @cond
+
+namespace detail{
+
+template < unsigned int Version
+ , class T
+ , class SegmentManager
+ , std::size_t NodesPerBlock
+ , std::size_t MaxFreeBlocks
+ , unsigned char OverheadPercent
+ >
+class adaptive_pool_base
+ : public node_pool_allocation_impl
+ < adaptive_pool_base
+ < Version, T, SegmentManager, NodesPerBlock, MaxFreeBlocks, OverheadPercent>
+ , Version
+ , T
+ , SegmentManager
+ >
+{
+ public:
+ typedef typename SegmentManager::void_pointer void_pointer;
+ typedef SegmentManager segment_manager;
+ typedef adaptive_pool_base
+ <Version, T, SegmentManager, NodesPerBlock, MaxFreeBlocks, OverheadPercent> self_t;
+
+ /// @cond
+
+ template <int dummy>
+ struct node_pool
+ {
+ typedef detail::shared_adaptive_node_pool
+ < SegmentManager, sizeof_value<T>::value, NodesPerBlock, MaxFreeBlocks, OverheadPercent> type;
+
+ static type *get(void *p)
+ { return static_cast<type*>(p); }
+ };
+ /// @endcond
+
+ BOOST_STATIC_ASSERT((Version <=2));
+
+ public:
+ //-------
+ typedef typename detail::
+ pointer_to_other<void_pointer, T>::type pointer;
+ typedef typename detail::
+ pointer_to_other<void_pointer, const T>::type const_pointer;
+ typedef T value_type;
+ typedef typename detail::add_reference
+ <value_type>::type reference;
+ typedef typename detail::add_reference
+ <const value_type>::type const_reference;
+ typedef std::size_t size_type;
+ typedef std::ptrdiff_t difference_type;
+
+ typedef detail::version_type<adaptive_pool_base, Version> version;
+ typedef detail::transform_multiallocation_chain
+ <typename SegmentManager::multiallocation_chain, T>multiallocation_chain;
+
+ //!Obtains adaptive_pool_base from
+ //!adaptive_pool_base
+ template<class T2>
+ struct rebind
+ {
+ typedef adaptive_pool_base<Version, T2, SegmentManager, NodesPerBlock, MaxFreeBlocks, OverheadPercent> other;
+ };
+
+ /// @cond
+ private:
+ //!Not assignable from related adaptive_pool_base
+ template<unsigned int Version2, class T2, class SegmentManager2, std::size_t N2, std::size_t F2, unsigned char O2>
+ adaptive_pool_base& operator=
+ (const adaptive_pool_base<Version2, T2, SegmentManager2, N2, F2, O2>&);
+
+ /// @endcond
+
+ public:
+ //!Constructor from a segment manager. If not present, constructs a node
+ //!pool. Increments the reference count of the associated node pool.
+ //!Can throw boost::interprocess::bad_alloc
+ adaptive_pool_base(segment_manager *segment_mngr)
+ : mp_node_pool(detail::get_or_create_node_pool<typename node_pool<0>::type>(segment_mngr)) { }
+
+ //!Copy constructor from other adaptive_pool_base. Increments the reference
+ //!count of the associated node pool. Never throws
+ adaptive_pool_base(const adaptive_pool_base &other)
+ : mp_node_pool(other.get_node_pool())
+ {
+ node_pool<0>::get(detail::get_pointer(mp_node_pool))->inc_ref_count();
+ }
+
+ //!Assignment from other adaptive_pool_base
+ adaptive_pool_base& operator=(const adaptive_pool_base &other)
+ {
+ adaptive_pool_base c(other);
+ swap(*this, c);
+ return *this;
+ }
+
+ //!Copy constructor from related adaptive_pool_base. If not present, constructs
+ //!a node pool. Increments the reference count of the associated node pool.
+ //!Can throw boost::interprocess::bad_alloc
+ template<class T2>
+ adaptive_pool_base
+ (const adaptive_pool_base<Version, T2, SegmentManager, NodesPerBlock, MaxFreeBlocks, OverheadPercent> &other)
+ : mp_node_pool(detail::get_or_create_node_pool<typename node_pool<0>::type>(other.get_segment_manager())) { }
+
+ //!Destructor, removes node_pool_t from memory
+ //!if its reference count reaches to zero. Never throws
+ ~adaptive_pool_base()
+ { detail::destroy_node_pool_if_last_link(node_pool<0>::get(detail::get_pointer(mp_node_pool))); }
+
+ //!Returns a pointer to the node pool.
+ //!Never throws
+ void* get_node_pool() const
+ { return detail::get_pointer(mp_node_pool); }
+
+ //!Returns the segment manager.
+ //!Never throws
+ segment_manager* get_segment_manager()const
+ { return node_pool<0>::get(detail::get_pointer(mp_node_pool))->get_segment_manager(); }
+
+ //!Swaps allocators. Does not throw. If each allocator is placed in a
+ //!different memory segment, the result is undefined.
+ friend void swap(self_t &alloc1, self_t &alloc2)
+ { detail::do_swap(alloc1.mp_node_pool, alloc2.mp_node_pool); }
+
+ /// @cond
+ private:
+ void_pointer mp_node_pool;
+ /// @endcond
+};
+
+//!Equality test for same type
+//!of adaptive_pool_base
+template<unsigned int V, class T, class S, std::size_t NPC, std::size_t F, unsigned char OP> inline
+bool operator==(const adaptive_pool_base<V, T, S, NPC, F, OP> &alloc1,
+ const adaptive_pool_base<V, T, S, NPC, F, OP> &alloc2)
+ { return alloc1.get_node_pool() == alloc2.get_node_pool(); }
+
+//!Inequality test for same type
+//!of adaptive_pool_base
+template<unsigned int V, class T, class S, std::size_t NPC, std::size_t F, unsigned char OP> inline
+bool operator!=(const adaptive_pool_base<V, T, S, NPC, F, OP> &alloc1,
+ const adaptive_pool_base<V, T, S, NPC, F, OP> &alloc2)
+ { return alloc1.get_node_pool() != alloc2.get_node_pool(); }
+
+template < class T
+ , class SegmentManager
+ , std::size_t NodesPerBlock = 64
+ , std::size_t MaxFreeBlocks = 2
+ , unsigned char OverheadPercent = 5
+ >
+class adaptive_pool_v1
+ : public adaptive_pool_base
+ < 1
+ , T
+ , SegmentManager
+ , NodesPerBlock
+ , MaxFreeBlocks
+ , OverheadPercent
+ >
+{
+ public:
+ typedef detail::adaptive_pool_base
+ < 1, T, SegmentManager, NodesPerBlock, MaxFreeBlocks, OverheadPercent> base_t;
+
+ template<class T2>
+ struct rebind
+ {
+ typedef adaptive_pool_v1<T2, SegmentManager, NodesPerBlock, MaxFreeBlocks, OverheadPercent> other;
+ };
+
+ adaptive_pool_v1(SegmentManager *segment_mngr)
+ : base_t(segment_mngr)
+ {}
+
+ template<class T2>
+ adaptive_pool_v1
+ (const adaptive_pool_v1<T2, SegmentManager, NodesPerBlock, MaxFreeBlocks, OverheadPercent> &other)
+ : base_t(other)
+ {}
+};
+
+} //namespace detail{
+
+/// @endcond
+
+//!An STL node allocator that uses a segment manager as memory
+//!source. The internal pointer type will of the same type (raw, smart) as
+//!"typename SegmentManager::void_pointer" type. This allows
+//!placing the allocator in shared memory, memory mapped-files, etc...
+//!
+//!This node allocator shares a segregated storage between all instances
+//!of adaptive_pool with equal sizeof(T) placed in the same segment
+//!group. NodesPerBlock is the number of nodes allocated at once when the allocator
+//!needs runs out of nodes. MaxFreeBlocks is the maximum number of totally free blocks
+//!that the adaptive node pool will hold. The rest of the totally free blocks will be
+//!deallocated with the segment manager.
+//!
+//!OverheadPercent is the (approximated) maximum size overhead (1-20%) of the allocator:
+//!(memory usable for nodes / total memory allocated from the segment manager)
+template < class T
+ , class SegmentManager
+ , std::size_t NodesPerBlock
+ , std::size_t MaxFreeBlocks
+ , unsigned char OverheadPercent
+ >
+class adaptive_pool
+ /// @cond
+ : public detail::adaptive_pool_base
+ < 2
+ , T
+ , SegmentManager
+ , NodesPerBlock
+ , MaxFreeBlocks
+ , OverheadPercent
+ >
+ /// @endcond
+{
+
+ #ifndef BOOST_INTERPROCESS_DOXYGEN_INVOKED
+ typedef detail::adaptive_pool_base
+ < 2, T, SegmentManager, NodesPerBlock, MaxFreeBlocks, OverheadPercent> base_t;
+ public:
+ typedef detail::version_type<adaptive_pool, 2> version;
+
+ template<class T2>
+ struct rebind
+ {
+ typedef adaptive_pool<T2, SegmentManager, NodesPerBlock, MaxFreeBlocks, OverheadPercent> other;
+ };
+
+ adaptive_pool(SegmentManager *segment_mngr)
+ : base_t(segment_mngr)
+ {}
+
+ template<class T2>
+ adaptive_pool
+ (const adaptive_pool<T2, SegmentManager, NodesPerBlock, MaxFreeBlocks, OverheadPercent> &other)
+ : base_t(other)
+ {}
+
+ #else //BOOST_INTERPROCESS_DOXYGEN_INVOKED
+ public:
+ typedef implementation_defined::segment_manager segment_manager;
+ typedef segment_manager::void_pointer void_pointer;
+ typedef implementation_defined::pointer pointer;
+ typedef implementation_defined::const_pointer const_pointer;
+ typedef T value_type;
+ typedef typename detail::add_reference
+ <value_type>::type reference;
+ typedef typename detail::add_reference
+ <const value_type>::type const_reference;
+ typedef std::size_t size_type;
+ typedef std::ptrdiff_t difference_type;
+
+ //!Obtains adaptive_pool from
+ //!adaptive_pool
+ template<class T2>
+ struct rebind
+ {
+ typedef adaptive_pool<T2, SegmentManager, NodesPerBlock, MaxFreeBlocks, OverheadPercent> other;
+ };
+
+ private:
+ //!Not assignable from
+ //!related adaptive_pool
+ template<class T2, class SegmentManager2, std::size_t N2, std::size_t F2, unsigned char OP2>
+ adaptive_pool& operator=
+ (const adaptive_pool<T2, SegmentManager2, N2, F2, OP2>&);
+
+ //!Not assignable from
+ //!other adaptive_pool
+ //adaptive_pool& operator=(const adaptive_pool&);
+
+ public:
+ //!Constructor from a segment manager. If not present, constructs a node
+ //!pool. Increments the reference count of the associated node pool.
+ //!Can throw boost::interprocess::bad_alloc
+ adaptive_pool(segment_manager *segment_mngr);
+
+ //!Copy constructor from other adaptive_pool. Increments the reference
+ //!count of the associated node pool. Never throws
+ adaptive_pool(const adaptive_pool &other);
+
+ //!Copy constructor from related adaptive_pool. If not present, constructs
+ //!a node pool. Increments the reference count of the associated node pool.
+ //!Can throw boost::interprocess::bad_alloc
+ template<class T2>
+ adaptive_pool
+ (const adaptive_pool<T2, SegmentManager, NodesPerBlock, MaxFreeBlocks, OverheadPercent> &other);
+
+ //!Destructor, removes node_pool_t from memory
+ //!if its reference count reaches to zero. Never throws
+ ~adaptive_pool();
+
+ //!Returns a pointer to the node pool.
+ //!Never throws
+ void* get_node_pool() const;
+
+ //!Returns the segment manager.
+ //!Never throws
+ segment_manager* get_segment_manager()const;
+
+ //!Returns the number of elements that could be allocated.
+ //!Never throws
+ size_type max_size() const;
+
+ //!Allocate memory for an array of count elements.
+ //!Throws boost::interprocess::bad_alloc if there is no enough memory
+ pointer allocate(size_type count, cvoid_pointer hint = 0);
+
+ //!Deallocate allocated memory.
+ //!Never throws
+ void deallocate(const pointer &ptr, size_type count);
+
+ //!Deallocates all free blocks
+ //!of the pool
+ void deallocate_free_blocks();
+
+ //!Swaps allocators. Does not throw. If each allocator is placed in a
+ //!different memory segment, the result is undefined.
+ friend void swap(self_t &alloc1, self_t &alloc2);
+
+ //!Returns address of mutable object.
+ //!Never throws
+ pointer address(reference value) const;
+
+ //!Returns address of non mutable object.
+ //!Never throws
+ const_pointer address(const_reference value) const;
+
+ //!Copy construct an object.
+ //!Throws if T's copy constructor throws
+ void construct(const pointer &ptr, const_reference v);
+
+ //!Destroys object. Throws if object's
+ //!destructor throws
+ void destroy(const pointer &ptr);
+
+ //!Returns maximum the number of objects the previously allocated memory
+ //!pointed by p can hold. This size only works for memory allocated with
+ //!allocate, allocation_command and allocate_many.
+ size_type size(const pointer &p) const;
+
+ std::pair<pointer, bool>
+ allocation_command(allocation_type command,
+ size_type limit_size,
+ size_type preferred_size,
+ size_type &received_size, const pointer &reuse = 0);
+
+ //!Allocates many elements of size elem_size in a contiguous block
+ //!of memory. The minimum number to be allocated is min_elements,
+ //!the preferred and maximum number is
+ //!preferred_elements. The number of actually allocated elements is
+ //!will be assigned to received_size. The elements must be deallocated
+ //!with deallocate(...)
+ multiallocation_chain allocate_many(size_type elem_size, std::size_t num_elements);
+
+ //!Allocates n_elements elements, each one of size elem_sizes[i]in a
+ //!contiguous block
+ //!of memory. The elements must be deallocated
+ multiallocation_chain allocate_many(const size_type *elem_sizes, size_type n_elements);
+
+ //!Allocates many elements of size elem_size in a contiguous block
+ //!of memory. The minimum number to be allocated is min_elements,
+ //!the preferred and maximum number is
+ //!preferred_elements. The number of actually allocated elements is
+ //!will be assigned to received_size. The elements must be deallocated
+ //!with deallocate(...)
+ void deallocate_many(multiallocation_chain chain);
+
+ //!Allocates just one object. Memory allocated with this function
+ //!must be deallocated only with deallocate_one().
+ //!Throws boost::interprocess::bad_alloc if there is no enough memory
+ pointer allocate_one();
+
+ //!Allocates many elements of size == 1 in a contiguous block
+ //!of memory. The minimum number to be allocated is min_elements,
+ //!the preferred and maximum number is
+ //!preferred_elements. The number of actually allocated elements is
+ //!will be assigned to received_size. Memory allocated with this function
+ //!must be deallocated only with deallocate_one().
+ multiallocation_chain allocate_individual(std::size_t num_elements);
+
+ //!Deallocates memory previously allocated with allocate_one().
+ //!You should never use deallocate_one to deallocate memory allocated
+ //!with other functions different from allocate_one(). Never throws
+ void deallocate_one(const pointer &p);
+
+ //!Allocates many elements of size == 1 in a contiguous block
+ //!of memory. The minimum number to be allocated is min_elements,
+ //!the preferred and maximum number is
+ //!preferred_elements. The number of actually allocated elements is
+ //!will be assigned to received_size. Memory allocated with this function
+ //!must be deallocated only with deallocate_one().
+ void deallocate_individual(multiallocation_chain it);
+ #endif
+};
+
+#ifdef BOOST_INTERPROCESS_DOXYGEN_INVOKED
+
+//!Equality test for same type
+//!of adaptive_pool
+template<class T, class S, std::size_t NodesPerBlock, std::size_t F, unsigned char OP> inline
+bool operator==(const adaptive_pool<T, S, NodesPerBlock, F, OP> &alloc1,
+ const adaptive_pool<T, S, NodesPerBlock, F, OP> &alloc2);
+
+//!Inequality test for same type
+//!of adaptive_pool
+template<class T, class S, std::size_t NodesPerBlock, std::size_t F, unsigned char OP> inline
+bool operator!=(const adaptive_pool<T, S, NodesPerBlock, F, OP> &alloc1,
+ const adaptive_pool<T, S, NodesPerBlock, F, OP> &alloc2);
+
+#endif
+
+} //namespace interprocess {
+} //namespace boost {
+
+#include <boost/interprocess/detail/config_end.hpp>
+
+#endif //#ifndef BOOST_INTERPROCESS_ADAPTIVE_POOL_HPP
+

Added: sandbox/boost/interprocess/allocators/allocation_type.hpp
==============================================================================
--- (empty file)
+++ sandbox/boost/interprocess/allocators/allocation_type.hpp 2009-02-17 13:04:56 EST (Tue, 17 Feb 2009)
@@ -0,0 +1,55 @@
+///////////////////////////////////////////////////////////////////////////////
+//
+// (C) Copyright Ion Gaztanaga 2005-2008. Distributed under the Boost
+// Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+//
+// See http://www.boost.org/libs/interprocess for documentation.
+//
+///////////////////////////////////////////////////////////////////////////////
+
+#ifndef BOOST_INTERPROCESS_TYPE_COMMAND_HPP
+#define BOOST_INTERPROCESS_TYPE_COMMAND_HPP
+
+#if (defined _MSC_VER) && (_MSC_VER >= 1200)
+# pragma once
+#endif
+
+#include <boost/interprocess/detail/config_begin.hpp>
+#include <boost/interprocess/detail/workaround.hpp>
+
+namespace boost {
+namespace interprocess {
+
+/// @cond
+enum allocation_type_v
+{
+ // constants for allocation commands
+ allocate_new_v = 0x01,
+ expand_fwd_v = 0x02,
+ expand_bwd_v = 0x04,
+// expand_both = expand_fwd | expand_bwd,
+// expand_or_new = allocate_new | expand_both,
+ shrink_in_place_v = 0x08,
+ nothrow_allocation_v = 0x10,
+ zero_memory_v = 0x20,
+ try_shrink_in_place_v = 0x40
+};
+
+typedef int allocation_type;
+/// @endcond
+static const allocation_type allocate_new = (allocation_type)allocate_new_v;
+static const allocation_type expand_fwd = (allocation_type)expand_fwd_v;
+static const allocation_type expand_bwd = (allocation_type)expand_bwd_v;
+static const allocation_type shrink_in_place = (allocation_type)shrink_in_place_v;
+static const allocation_type try_shrink_in_place= (allocation_type)try_shrink_in_place_v;
+static const allocation_type nothrow_allocation = (allocation_type)nothrow_allocation_v;
+static const allocation_type zero_memory = (allocation_type)zero_memory_v;
+
+} //namespace interprocess {
+} //namespace boost {
+
+#include <boost/interprocess/detail/config_end.hpp>
+
+#endif //BOOST_INTERPROCESS_TYPE_COMMAND_HPP
+

Added: sandbox/boost/interprocess/allocators/allocator.hpp
==============================================================================
--- (empty file)
+++ sandbox/boost/interprocess/allocators/allocator.hpp 2009-02-17 13:04:56 EST (Tue, 17 Feb 2009)
@@ -0,0 +1,302 @@
+///////////////////////////////////////////////////////////////////////////////
+//
+// (C) Copyright Ion Gaztanaga 2005-2008. Distributed under the Boost
+// Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+//
+// See http://www.boost.org/libs/interprocess for documentation.
+//
+///////////////////////////////////////////////////////////////////////////////
+
+#ifndef BOOST_INTERPROCESS_ALLOCATOR_HPP
+#define BOOST_INTERPROCESS_ALLOCATOR_HPP
+
+#if (defined _MSC_VER) && (_MSC_VER >= 1200)
+# pragma once
+#endif
+
+#include <boost/interprocess/detail/config_begin.hpp>
+#include <boost/interprocess/detail/workaround.hpp>
+
+#include <boost/interprocess/interprocess_fwd.hpp>
+#include <boost/interprocess/allocators/allocation_type.hpp>
+#include <boost/interprocess/detail/utilities.hpp>
+#include <boost/interprocess/detail/version_type.hpp>
+#include <boost/interprocess/exceptions.hpp>
+#include <boost/assert.hpp>
+#include <boost/utility/addressof.hpp>
+#include <boost/interprocess/detail/type_traits.hpp>
+#include <boost/interprocess/detail/iterators.hpp>
+
+#include <memory>
+#include <algorithm>
+#include <cstddef>
+#include <stdexcept>
+
+//!\file
+//!Describes an allocator that allocates portions of fixed size
+//!memory buffer (shared memory, mapped file...)
+
+namespace boost {
+namespace interprocess {
+
+
+//!An STL compatible allocator that uses a segment manager as
+//!memory source. The internal pointer type will of the same type (raw, smart) as
+//!"typename SegmentManager::void_pointer" type. This allows
+//!placing the allocator in shared memory, memory mapped-files, etc...
+template<class T, class SegmentManager>
+class allocator
+{
+ public:
+ //Segment manager
+ typedef SegmentManager segment_manager;
+ typedef typename SegmentManager::void_pointer void_pointer;
+
+ /// @cond
+ private:
+
+ //Self type
+ typedef allocator<T, SegmentManager> self_t;
+
+ //Pointer to void
+ typedef typename segment_manager::void_pointer aux_pointer_t;
+
+ //Typedef to const void pointer
+ typedef typename
+ detail::pointer_to_other
+ <aux_pointer_t, const void>::type cvoid_ptr;
+
+ //Pointer to the allocator
+ typedef typename detail::pointer_to_other
+ <cvoid_ptr, segment_manager>::type alloc_ptr_t;
+
+ //Not assignable from related allocator
+ template<class T2, class SegmentManager2>
+ allocator& operator=(const allocator<T2, SegmentManager2>&);
+
+ //Not assignable from other allocator
+ allocator& operator=(const allocator&);
+
+ //Pointer to the allocator
+ alloc_ptr_t mp_mngr;
+ /// @endcond
+
+ public:
+ typedef T value_type;
+ typedef typename detail::pointer_to_other
+ <cvoid_ptr, T>::type pointer;
+ typedef typename detail::
+ pointer_to_other<pointer, const T>::type const_pointer;
+ typedef typename detail::add_reference
+ <value_type>::type reference;
+ typedef typename detail::add_reference
+ <const value_type>::type const_reference;
+ typedef std::size_t size_type;
+ typedef std::ptrdiff_t difference_type;
+
+ typedef detail::version_type<allocator, 2> version;
+
+ /// @cond
+
+ //Experimental. Don't use.
+ typedef detail::transform_multiallocation_chain
+ <typename SegmentManager::multiallocation_chain, T>multiallocation_chain;
+ /// @endcond
+
+ //!Obtains an allocator that allocates
+ //!objects of type T2
+ template<class T2>
+ struct rebind
+ {
+ typedef allocator<T2, SegmentManager> other;
+ };
+
+ //!Returns the segment manager.
+ //!Never throws
+ segment_manager* get_segment_manager()const
+ { return detail::get_pointer(mp_mngr); }
+
+ //!Constructor from the segment manager.
+ //!Never throws
+ allocator(segment_manager *segment_mngr)
+ : mp_mngr(segment_mngr) { }
+
+ //!Constructor from other allocator.
+ //!Never throws
+ allocator(const allocator &other)
+ : mp_mngr(other.get_segment_manager()){ }
+
+ //!Constructor from related allocator.
+ //!Never throws
+ template<class T2>
+ allocator(const allocator<T2, SegmentManager> &other)
+ : mp_mngr(other.get_segment_manager()){}
+
+ //!Allocates memory for an array of count elements.
+ //!Throws boost::interprocess::bad_alloc if there is no enough memory
+ pointer allocate(size_type count, cvoid_ptr hint = 0)
+ {
+ (void)hint;
+ if(count > this->max_size())
+ throw bad_alloc();
+ return pointer(static_cast<value_type*>(mp_mngr->allocate(count*sizeof(T))));
+ }
+
+ //!Deallocates memory previously allocated.
+ //!Never throws
+ void deallocate(const pointer &ptr, size_type)
+ { mp_mngr->deallocate((void*)detail::get_pointer(ptr)); }
+
+ //!Returns the number of elements that could be allocated.
+ //!Never throws
+ size_type max_size() const
+ { return mp_mngr->get_size()/sizeof(T); }
+
+ //!Swap segment manager. Does not throw. If each allocator is placed in
+ //!different memory segments, the result is undefined.
+ friend void swap(self_t &alloc1, self_t &alloc2)
+ { detail::do_swap(alloc1.mp_mngr, alloc2.mp_mngr); }
+
+ //!Returns maximum the number of objects the previously allocated memory
+ //!pointed by p can hold. This size only works for memory allocated with
+ //!allocate, allocation_command and allocate_many.
+ size_type size(const pointer &p) const
+ {
+ return (size_type)mp_mngr->size(detail::get_pointer(p))/sizeof(T);
+ }
+
+ std::pair<pointer, bool>
+ allocation_command(allocation_type command,
+ size_type limit_size,
+ size_type preferred_size,
+ size_type &received_size, const pointer &reuse = 0)
+ {
+ return mp_mngr->allocation_command
+ (command, limit_size, preferred_size, received_size, detail::get_pointer(reuse));
+ }
+
+ //!Allocates many elements of size elem_size in a contiguous block
+ //!of memory. The minimum number to be allocated is min_elements,
+ //!the preferred and maximum number is
+ //!preferred_elements. The number of actually allocated elements is
+ //!will be assigned to received_size. The elements must be deallocated
+ //!with deallocate(...)
+ multiallocation_chain allocate_many
+ (size_type elem_size, std::size_t num_elements)
+ {
+ return multiallocation_chain(mp_mngr->allocate_many(sizeof(T)*elem_size, num_elements));
+ }
+
+ //!Allocates n_elements elements, each one of size elem_sizes[i]in a
+ //!contiguous block
+ //!of memory. The elements must be deallocated
+ multiallocation_chain allocate_many
+ (const size_type *elem_sizes, size_type n_elements)
+ {
+ multiallocation_chain(mp_mngr->allocate_many(elem_sizes, n_elements, sizeof(T)));
+ }
+
+ //!Allocates many elements of size elem_size in a contiguous block
+ //!of memory. The minimum number to be allocated is min_elements,
+ //!the preferred and maximum number is
+ //!preferred_elements. The number of actually allocated elements is
+ //!will be assigned to received_size. The elements must be deallocated
+ //!with deallocate(...)
+ void deallocate_many(multiallocation_chain chain)
+ {
+ return mp_mngr->deallocate_many(chain.extract_multiallocation_chain());
+ }
+
+ //!Allocates just one object. Memory allocated with this function
+ //!must be deallocated only with deallocate_one().
+ //!Throws boost::interprocess::bad_alloc if there is no enough memory
+ pointer allocate_one()
+ { return this->allocate(1); }
+
+ //!Allocates many elements of size == 1 in a contiguous block
+ //!of memory. The minimum number to be allocated is min_elements,
+ //!the preferred and maximum number is
+ //!preferred_elements. The number of actually allocated elements is
+ //!will be assigned to received_size. Memory allocated with this function
+ //!must be deallocated only with deallocate_one().
+ multiallocation_chain allocate_individual
+ (std::size_t num_elements)
+ { return this->allocate_many(1, num_elements); }
+
+ //!Deallocates memory previously allocated with allocate_one().
+ //!You should never use deallocate_one to deallocate memory allocated
+ //!with other functions different from allocate_one(). Never throws
+ void deallocate_one(const pointer &p)
+ { return this->deallocate(p, 1); }
+
+ //!Allocates many elements of size == 1 in a contiguous block
+ //!of memory. The minimum number to be allocated is min_elements,
+ //!the preferred and maximum number is
+ //!preferred_elements. The number of actually allocated elements is
+ //!will be assigned to received_size. Memory allocated with this function
+ //!must be deallocated only with deallocate_one().
+ void deallocate_individual(multiallocation_chain chain)
+ { return this->deallocate_many(boost::move(chain)); }
+
+ //!Returns address of mutable object.
+ //!Never throws
+ pointer address(reference value) const
+ { return pointer(boost::addressof(value)); }
+
+ //!Returns address of non mutable object.
+ //!Never throws
+ const_pointer address(const_reference value) const
+ { return const_pointer(boost::addressof(value)); }
+
+ //!Copy construct an object
+ //!Throws if T's copy constructor throws
+ void construct(const pointer &ptr, const_reference v)
+ { new((void*)detail::get_pointer(ptr)) value_type(v); }
+
+ //!Default construct an object.
+ //!Throws if T's default constructor throws
+ void construct(const pointer &ptr)
+ { new((void*)detail::get_pointer(ptr)) value_type; }
+
+ //!Destroys object. Throws if object's
+ //!destructor throws
+ void destroy(const pointer &ptr)
+ { BOOST_ASSERT(ptr != 0); (*ptr).~value_type(); }
+};
+
+//!Equality test for same type
+//!of allocator
+template<class T, class SegmentManager> inline
+bool operator==(const allocator<T , SegmentManager> &alloc1,
+ const allocator<T, SegmentManager> &alloc2)
+ { return alloc1.get_segment_manager() == alloc2.get_segment_manager(); }
+
+//!Inequality test for same type
+//!of allocator
+template<class T, class SegmentManager> inline
+bool operator!=(const allocator<T, SegmentManager> &alloc1,
+ const allocator<T, SegmentManager> &alloc2)
+ { return alloc1.get_segment_manager() != alloc2.get_segment_manager(); }
+
+} //namespace interprocess {
+
+/// @cond
+
+template<class T>
+struct has_trivial_destructor;
+
+template<class T, class SegmentManager>
+struct has_trivial_destructor
+ <boost::interprocess::allocator <T, SegmentManager> >
+{
+ enum { value = true };
+};
+/// @endcond
+
+} //namespace boost {
+
+#include <boost/interprocess/detail/config_end.hpp>
+
+#endif //BOOST_INTERPROCESS_ALLOCATOR_HPP
+

Added: sandbox/boost/interprocess/allocators/cached_adaptive_pool.hpp
==============================================================================
--- (empty file)
+++ sandbox/boost/interprocess/allocators/cached_adaptive_pool.hpp 2009-02-17 13:04:56 EST (Tue, 17 Feb 2009)
@@ -0,0 +1,354 @@
+//////////////////////////////////////////////////////////////////////////////
+//
+// (C) Copyright Ion Gaztanaga 2005-2008. Distributed under the Boost
+// Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+//
+// See http://www.boost.org/libs/interprocess for documentation.
+//
+//////////////////////////////////////////////////////////////////////////////
+
+#ifndef BOOST_INTERPROCESS_CACHED_ADAPTIVE_POOL_HPP
+#define BOOST_INTERPROCESS_CACHED_ADAPTIVE_POOL_HPP
+
+#if (defined _MSC_VER) && (_MSC_VER >= 1200)
+# pragma once
+#endif
+
+#include <boost/interprocess/detail/config_begin.hpp>
+#include <boost/interprocess/detail/workaround.hpp>
+
+#include <boost/interprocess/interprocess_fwd.hpp>
+#include <boost/interprocess/allocators/detail/adaptive_node_pool.hpp>
+#include <boost/interprocess/allocators/detail/allocator_common.hpp>
+#include <boost/interprocess/detail/utilities.hpp>
+#include <boost/interprocess/detail/workaround.hpp>
+#include <boost/interprocess/detail/version_type.hpp>
+#include <boost/interprocess/allocators/detail/node_tools.hpp>
+#include <cstddef>
+
+//!\file
+//!Describes cached_adaptive_pool pooled shared memory STL compatible allocator
+
+namespace boost {
+namespace interprocess {
+
+/// @cond
+
+namespace detail {
+
+template < class T
+ , class SegmentManager
+ , std::size_t NodesPerBlock = 64
+ , std::size_t MaxFreeBlocks = 2
+ , unsigned char OverheadPercent = 5
+ >
+class cached_adaptive_pool_v1
+ : public detail::cached_allocator_impl
+ < T
+ , detail::shared_adaptive_node_pool
+ < SegmentManager
+ , sizeof_value<T>::value
+ , NodesPerBlock
+ , MaxFreeBlocks
+ , OverheadPercent
+ >
+ , 1>
+{
+ public:
+ typedef detail::cached_allocator_impl
+ < T
+ , detail::shared_adaptive_node_pool
+ < SegmentManager
+ , sizeof_value<T>::value
+ , NodesPerBlock
+ , MaxFreeBlocks
+ , OverheadPercent
+ >
+ , 1> base_t;
+
+ template<class T2>
+ struct rebind
+ {
+ typedef cached_adaptive_pool_v1
+ <T2, SegmentManager, NodesPerBlock, MaxFreeBlocks, OverheadPercent> other;
+ };
+
+ cached_adaptive_pool_v1(SegmentManager *segment_mngr,
+ std::size_t max_cached_nodes = base_t::DEFAULT_MAX_CACHED_NODES)
+ : base_t(segment_mngr, max_cached_nodes)
+ {}
+
+ template<class T2>
+ cached_adaptive_pool_v1
+ (const cached_adaptive_pool_v1
+ <T2, SegmentManager, NodesPerBlock, MaxFreeBlocks, OverheadPercent> &other)
+ : base_t(other)
+ {}
+};
+
+} //namespace detail{
+
+/// @endcond
+
+//!An STL node allocator that uses a segment manager as memory
+//!source. The internal pointer type will of the same type (raw, smart) as
+//!"typename SegmentManager::void_pointer" type. This allows
+//!placing the allocator in shared memory, memory mapped-files, etc...
+//!
+//!This node allocator shares a segregated storage between all instances of
+//!cached_adaptive_pool with equal sizeof(T) placed in the same
+//!memory segment. But also caches some nodes privately to
+//!avoid some synchronization overhead.
+//!
+//!NodesPerBlock is the minimum number of nodes of nodes allocated at once when
+//!the allocator needs runs out of nodes. MaxFreeBlocks is the maximum number of totally free blocks
+//!that the adaptive node pool will hold. The rest of the totally free blocks will be
+//!deallocated with the segment manager.
+//!
+//!OverheadPercent is the (approximated) maximum size overhead (1-20%) of the allocator:
+//!(memory usable for nodes / total memory allocated from the segment manager)
+template < class T
+ , class SegmentManager
+ , std::size_t NodesPerBlock
+ , std::size_t MaxFreeBlocks
+ , unsigned char OverheadPercent
+ >
+class cached_adaptive_pool
+ /// @cond
+ : public detail::cached_allocator_impl
+ < T
+ , detail::shared_adaptive_node_pool
+ < SegmentManager
+ , sizeof_value<T>::value
+ , NodesPerBlock
+ , MaxFreeBlocks
+ , OverheadPercent
+ >
+ , 2>
+ /// @endcond
+{
+
+ #ifndef BOOST_INTERPROCESS_DOXYGEN_INVOKED
+ public:
+ typedef detail::cached_allocator_impl
+ < T
+ , detail::shared_adaptive_node_pool
+ < SegmentManager
+ , sizeof_value<T>::value
+ , NodesPerBlock
+ , MaxFreeBlocks
+ , OverheadPercent
+ >
+ , 2> base_t;
+
+ public:
+ typedef detail::version_type<cached_adaptive_pool, 2> version;
+
+ template<class T2>
+ struct rebind
+ {
+ typedef cached_adaptive_pool
+ <T2, SegmentManager, NodesPerBlock, MaxFreeBlocks, OverheadPercent> other;
+ };
+
+ cached_adaptive_pool(SegmentManager *segment_mngr,
+ std::size_t max_cached_nodes = base_t::DEFAULT_MAX_CACHED_NODES)
+ : base_t(segment_mngr, max_cached_nodes)
+ {}
+
+ template<class T2>
+ cached_adaptive_pool
+ (const cached_adaptive_pool<T2, SegmentManager, NodesPerBlock, MaxFreeBlocks, OverheadPercent> &other)
+ : base_t(other)
+ {}
+
+ #else
+ public:
+ typedef implementation_defined::segment_manager segment_manager;
+ typedef segment_manager::void_pointer void_pointer;
+ typedef implementation_defined::pointer pointer;
+ typedef implementation_defined::const_pointer const_pointer;
+ typedef T value_type;
+ typedef typename detail::add_reference
+ <value_type>::type reference;
+ typedef typename detail::add_reference
+ <const value_type>::type const_reference;
+ typedef std::size_t size_type;
+ typedef std::ptrdiff_t difference_type;
+
+ //!Obtains cached_adaptive_pool from
+ //!cached_adaptive_pool
+ template<class T2>
+ struct rebind
+ {
+ typedef cached_adaptive_pool<T2, SegmentManager, NodesPerBlock, MaxFreeBlocks, OverheadPercent> other;
+ };
+
+ private:
+ //!Not assignable from
+ //!related cached_adaptive_pool
+ template<class T2, class SegmentManager2, std::size_t N2, std::size_t F2, unsigned char OP2>
+ cached_adaptive_pool& operator=
+ (const cached_adaptive_pool<T2, SegmentManager2, N2, F2, OP2>&);
+
+ //!Not assignable from
+ //!other cached_adaptive_pool
+ cached_adaptive_pool& operator=(const cached_adaptive_pool&);
+
+ public:
+ //!Constructor from a segment manager. If not present, constructs a node
+ //!pool. Increments the reference count of the associated node pool.
+ //!Can throw boost::interprocess::bad_alloc
+ cached_adaptive_pool(segment_manager *segment_mngr);
+
+ //!Copy constructor from other cached_adaptive_pool. Increments the reference
+ //!count of the associated node pool. Never throws
+ cached_adaptive_pool(const cached_adaptive_pool &other);
+
+ //!Copy constructor from related cached_adaptive_pool. If not present, constructs
+ //!a node pool. Increments the reference count of the associated node pool.
+ //!Can throw boost::interprocess::bad_alloc
+ template<class T2>
+ cached_adaptive_pool
+ (const cached_adaptive_pool<T2, SegmentManager, NodesPerBlock, MaxFreeBlocks, OverheadPercent> &other);
+
+ //!Destructor, removes node_pool_t from memory
+ //!if its reference count reaches to zero. Never throws
+ ~cached_adaptive_pool();
+
+ //!Returns a pointer to the node pool.
+ //!Never throws
+ node_pool_t* get_node_pool() const;
+
+ //!Returns the segment manager.
+ //!Never throws
+ segment_manager* get_segment_manager()const;
+
+ //!Returns the number of elements that could be allocated.
+ //!Never throws
+ size_type max_size() const;
+
+ //!Allocate memory for an array of count elements.
+ //!Throws boost::interprocess::bad_alloc if there is no enough memory
+ pointer allocate(size_type count, cvoid_pointer hint = 0);
+
+ //!Deallocate allocated memory.
+ //!Never throws
+ void deallocate(const pointer &ptr, size_type count);
+
+ //!Deallocates all free blocks
+ //!of the pool
+ void deallocate_free_blocks();
+
+ //!Swaps allocators. Does not throw. If each allocator is placed in a
+ //!different memory segment, the result is undefined.
+ friend void swap(self_t &alloc1, self_t &alloc2);
+
+ //!Returns address of mutable object.
+ //!Never throws
+ pointer address(reference value) const;
+
+ //!Returns address of non mutable object.
+ //!Never throws
+ const_pointer address(const_reference value) const;
+
+ //!Copy construct an object.
+ //!Throws if T's copy constructor throws
+ void construct(const pointer &ptr, const_reference v);
+
+ //!Destroys object. Throws if object's
+ //!destructor throws
+ void destroy(const pointer &ptr);
+
+ //!Returns maximum the number of objects the previously allocated memory
+ //!pointed by p can hold. This size only works for memory allocated with
+ //!allocate, allocation_command and allocate_many.
+ size_type size(const pointer &p) const;
+
+ std::pair<pointer, bool>
+ allocation_command(allocation_type command,
+ size_type limit_size,
+ size_type preferred_size,
+ size_type &received_size, const pointer &reuse = 0);
+
+ //!Allocates many elements of size elem_size in a contiguous block
+ //!of memory. The minimum number to be allocated is min_elements,
+ //!the preferred and maximum number is
+ //!preferred_elements. The number of actually allocated elements is
+ //!will be assigned to received_size. The elements must be deallocated
+ //!with deallocate(...)
+ multiallocation_chain allocate_many(size_type elem_size, std::size_t num_elements);
+
+ //!Allocates n_elements elements, each one of size elem_sizes[i]in a
+ //!contiguous block
+ //!of memory. The elements must be deallocated
+ multiallocation_chain allocate_many(const size_type *elem_sizes, size_type n_elements);
+
+ //!Allocates many elements of size elem_size in a contiguous block
+ //!of memory. The minimum number to be allocated is min_elements,
+ //!the preferred and maximum number is
+ //!preferred_elements. The number of actually allocated elements is
+ //!will be assigned to received_size. The elements must be deallocated
+ //!with deallocate(...)
+ void deallocate_many(multiallocation_chain chain);
+
+ //!Allocates just one object. Memory allocated with this function
+ //!must be deallocated only with deallocate_one().
+ //!Throws boost::interprocess::bad_alloc if there is no enough memory
+ pointer allocate_one();
+
+ //!Allocates many elements of size == 1 in a contiguous block
+ //!of memory. The minimum number to be allocated is min_elements,
+ //!the preferred and maximum number is
+ //!preferred_elements. The number of actually allocated elements is
+ //!will be assigned to received_size. Memory allocated with this function
+ //!must be deallocated only with deallocate_one().
+ multiallocation_chain allocate_individual(std::size_t num_elements);
+
+ //!Deallocates memory previously allocated with allocate_one().
+ //!You should never use deallocate_one to deallocate memory allocated
+ //!with other functions different from allocate_one(). Never throws
+ void deallocate_one(const pointer &p);
+
+ //!Allocates many elements of size == 1 in a contiguous block
+ //!of memory. The minimum number to be allocated is min_elements,
+ //!the preferred and maximum number is
+ //!preferred_elements. The number of actually allocated elements is
+ //!will be assigned to received_size. Memory allocated with this function
+ //!must be deallocated only with deallocate_one().
+ void deallocate_individual(multiallocation_chain chain);
+ //!Sets the new max cached nodes value. This can provoke deallocations
+ //!if "newmax" is less than current cached nodes. Never throws
+ void set_max_cached_nodes(std::size_t newmax);
+
+ //!Returns the max cached nodes parameter.
+ //!Never throws
+ std::size_t get_max_cached_nodes() const;
+ #endif
+};
+
+#ifdef BOOST_INTERPROCESS_DOXYGEN_INVOKED
+
+//!Equality test for same type
+//!of cached_adaptive_pool
+template<class T, class S, std::size_t NodesPerBlock, std::size_t F, std::size_t OP> inline
+bool operator==(const cached_adaptive_pool<T, S, NodesPerBlock, F, OP> &alloc1,
+ const cached_adaptive_pool<T, S, NodesPerBlock, F, OP> &alloc2);
+
+//!Inequality test for same type
+//!of cached_adaptive_pool
+template<class T, class S, std::size_t NodesPerBlock, std::size_t F, std::size_t OP> inline
+bool operator!=(const cached_adaptive_pool<T, S, NodesPerBlock, F, OP> &alloc1,
+ const cached_adaptive_pool<T, S, NodesPerBlock, F, OP> &alloc2);
+
+#endif
+
+} //namespace interprocess {
+} //namespace boost {
+
+
+#include <boost/interprocess/detail/config_end.hpp>
+
+#endif //#ifndef BOOST_INTERPROCESS_CACHED_ADAPTIVE_POOL_HPP
+

Added: sandbox/boost/interprocess/allocators/cached_node_allocator.hpp
==============================================================================
--- (empty file)
+++ sandbox/boost/interprocess/allocators/cached_node_allocator.hpp 2009-02-17 13:04:56 EST (Tue, 17 Feb 2009)
@@ -0,0 +1,324 @@
+//////////////////////////////////////////////////////////////////////////////
+//
+// (C) Copyright Ion Gaztanaga 2005-2008. Distributed under the Boost
+// Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+//
+// See http://www.boost.org/libs/interprocess for documentation.
+//
+//////////////////////////////////////////////////////////////////////////////
+
+#ifndef BOOST_INTERPROCESS_CACHED_NODE_ALLOCATOR_HPP
+#define BOOST_INTERPROCESS_CACHED_NODE_ALLOCATOR_HPP
+
+#if (defined _MSC_VER) && (_MSC_VER >= 1200)
+# pragma once
+#endif
+
+#include <boost/interprocess/detail/config_begin.hpp>
+#include <boost/interprocess/detail/workaround.hpp>
+
+#include <boost/interprocess/interprocess_fwd.hpp>
+#include <boost/interprocess/allocators/detail/node_pool.hpp>
+#include <boost/interprocess/allocators/detail/allocator_common.hpp>
+#include <boost/interprocess/detail/workaround.hpp>
+#include <boost/interprocess/detail/utilities.hpp>
+#include <boost/interprocess/detail/version_type.hpp>
+#include <boost/interprocess/allocators/detail/node_tools.hpp>
+#include <cstddef>
+
+//!\file
+//!Describes cached_cached_node_allocator pooled shared memory STL compatible allocator
+
+namespace boost {
+namespace interprocess {
+
+
+/// @cond
+
+namespace detail {
+
+template < class T
+ , class SegmentManager
+ , std::size_t NodesPerBlock = 64
+ >
+class cached_node_allocator_v1
+ : public detail::cached_allocator_impl
+ < T
+ , detail::shared_node_pool
+ < SegmentManager
+ , sizeof_value<T>::value
+ , NodesPerBlock
+ >
+ , 1>
+{
+ public:
+ typedef detail::cached_allocator_impl
+ < T
+ , detail::shared_node_pool
+ < SegmentManager
+ , sizeof_value<T>::value
+ , NodesPerBlock
+ >
+ , 1> base_t;
+
+ template<class T2>
+ struct rebind
+ {
+ typedef cached_node_allocator_v1
+ <T2, SegmentManager, NodesPerBlock> other;
+ };
+
+ cached_node_allocator_v1(SegmentManager *segment_mngr,
+ std::size_t max_cached_nodes = base_t::DEFAULT_MAX_CACHED_NODES)
+ : base_t(segment_mngr, max_cached_nodes)
+ {}
+
+ template<class T2>
+ cached_node_allocator_v1
+ (const cached_node_allocator_v1
+ <T2, SegmentManager, NodesPerBlock> &other)
+ : base_t(other)
+ {}
+};
+
+} //namespace detail{
+
+/// @endcond
+
+template < class T
+ , class SegmentManager
+ , std::size_t NodesPerBlock
+ >
+class cached_node_allocator
+ /// @cond
+ : public detail::cached_allocator_impl
+ < T
+ , detail::shared_node_pool
+ < SegmentManager
+ , sizeof_value<T>::value
+ , NodesPerBlock
+ >
+ , 2>
+ /// @endcond
+{
+
+ #ifndef BOOST_INTERPROCESS_DOXYGEN_INVOKED
+ public:
+ typedef detail::cached_allocator_impl
+ < T
+ , detail::shared_node_pool
+ < SegmentManager
+ , sizeof_value<T>::value
+ , NodesPerBlock
+ >
+ , 2> base_t;
+
+ public:
+ typedef detail::version_type<cached_node_allocator, 2> version;
+
+ template<class T2>
+ struct rebind
+ {
+ typedef cached_node_allocator<T2, SegmentManager, NodesPerBlock> other;
+ };
+
+ cached_node_allocator(SegmentManager *segment_mngr,
+ std::size_t max_cached_nodes = base_t::DEFAULT_MAX_CACHED_NODES)
+ : base_t(segment_mngr, max_cached_nodes)
+ {}
+
+ template<class T2>
+ cached_node_allocator
+ (const cached_node_allocator<T2, SegmentManager, NodesPerBlock> &other)
+ : base_t(other)
+ {}
+
+ #else
+ public:
+ typedef implementation_defined::segment_manager segment_manager;
+ typedef segment_manager::void_pointer void_pointer;
+ typedef implementation_defined::pointer pointer;
+ typedef implementation_defined::const_pointer const_pointer;
+ typedef T value_type;
+ typedef typename detail::add_reference
+ <value_type>::type reference;
+ typedef typename detail::add_reference
+ <const value_type>::type const_reference;
+ typedef std::size_t size_type;
+ typedef std::ptrdiff_t difference_type;
+
+ //!Obtains cached_node_allocator from
+ //!cached_node_allocator
+ template<class T2>
+ struct rebind
+ {
+ typedef cached_node_allocator<T2, SegmentManager> other;
+ };
+
+ private:
+ //!Not assignable from
+ //!related cached_node_allocator
+ template<class T2, class SegmentManager2, std::size_t N2>
+ cached_node_allocator& operator=
+ (const cached_node_allocator<T2, SegmentManager2, N2>&);
+
+ //!Not assignable from
+ //!other cached_node_allocator
+ cached_node_allocator& operator=(const cached_node_allocator&);
+
+ public:
+ //!Constructor from a segment manager. If not present, constructs a node
+ //!pool. Increments the reference count of the associated node pool.
+ //!Can throw boost::interprocess::bad_alloc
+ cached_node_allocator(segment_manager *segment_mngr);
+
+ //!Copy constructor from other cached_node_allocator. Increments the reference
+ //!count of the associated node pool. Never throws
+ cached_node_allocator(const cached_node_allocator &other);
+
+ //!Copy constructor from related cached_node_allocator. If not present, constructs
+ //!a node pool. Increments the reference count of the associated node pool.
+ //!Can throw boost::interprocess::bad_alloc
+ template<class T2>
+ cached_node_allocator
+ (const cached_node_allocator<T2, SegmentManager, NodesPerBlock> &other);
+
+ //!Destructor, removes node_pool_t from memory
+ //!if its reference count reaches to zero. Never throws
+ ~cached_node_allocator();
+
+ //!Returns a pointer to the node pool.
+ //!Never throws
+ node_pool_t* get_node_pool() const;
+
+ //!Returns the segment manager.
+ //!Never throws
+ segment_manager* get_segment_manager()const;
+
+ //!Returns the number of elements that could be allocated.
+ //!Never throws
+ size_type max_size() const;
+
+ //!Allocate memory for an array of count elements.
+ //!Throws boost::interprocess::bad_alloc if there is no enough memory
+ pointer allocate(size_type count, cvoid_pointer hint = 0);
+
+ //!Deallocate allocated memory.
+ //!Never throws
+ void deallocate(const pointer &ptr, size_type count);
+
+ //!Deallocates all free blocks
+ //!of the pool
+ void deallocate_free_blocks();
+
+ //!Swaps allocators. Does not throw. If each allocator is placed in a
+ //!different memory segment, the result is undefined.
+ friend void swap(self_t &alloc1, self_t &alloc2);
+
+ //!Returns address of mutable object.
+ //!Never throws
+ pointer address(reference value) const;
+
+ //!Returns address of non mutable object.
+ //!Never throws
+ const_pointer address(const_reference value) const;
+
+ //!Default construct an object.
+ //!Throws if T's default constructor throws
+ void construct(const pointer &ptr, const_reference v);
+
+ //!Destroys object. Throws if object's
+ //!destructor throws
+ void destroy(const pointer &ptr);
+
+ //!Returns maximum the number of objects the previously allocated memory
+ //!pointed by p can hold. This size only works for memory allocated with
+ //!allocate, allocation_command and allocate_many.
+ size_type size(const pointer &p) const;
+
+ std::pair<pointer, bool>
+ allocation_command(allocation_type command,
+ size_type limit_size,
+ size_type preferred_size,
+ size_type &received_size, const pointer &reuse = 0);
+
+ //!Allocates many elements of size elem_size in a contiguous block
+ //!of memory. The minimum number to be allocated is min_elements,
+ //!the preferred and maximum number is
+ //!preferred_elements. The number of actually allocated elements is
+ //!will be assigned to received_size. The elements must be deallocated
+ //!with deallocate(...)
+ multiallocation_chain allocate_many(size_type elem_size, std::size_t num_elements);
+
+ //!Allocates n_elements elements, each one of size elem_sizes[i]in a
+ //!contiguous block
+ //!of memory. The elements must be deallocated
+ multiallocation_chain allocate_many(const size_type *elem_sizes, size_type n_elements);
+
+ //!Allocates many elements of size elem_size in a contiguous block
+ //!of memory. The minimum number to be allocated is min_elements,
+ //!the preferred and maximum number is
+ //!preferred_elements. The number of actually allocated elements is
+ //!will be assigned to received_size. The elements must be deallocated
+ //!with deallocate(...)
+ void deallocate_many(multiallocation_chain chain);
+
+ //!Allocates just one object. Memory allocated with this function
+ //!must be deallocated only with deallocate_one().
+ //!Throws boost::interprocess::bad_alloc if there is no enough memory
+ pointer allocate_one();
+
+ //!Allocates many elements of size == 1 in a contiguous block
+ //!of memory. The minimum number to be allocated is min_elements,
+ //!the preferred and maximum number is
+ //!preferred_elements. The number of actually allocated elements is
+ //!will be assigned to received_size. Memory allocated with this function
+ //!must be deallocated only with deallocate_one().
+ multiallocation_chain allocate_individual(std::size_t num_elements);
+
+ //!Deallocates memory previously allocated with allocate_one().
+ //!You should never use deallocate_one to deallocate memory allocated
+ //!with other functions different from allocate_one(). Never throws
+ void deallocate_one(const pointer &p);
+
+ //!Allocates many elements of size == 1 in a contiguous block
+ //!of memory. The minimum number to be allocated is min_elements,
+ //!the preferred and maximum number is
+ //!preferred_elements. The number of actually allocated elements is
+ //!will be assigned to received_size. Memory allocated with this function
+ //!must be deallocated only with deallocate_one().
+ void deallocate_individual(multiallocation_chain it);
+ //!Sets the new max cached nodes value. This can provoke deallocations
+ //!if "newmax" is less than current cached nodes. Never throws
+ void set_max_cached_nodes(std::size_t newmax);
+
+ //!Returns the max cached nodes parameter.
+ //!Never throws
+ std::size_t get_max_cached_nodes() const;
+ #endif
+};
+
+#ifdef BOOST_INTERPROCESS_DOXYGEN_INVOKED
+
+//!Equality test for same type
+//!of cached_node_allocator
+template<class T, class S, std::size_t NPC> inline
+bool operator==(const cached_node_allocator<T, S, NPC> &alloc1,
+ const cached_node_allocator<T, S, NPC> &alloc2);
+
+//!Inequality test for same type
+//!of cached_node_allocator
+template<class T, class S, std::size_t NPC> inline
+bool operator!=(const cached_node_allocator<T, S, NPC> &alloc1,
+ const cached_node_allocator<T, S, NPC> &alloc2);
+
+#endif
+
+} //namespace interprocess {
+} //namespace boost {
+
+#include <boost/interprocess/detail/config_end.hpp>
+
+#endif //#ifndef BOOST_INTERPROCESS_CACHED_NODE_ALLOCATOR_HPP
+

Added: sandbox/boost/interprocess/allocators/detail/adaptive_node_pool.hpp
==============================================================================
--- (empty file)
+++ sandbox/boost/interprocess/allocators/detail/adaptive_node_pool.hpp 2009-02-17 13:04:56 EST (Tue, 17 Feb 2009)
@@ -0,0 +1,638 @@
+//////////////////////////////////////////////////////////////////////////////
+//
+// (C) Copyright Ion Gaztanaga 2005-2008. Distributed under the Boost
+// Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+//
+// See http://www.boost.org/libs/interprocess for documentation.
+//
+//////////////////////////////////////////////////////////////////////////////
+
+#ifndef BOOST_INTERPROCESS_DETAIL_ADAPTIVE_NODE_POOL_HPP
+#define BOOST_INTERPROCESS_DETAIL_ADAPTIVE_NODE_POOL_HPP
+
+#if (defined _MSC_VER) && (_MSC_VER >= 1200)
+# pragma once
+#endif
+
+#include <boost/interprocess/detail/config_begin.hpp>
+#include <boost/interprocess/detail/workaround.hpp>
+#include <boost/interprocess/interprocess_fwd.hpp>
+#include <boost/interprocess/sync/interprocess_mutex.hpp>
+#include <boost/interprocess/detail/utilities.hpp>
+#include <boost/interprocess/detail/min_max.hpp>
+#include <boost/interprocess/detail/math_functions.hpp>
+#include <boost/interprocess/exceptions.hpp>
+#include <boost/intrusive/set.hpp>
+#include <boost/intrusive/slist.hpp>
+#include <boost/math/common_factor_ct.hpp>
+#include <boost/interprocess/detail/type_traits.hpp>
+#include <boost/interprocess/mem_algo/detail/mem_algo_common.hpp>
+#include <boost/interprocess/allocators/detail/node_tools.hpp>
+#include <boost/interprocess/allocators/detail/allocator_common.hpp>
+#include <cstddef>
+#include <boost/config/no_tr1/cmath.hpp>
+#include <cassert>
+
+//!\file
+//!Describes the real adaptive pool shared by many Interprocess pool allocators
+
+namespace boost {
+namespace interprocess {
+namespace detail {
+
+template<class SegmentManagerBase>
+class private_adaptive_node_pool_impl
+{
+ //Non-copyable
+ private_adaptive_node_pool_impl();
+ private_adaptive_node_pool_impl(const private_adaptive_node_pool_impl &);
+ private_adaptive_node_pool_impl &operator=(const private_adaptive_node_pool_impl &);
+
+ typedef typename SegmentManagerBase::void_pointer void_pointer;
+ static const std::size_t PayloadPerAllocation = SegmentManagerBase::PayloadPerAllocation;
+ public:
+ typedef typename node_slist<void_pointer>::node_t node_t;
+ typedef typename node_slist<void_pointer>::node_slist_t free_nodes_t;
+ typedef typename SegmentManagerBase::multiallocation_chain multiallocation_chain;
+
+ private:
+ typedef typename bi::make_set_base_hook
+ < bi::void_pointer<void_pointer>
+ , bi::optimize_size<true>
+ , bi::constant_time_size<false>
+ , bi::link_mode<bi::normal_link> >::type multiset_hook_t;
+
+ struct hdr_offset_holder
+ {
+ hdr_offset_holder(std::size_t offset = 0)
+ : hdr_offset(offset)
+ {}
+ std::size_t hdr_offset;
+ };
+
+ struct block_info_t
+ :
+ public hdr_offset_holder,
+ public multiset_hook_t
+ {
+ //An intrusive list of free node from this block
+ free_nodes_t free_nodes;
+ friend bool operator <(const block_info_t &l, const block_info_t &r)
+ {
+// { return l.free_nodes.size() < r.free_nodes.size(); }
+ //Let's order blocks first by free nodes and then by address
+ //so that highest address fully free blocks are deallocated.
+ //This improves returning memory to the OS (trimming).
+ const bool is_less = l.free_nodes.size() < r.free_nodes.size();
+ const bool is_equal = l.free_nodes.size() == r.free_nodes.size();
+ return is_less || (is_equal && (&l < &r));
+ }
+ };
+ typedef typename bi::make_multiset
+ <block_info_t, bi::base_hook<multiset_hook_t> >::type block_multiset_t;
+ typedef typename block_multiset_t::iterator block_iterator;
+
+ static const std::size_t MaxAlign = alignment_of<node_t>::value;
+ static const std::size_t HdrSize = ((sizeof(block_info_t)-1)/MaxAlign+1)*MaxAlign;
+ static const std::size_t HdrOffsetSize = ((sizeof(hdr_offset_holder)-1)/MaxAlign+1)*MaxAlign;
+ static std::size_t calculate_alignment
+ (std::size_t overhead_percent, std::size_t real_node_size)
+ {
+ //to-do: handle real_node_size != node_size
+ const std::size_t divisor = overhead_percent*real_node_size;
+ const std::size_t dividend = HdrOffsetSize*100;
+ std::size_t elements_per_subblock = (dividend - 1)/divisor + 1;
+ std::size_t candidate_power_of_2 =
+ upper_power_of_2(elements_per_subblock*real_node_size + HdrOffsetSize);
+ bool overhead_satisfied = false;
+ //Now calculate the wors-case overhead for a subblock
+ const std::size_t max_subblock_overhead = HdrSize + PayloadPerAllocation;
+ while(!overhead_satisfied){
+ elements_per_subblock = (candidate_power_of_2 - max_subblock_overhead)/real_node_size;
+ const std::size_t overhead_size = candidate_power_of_2 - elements_per_subblock*real_node_size;
+ if(overhead_size*100/candidate_power_of_2 < overhead_percent){
+ overhead_satisfied = true;
+ }
+ else{
+ candidate_power_of_2 <<= 1;
+ }
+ }
+ return candidate_power_of_2;
+ }
+
+ static void calculate_num_subblocks
+ (std::size_t alignment, std::size_t real_node_size, std::size_t elements_per_block
+ ,std::size_t &num_subblocks, std::size_t &real_num_node, std::size_t overhead_percent)
+ {
+ std::size_t elements_per_subblock = (alignment - HdrOffsetSize)/real_node_size;
+ std::size_t possible_num_subblock = (elements_per_block - 1)/elements_per_subblock + 1;
+ std::size_t hdr_subblock_elements = (alignment - HdrSize - PayloadPerAllocation)/real_node_size;
+ while(((possible_num_subblock-1)*elements_per_subblock + hdr_subblock_elements) < elements_per_block){
+ ++possible_num_subblock;
+ }
+ elements_per_subblock = (alignment - HdrOffsetSize)/real_node_size;
+ bool overhead_satisfied = false;
+ while(!overhead_satisfied){
+ const std::size_t total_data = (elements_per_subblock*(possible_num_subblock-1) + hdr_subblock_elements)*real_node_size;
+ const std::size_t total_size = alignment*possible_num_subblock;
+ if((total_size - total_data)*100/total_size < overhead_percent){
+ overhead_satisfied = true;
+ }
+ else{
+ ++possible_num_subblock;
+ }
+ }
+ num_subblocks = possible_num_subblock;
+ real_num_node = (possible_num_subblock-1)*elements_per_subblock + hdr_subblock_elements;
+ }
+
+ public:
+ //!Segment manager typedef
+ typedef SegmentManagerBase segment_manager_base_type;
+
+ //!Constructor from a segment manager. Never throws
+ private_adaptive_node_pool_impl
+ ( segment_manager_base_type *segment_mngr_base, std::size_t node_size
+ , std::size_t nodes_per_block, std::size_t max_free_blocks
+ , unsigned char overhead_percent
+ )
+ : m_max_free_blocks(max_free_blocks)
+ , m_real_node_size(lcm(node_size, std::size_t(alignment_of<node_t>::value)))
+ //Round the size to a power of two value.
+ //This is the total memory size (including payload) that we want to
+ //allocate from the general-purpose allocator
+ , m_real_block_alignment(calculate_alignment(overhead_percent, m_real_node_size))
+ //This is the real number of nodes per block
+ , m_num_subblocks(0)
+ , m_real_num_node(0)
+ //General purpose allocator
+ , mp_segment_mngr_base(segment_mngr_base)
+ , m_block_multiset()
+ , m_totally_free_blocks(0)
+ {
+ calculate_num_subblocks(m_real_block_alignment, m_real_node_size, nodes_per_block, m_num_subblocks, m_real_num_node, overhead_percent);
+ }
+
+ //!Destructor. Deallocates all allocated blocks. Never throws
+ ~private_adaptive_node_pool_impl()
+ { priv_clear(); }
+
+ std::size_t get_real_num_node() const
+ { return m_real_num_node; }
+
+ //!Returns the segment manager. Never throws
+ segment_manager_base_type* get_segment_manager_base()const
+ { return detail::get_pointer(mp_segment_mngr_base); }
+
+ //!Allocates array of count elements. Can throw boost::interprocess::bad_alloc
+ void *allocate_node()
+ {
+ priv_invariants();
+ //If there are no free nodes we allocate a new block
+ if (m_block_multiset.empty()){
+ priv_alloc_block(1);
+ }
+ //We take the first free node the multiset can't be empty
+ return priv_take_first_node();
+ }
+
+ //!Deallocates an array pointed by ptr. Never throws
+ void deallocate_node(void *pElem)
+ {
+ multiallocation_chain chain;
+ chain.push_front(void_pointer(pElem));
+ this->priv_reinsert_nodes_in_block(chain, 1);
+ //Update free block count
+ if(m_totally_free_blocks > m_max_free_blocks){
+ this->priv_deallocate_free_blocks(m_max_free_blocks);
+ }
+ priv_invariants();
+ }
+
+ //!Allocates n nodes.
+ //!Can throw boost::interprocess::bad_alloc
+ multiallocation_chain allocate_nodes(const std::size_t n)
+ {
+ multiallocation_chain chain;
+ std::size_t i = 0;
+ try{
+ priv_invariants();
+ while(i != n){
+ //If there are no free nodes we allocate all needed blocks
+ if (m_block_multiset.empty()){
+ priv_alloc_block(((n - i) - 1)/m_real_num_node + 1);
+ }
+ free_nodes_t &free_nodes = m_block_multiset.begin()->free_nodes;
+ const std::size_t free_nodes_count_before = free_nodes.size();
+ if(free_nodes_count_before == m_real_num_node){
+ --m_totally_free_blocks;
+ }
+ const std::size_t num_elems = ((n-i) < free_nodes_count_before) ? (n-i) : free_nodes_count_before;
+ for(std::size_t j = 0; j != num_elems; ++j){
+ void *new_node = &free_nodes.front();
+ free_nodes.pop_front();
+ chain.push_back(new_node);
+ }
+
+ if(free_nodes.empty()){
+ m_block_multiset.erase(m_block_multiset.begin());
+ }
+ i += num_elems;
+ }
+ }
+ catch(...){
+ this->deallocate_nodes(chain, i);
+ throw;
+ }
+ priv_invariants();
+ return boost::move(chain);
+ }
+
+ //!Deallocates a linked list of nodes. Never throws
+ void deallocate_nodes(multiallocation_chain nodes)
+ {
+ return deallocate_nodes(nodes, nodes.size());
+ }
+
+ //!Deallocates the first n nodes of a linked list of nodes. Never throws
+ void deallocate_nodes(multiallocation_chain &nodes, std::size_t n)
+ {
+ this->priv_reinsert_nodes_in_block(nodes, n);
+ if(m_totally_free_blocks > m_max_free_blocks){
+ this->priv_deallocate_free_blocks(m_max_free_blocks);
+ }
+ }
+
+ void deallocate_free_blocks()
+ { this->priv_deallocate_free_blocks(0); }
+
+ std::size_t num_free_nodes()
+ {
+ typedef typename block_multiset_t::const_iterator citerator;
+ std::size_t count = 0;
+ citerator it (m_block_multiset.begin()), itend(m_block_multiset.end());
+ for(; it != itend; ++it){
+ count += it->free_nodes.size();
+ }
+ return count;
+ }
+
+ void swap(private_adaptive_node_pool_impl &other)
+ {
+ assert(m_max_free_blocks == other.m_max_free_blocks);
+ assert(m_real_node_size == other.m_real_node_size);
+ assert(m_real_block_alignment == other.m_real_block_alignment);
+ assert(m_real_num_node == other.m_real_num_node);
+ std::swap(mp_segment_mngr_base, other.mp_segment_mngr_base);
+ std::swap(m_totally_free_blocks, other.m_totally_free_blocks);
+ m_block_multiset.swap(other.m_block_multiset);
+ }
+
+ //Deprecated, use deallocate_free_blocks
+ void deallocate_free_chunks()
+ { this->priv_deallocate_free_blocks(0); }
+
+ private:
+ void priv_deallocate_free_blocks(std::size_t max_free_blocks)
+ {
+ priv_invariants();
+ //Now check if we've reached the free nodes limit
+ //and check if we have free blocks. If so, deallocate as much
+ //as we can to stay below the limit
+ for( block_iterator itend = m_block_multiset.end()
+ ; m_totally_free_blocks > max_free_blocks
+ ; --m_totally_free_blocks
+ ){
+ assert(!m_block_multiset.empty());
+ block_iterator it = itend;
+ --it;
+ std::size_t num_nodes = it->free_nodes.size();
+ assert(num_nodes == m_real_num_node);
+ (void)num_nodes;
+ m_block_multiset.erase_and_dispose
+ (it, block_destroyer(this));
+ }
+ }
+
+ void priv_reinsert_nodes_in_block(multiallocation_chain &chain, std::size_t n)
+ {
+ block_iterator block_it(m_block_multiset.end());
+ while(n--){
+ void *pElem = detail::get_pointer(chain.front());
+ chain.pop_front();
+ priv_invariants();
+ block_info_t *block_info = this->priv_block_from_node(pElem);
+ assert(block_info->free_nodes.size() < m_real_num_node);
+ //We put the node at the beginning of the free node list
+ node_t * to_deallocate = static_cast<node_t*>(pElem);
+ block_info->free_nodes.push_front(*to_deallocate);
+
+ block_iterator this_block(block_multiset_t::s_iterator_to(*block_info));
+ block_iterator next_block(this_block);
+ ++next_block;
+
+ //Cache the free nodes from the block
+ std::size_t this_block_free_nodes = this_block->free_nodes.size();
+
+ if(this_block_free_nodes == 1){
+ m_block_multiset.insert(m_block_multiset.begin(), *block_info);
+ }
+ else{
+ block_iterator next_block(this_block);
+ ++next_block;
+ if(next_block != block_it){
+ std::size_t next_free_nodes = next_block->free_nodes.size();
+ if(this_block_free_nodes > next_free_nodes){
+ //Now move the block to the new position
+ m_block_multiset.erase(this_block);
+ m_block_multiset.insert(*block_info);
+ }
+ }
+ }
+ //Update free block count
+ if(this_block_free_nodes == m_real_num_node){
+ ++m_totally_free_blocks;
+ }
+ priv_invariants();
+ }
+ }
+
+ node_t *priv_take_first_node()
+ {
+ assert(m_block_multiset.begin() != m_block_multiset.end());
+ //We take the first free node the multiset can't be empty
+ free_nodes_t &free_nodes = m_block_multiset.begin()->free_nodes;
+ node_t *first_node = &free_nodes.front();
+ const std::size_t free_nodes_count = free_nodes.size();
+ assert(0 != free_nodes_count);
+ free_nodes.pop_front();
+ if(free_nodes_count == 1){
+ m_block_multiset.erase(m_block_multiset.begin());
+ }
+ else if(free_nodes_count == m_real_num_node){
+ --m_totally_free_blocks;
+ }
+ priv_invariants();
+ return first_node;
+ }
+
+ class block_destroyer;
+ friend class block_destroyer;
+
+ class block_destroyer
+ {
+ public:
+ block_destroyer(const private_adaptive_node_pool_impl *impl)
+ : mp_impl(impl)
+ {}
+
+ void operator()(typename block_multiset_t::pointer to_deallocate)
+ {
+ std::size_t free_nodes = to_deallocate->free_nodes.size();
+ (void)free_nodes;
+ assert(free_nodes == mp_impl->m_real_num_node);
+ assert(0 == to_deallocate->hdr_offset);
+ hdr_offset_holder *hdr_off_holder = mp_impl->priv_first_subblock_from_block(detail::get_pointer(to_deallocate));
+ mp_impl->mp_segment_mngr_base->deallocate(hdr_off_holder);
+ }
+ const private_adaptive_node_pool_impl *mp_impl;
+ };
+
+ //This macro will activate invariant checking. Slow, but helpful for debugging the code.
+ //#define BOOST_INTERPROCESS_ADAPTIVE_NODE_POOL_CHECK_INVARIANTS
+ void priv_invariants()
+ #ifdef BOOST_INTERPROCESS_ADAPTIVE_NODE_POOL_CHECK_INVARIANTS
+ #undef BOOST_INTERPROCESS_ADAPTIVE_NODE_POOL_CHECK_INVARIANTS
+ {
+ //We iterate through the block list to free the memory
+ block_iterator it(m_block_multiset.begin()),
+ itend(m_block_multiset.end()), to_deallocate;
+ if(it != itend){
+ for(++it; it != itend; ++it){
+ block_iterator prev(it);
+ --prev;
+ std::size_t sp = prev->free_nodes.size(),
+ si = it->free_nodes.size();
+ assert(sp <= si);
+ (void)sp; (void)si;
+ }
+ }
+
+ {
+ //Check that the total free nodes are correct
+ it = m_block_multiset.begin();
+ itend = m_block_multiset.end();
+ std::size_t total_free_nodes = 0;
+ for(; it != itend; ++it){
+ total_free_nodes += it->free_nodes.size();
+ }
+ assert(total_free_nodes >= m_totally_free_blocks*m_real_num_node);
+ }
+
+ {
+ //Check that the total totally free blocks are correct
+ it = m_block_multiset.begin();
+ itend = m_block_multiset.end();
+ std::size_t total_free_blocks = 0;
+ for(; it != itend; ++it){
+ total_free_blocks += (it->free_nodes.size() == m_real_num_node);
+ }
+ assert(total_free_blocks == m_totally_free_blocks);
+ }
+ {
+ //Check that header offsets are correct
+ it = m_block_multiset.begin();
+ for(; it != itend; ++it){
+ hdr_offset_holder *hdr_off_holder = priv_first_subblock_from_block(&*it);
+ for(std::size_t i = 0, max = m_num_subblocks; i < max; ++i){
+ assert(hdr_off_holder->hdr_offset == std::size_t(reinterpret_cast<char*>(&*it)- reinterpret_cast<char*>(hdr_off_holder)));
+ assert(0 == ((std::size_t)hdr_off_holder & (m_real_block_alignment - 1)));
+ assert(0 == (hdr_off_holder->hdr_offset & (m_real_block_alignment - 1)));
+ hdr_off_holder = reinterpret_cast<hdr_offset_holder *>(reinterpret_cast<char*>(hdr_off_holder) + m_real_block_alignment);
+ }
+ }
+ }
+ }
+ #else
+ {} //empty
+ #endif
+
+ //!Deallocates all used memory. Never throws
+ void priv_clear()
+ {
+ #ifndef NDEBUG
+ block_iterator it = m_block_multiset.begin();
+ block_iterator itend = m_block_multiset.end();
+ std::size_t num_free_nodes = 0;
+ for(; it != itend; ++it){
+ //Check for memory leak
+ std::size_t n = (std::size_t)it->free_nodes.size(); (void)n;
+ assert(it->free_nodes.size() == m_real_num_node);
+ ++num_free_nodes;
+ }
+ assert(num_free_nodes == m_totally_free_blocks);
+ #endif
+ priv_invariants();
+ m_block_multiset.clear_and_dispose
+ (block_destroyer(this));
+ m_totally_free_blocks = 0;
+ }
+
+ block_info_t *priv_block_from_node(void *node) const
+ {
+ hdr_offset_holder *hdr_off_holder =
+ reinterpret_cast<hdr_offset_holder*>((std::size_t)node & std::size_t(~(m_real_block_alignment - 1)));
+ assert(0 == ((std::size_t)hdr_off_holder & (m_real_block_alignment - 1)));
+ assert(0 == (hdr_off_holder->hdr_offset & (m_real_block_alignment - 1)));
+ block_info_t *block = reinterpret_cast<block_info_t *>
+ (reinterpret_cast<char*>(hdr_off_holder) + hdr_off_holder->hdr_offset);
+ assert(block->hdr_offset == 0);
+ return block;
+ }
+
+ hdr_offset_holder *priv_first_subblock_from_block(block_info_t *block) const
+ {
+ hdr_offset_holder *hdr_off_holder = reinterpret_cast<hdr_offset_holder*>
+ (reinterpret_cast<char*>(block) - (m_num_subblocks-1)*m_real_block_alignment);
+ assert(hdr_off_holder->hdr_offset == std::size_t(reinterpret_cast<char*>(block) - reinterpret_cast<char*>(hdr_off_holder)));
+ assert(0 == ((std::size_t)hdr_off_holder & (m_real_block_alignment - 1)));
+ assert(0 == (hdr_off_holder->hdr_offset & (m_real_block_alignment - 1)));
+ return hdr_off_holder;
+ }
+
+ //!Allocates a several blocks of nodes. Can throw boost::interprocess::bad_alloc
+ void priv_alloc_block(std::size_t n)
+ {
+ std::size_t real_block_size = m_real_block_alignment*m_num_subblocks - SegmentManagerBase::PayloadPerAllocation;
+ std::size_t elements_per_subblock = (m_real_block_alignment - HdrOffsetSize)/m_real_node_size;
+ std::size_t hdr_subblock_elements = (m_real_block_alignment - HdrSize - SegmentManagerBase::PayloadPerAllocation)/m_real_node_size;
+
+ for(std::size_t i = 0; i != n; ++i){
+ //We allocate a new NodeBlock and put it the last
+ //element of the tree
+ char *mem_address = static_cast<char*>
+ (mp_segment_mngr_base->allocate_aligned(real_block_size, m_real_block_alignment));
+ if(!mem_address) throw std::bad_alloc();
+ ++m_totally_free_blocks;
+
+ //First initialize header information on the last subblock
+ char *hdr_addr = mem_address + m_real_block_alignment*(m_num_subblocks-1);
+ block_info_t *c_info = new(hdr_addr)block_info_t;
+ //Some structural checks
+ assert(static_cast<void*>(&static_cast<hdr_offset_holder*>(c_info)->hdr_offset) ==
+ static_cast<void*>(c_info));
+ typename free_nodes_t::iterator prev_insert_pos = c_info->free_nodes.before_begin();
+ for( std::size_t subblock = 0, maxsubblock = m_num_subblocks - 1
+ ; subblock < maxsubblock
+ ; ++subblock, mem_address += m_real_block_alignment){
+ //Initialize header offset mark
+ new(mem_address) hdr_offset_holder(std::size_t(hdr_addr - mem_address));
+ char *pNode = mem_address + HdrOffsetSize;
+ for(std::size_t i = 0; i < elements_per_subblock; ++i){
+ prev_insert_pos = c_info->free_nodes.insert_after(prev_insert_pos, *new (pNode) node_t);
+ pNode += m_real_node_size;
+ }
+ }
+ {
+ char *pNode = hdr_addr + HdrSize;
+ //We initialize all Nodes in Node Block to insert
+ //them in the free Node list
+ for(std::size_t i = 0; i < hdr_subblock_elements; ++i){
+ prev_insert_pos = c_info->free_nodes.insert_after(prev_insert_pos, *new (pNode) node_t);
+ pNode += m_real_node_size;
+ }
+ }
+ //Insert the block after the free node list is full
+ m_block_multiset.insert(m_block_multiset.end(), *c_info);
+ }
+ }
+
+ private:
+ typedef typename pointer_to_other
+ <void_pointer, segment_manager_base_type>::type segment_mngr_base_ptr_t;
+
+ const std::size_t m_max_free_blocks;
+ const std::size_t m_real_node_size;
+ //Round the size to a power of two value.
+ //This is the total memory size (including payload) that we want to
+ //allocate from the general-purpose allocator
+ const std::size_t m_real_block_alignment;
+ std::size_t m_num_subblocks;
+ //This is the real number of nodes per block
+ //const
+ std::size_t m_real_num_node;
+ segment_mngr_base_ptr_t mp_segment_mngr_base;//Segment manager
+ block_multiset_t m_block_multiset; //Intrusive block list
+ std::size_t m_totally_free_blocks; //Free blocks
+};
+
+template< class SegmentManager
+ , std::size_t NodeSize
+ , std::size_t NodesPerBlock
+ , std::size_t MaxFreeBlocks
+ , unsigned char OverheadPercent
+ >
+class private_adaptive_node_pool
+ : public private_adaptive_node_pool_impl
+ <typename SegmentManager::segment_manager_base_type>
+{
+ typedef private_adaptive_node_pool_impl
+ <typename SegmentManager::segment_manager_base_type> base_t;
+ //Non-copyable
+ private_adaptive_node_pool();
+ private_adaptive_node_pool(const private_adaptive_node_pool &);
+ private_adaptive_node_pool &operator=(const private_adaptive_node_pool &);
+
+ public:
+ typedef SegmentManager segment_manager;
+
+ static const std::size_t nodes_per_block = NodesPerBlock;
+
+ //Deprecated, use node_per_block
+ static const std::size_t nodes_per_chunk = NodesPerBlock;
+
+ //!Constructor from a segment manager. Never throws
+ private_adaptive_node_pool(segment_manager *segment_mngr)
+ : base_t(segment_mngr, NodeSize, NodesPerBlock, MaxFreeBlocks, OverheadPercent)
+ {}
+
+ //!Returns the segment manager. Never throws
+ segment_manager* get_segment_manager() const
+ { return static_cast<segment_manager*>(base_t::get_segment_manager_base()); }
+};
+
+//!Pooled shared memory allocator using adaptive pool. Includes
+//!a reference count but the class does not delete itself, this is
+//!responsibility of user classes. Node size (NodeSize) and the number of
+//!nodes allocated per block (NodesPerBlock) are known at compile time
+template< class SegmentManager
+ , std::size_t NodeSize
+ , std::size_t NodesPerBlock
+ , std::size_t MaxFreeBlocks
+ , unsigned char OverheadPercent
+ >
+class shared_adaptive_node_pool
+ : public detail::shared_pool_impl
+ < private_adaptive_node_pool
+ <SegmentManager, NodeSize, NodesPerBlock, MaxFreeBlocks, OverheadPercent>
+ >
+{
+ typedef detail::shared_pool_impl
+ < private_adaptive_node_pool
+ <SegmentManager, NodeSize, NodesPerBlock, MaxFreeBlocks, OverheadPercent>
+ > base_t;
+ public:
+ shared_adaptive_node_pool(SegmentManager *segment_mgnr)
+ : base_t(segment_mgnr)
+ {}
+};
+
+} //namespace detail {
+} //namespace interprocess {
+} //namespace boost {
+
+#include <boost/interprocess/detail/config_end.hpp>
+
+#endif //#ifndef BOOST_INTERPROCESS_DETAIL_ADAPTIVE_NODE_POOL_HPP
+

Added: sandbox/boost/interprocess/allocators/detail/allocator_common.hpp
==============================================================================
--- (empty file)
+++ sandbox/boost/interprocess/allocators/detail/allocator_common.hpp 2009-02-17 13:04:56 EST (Tue, 17 Feb 2009)
@@ -0,0 +1,802 @@
+//////////////////////////////////////////////////////////////////////////////
+//
+// (C) Copyright Ion Gaztanaga 2008. Distributed under the Boost
+// Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+//
+// See http://www.boost.org/libs/interprocess for documentation.
+//
+//////////////////////////////////////////////////////////////////////////////
+
+#ifndef BOOST_INTERPROCESS_DETAIL_NODE_ALLOCATOR_COMMON_HPP
+#define BOOST_INTERPROCESS_DETAIL_NODE_ALLOCATOR_COMMON_HPP
+
+#include <boost/interprocess/detail/config_begin.hpp>
+#include <boost/interprocess/detail/workaround.hpp>
+#include <boost/interprocess/segment_manager.hpp>
+#include <boost/interprocess/interprocess_fwd.hpp>
+#include <boost/interprocess/detail/utilities.hpp> //pointer_to_other, get_pointer
+#include <utility> //std::pair
+#include <boost/utility/addressof.hpp> //boost::addressof
+#include <boost/assert.hpp> //BOOST_ASSERT
+#include <boost/interprocess/exceptions.hpp> //bad_alloc
+#include <boost/interprocess/sync/scoped_lock.hpp> //scoped_lock
+#include <boost/interprocess/allocators/allocation_type.hpp> //allocation_type
+#include <boost/interprocess/mem_algo/detail/mem_algo_common.hpp>
+#include <algorithm> //std::swap
+
+
+namespace boost {
+namespace interprocess {
+namespace detail {
+
+//!Object function that creates the node allocator if it is not created and
+//!increments reference count if it is already created
+template<class NodePool>
+struct get_or_create_node_pool_func
+{
+
+ //!This connects or constructs the unique instance of node_pool_t
+ //!Can throw boost::interprocess::bad_alloc
+ void operator()()
+ {
+ //Find or create the node_pool_t
+ mp_node_pool = mp_segment_manager->template find_or_construct
+ <NodePool>(unique_instance)(mp_segment_manager);
+ //If valid, increment link count
+ if(mp_node_pool != 0)
+ mp_node_pool->inc_ref_count();
+ }
+
+ //!Constructor. Initializes function
+ //!object parameters
+ get_or_create_node_pool_func(typename NodePool::segment_manager *mngr)
+ : mp_segment_manager(mngr){}
+
+ NodePool *mp_node_pool;
+ typename NodePool::segment_manager *mp_segment_manager;
+};
+
+template<class NodePool>
+inline NodePool *get_or_create_node_pool(typename NodePool::segment_manager *mgnr)
+{
+ detail::get_or_create_node_pool_func<NodePool> func(mgnr);
+ mgnr->atomic_func(func);
+ return func.mp_node_pool;
+}
+
+//!Object function that decrements the reference count. If the count
+//!reaches to zero destroys the node allocator from memory.
+//!Never throws
+template<class NodePool>
+struct destroy_if_last_link_func
+{
+ //!Decrements reference count and destroys the object if there is no
+ //!more attached allocators. Never throws
+ void operator()()
+ {
+ //If not the last link return
+ if(mp_node_pool->dec_ref_count() != 0) return;
+
+ //Last link, let's destroy the segment_manager
+ mp_node_pool->get_segment_manager()->template destroy<NodePool>(unique_instance);
+ }
+
+ //!Constructor. Initializes function
+ //!object parameters
+ destroy_if_last_link_func(NodePool *pool)
+ : mp_node_pool(pool)
+ {}
+
+ NodePool *mp_node_pool;
+};
+
+//!Destruction function, initializes and executes destruction function
+//!object. Never throws
+template<class NodePool>
+inline void destroy_node_pool_if_last_link(NodePool *pool)
+{
+ //Get segment manager
+ typename NodePool::segment_manager *mngr = pool->get_segment_manager();
+ //Execute destruction functor atomically
+ destroy_if_last_link_func<NodePool>func(pool);
+ mngr->atomic_func(func);
+}
+
+template<class NodePool>
+class cache_impl
+{
+ typedef typename NodePool::segment_manager::
+ void_pointer void_pointer;
+ typedef typename pointer_to_other
+ <void_pointer, NodePool>::type node_pool_ptr;
+ typedef typename NodePool::multiallocation_chain multiallocation_chain;
+ node_pool_ptr mp_node_pool;
+ multiallocation_chain m_cached_nodes;
+ std::size_t m_max_cached_nodes;
+
+ public:
+ typedef typename NodePool::segment_manager segment_manager;
+
+ cache_impl(segment_manager *segment_mngr, std::size_t max_cached_nodes)
+ : mp_node_pool(get_or_create_node_pool<NodePool>(segment_mngr))
+ , m_max_cached_nodes(max_cached_nodes)
+ {}
+
+ cache_impl(const cache_impl &other)
+ : mp_node_pool(other.get_node_pool())
+ , m_max_cached_nodes(other.get_max_cached_nodes())
+ {
+ mp_node_pool->inc_ref_count();
+ }
+
+ ~cache_impl()
+ {
+ this->deallocate_all_cached_nodes();
+ detail::destroy_node_pool_if_last_link(detail::get_pointer(mp_node_pool));
+ }
+
+ NodePool *get_node_pool() const
+ { return detail::get_pointer(mp_node_pool); }
+
+ segment_manager *get_segment_manager() const
+ { return mp_node_pool->get_segment_manager(); }
+
+ std::size_t get_max_cached_nodes() const
+ { return m_max_cached_nodes; }
+
+ void *cached_allocation()
+ {
+ //If don't have any cached node, we have to get a new list of free nodes from the pool
+ if(m_cached_nodes.empty()){
+ m_cached_nodes = mp_node_pool->allocate_nodes(m_max_cached_nodes/2);
+ }
+ void *ret = detail::get_pointer(m_cached_nodes.front());
+ m_cached_nodes.pop_front();
+ return ret;
+ }
+
+ multiallocation_chain cached_allocation(std::size_t n)
+ {
+ multiallocation_chain chain;
+ std::size_t count = n, allocated(0);
+ BOOST_TRY{
+ //If don't have any cached node, we have to get a new list of free nodes from the pool
+ while(!m_cached_nodes.empty() && count--){
+ void *ret = detail::get_pointer(m_cached_nodes.front());
+ m_cached_nodes.pop_front();
+ chain.push_back(ret);
+ ++allocated;
+ }
+
+ if(allocated != n){
+ multiallocation_chain chain2(mp_node_pool->allocate_nodes(n - allocated));
+ chain.splice_after(chain.last(), chain2, chain2.before_begin(), chain2.last(), n - allocated);
+ }
+ return boost::move(chain);
+ }
+ BOOST_CATCH(...){
+ this->cached_deallocation(boost::move(chain));
+ BOOST_RETHROW
+ }
+ BOOST_CATCH_END
+ }
+
+ void cached_deallocation(void *ptr)
+ {
+ //Check if cache is full
+ if(m_cached_nodes.size() >= m_max_cached_nodes){
+ //This only occurs if this allocator deallocate memory allocated
+ //with other equal allocator. Since the cache is full, and more
+ //deallocations are probably coming, we'll make some room in cache
+ //in a single, efficient multi node deallocation.
+ this->priv_deallocate_n_nodes(m_cached_nodes.size() - m_max_cached_nodes/2);
+ }
+ m_cached_nodes.push_front(ptr);
+ }
+
+ void cached_deallocation(multiallocation_chain chain)
+ {
+ m_cached_nodes.splice_after(m_cached_nodes.before_begin(), chain);
+
+ //Check if cache is full
+ if(m_cached_nodes.size() >= m_max_cached_nodes){
+ //This only occurs if this allocator deallocate memory allocated
+ //with other equal allocator. Since the cache is full, and more
+ //deallocations are probably coming, we'll make some room in cache
+ //in a single, efficient multi node deallocation.
+ this->priv_deallocate_n_nodes(m_cached_nodes.size() - m_max_cached_nodes/2);
+ }
+ }
+
+ //!Sets the new max cached nodes value. This can provoke deallocations
+ //!if "newmax" is less than current cached nodes. Never throws
+ void set_max_cached_nodes(std::size_t newmax)
+ {
+ m_max_cached_nodes = newmax;
+ this->priv_deallocate_remaining_nodes();
+ }
+
+ //!Frees all cached nodes.
+ //!Never throws
+ void deallocate_all_cached_nodes()
+ {
+ if(m_cached_nodes.empty()) return;
+ mp_node_pool->deallocate_nodes(boost::move(m_cached_nodes));
+ }
+
+ private:
+ //!Frees all cached nodes at once.
+ //!Never throws
+ void priv_deallocate_remaining_nodes()
+ {
+ if(m_cached_nodes.size() > m_max_cached_nodes){
+ priv_deallocate_n_nodes(m_cached_nodes.size()-m_max_cached_nodes);
+ }
+ }
+
+ //!Frees n cached nodes at once. Never throws
+ void priv_deallocate_n_nodes(std::size_t n)
+ {
+ //Deallocate all new linked list at once
+ mp_node_pool->deallocate_nodes(m_cached_nodes, n);
+ }
+};
+
+template<class Derived, class T, class SegmentManager>
+class array_allocation_impl
+{
+ const Derived *derived() const
+ { return static_cast<const Derived*>(this); }
+ Derived *derived()
+ { return static_cast<Derived*>(this); }
+
+ typedef typename SegmentManager::void_pointer void_pointer;
+
+ public:
+ typedef typename detail::
+ pointer_to_other<void_pointer, T>::type pointer;
+ typedef typename detail::
+ pointer_to_other<void_pointer, const T>::type const_pointer;
+ typedef T value_type;
+ typedef typename detail::add_reference
+ <value_type>::type reference;
+ typedef typename detail::add_reference
+ <const value_type>::type const_reference;
+ typedef std::size_t size_type;
+ typedef std::ptrdiff_t difference_type;
+ typedef detail::transform_multiallocation_chain
+ <typename SegmentManager::multiallocation_chain, T>multiallocation_chain;
+
+
+ public:
+ //!Returns maximum the number of objects the previously allocated memory
+ //!pointed by p can hold. This size only works for memory allocated with
+ //!allocate, allocation_command and allocate_many.
+ size_type size(const pointer &p) const
+ {
+ return (size_type)this->derived()->get_segment_manager()->size(detail::get_pointer(p))/sizeof(T);
+ }
+
+ std::pair<pointer, bool>
+ allocation_command(allocation_type command,
+ size_type limit_size,
+ size_type preferred_size,
+ size_type &received_size, const pointer &reuse = 0)
+ {
+ return this->derived()->get_segment_manager()->allocation_command
+ (command, limit_size, preferred_size, received_size, detail::get_pointer(reuse));
+ }
+
+ //!Allocates many elements of size elem_size in a contiguous block
+ //!of memory. The minimum number to be allocated is min_elements,
+ //!the preferred and maximum number is
+ //!preferred_elements. The number of actually allocated elements is
+ //!will be assigned to received_size. The elements must be deallocated
+ //!with deallocate(...)
+ multiallocation_chain allocate_many(size_type elem_size, std::size_t num_elements)
+ {
+ return this->derived()->get_segment_manager()->allocate_many(sizeof(T)*elem_size, num_elements);
+ }
+
+ //!Allocates n_elements elements, each one of size elem_sizes[i]in a
+ //!contiguous block
+ //!of memory. The elements must be deallocated
+ multiallocation_chain allocate_many(const size_type *elem_sizes, size_type n_elements)
+ {
+ return this->derived()->get_segment_manager()->allocate_many(elem_sizes, n_elements, sizeof(T));
+ }
+
+ //!Allocates many elements of size elem_size in a contiguous block
+ //!of memory. The minimum number to be allocated is min_elements,
+ //!the preferred and maximum number is
+ //!preferred_elements. The number of actually allocated elements is
+ //!will be assigned to received_size. The elements must be deallocated
+ //!with deallocate(...)
+ void deallocate_many(multiallocation_chain chain)
+ { return this->derived()->get_segment_manager()->deallocate_many(boost::move(chain)); }
+
+ //!Returns the number of elements that could be
+ //!allocated. Never throws
+ size_type max_size() const
+ { return this->derived()->get_segment_manager()->get_size()/sizeof(T); }
+
+ //!Returns address of mutable object.
+ //!Never throws
+ pointer address(reference value) const
+ { return pointer(boost::addressof(value)); }
+
+ //!Returns address of non mutable object.
+ //!Never throws
+ const_pointer address(const_reference value) const
+ { return const_pointer(boost::addressof(value)); }
+
+ //!Default construct an object.
+ //!Throws if T's default constructor throws
+ void construct(const pointer &ptr)
+ { new((void*)detail::get_pointer(ptr)) value_type; }
+
+ //!Copy construct an object
+ //!Throws if T's copy constructor throws
+ void construct(const pointer &ptr, const_reference v)
+ { new((void*)detail::get_pointer(ptr)) value_type(v); }
+
+ //!Destroys object. Throws if object's
+ //!destructor throws
+ void destroy(const pointer &ptr)
+ { BOOST_ASSERT(ptr != 0); (*ptr).~value_type(); }
+};
+
+
+template<class Derived, unsigned int Version, class T, class SegmentManager>
+class node_pool_allocation_impl
+ : public array_allocation_impl
+ < Derived
+ , T
+ , SegmentManager>
+{
+ const Derived *derived() const
+ { return static_cast<const Derived*>(this); }
+ Derived *derived()
+ { return static_cast<Derived*>(this); }
+
+ typedef typename SegmentManager::void_pointer void_pointer;
+ typedef typename detail::
+ pointer_to_other<void_pointer, const void>::type cvoid_pointer;
+
+ public:
+ typedef typename detail::
+ pointer_to_other<void_pointer, T>::type pointer;
+ typedef typename detail::
+ pointer_to_other<void_pointer, const T>::type const_pointer;
+ typedef T value_type;
+ typedef typename detail::add_reference
+ <value_type>::type reference;
+ typedef typename detail::add_reference
+ <const value_type>::type const_reference;
+ typedef std::size_t size_type;
+ typedef std::ptrdiff_t difference_type;
+ typedef detail::transform_multiallocation_chain
+ <typename SegmentManager::multiallocation_chain, T>multiallocation_chain;
+
+
+ template <int Dummy>
+ struct node_pool
+ {
+ typedef typename Derived::template node_pool<0>::type type;
+ static type *get(void *p)
+ { return static_cast<type*>(p); }
+ };
+
+ public:
+ //!Allocate memory for an array of count elements.
+ //!Throws boost::interprocess::bad_alloc if there is no enough memory
+ pointer allocate(size_type count, cvoid_pointer hint = 0)
+ {
+ (void)hint;
+ typedef typename node_pool<0>::type node_pool_t;
+ node_pool_t *pool = node_pool<0>::get(this->derived()->get_node_pool());
+ if(count > this->max_size())
+ throw bad_alloc();
+ else if(Version == 1 && count == 1)
+ return pointer(static_cast<value_type*>
+ (pool->allocate_node()));
+ else
+ return pointer(static_cast<value_type*>
+ (pool->get_segment_manager()->allocate(sizeof(T)*count)));
+ }
+
+ //!Deallocate allocated memory. Never throws
+ void deallocate(const pointer &ptr, size_type count)
+ {
+ (void)count;
+ typedef typename node_pool<0>::type node_pool_t;
+ node_pool_t *pool = node_pool<0>::get(this->derived()->get_node_pool());
+ if(Version == 1 && count == 1)
+ pool->deallocate_node(detail::get_pointer(ptr));
+ else
+ pool->get_segment_manager()->deallocate((void*)detail::get_pointer(ptr));
+ }
+
+ //!Allocates just one object. Memory allocated with this function
+ //!must be deallocated only with deallocate_one().
+ //!Throws boost::interprocess::bad_alloc if there is no enough memory
+ pointer allocate_one()
+ {
+ typedef typename node_pool<0>::type node_pool_t;
+ node_pool_t *pool = node_pool<0>::get(this->derived()->get_node_pool());
+ return pointer(static_cast<value_type*>(pool->allocate_node()));
+ }
+
+ //!Allocates many elements of size == 1 in a contiguous block
+ //!of memory. The minimum number to be allocated is min_elements,
+ //!the preferred and maximum number is
+ //!preferred_elements. The number of actually allocated elements is
+ //!will be assigned to received_size. Memory allocated with this function
+ //!must be deallocated only with deallocate_one().
+ multiallocation_chain allocate_individual(std::size_t num_elements)
+ {
+ typedef typename node_pool<0>::type node_pool_t;
+ node_pool_t *pool = node_pool<0>::get(this->derived()->get_node_pool());
+ return multiallocation_chain(pool->allocate_nodes(num_elements));
+ }
+
+ //!Deallocates memory previously allocated with allocate_one().
+ //!You should never use deallocate_one to deallocate memory allocated
+ //!with other functions different from allocate_one(). Never throws
+ void deallocate_one(const pointer &p)
+ {
+ typedef typename node_pool<0>::type node_pool_t;
+ node_pool_t *pool = node_pool<0>::get(this->derived()->get_node_pool());
+ pool->deallocate_node(detail::get_pointer(p));
+ }
+
+ //!Allocates many elements of size == 1 in a contiguous block
+ //!of memory. The minimum number to be allocated is min_elements,
+ //!the preferred and maximum number is
+ //!preferred_elements. The number of actually allocated elements is
+ //!will be assigned to received_size. Memory allocated with this function
+ //!must be deallocated only with deallocate_one().
+ void deallocate_individual(multiallocation_chain chain)
+ {
+ node_pool<0>::get(this->derived()->get_node_pool())->deallocate_nodes
+ (chain.extract_multiallocation_chain());
+ }
+
+ //!Deallocates all free blocks of the pool
+ void deallocate_free_blocks()
+ { node_pool<0>::get(this->derived()->get_node_pool())->deallocate_free_blocks(); }
+
+ //!Deprecated, use deallocate_free_blocks.
+ //!Deallocates all free chunks of the pool.
+ void deallocate_free_chunks()
+ { node_pool<0>::get(this->derived()->get_node_pool())->deallocate_free_blocks(); }
+};
+
+template<class T, class NodePool, unsigned int Version>
+class cached_allocator_impl
+ : public array_allocation_impl
+ <cached_allocator_impl<T, NodePool, Version>, T, typename NodePool::segment_manager>
+{
+ cached_allocator_impl & operator=(const cached_allocator_impl& other);
+ typedef array_allocation_impl
+ < cached_allocator_impl
+ <T, NodePool, Version>
+ , T
+ , typename NodePool::segment_manager> base_t;
+
+ public:
+ typedef NodePool node_pool_t;
+ typedef typename NodePool::segment_manager segment_manager;
+ typedef typename segment_manager::void_pointer void_pointer;
+ typedef typename detail::
+ pointer_to_other<void_pointer, const void>::type cvoid_pointer;
+ typedef typename base_t::pointer pointer;
+ typedef typename base_t::size_type size_type;
+ typedef typename base_t::multiallocation_chain multiallocation_chain;
+ typedef typename base_t::value_type value_type;
+
+ public:
+ enum { DEFAULT_MAX_CACHED_NODES = 64 };
+
+ cached_allocator_impl(segment_manager *segment_mngr, std::size_t max_cached_nodes)
+ : m_cache(segment_mngr, max_cached_nodes)
+ {}
+
+ cached_allocator_impl(const cached_allocator_impl &other)
+ : m_cache(other.m_cache)
+ {}
+
+ //!Copy constructor from related cached_adaptive_pool_base. If not present, constructs
+ //!a node pool. Increments the reference count of the associated node pool.
+ //!Can throw boost::interprocess::bad_alloc
+ template<class T2, class NodePool2>
+ cached_allocator_impl
+ (const cached_allocator_impl
+ <T2, NodePool2, Version> &other)
+ : m_cache(other.get_segment_manager(), other.get_max_cached_nodes())
+ {}
+
+ //!Returns a pointer to the node pool.
+ //!Never throws
+ node_pool_t* get_node_pool() const
+ { return m_cache.get_node_pool(); }
+
+ //!Returns the segment manager.
+ //!Never throws
+ segment_manager* get_segment_manager()const
+ { return m_cache.get_segment_manager(); }
+
+ //!Sets the new max cached nodes value. This can provoke deallocations
+ //!if "newmax" is less than current cached nodes. Never throws
+ void set_max_cached_nodes(std::size_t newmax)
+ { m_cache.set_max_cached_nodes(newmax); }
+
+ //!Returns the max cached nodes parameter.
+ //!Never throws
+ std::size_t get_max_cached_nodes() const
+ { return m_cache.get_max_cached_nodes(); }
+
+ //!Allocate memory for an array of count elements.
+ //!Throws boost::interprocess::bad_alloc if there is no enough memory
+ pointer allocate(size_type count, cvoid_pointer hint = 0)
+ {
+ (void)hint;
+ void * ret;
+ if(count > this->max_size())
+ throw bad_alloc();
+ else if(Version == 1 && count == 1){
+ ret = m_cache.cached_allocation();
+ }
+ else{
+ ret = this->get_segment_manager()->allocate(sizeof(T)*count);
+ }
+ return pointer(static_cast<T*>(ret));
+ }
+
+ //!Deallocate allocated memory. Never throws
+ void deallocate(const pointer &ptr, size_type count)
+ {
+ (void)count;
+ if(Version == 1 && count == 1){
+ m_cache.cached_deallocation(detail::get_pointer(ptr));
+ }
+ else{
+ this->get_segment_manager()->deallocate((void*)detail::get_pointer(ptr));
+ }
+ }
+
+ //!Allocates just one object. Memory allocated with this function
+ //!must be deallocated only with deallocate_one().
+ //!Throws boost::interprocess::bad_alloc if there is no enough memory
+ pointer allocate_one()
+ { return pointer(static_cast<value_type*>(this->m_cache.cached_allocation())); }
+
+ //!Allocates many elements of size == 1 in a contiguous block
+ //!of memory. The minimum number to be allocated is min_elements,
+ //!the preferred and maximum number is
+ //!preferred_elements. The number of actually allocated elements is
+ //!will be assigned to received_size. Memory allocated with this function
+ //!must be deallocated only with deallocate_one().
+ multiallocation_chain allocate_individual(std::size_t num_elements)
+ { return multiallocation_chain(this->m_cache.cached_allocation(num_elements)); }
+
+ //!Deallocates memory previously allocated with allocate_one().
+ //!You should never use deallocate_one to deallocate memory allocated
+ //!with other functions different from allocate_one(). Never throws
+ void deallocate_one(const pointer &p)
+ { this->m_cache.cached_deallocation(detail::get_pointer(p)); }
+
+ //!Allocates many elements of size == 1 in a contiguous block
+ //!of memory. The minimum number to be allocated is min_elements,
+ //!the preferred and maximum number is
+ //!preferred_elements. The number of actually allocated elements is
+ //!will be assigned to received_size. Memory allocated with this function
+ //!must be deallocated only with deallocate_one().
+ void deallocate_individual(multiallocation_chain chain)
+ {
+ typename node_pool_t::multiallocation_chain mem
+ (chain.extract_multiallocation_chain());
+ m_cache.cached_deallocation(boost::move(mem));
+ }
+
+ //!Deallocates all free blocks of the pool
+ void deallocate_free_blocks()
+ { m_cache.get_node_pool()->deallocate_free_blocks(); }
+
+ //!Swaps allocators. Does not throw. If each allocator is placed in a
+ //!different shared memory segments, the result is undefined.
+ friend void swap(cached_allocator_impl &alloc1, cached_allocator_impl &alloc2)
+ {
+ detail::do_swap(alloc1.mp_node_pool, alloc2.mp_node_pool);
+ alloc1.m_cached_nodes.swap(alloc2.m_cached_nodes);
+ detail::do_swap(alloc1.m_max_cached_nodes, alloc2.m_max_cached_nodes);
+ }
+
+ void deallocate_cache()
+ { m_cache.deallocate_all_cached_nodes(); }
+
+ //!Deprecated use deallocate_free_blocks.
+ void deallocate_free_chunks()
+ { m_cache.get_node_pool()->deallocate_free_blocks(); }
+
+ /// @cond
+ private:
+ cache_impl<node_pool_t> m_cache;
+};
+
+//!Equality test for same type of
+//!cached_allocator_impl
+template<class T, class N, unsigned int V> inline
+bool operator==(const cached_allocator_impl<T, N, V> &alloc1,
+ const cached_allocator_impl<T, N, V> &alloc2)
+ { return alloc1.get_node_pool() == alloc2.get_node_pool(); }
+
+//!Inequality test for same type of
+//!cached_allocator_impl
+template<class T, class N, unsigned int V> inline
+bool operator!=(const cached_allocator_impl<T, N, V> &alloc1,
+ const cached_allocator_impl<T, N, V> &alloc2)
+ { return alloc1.get_node_pool() != alloc2.get_node_pool(); }
+
+
+//!Pooled shared memory allocator using adaptive pool. Includes
+//!a reference count but the class does not delete itself, this is
+//!responsibility of user classes. Node size (NodeSize) and the number of
+//!nodes allocated per block (NodesPerBlock) are known at compile time
+template<class private_node_allocator_t>
+class shared_pool_impl
+ : public private_node_allocator_t
+{
+ public:
+ //!Segment manager typedef
+ typedef typename private_node_allocator_t::
+ segment_manager segment_manager;
+ typedef typename private_node_allocator_t::
+ multiallocation_chain multiallocation_chain;
+
+ private:
+ typedef typename segment_manager::mutex_family::mutex_type mutex_type;
+
+ public:
+ //!Constructor from a segment manager. Never throws
+ shared_pool_impl(segment_manager *segment_mngr)
+ : private_node_allocator_t(segment_mngr)
+ {}
+
+ //!Destructor. Deallocates all allocated blocks. Never throws
+ ~shared_pool_impl()
+ {}
+
+ //!Allocates array of count elements. Can throw boost::interprocess::bad_alloc
+ void *allocate_node()
+ {
+ //-----------------------
+ boost::interprocess::scoped_lock<mutex_type> guard(m_header);
+ //-----------------------
+ return private_node_allocator_t::allocate_node();
+ }
+
+ //!Deallocates an array pointed by ptr. Never throws
+ void deallocate_node(void *ptr)
+ {
+ //-----------------------
+ boost::interprocess::scoped_lock<mutex_type> guard(m_header);
+ //-----------------------
+ private_node_allocator_t::deallocate_node(ptr);
+ }
+/*
+ //!Allocates a singly linked list of n nodes ending in null pointer.
+ //!can throw boost::interprocess::bad_alloc
+ void allocate_nodes(multiallocation_chain &nodes, std::size_t n)
+ {
+ //-----------------------
+ boost::interprocess::scoped_lock<mutex_type> guard(m_header);
+ //-----------------------
+ return private_node_allocator_t::allocate_nodes(nodes, n);
+ }
+*/
+ //!Allocates n nodes.
+ //!Can throw boost::interprocess::bad_alloc
+ multiallocation_chain allocate_nodes(const std::size_t n)
+ {
+ //-----------------------
+ boost::interprocess::scoped_lock<mutex_type> guard(m_header);
+ //-----------------------
+ return private_node_allocator_t::allocate_nodes(n);
+ }
+
+ //!Deallocates a linked list of nodes ending in null pointer. Never throws
+ void deallocate_nodes(multiallocation_chain &nodes, std::size_t num)
+ {
+ //-----------------------
+ boost::interprocess::scoped_lock<mutex_type> guard(m_header);
+ //-----------------------
+ private_node_allocator_t::deallocate_nodes(nodes, num);
+ }
+
+ //!Deallocates the nodes pointed by the multiallocation iterator. Never throws
+ void deallocate_nodes(multiallocation_chain chain)
+ {
+ //-----------------------
+ boost::interprocess::scoped_lock<mutex_type> guard(m_header);
+ //-----------------------
+ private_node_allocator_t::deallocate_nodes(boost::move(chain));
+ }
+
+ //!Deallocates all the free blocks of memory. Never throws
+ void deallocate_free_blocks()
+ {
+ //-----------------------
+ boost::interprocess::scoped_lock<mutex_type> guard(m_header);
+ //-----------------------
+ private_node_allocator_t::deallocate_free_blocks();
+ }
+
+ //!Deallocates all used memory from the common pool.
+ //!Precondition: all nodes allocated from this pool should
+ //!already be deallocated. Otherwise, undefined behavior. Never throws
+ void purge_blocks()
+ {
+ //-----------------------
+ boost::interprocess::scoped_lock<mutex_type> guard(m_header);
+ //-----------------------
+ private_node_allocator_t::purge_blocks();
+ }
+
+ //!Increments internal reference count and returns new count. Never throws
+ std::size_t inc_ref_count()
+ {
+ //-----------------------
+ boost::interprocess::scoped_lock<mutex_type> guard(m_header);
+ //-----------------------
+ return ++m_header.m_usecount;
+ }
+
+ //!Decrements internal reference count and returns new count. Never throws
+ std::size_t dec_ref_count()
+ {
+ //-----------------------
+ boost::interprocess::scoped_lock<mutex_type> guard(m_header);
+ //-----------------------
+ assert(m_header.m_usecount > 0);
+ return --m_header.m_usecount;
+ }
+
+ //!Deprecated, use deallocate_free_blocks.
+ void deallocate_free_chunks()
+ {
+ //-----------------------
+ boost::interprocess::scoped_lock<mutex_type> guard(m_header);
+ //-----------------------
+ private_node_allocator_t::deallocate_free_blocks();
+ }
+
+ //!Deprecated, use purge_blocks.
+ void purge_chunks()
+ {
+ //-----------------------
+ boost::interprocess::scoped_lock<mutex_type> guard(m_header);
+ //-----------------------
+ private_node_allocator_t::purge_blocks();
+ }
+
+ private:
+ //!This struct includes needed data and derives from
+ //!interprocess_mutex to allow EBO when using null_mutex
+ struct header_t : mutex_type
+ {
+ std::size_t m_usecount; //Number of attached allocators
+
+ header_t()
+ : m_usecount(0) {}
+ } m_header;
+};
+
+} //namespace detail {
+} //namespace interprocess {
+} //namespace boost {
+
+#include <boost/interprocess/detail/config_end.hpp>
+
+#endif //#ifndef BOOST_INTERPROCESS_DETAIL_NODE_ALLOCATOR_COMMON_HPP

Added: sandbox/boost/interprocess/allocators/detail/node_pool.hpp
==============================================================================
--- (empty file)
+++ sandbox/boost/interprocess/allocators/detail/node_pool.hpp 2009-02-17 13:04:56 EST (Tue, 17 Feb 2009)
@@ -0,0 +1,407 @@
+//////////////////////////////////////////////////////////////////////////////
+//
+// (C) Copyright Ion Gaztanaga 2005-2008. Distributed under the Boost
+// Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+//
+// See http://www.boost.org/libs/interprocess for documentation.
+//
+//////////////////////////////////////////////////////////////////////////////
+
+#ifndef BOOST_INTERPROCESS_DETAIL_NODE_POOL_HPP
+#define BOOST_INTERPROCESS_DETAIL_NODE_POOL_HPP
+
+#if (defined _MSC_VER) && (_MSC_VER >= 1200)
+# pragma once
+#endif
+
+#include <boost/interprocess/detail/config_begin.hpp>
+#include <boost/interprocess/detail/workaround.hpp>
+
+#include <boost/interprocess/sync/interprocess_mutex.hpp>
+#include <boost/interprocess/detail/utilities.hpp>
+#include <boost/interprocess/exceptions.hpp>
+#include <boost/intrusive/slist.hpp>
+#include <boost/math/common_factor_ct.hpp>
+#include <boost/interprocess/detail/math_functions.hpp>
+#include <boost/interprocess/detail/type_traits.hpp>
+#include <boost/interprocess/allocators/detail/node_tools.hpp>
+#include <boost/interprocess/mem_algo/detail/mem_algo_common.hpp>
+#include <boost/interprocess/allocators/detail/allocator_common.hpp>
+#include <cstddef>
+#include <functional>
+#include <algorithm>
+#include <cassert>
+
+//!\file
+//!Describes the real adaptive pool shared by many Interprocess adaptive pool allocators
+
+namespace boost {
+namespace interprocess {
+namespace detail {
+
+template<class SegmentManagerBase>
+class private_node_pool_impl
+{
+ //Non-copyable
+ private_node_pool_impl();
+ private_node_pool_impl(const private_node_pool_impl &);
+ private_node_pool_impl &operator=(const private_node_pool_impl &);
+
+ //A node object will hold node_t when it's not allocated
+ public:
+ typedef typename SegmentManagerBase::void_pointer void_pointer;
+ typedef typename node_slist<void_pointer>::slist_hook_t slist_hook_t;
+ typedef typename node_slist<void_pointer>::node_t node_t;
+ typedef typename node_slist<void_pointer>::node_slist_t free_nodes_t;
+ typedef typename SegmentManagerBase::multiallocation_chain multiallocation_chain;
+
+ private:
+ typedef typename bi::make_slist
+ < node_t, bi::base_hook<slist_hook_t>
+ , bi::linear<true>
+ , bi::constant_time_size<false> >::type blockslist_t;
+ public:
+
+ //!Segment manager typedef
+ typedef SegmentManagerBase segment_manager_base_type;
+
+ //!Constructor from a segment manager. Never throws
+ private_node_pool_impl(segment_manager_base_type *segment_mngr_base, std::size_t node_size, std::size_t nodes_per_block)
+ : m_nodes_per_block(nodes_per_block)
+ , m_real_node_size(detail::lcm(node_size, std::size_t(alignment_of<node_t>::value)))
+ //General purpose allocator
+ , mp_segment_mngr_base(segment_mngr_base)
+ , m_blocklist()
+ , m_freelist()
+ //Debug node count
+ , m_allocated(0)
+ {}
+
+ //!Destructor. Deallocates all allocated blocks. Never throws
+ ~private_node_pool_impl()
+ { this->purge_blocks(); }
+
+ std::size_t get_real_num_node() const
+ { return m_nodes_per_block; }
+
+ //!Returns the segment manager. Never throws
+ segment_manager_base_type* get_segment_manager_base()const
+ { return detail::get_pointer(mp_segment_mngr_base); }
+
+ //!Allocates array of count elements. Can throw boost::interprocess::bad_alloc
+ void *allocate_node()
+ {
+ //If there are no free nodes we allocate a new block
+ if (m_freelist.empty())
+ priv_alloc_block();
+ //We take the first free node
+ node_t *n = &m_freelist.front();
+ m_freelist.pop_front();
+ ++m_allocated;
+ return n;
+ }
+
+ //!Deallocates an array pointed by ptr. Never throws
+ void deallocate_node(void *ptr)
+ {
+ //We put the node at the beginning of the free node list
+ node_t * to_deallocate = static_cast<node_t*>(ptr);
+ m_freelist.push_front(*to_deallocate);
+ assert(m_allocated>0);
+ --m_allocated;
+ }
+
+ //!Allocates a singly linked list of n nodes ending in null pointer
+ //!can throw boost::interprocess::bad_alloc
+ multiallocation_chain allocate_nodes(const std::size_t n)
+ {
+ multiallocation_chain nodes;
+ std::size_t i = 0;
+ try{
+ for(; i < n; ++i){
+ nodes.push_front(this->allocate_node());
+ }
+ }
+ catch(...){
+ this->deallocate_nodes(nodes, i);
+ throw;
+ }
+ return boost::move(nodes);
+ }
+
+ //!Deallocates the first n nodes of a linked list of nodes. Never throws
+ void deallocate_nodes(multiallocation_chain &nodes, std::size_t n)
+ {
+ for(std::size_t i = 0; i < n; ++i){
+ void *p = detail::get_pointer(nodes.front());
+ assert(p);
+ nodes.pop_front();
+ this->deallocate_node(p);
+ }
+ }
+
+ //!Deallocates the nodes pointed by the multiallocation iterator. Never throws
+ void deallocate_nodes(multiallocation_chain chain)
+ {
+ while(!chain.empty()){
+ void *addr = detail::get_pointer(chain.front());
+ chain.pop_front();
+ deallocate_node(addr);
+ }
+ }
+
+ //!Deallocates all the free blocks of memory. Never throws
+ void deallocate_free_blocks()
+ {
+ typedef typename free_nodes_t::iterator nodelist_iterator;
+ typename blockslist_t::iterator bit(m_blocklist.before_begin()),
+ it(m_blocklist.begin()),
+ itend(m_blocklist.end());
+ free_nodes_t backup_list;
+ nodelist_iterator backup_list_last = backup_list.before_begin();
+
+ //Execute the algorithm and get an iterator to the last value
+ std::size_t blocksize = detail::get_rounded_size
+ (m_real_node_size*m_nodes_per_block, alignment_of<node_t>::value);
+
+ while(it != itend){
+ //Collect all the nodes from the block pointed by it
+ //and push them in the list
+ free_nodes_t free_nodes;
+ nodelist_iterator last_it = free_nodes.before_begin();
+ const void *addr = get_block_from_hook(&*it, blocksize);
+
+ m_freelist.remove_and_dispose_if
+ (is_between(addr, blocksize), push_in_list(free_nodes, last_it));
+
+ //If the number of nodes is equal to m_nodes_per_block
+ //this means that the block can be deallocated
+ if(free_nodes.size() == m_nodes_per_block){
+ //Unlink the nodes
+ free_nodes.clear();
+ it = m_blocklist.erase_after(bit);
+ mp_segment_mngr_base->deallocate((void*)addr);
+ }
+ //Otherwise, insert them in the backup list, since the
+ //next "remove_if" does not need to check them again.
+ else{
+ //Assign the iterator to the last value if necessary
+ if(backup_list.empty() && !m_freelist.empty()){
+ backup_list_last = last_it;
+ }
+ //Transfer nodes. This is constant time.
+ backup_list.splice_after
+ ( backup_list.before_begin()
+ , free_nodes
+ , free_nodes.before_begin()
+ , last_it
+ , free_nodes.size());
+ bit = it;
+ ++it;
+ }
+ }
+ //We should have removed all the nodes from the free list
+ assert(m_freelist.empty());
+
+ //Now pass all the node to the free list again
+ m_freelist.splice_after
+ ( m_freelist.before_begin()
+ , backup_list
+ , backup_list.before_begin()
+ , backup_list_last
+ , backup_list.size());
+ }
+
+ std::size_t num_free_nodes()
+ { return m_freelist.size(); }
+
+ //!Deallocates all used memory. Precondition: all nodes allocated from this pool should
+ //!already be deallocated. Otherwise, undefined behaviour. Never throws
+ void purge_blocks()
+ {
+ //check for memory leaks
+ assert(m_allocated==0);
+ std::size_t blocksize = detail::get_rounded_size
+ (m_real_node_size*m_nodes_per_block, alignment_of<node_t>::value);
+ typename blockslist_t::iterator
+ it(m_blocklist.begin()), itend(m_blocklist.end()), aux;
+
+ //We iterate though the NodeBlock list to free the memory
+ while(!m_blocklist.empty()){
+ void *addr = get_block_from_hook(&m_blocklist.front(), blocksize);
+ m_blocklist.pop_front();
+ mp_segment_mngr_base->deallocate((void*)addr);
+ }
+ //Just clear free node list
+ m_freelist.clear();
+ }
+
+ void swap(private_node_pool_impl &other)
+ {
+ std::swap(mp_segment_mngr_base, other.mp_segment_mngr_base);
+ m_blocklist.swap(other.m_blocklist);
+ m_freelist.swap(other.m_freelist);
+ std::swap(m_allocated, other.m_allocated);
+ }
+
+ private:
+
+ struct push_in_list
+ {
+ push_in_list(free_nodes_t &l, typename free_nodes_t::iterator &it)
+ : slist_(l), last_it_(it)
+ {}
+
+ void operator()(typename free_nodes_t::pointer p) const
+ {
+ slist_.push_front(*p);
+ if(slist_.size() == 1){ //Cache last element
+ ++last_it_ = slist_.begin();
+ }
+ }
+
+ private:
+ free_nodes_t &slist_;
+ typename free_nodes_t::iterator &last_it_;
+ };
+
+ struct is_between
+ : std::unary_function<typename free_nodes_t::value_type, bool>
+ {
+ is_between(const void *addr, std::size_t size)
+ : beg_(static_cast<const char *>(addr)), end_(beg_+size)
+ {}
+
+ bool operator()(typename free_nodes_t::const_reference v) const
+ {
+ return (beg_ <= reinterpret_cast<const char *>(&v) &&
+ end_ > reinterpret_cast<const char *>(&v));
+ }
+ private:
+ const char * beg_;
+ const char * end_;
+ };
+
+ //!Allocates a block of nodes. Can throw boost::interprocess::bad_alloc
+ void priv_alloc_block()
+ {
+ //We allocate a new NodeBlock and put it as first
+ //element in the free Node list
+ std::size_t blocksize =
+ detail::get_rounded_size(m_real_node_size*m_nodes_per_block, alignment_of<node_t>::value);
+ char *pNode = reinterpret_cast<char*>
+ (mp_segment_mngr_base->allocate(blocksize + sizeof(node_t)));
+ if(!pNode) throw bad_alloc();
+ char *pBlock = pNode;
+ m_blocklist.push_front(get_block_hook(pBlock, blocksize));
+
+ //We initialize all Nodes in Node Block to insert
+ //them in the free Node list
+ for(std::size_t i = 0; i < m_nodes_per_block; ++i, pNode += m_real_node_size){
+ m_freelist.push_front(*new (pNode) node_t);
+ }
+ }
+
+ //!Deprecated, use deallocate_free_blocks
+ void deallocate_free_chunks()
+ { this->deallocate_free_blocks(); }
+
+ //!Deprecated, use purge_blocks
+ void purge_chunks()
+ { this->purge_blocks(); }
+
+ private:
+ //!Returns a reference to the block hook placed in the end of the block
+ static inline node_t & get_block_hook (void *block, std::size_t blocksize)
+ {
+ return *reinterpret_cast<node_t*>(reinterpret_cast<char*>(block) + blocksize);
+ }
+
+ //!Returns the starting address of the block reference to the block hook placed in the end of the block
+ inline void *get_block_from_hook (node_t *hook, std::size_t blocksize)
+ {
+ return (reinterpret_cast<char*>(hook) - blocksize);
+ }
+
+ private:
+ typedef typename pointer_to_other
+ <void_pointer, segment_manager_base_type>::type segment_mngr_base_ptr_t;
+
+ const std::size_t m_nodes_per_block;
+ const std::size_t m_real_node_size;
+ segment_mngr_base_ptr_t mp_segment_mngr_base; //Segment manager
+ blockslist_t m_blocklist; //Intrusive container of blocks
+ free_nodes_t m_freelist; //Intrusive container of free nods
+ std::size_t m_allocated; //Used nodes for debugging
+};
+
+
+//!Pooled shared memory allocator using single segregated storage. Includes
+//!a reference count but the class does not delete itself, this is
+//!responsibility of user classes. Node size (NodeSize) and the number of
+//!nodes allocated per block (NodesPerBlock) are known at compile time
+template< class SegmentManager, std::size_t NodeSize, std::size_t NodesPerBlock >
+class private_node_pool
+ //Inherit from the implementation to avoid template bloat
+ : public private_node_pool_impl<typename SegmentManager::segment_manager_base_type>
+{
+ typedef private_node_pool_impl<typename SegmentManager::segment_manager_base_type> base_t;
+ //Non-copyable
+ private_node_pool();
+ private_node_pool(const private_node_pool &);
+ private_node_pool &operator=(const private_node_pool &);
+
+ public:
+ typedef SegmentManager segment_manager;
+
+ static const std::size_t nodes_per_block = NodesPerBlock;
+ //Deprecated, use nodes_per_block
+ static const std::size_t nodes_per_chunk = NodesPerBlock;
+
+ //!Constructor from a segment manager. Never throws
+ private_node_pool(segment_manager *segment_mngr)
+ : base_t(segment_mngr, NodeSize, NodesPerBlock)
+ {}
+
+ //!Returns the segment manager. Never throws
+ segment_manager* get_segment_manager() const
+ { return static_cast<segment_manager*>(base_t::get_segment_manager_base()); }
+};
+
+
+//!Pooled shared memory allocator using single segregated storage. Includes
+//!a reference count but the class does not delete itself, this is
+//!responsibility of user classes. Node size (NodeSize) and the number of
+//!nodes allocated per block (NodesPerBlock) are known at compile time
+//!Pooled shared memory allocator using adaptive pool. Includes
+//!a reference count but the class does not delete itself, this is
+//!responsibility of user classes. Node size (NodeSize) and the number of
+//!nodes allocated per block (NodesPerBlock) are known at compile time
+template< class SegmentManager
+ , std::size_t NodeSize
+ , std::size_t NodesPerBlock
+ >
+class shared_node_pool
+ : public detail::shared_pool_impl
+ < private_node_pool
+ <SegmentManager, NodeSize, NodesPerBlock>
+ >
+{
+ typedef detail::shared_pool_impl
+ < private_node_pool
+ <SegmentManager, NodeSize, NodesPerBlock>
+ > base_t;
+ public:
+ shared_node_pool(SegmentManager *segment_mgnr)
+ : base_t(segment_mgnr)
+ {}
+};
+
+} //namespace detail {
+} //namespace interprocess {
+} //namespace boost {
+
+#include <boost/interprocess/detail/config_end.hpp>
+
+#endif //#ifndef BOOST_INTERPROCESS_DETAIL_NODE_POOL_HPP

Added: sandbox/boost/interprocess/allocators/detail/node_tools.hpp
==============================================================================
--- (empty file)
+++ sandbox/boost/interprocess/allocators/detail/node_tools.hpp 2009-02-17 13:04:56 EST (Tue, 17 Feb 2009)
@@ -0,0 +1,50 @@
+//////////////////////////////////////////////////////////////////////////////
+//
+// (C) Copyright Ion Gaztanaga 2007-2008. Distributed under the Boost
+// Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+//
+// See http://www.boost.org/libs/interprocess for documentation.
+//
+//////////////////////////////////////////////////////////////////////////////
+
+#ifndef BOOST_INTERPROCESS_DETAIL_NODE_TOOLS_HPP
+#define BOOST_INTERPROCESS_DETAIL_NODE_TOOLS_HPP
+
+#if (defined _MSC_VER) && (_MSC_VER >= 1200)
+# pragma once
+#endif
+
+#include <boost/interprocess/detail/config_begin.hpp>
+#include <boost/interprocess/detail/workaround.hpp>
+
+#include <boost/intrusive/slist.hpp>
+
+namespace boost {
+namespace interprocess {
+namespace detail {
+
+
+template<class VoidPointer>
+struct node_slist
+{
+ //This hook will be used to chain the individual nodes
+ typedef typename bi::make_slist_base_hook
+ <bi::void_pointer<VoidPointer>, bi::link_mode<bi::normal_link> >::type slist_hook_t;
+
+ //A node object will hold node_t when it's not allocated
+ struct node_t
+ : public slist_hook_t
+ {};
+
+ typedef typename bi::make_slist
+ <node_t, bi::linear<true>, bi::base_hook<slist_hook_t> >::type node_slist_t;
+};
+
+} //namespace detail {
+} //namespace interprocess {
+} //namespace boost {
+
+#include <boost/interprocess/detail/config_end.hpp>
+
+#endif //#ifndef BOOST_INTERPROCESS_DETAIL_NODE_TOOLS_HPP

Added: sandbox/boost/interprocess/allocators/node_allocator.hpp
==============================================================================
--- (empty file)
+++ sandbox/boost/interprocess/allocators/node_allocator.hpp 2009-02-17 13:04:56 EST (Tue, 17 Feb 2009)
@@ -0,0 +1,447 @@
+//////////////////////////////////////////////////////////////////////////////
+//
+// (C) Copyright Ion Gaztanaga 2005-2008. Distributed under the Boost
+// Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+//
+// See http://www.boost.org/libs/interprocess for documentation.
+//
+//////////////////////////////////////////////////////////////////////////////
+
+#ifndef BOOST_INTERPROCESS_NODE_ALLOCATOR_HPP
+#define BOOST_INTERPROCESS_NODE_ALLOCATOR_HPP
+
+#if (defined _MSC_VER) && (_MSC_VER >= 1200)
+# pragma once
+#endif
+
+#include <boost/interprocess/detail/config_begin.hpp>
+#include <boost/interprocess/detail/workaround.hpp>
+
+#include <boost/interprocess/interprocess_fwd.hpp>
+#include <boost/assert.hpp>
+#include <boost/utility/addressof.hpp>
+#include <boost/interprocess/detail/utilities.hpp>
+#include <boost/interprocess/detail/type_traits.hpp>
+#include <boost/interprocess/allocators/detail/node_pool.hpp>
+#include <boost/interprocess/exceptions.hpp>
+#include <boost/interprocess/allocators/detail/allocator_common.hpp>
+#include <memory>
+#include <algorithm>
+#include <cstddef>
+
+//!\file
+//!Describes node_allocator pooled shared memory STL compatible allocator
+
+namespace boost {
+namespace interprocess {
+
+/// @cond
+
+namespace detail{
+
+template < unsigned int Version
+ , class T
+ , class SegmentManager
+ , std::size_t NodesPerBlock
+ >
+class node_allocator_base
+ : public node_pool_allocation_impl
+ < node_allocator_base
+ < Version, T, SegmentManager, NodesPerBlock>
+ , Version
+ , T
+ , SegmentManager
+ >
+{
+ public:
+ typedef typename SegmentManager::void_pointer void_pointer;
+ typedef SegmentManager segment_manager;
+ typedef node_allocator_base
+ <Version, T, SegmentManager, NodesPerBlock> self_t;
+
+ /// @cond
+
+ template <int dummy>
+ struct node_pool
+ {
+ typedef detail::shared_node_pool
+ < SegmentManager, sizeof_value<T>::value, NodesPerBlock> type;
+
+ static type *get(void *p)
+ { return static_cast<type*>(p); }
+ };
+ /// @endcond
+
+ BOOST_STATIC_ASSERT((Version <=2));
+
+ public:
+ //-------
+ typedef typename detail::
+ pointer_to_other<void_pointer, T>::type pointer;
+ typedef typename detail::
+ pointer_to_other<void_pointer, const T>::type const_pointer;
+ typedef T value_type;
+ typedef typename detail::add_reference
+ <value_type>::type reference;
+ typedef typename detail::add_reference
+ <const value_type>::type const_reference;
+ typedef std::size_t size_type;
+ typedef std::ptrdiff_t difference_type;
+
+ typedef detail::version_type<node_allocator_base, Version> version;
+ typedef detail::transform_multiallocation_chain
+ <typename SegmentManager::multiallocation_chain, T>multiallocation_chain;
+
+ //!Obtains node_allocator_base from
+ //!node_allocator_base
+ template<class T2>
+ struct rebind
+ {
+ typedef node_allocator_base<Version, T2, SegmentManager, NodesPerBlock> other;
+ };
+
+ /// @cond
+ private:
+ //!Not assignable from related node_allocator_base
+ template<unsigned int Version2, class T2, class SegmentManager2, std::size_t N2>
+ node_allocator_base& operator=
+ (const node_allocator_base<Version2, T2, SegmentManager2, N2>&);
+
+ //!Not assignable from other node_allocator_base
+ //node_allocator_base& operator=(const node_allocator_base&);
+ /// @endcond
+
+ public:
+ //!Constructor from a segment manager. If not present, constructs a node
+ //!pool. Increments the reference count of the associated node pool.
+ //!Can throw boost::interprocess::bad_alloc
+ node_allocator_base(segment_manager *segment_mngr)
+ : mp_node_pool(detail::get_or_create_node_pool<typename node_pool<0>::type>(segment_mngr)) { }
+
+ //!Copy constructor from other node_allocator_base. Increments the reference
+ //!count of the associated node pool. Never throws
+ node_allocator_base(const node_allocator_base &other)
+ : mp_node_pool(other.get_node_pool())
+ {
+ node_pool<0>::get(detail::get_pointer(mp_node_pool))->inc_ref_count();
+ }
+
+ //!Copy constructor from related node_allocator_base. If not present, constructs
+ //!a node pool. Increments the reference count of the associated node pool.
+ //!Can throw boost::interprocess::bad_alloc
+ template<class T2>
+ node_allocator_base
+ (const node_allocator_base<Version, T2, SegmentManager, NodesPerBlock> &other)
+ : mp_node_pool(detail::get_or_create_node_pool<typename node_pool<0>::type>(other.get_segment_manager())) { }
+
+ //!Assignment from other node_allocator_base
+ node_allocator_base& operator=(const node_allocator_base &other)
+ {
+ node_allocator_base c(other);
+ swap(*this, c);
+ return *this;
+ }
+
+ //!Destructor, removes node_pool_t from memory
+ //!if its reference count reaches to zero. Never throws
+ ~node_allocator_base()
+ { detail::destroy_node_pool_if_last_link(node_pool<0>::get(detail::get_pointer(mp_node_pool))); }
+
+ //!Returns a pointer to the node pool.
+ //!Never throws
+ void* get_node_pool() const
+ { return detail::get_pointer(mp_node_pool); }
+
+ //!Returns the segment manager.
+ //!Never throws
+ segment_manager* get_segment_manager()const
+ { return node_pool<0>::get(detail::get_pointer(mp_node_pool))->get_segment_manager(); }
+
+ //!Swaps allocators. Does not throw. If each allocator is placed in a
+ //!different memory segment, the result is undefined.
+ friend void swap(self_t &alloc1, self_t &alloc2)
+ { detail::do_swap(alloc1.mp_node_pool, alloc2.mp_node_pool); }
+
+ /// @cond
+ private:
+ void_pointer mp_node_pool;
+ /// @endcond
+};
+
+//!Equality test for same type
+//!of node_allocator_base
+template<unsigned int V, class T, class S, std::size_t NPC> inline
+bool operator==(const node_allocator_base<V, T, S, NPC> &alloc1,
+ const node_allocator_base<V, T, S, NPC> &alloc2)
+ { return alloc1.get_node_pool() == alloc2.get_node_pool(); }
+
+//!Inequality test for same type
+//!of node_allocator_base
+template<unsigned int V, class T, class S, std::size_t NPC> inline
+bool operator!=(const node_allocator_base<V, T, S, NPC> &alloc1,
+ const node_allocator_base<V, T, S, NPC> &alloc2)
+ { return alloc1.get_node_pool() != alloc2.get_node_pool(); }
+
+template < class T
+ , class SegmentManager
+ , std::size_t NodesPerBlock = 64
+ >
+class node_allocator_v1
+ : public node_allocator_base
+ < 1
+ , T
+ , SegmentManager
+ , NodesPerBlock
+ >
+{
+ public:
+ typedef detail::node_allocator_base
+ < 1, T, SegmentManager, NodesPerBlock> base_t;
+
+ template<class T2>
+ struct rebind
+ {
+ typedef node_allocator_v1<T2, SegmentManager, NodesPerBlock> other;
+ };
+
+ node_allocator_v1(SegmentManager *segment_mngr)
+ : base_t(segment_mngr)
+ {}
+
+ template<class T2>
+ node_allocator_v1
+ (const node_allocator_v1<T2, SegmentManager, NodesPerBlock> &other)
+ : base_t(other)
+ {}
+};
+
+} //namespace detail{
+
+/// @endcond
+
+//!An STL node allocator that uses a segment manager as memory
+//!source. The internal pointer type will of the same type (raw, smart) as
+//!"typename SegmentManager::void_pointer" type. This allows
+//!placing the allocator in shared memory, memory mapped-files, etc...
+//!This node allocator shares a segregated storage between all instances
+//!of node_allocator with equal sizeof(T) placed in the same segment
+//!group. NodesPerBlock is the number of nodes allocated at once when the allocator
+//!needs runs out of nodes
+template < class T
+ , class SegmentManager
+ , std::size_t NodesPerBlock
+ >
+class node_allocator
+ /// @cond
+ : public detail::node_allocator_base
+ < 2
+ , T
+ , SegmentManager
+ , NodesPerBlock
+ >
+ /// @endcond
+{
+
+ #ifndef BOOST_INTERPROCESS_DOXYGEN_INVOKED
+ typedef detail::node_allocator_base
+ < 2, T, SegmentManager, NodesPerBlock> base_t;
+ public:
+ typedef detail::version_type<node_allocator, 2> version;
+
+ template<class T2>
+ struct rebind
+ {
+ typedef node_allocator<T2, SegmentManager, NodesPerBlock> other;
+ };
+
+ node_allocator(SegmentManager *segment_mngr)
+ : base_t(segment_mngr)
+ {}
+
+ template<class T2>
+ node_allocator
+ (const node_allocator<T2, SegmentManager, NodesPerBlock> &other)
+ : base_t(other)
+ {}
+
+ #else //BOOST_INTERPROCESS_DOXYGEN_INVOKED
+ public:
+ typedef implementation_defined::segment_manager segment_manager;
+ typedef segment_manager::void_pointer void_pointer;
+ typedef implementation_defined::pointer pointer;
+ typedef implementation_defined::const_pointer const_pointer;
+ typedef T value_type;
+ typedef typename detail::add_reference
+ <value_type>::type reference;
+ typedef typename detail::add_reference
+ <const value_type>::type const_reference;
+ typedef std::size_t size_type;
+ typedef std::ptrdiff_t difference_type;
+
+ //!Obtains node_allocator from
+ //!node_allocator
+ template<class T2>
+ struct rebind
+ {
+ typedef node_allocator<T2, SegmentManager, NodesPerBlock> other;
+ };
+
+ private:
+ //!Not assignable from
+ //!related node_allocator
+ template<class T2, class SegmentManager2, std::size_t N2>
+ node_allocator& operator=
+ (const node_allocator<T2, SegmentManager2, N2>&);
+
+ //!Not assignable from
+ //!other node_allocator
+ //node_allocator& operator=(const node_allocator&);
+
+ public:
+ //!Constructor from a segment manager. If not present, constructs a node
+ //!pool. Increments the reference count of the associated node pool.
+ //!Can throw boost::interprocess::bad_alloc
+ node_allocator(segment_manager *segment_mngr);
+
+ //!Copy constructor from other node_allocator. Increments the reference
+ //!count of the associated node pool. Never throws
+ node_allocator(const node_allocator &other);
+
+ //!Copy constructor from related node_allocator. If not present, constructs
+ //!a node pool. Increments the reference count of the associated node pool.
+ //!Can throw boost::interprocess::bad_alloc
+ template<class T2>
+ node_allocator
+ (const node_allocator<T2, SegmentManager, NodesPerBlock> &other);
+
+ //!Destructor, removes node_pool_t from memory
+ //!if its reference count reaches to zero. Never throws
+ ~node_allocator();
+
+ //!Returns a pointer to the node pool.
+ //!Never throws
+ void* get_node_pool() const;
+
+ //!Returns the segment manager.
+ //!Never throws
+ segment_manager* get_segment_manager()const;
+
+ //!Returns the number of elements that could be allocated.
+ //!Never throws
+ size_type max_size() const;
+
+ //!Allocate memory for an array of count elements.
+ //!Throws boost::interprocess::bad_alloc if there is no enough memory
+ pointer allocate(size_type count, cvoid_pointer hint = 0);
+
+ //!Deallocate allocated memory.
+ //!Never throws
+ void deallocate(const pointer &ptr, size_type count);
+
+ //!Deallocates all free blocks
+ //!of the pool
+ void deallocate_free_blocks();
+
+ //!Swaps allocators. Does not throw. If each allocator is placed in a
+ //!different memory segment, the result is undefined.
+ friend void swap(self_t &alloc1, self_t &alloc2);
+
+ //!Returns address of mutable object.
+ //!Never throws
+ pointer address(reference value) const;
+
+ //!Returns address of non mutable object.
+ //!Never throws
+ const_pointer address(const_reference value) const;
+
+ //!Copy construct an object.
+ //!Throws if T's copy constructor throws
+ void construct(const pointer &ptr, const_reference v);
+
+ //!Destroys object. Throws if object's
+ //!destructor throws
+ void destroy(const pointer &ptr);
+
+ //!Returns maximum the number of objects the previously allocated memory
+ //!pointed by p can hold. This size only works for memory allocated with
+ //!allocate, allocation_command and allocate_many.
+ size_type size(const pointer &p) const;
+
+ std::pair<pointer, bool>
+ allocation_command(allocation_type command,
+ size_type limit_size,
+ size_type preferred_size,
+ size_type &received_size, const pointer &reuse = 0);
+
+ //!Allocates many elements of size elem_size in a contiguous block
+ //!of memory. The minimum number to be allocated is min_elements,
+ //!the preferred and maximum number is
+ //!preferred_elements. The number of actually allocated elements is
+ //!will be assigned to received_size. The elements must be deallocated
+ //!with deallocate(...)
+ multiallocation_chain allocate_many(size_type elem_size, std::size_t num_elements);
+
+ //!Allocates n_elements elements, each one of size elem_sizes[i]in a
+ //!contiguous block
+ //!of memory. The elements must be deallocated
+ multiallocation_chain allocate_many(const size_type *elem_sizes, size_type n_elements);
+
+ //!Allocates many elements of size elem_size in a contiguous block
+ //!of memory. The minimum number to be allocated is min_elements,
+ //!the preferred and maximum number is
+ //!preferred_elements. The number of actually allocated elements is
+ //!will be assigned to received_size. The elements must be deallocated
+ //!with deallocate(...)
+ void deallocate_many(multiallocation_chain chain);
+
+ //!Allocates just one object. Memory allocated with this function
+ //!must be deallocated only with deallocate_one().
+ //!Throws boost::interprocess::bad_alloc if there is no enough memory
+ pointer allocate_one();
+
+ //!Allocates many elements of size == 1 in a contiguous block
+ //!of memory. The minimum number to be allocated is min_elements,
+ //!the preferred and maximum number is
+ //!preferred_elements. The number of actually allocated elements is
+ //!will be assigned to received_size. Memory allocated with this function
+ //!must be deallocated only with deallocate_one().
+ multiallocation_chain allocate_individual(std::size_t num_elements);
+
+ //!Deallocates memory previously allocated with allocate_one().
+ //!You should never use deallocate_one to deallocate memory allocated
+ //!with other functions different from allocate_one(). Never throws
+ void deallocate_one(const pointer &p);
+
+ //!Allocates many elements of size == 1 in a contiguous block
+ //!of memory. The minimum number to be allocated is min_elements,
+ //!the preferred and maximum number is
+ //!preferred_elements. The number of actually allocated elements is
+ //!will be assigned to received_size. Memory allocated with this function
+ //!must be deallocated only with deallocate_one().
+ void deallocate_individual(multiallocation_chain chain);
+ #endif
+};
+
+#ifdef BOOST_INTERPROCESS_DOXYGEN_INVOKED
+
+//!Equality test for same type
+//!of node_allocator
+template<class T, class S, std::size_t NPC> inline
+bool operator==(const node_allocator<T, S, NPC> &alloc1,
+ const node_allocator<T, S, NPC> &alloc2);
+
+//!Inequality test for same type
+//!of node_allocator
+template<class T, class S, std::size_t NPC> inline
+bool operator!=(const node_allocator<T, S, NPC> &alloc1,
+ const node_allocator<T, S, NPC> &alloc2);
+
+#endif
+
+} //namespace interprocess {
+} //namespace boost {
+
+#include <boost/interprocess/detail/config_end.hpp>
+
+#endif //#ifndef BOOST_INTERPROCESS_NODE_ALLOCATOR_HPP

Added: sandbox/boost/interprocess/allocators/private_adaptive_pool.hpp
==============================================================================
--- (empty file)
+++ sandbox/boost/interprocess/allocators/private_adaptive_pool.hpp 2009-02-17 13:04:56 EST (Tue, 17 Feb 2009)
@@ -0,0 +1,463 @@
+//////////////////////////////////////////////////////////////////////////////
+//
+// (C) Copyright Ion Gaztanaga 2005-2008. Distributed under the Boost
+// Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+//
+// See http://www.boost.org/libs/interprocess for documentation.
+//
+//////////////////////////////////////////////////////////////////////////////
+
+#ifndef BOOST_INTERPROCESS_PRIVATE_ADAPTIVE_POOL_HPP
+#define BOOST_INTERPROCESS_PRIVATE_ADAPTIVE_POOL_HPP
+
+#if (defined _MSC_VER) && (_MSC_VER >= 1200)
+# pragma once
+#endif
+
+#include <boost/interprocess/detail/config_begin.hpp>
+#include <boost/interprocess/detail/workaround.hpp>
+
+#include <boost/interprocess/interprocess_fwd.hpp>
+#include <boost/assert.hpp>
+#include <boost/utility/addressof.hpp>
+#include <boost/interprocess/allocators/detail/adaptive_node_pool.hpp>
+#include <boost/interprocess/exceptions.hpp>
+#include <boost/interprocess/detail/utilities.hpp>
+#include <boost/interprocess/detail/workaround.hpp>
+#include <memory>
+#include <algorithm>
+#include <cstddef>
+
+//!\file
+//!Describes private_adaptive_pool_base pooled shared memory STL compatible allocator
+
+namespace boost {
+namespace interprocess {
+
+/// @cond
+
+namespace detail {
+
+template < unsigned int Version
+ , class T
+ , class SegmentManager
+ , std::size_t NodesPerBlock
+ , std::size_t MaxFreeBlocks
+ , unsigned char OverheadPercent
+ >
+class private_adaptive_pool_base
+ : public node_pool_allocation_impl
+ < private_adaptive_pool_base < Version, T, SegmentManager, NodesPerBlock
+ , MaxFreeBlocks, OverheadPercent>
+ , Version
+ , T
+ , SegmentManager
+ >
+{
+ public:
+ //Segment manager
+ typedef SegmentManager segment_manager;
+ typedef typename SegmentManager::void_pointer void_pointer;
+
+ /// @cond
+ private:
+ typedef private_adaptive_pool_base
+ < Version, T, SegmentManager, NodesPerBlock
+ , MaxFreeBlocks, OverheadPercent> self_t;
+ typedef detail::private_adaptive_node_pool
+ <SegmentManager
+ , sizeof_value<T>::value
+ , NodesPerBlock
+ , MaxFreeBlocks
+ , OverheadPercent
+ > node_pool_t;
+
+ BOOST_STATIC_ASSERT((Version <=2));
+
+ /// @endcond
+
+ public:
+ typedef typename detail::
+ pointer_to_other<void_pointer, T>::type pointer;
+ typedef typename detail::
+ pointer_to_other<void_pointer, const T>::type const_pointer;
+ typedef T value_type;
+ typedef typename detail::add_reference
+ <value_type>::type reference;
+ typedef typename detail::add_reference
+ <const value_type>::type const_reference;
+ typedef std::size_t size_type;
+ typedef std::ptrdiff_t difference_type;
+ typedef detail::version_type
+ <private_adaptive_pool_base, Version> version;
+ typedef detail::transform_multiallocation_chain
+ <typename SegmentManager::multiallocation_chain, T>multiallocation_chain;
+
+ //!Obtains node_allocator from other node_allocator
+ template<class T2>
+ struct rebind
+ {
+ typedef private_adaptive_pool_base
+ <Version, T2, SegmentManager, NodesPerBlock, MaxFreeBlocks, OverheadPercent> other;
+ };
+
+ /// @cond
+
+ template <int dummy>
+ struct node_pool
+ {
+ typedef detail::private_adaptive_node_pool
+ <SegmentManager
+ , sizeof_value<T>::value
+ , NodesPerBlock
+ , MaxFreeBlocks
+ , OverheadPercent
+ > type;
+
+ static type *get(void *p)
+ { return static_cast<type*>(p); }
+ };
+
+ private:
+ //!Not assignable from related private_adaptive_pool_base
+ template<unsigned int Version2, class T2, class MemoryAlgorithm2, std::size_t N2, std::size_t F2, unsigned char OP2>
+ private_adaptive_pool_base& operator=
+ (const private_adaptive_pool_base<Version2, T2, MemoryAlgorithm2, N2, F2, OP2>&);
+
+ //!Not assignable from other private_adaptive_pool_base
+ private_adaptive_pool_base& operator=(const private_adaptive_pool_base&);
+ /// @endcond
+
+ public:
+ //!Constructor from a segment manager
+ private_adaptive_pool_base(segment_manager *segment_mngr)
+ : m_node_pool(segment_mngr)
+ {}
+
+ //!Copy constructor from other private_adaptive_pool_base. Never throws
+ private_adaptive_pool_base(const private_adaptive_pool_base &other)
+ : m_node_pool(other.get_segment_manager())
+ {}
+
+ //!Copy constructor from related private_adaptive_pool_base. Never throws.
+ template<class T2>
+ private_adaptive_pool_base
+ (const private_adaptive_pool_base
+ <Version, T2, SegmentManager, NodesPerBlock, MaxFreeBlocks, OverheadPercent> &other)
+ : m_node_pool(other.get_segment_manager())
+ {}
+
+ //!Destructor, frees all used memory. Never throws
+ ~private_adaptive_pool_base()
+ {}
+
+ //!Returns the segment manager. Never throws
+ segment_manager* get_segment_manager()const
+ { return m_node_pool.get_segment_manager(); }
+
+ //!Returns the internal node pool. Never throws
+ node_pool_t* get_node_pool() const
+ { return const_cast<node_pool_t*>(&m_node_pool); }
+
+ //!Swaps allocators. Does not throw. If each allocator is placed in a
+ //!different shared memory segments, the result is undefined.
+ friend void swap(self_t &alloc1,self_t &alloc2)
+ { alloc1.m_node_pool.swap(alloc2.m_node_pool); }
+
+ /// @cond
+ private:
+ node_pool_t m_node_pool;
+ /// @endcond
+};
+
+//!Equality test for same type of private_adaptive_pool_base
+template<unsigned int V, class T, class S, std::size_t NodesPerBlock, std::size_t F, unsigned char OP> inline
+bool operator==(const private_adaptive_pool_base<V, T, S, NodesPerBlock, F, OP> &alloc1,
+ const private_adaptive_pool_base<V, T, S, NodesPerBlock, F, OP> &alloc2)
+{ return &alloc1 == &alloc2; }
+
+//!Inequality test for same type of private_adaptive_pool_base
+template<unsigned int V, class T, class S, std::size_t NodesPerBlock, std::size_t F, unsigned char OP> inline
+bool operator!=(const private_adaptive_pool_base<V, T, S, NodesPerBlock, F, OP> &alloc1,
+ const private_adaptive_pool_base<V, T, S, NodesPerBlock, F, OP> &alloc2)
+{ return &alloc1 != &alloc2; }
+
+template < class T
+ , class SegmentManager
+ , std::size_t NodesPerBlock = 64
+ , std::size_t MaxFreeBlocks = 2
+ , unsigned char OverheadPercent = 5
+ >
+class private_adaptive_pool_v1
+ : public private_adaptive_pool_base
+ < 1
+ , T
+ , SegmentManager
+ , NodesPerBlock
+ , MaxFreeBlocks
+ , OverheadPercent
+ >
+{
+ public:
+ typedef detail::private_adaptive_pool_base
+ < 1, T, SegmentManager, NodesPerBlock, MaxFreeBlocks, OverheadPercent> base_t;
+
+ template<class T2>
+ struct rebind
+ {
+ typedef private_adaptive_pool_v1<T2, SegmentManager, NodesPerBlock, MaxFreeBlocks, OverheadPercent> other;
+ };
+
+ private_adaptive_pool_v1(SegmentManager *segment_mngr)
+ : base_t(segment_mngr)
+ {}
+
+ template<class T2>
+ private_adaptive_pool_v1
+ (const private_adaptive_pool_v1<T2, SegmentManager, NodesPerBlock, MaxFreeBlocks, OverheadPercent> &other)
+ : base_t(other)
+ {}
+};
+
+} //namespace detail {
+
+/// @endcond
+
+//!An STL node allocator that uses a segment manager as memory
+//!source. The internal pointer type will of the same type (raw, smart) as
+//!"typename SegmentManager::void_pointer" type. This allows
+//!placing the allocator in shared memory, memory mapped-files, etc...
+//!This allocator has its own node pool.
+//!
+//!NodesPerBlock is the minimum number of nodes of nodes allocated at once when
+//!the allocator needs runs out of nodes. MaxFreeBlocks is the maximum number of totally free blocks
+//!that the adaptive node pool will hold. The rest of the totally free blocks will be
+//!deallocated with the segment manager.
+//!
+//!OverheadPercent is the (approximated) maximum size overhead (1-20%) of the allocator:
+//!(memory usable for nodes / total memory allocated from the segment manager)
+template < class T
+ , class SegmentManager
+ , std::size_t NodesPerBlock
+ , std::size_t MaxFreeBlocks
+ , unsigned char OverheadPercent
+ >
+class private_adaptive_pool
+ /// @cond
+ : public detail::private_adaptive_pool_base
+ < 2
+ , T
+ , SegmentManager
+ , NodesPerBlock
+ , MaxFreeBlocks
+ , OverheadPercent
+ >
+ /// @endcond
+{
+
+ #ifndef BOOST_INTERPROCESS_DOXYGEN_INVOKED
+ typedef detail::private_adaptive_pool_base
+ < 2, T, SegmentManager, NodesPerBlock, MaxFreeBlocks, OverheadPercent> base_t;
+ public:
+ typedef detail::version_type<private_adaptive_pool, 2> version;
+
+ template<class T2>
+ struct rebind
+ {
+ typedef private_adaptive_pool
+ <T2, SegmentManager, NodesPerBlock, MaxFreeBlocks, OverheadPercent> other;
+ };
+
+ private_adaptive_pool(SegmentManager *segment_mngr)
+ : base_t(segment_mngr)
+ {}
+
+ template<class T2>
+ private_adaptive_pool
+ (const private_adaptive_pool<T2, SegmentManager, NodesPerBlock, MaxFreeBlocks, OverheadPercent> &other)
+ : base_t(other)
+ {}
+
+ #else
+ public:
+ typedef implementation_defined::segment_manager segment_manager;
+ typedef segment_manager::void_pointer void_pointer;
+ typedef implementation_defined::pointer pointer;
+ typedef implementation_defined::const_pointer const_pointer;
+ typedef T value_type;
+ typedef typename detail::add_reference
+ <value_type>::type reference;
+ typedef typename detail::add_reference
+ <const value_type>::type const_reference;
+ typedef std::size_t size_type;
+ typedef std::ptrdiff_t difference_type;
+
+ //!Obtains private_adaptive_pool from
+ //!private_adaptive_pool
+ template<class T2>
+ struct rebind
+ {
+ typedef private_adaptive_pool
+ <T2, SegmentManager, NodesPerBlock, MaxFreeBlocks, OverheadPercent> other;
+ };
+
+ private:
+ //!Not assignable from
+ //!related private_adaptive_pool
+ template<class T2, class SegmentManager2, std::size_t N2, std::size_t F2, unsigned char OP2>
+ private_adaptive_pool& operator=
+ (const private_adaptive_pool<T2, SegmentManager2, N2, F2>&);
+
+ //!Not assignable from
+ //!other private_adaptive_pool
+ private_adaptive_pool& operator=(const private_adaptive_pool&);
+
+ public:
+ //!Constructor from a segment manager. If not present, constructs a node
+ //!pool. Increments the reference count of the associated node pool.
+ //!Can throw boost::interprocess::bad_alloc
+ private_adaptive_pool(segment_manager *segment_mngr);
+
+ //!Copy constructor from other private_adaptive_pool. Increments the reference
+ //!count of the associated node pool. Never throws
+ private_adaptive_pool(const private_adaptive_pool &other);
+
+ //!Copy constructor from related private_adaptive_pool. If not present, constructs
+ //!a node pool. Increments the reference count of the associated node pool.
+ //!Can throw boost::interprocess::bad_alloc
+ template<class T2>
+ private_adaptive_pool
+ (const private_adaptive_pool<T2, SegmentManager, NodesPerBlock, MaxFreeBlocks, OverheadPercent> &other);
+
+ //!Destructor, removes node_pool_t from memory
+ //!if its reference count reaches to zero. Never throws
+ ~private_adaptive_pool();
+
+ //!Returns a pointer to the node pool.
+ //!Never throws
+ node_pool_t* get_node_pool() const;
+
+ //!Returns the segment manager.
+ //!Never throws
+ segment_manager* get_segment_manager()const;
+
+ //!Returns the number of elements that could be allocated.
+ //!Never throws
+ size_type max_size() const;
+
+ //!Allocate memory for an array of count elements.
+ //!Throws boost::interprocess::bad_alloc if there is no enough memory
+ pointer allocate(size_type count, cvoid_pointer hint = 0);
+
+ //!Deallocate allocated memory.
+ //!Never throws
+ void deallocate(const pointer &ptr, size_type count);
+
+ //!Deallocates all free blocks
+ //!of the pool
+ void deallocate_free_blocks();
+
+ //!Swaps allocators. Does not throw. If each allocator is placed in a
+ //!different memory segment, the result is undefined.
+ friend void swap(self_t &alloc1, self_t &alloc2);
+
+ //!Returns address of mutable object.
+ //!Never throws
+ pointer address(reference value) const;
+
+ //!Returns address of non mutable object.
+ //!Never throws
+ const_pointer address(const_reference value) const;
+
+ //!Copy construct an object.
+ //!Throws if T's copy constructor throws
+ void construct(const pointer &ptr, const_reference v);
+
+ //!Destroys object. Throws if object's
+ //!destructor throws
+ void destroy(const pointer &ptr);
+
+ //!Returns maximum the number of objects the previously allocated memory
+ //!pointed by p can hold. This size only works for memory allocated with
+ //!allocate, allocation_command and allocate_many.
+ size_type size(const pointer &p) const;
+
+ std::pair<pointer, bool>
+ allocation_command(allocation_type command,
+ size_type limit_size,
+ size_type preferred_size,
+ size_type &received_size, const pointer &reuse = 0);
+
+ //!Allocates many elements of size elem_size in a contiguous block
+ //!of memory. The minimum number to be allocated is min_elements,
+ //!the preferred and maximum number is
+ //!preferred_elements. The number of actually allocated elements is
+ //!will be assigned to received_size. The elements must be deallocated
+ //!with deallocate(...)
+ multiallocation_chain allocate_many(size_type elem_size, std::size_t num_elements);
+
+ //!Allocates n_elements elements, each one of size elem_sizes[i]in a
+ //!contiguous block
+ //!of memory. The elements must be deallocated
+ multiallocation_chain allocate_many(const size_type *elem_sizes, size_type n_elements);
+
+ //!Allocates many elements of size elem_size in a contiguous block
+ //!of memory. The minimum number to be allocated is min_elements,
+ //!the preferred and maximum number is
+ //!preferred_elements. The number of actually allocated elements is
+ //!will be assigned to received_size. The elements must be deallocated
+ //!with deallocate(...)
+ void deallocate_many(multiallocation_chain chain);
+
+ //!Allocates just one object. Memory allocated with this function
+ //!must be deallocated only with deallocate_one().
+ //!Throws boost::interprocess::bad_alloc if there is no enough memory
+ pointer allocate_one();
+
+ //!Allocates many elements of size == 1 in a contiguous block
+ //!of memory. The minimum number to be allocated is min_elements,
+ //!the preferred and maximum number is
+ //!preferred_elements. The number of actually allocated elements is
+ //!will be assigned to received_size. Memory allocated with this function
+ //!must be deallocated only with deallocate_one().
+ multiallocation_chain allocate_individual(std::size_t num_elements);
+
+ //!Deallocates memory previously allocated with allocate_one().
+ //!You should never use deallocate_one to deallocate memory allocated
+ //!with other functions different from allocate_one(). Never throws
+ void deallocate_one(const pointer &p);
+
+ //!Allocates many elements of size == 1 in a contiguous block
+ //!of memory. The minimum number to be allocated is min_elements,
+ //!the preferred and maximum number is
+ //!preferred_elements. The number of actually allocated elements is
+ //!will be assigned to received_size. Memory allocated with this function
+ //!must be deallocated only with deallocate_one().
+ void deallocate_individual(multiallocation_chain chain);
+ #endif
+};
+
+#ifdef BOOST_INTERPROCESS_DOXYGEN_INVOKED
+
+//!Equality test for same type
+//!of private_adaptive_pool
+template<class T, class S, std::size_t NodesPerBlock, std::size_t F, unsigned char OP> inline
+bool operator==(const private_adaptive_pool<T, S, NodesPerBlock, F, OP> &alloc1,
+ const private_adaptive_pool<T, S, NodesPerBlock, F, OP> &alloc2);
+
+//!Inequality test for same type
+//!of private_adaptive_pool
+template<class T, class S, std::size_t NodesPerBlock, std::size_t F, unsigned char OP> inline
+bool operator!=(const private_adaptive_pool<T, S, NodesPerBlock, F, OP> &alloc1,
+ const private_adaptive_pool<T, S, NodesPerBlock, F, OP> &alloc2);
+
+#endif
+
+} //namespace interprocess {
+} //namespace boost {
+
+#include <boost/interprocess/detail/config_end.hpp>
+
+#endif //#ifndef BOOST_INTERPROCESS_PRIVATE_ADAPTIVE_POOL_HPP
+

Added: sandbox/boost/interprocess/allocators/private_node_allocator.hpp
==============================================================================
--- (empty file)
+++ sandbox/boost/interprocess/allocators/private_node_allocator.hpp 2009-02-17 13:04:56 EST (Tue, 17 Feb 2009)
@@ -0,0 +1,439 @@
+//////////////////////////////////////////////////////////////////////////////
+//
+// (C) Copyright Ion Gaztanaga 2005-2008. Distributed under the Boost
+// Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+//
+// See http://www.boost.org/libs/interprocess for documentation.
+//
+//////////////////////////////////////////////////////////////////////////////
+
+#ifndef BOOST_INTERPROCESS_PRIVATE_NODE_ALLOCATOR_HPP
+#define BOOST_INTERPROCESS_PRIVATE_NODE_ALLOCATOR_HPP
+
+#if (defined _MSC_VER) && (_MSC_VER >= 1200)
+# pragma once
+#endif
+
+#include <boost/interprocess/detail/config_begin.hpp>
+#include <boost/interprocess/detail/workaround.hpp>
+
+#include <boost/interprocess/interprocess_fwd.hpp>
+#include <boost/assert.hpp>
+#include <boost/utility/addressof.hpp>
+#include <boost/interprocess/allocators/detail/node_pool.hpp>
+#include <boost/interprocess/exceptions.hpp>
+#include <boost/interprocess/detail/utilities.hpp>
+#include <boost/interprocess/detail/workaround.hpp>
+#include <memory>
+#include <algorithm>
+#include <cstddef>
+
+//!\file
+//!Describes private_node_allocator_base pooled shared memory STL compatible allocator
+
+namespace boost {
+namespace interprocess {
+
+/// @cond
+
+namespace detail {
+
+template < unsigned int Version
+ , class T
+ , class SegmentManager
+ , std::size_t NodesPerBlock
+ >
+class private_node_allocator_base
+ : public node_pool_allocation_impl
+ < private_node_allocator_base < Version, T, SegmentManager, NodesPerBlock>
+ , Version
+ , T
+ , SegmentManager
+ >
+{
+ public:
+ //Segment manager
+ typedef SegmentManager segment_manager;
+ typedef typename SegmentManager::void_pointer void_pointer;
+
+ /// @cond
+ private:
+ typedef private_node_allocator_base
+ < Version, T, SegmentManager, NodesPerBlock> self_t;
+ typedef detail::private_node_pool
+ <SegmentManager
+ , sizeof_value<T>::value
+ , NodesPerBlock
+ > node_pool_t;
+
+ BOOST_STATIC_ASSERT((Version <=2));
+
+ /// @endcond
+
+ public:
+ typedef typename detail::
+ pointer_to_other<void_pointer, T>::type pointer;
+ typedef typename detail::
+ pointer_to_other<void_pointer, const T>::type const_pointer;
+ typedef T value_type;
+ typedef typename detail::add_reference
+ <value_type>::type reference;
+ typedef typename detail::add_reference
+ <const value_type>::type const_reference;
+ typedef std::size_t size_type;
+ typedef std::ptrdiff_t difference_type;
+ typedef detail::version_type
+ <private_node_allocator_base, Version> version;
+ typedef detail::transform_multiallocation_chain
+ <typename SegmentManager::multiallocation_chain, T>multiallocation_chain;
+
+ //!Obtains node_allocator from other node_allocator
+ template<class T2>
+ struct rebind
+ {
+ typedef private_node_allocator_base
+ <Version, T2, SegmentManager, NodesPerBlock> other;
+ };
+
+ /// @cond
+ template <int dummy>
+ struct node_pool
+ {
+ typedef detail::private_node_pool
+ <SegmentManager
+ , sizeof_value<T>::value
+ , NodesPerBlock
+ > type;
+
+ static type *get(void *p)
+ { return static_cast<type*>(p); }
+ };
+
+ private:
+ //!Not assignable from related private_node_allocator_base
+ template<unsigned int Version2, class T2, class MemoryAlgorithm2, std::size_t N2>
+ private_node_allocator_base& operator=
+ (const private_node_allocator_base<Version2, T2, MemoryAlgorithm2, N2>&);
+
+ //!Not assignable from other private_node_allocator_base
+ private_node_allocator_base& operator=(const private_node_allocator_base&);
+ /// @endcond
+
+ public:
+ //!Constructor from a segment manager
+ private_node_allocator_base(segment_manager *segment_mngr)
+ : m_node_pool(segment_mngr)
+ {}
+
+ //!Copy constructor from other private_node_allocator_base. Never throws
+ private_node_allocator_base(const private_node_allocator_base &other)
+ : m_node_pool(other.get_segment_manager())
+ {}
+
+ //!Copy constructor from related private_node_allocator_base. Never throws.
+ template<class T2>
+ private_node_allocator_base
+ (const private_node_allocator_base
+ <Version, T2, SegmentManager, NodesPerBlock> &other)
+ : m_node_pool(other.get_segment_manager())
+ {}
+
+ //!Destructor, frees all used memory. Never throws
+ ~private_node_allocator_base()
+ {}
+
+ //!Returns the segment manager. Never throws
+ segment_manager* get_segment_manager()const
+ { return m_node_pool.get_segment_manager(); }
+
+ //!Returns the internal node pool. Never throws
+ node_pool_t* get_node_pool() const
+ { return const_cast<node_pool_t*>(&m_node_pool); }
+
+ //!Swaps allocators. Does not throw. If each allocator is placed in a
+ //!different shared memory segments, the result is undefined.
+ friend void swap(self_t &alloc1,self_t &alloc2)
+ { alloc1.m_node_pool.swap(alloc2.m_node_pool); }
+
+ /// @cond
+ private:
+ node_pool_t m_node_pool;
+ /// @endcond
+};
+
+//!Equality test for same type of private_node_allocator_base
+template<unsigned int V, class T, class S, std::size_t NPC> inline
+bool operator==(const private_node_allocator_base<V, T, S, NPC> &alloc1,
+ const private_node_allocator_base<V, T, S, NPC> &alloc2)
+{ return &alloc1 == &alloc2; }
+
+//!Inequality test for same type of private_node_allocator_base
+template<unsigned int V, class T, class S, std::size_t NPC> inline
+bool operator!=(const private_node_allocator_base<V, T, S, NPC> &alloc1,
+ const private_node_allocator_base<V, T, S, NPC> &alloc2)
+{ return &alloc1 != &alloc2; }
+
+template < class T
+ , class SegmentManager
+ , std::size_t NodesPerBlock = 64
+ >
+class private_node_allocator_v1
+ : public private_node_allocator_base
+ < 1
+ , T
+ , SegmentManager
+ , NodesPerBlock
+ >
+{
+ public:
+ typedef detail::private_node_allocator_base
+ < 1, T, SegmentManager, NodesPerBlock> base_t;
+
+ template<class T2>
+ struct rebind
+ {
+ typedef private_node_allocator_v1<T2, SegmentManager, NodesPerBlock> other;
+ };
+
+ private_node_allocator_v1(SegmentManager *segment_mngr)
+ : base_t(segment_mngr)
+ {}
+
+ template<class T2>
+ private_node_allocator_v1
+ (const private_node_allocator_v1<T2, SegmentManager, NodesPerBlock> &other)
+ : base_t(other)
+ {}
+};
+
+} //namespace detail {
+
+/// @endcond
+
+//!An STL node allocator that uses a segment manager as memory
+//!source. The internal pointer type will of the same type (raw, smart) as
+//!"typename SegmentManager::void_pointer" type. This allows
+//!placing the allocator in shared memory, memory mapped-files, etc...
+//!This allocator has its own node pool. NodesPerBlock is the number of nodes allocated
+//!at once when the allocator needs runs out of nodes
+template < class T
+ , class SegmentManager
+ , std::size_t NodesPerBlock
+ >
+class private_node_allocator
+ /// @cond
+ : public detail::private_node_allocator_base
+ < 2
+ , T
+ , SegmentManager
+ , NodesPerBlock
+ >
+ /// @endcond
+{
+
+ #ifndef BOOST_INTERPROCESS_DOXYGEN_INVOKED
+ typedef detail::private_node_allocator_base
+ < 2, T, SegmentManager, NodesPerBlock> base_t;
+ public:
+ typedef detail::version_type<private_node_allocator, 2> version;
+
+ template<class T2>
+ struct rebind
+ {
+ typedef private_node_allocator
+ <T2, SegmentManager, NodesPerBlock> other;
+ };
+
+ private_node_allocator(SegmentManager *segment_mngr)
+ : base_t(segment_mngr)
+ {}
+
+ template<class T2>
+ private_node_allocator
+ (const private_node_allocator<T2, SegmentManager, NodesPerBlock> &other)
+ : base_t(other)
+ {}
+
+ #else
+ public:
+ typedef implementation_defined::segment_manager segment_manager;
+ typedef segment_manager::void_pointer void_pointer;
+ typedef implementation_defined::pointer pointer;
+ typedef implementation_defined::const_pointer const_pointer;
+ typedef T value_type;
+ typedef typename detail::add_reference
+ <value_type>::type reference;
+ typedef typename detail::add_reference
+ <const value_type>::type const_reference;
+ typedef std::size_t size_type;
+ typedef std::ptrdiff_t difference_type;
+
+ //!Obtains private_node_allocator from
+ //!private_node_allocator
+ template<class T2>
+ struct rebind
+ {
+ typedef private_node_allocator
+ <T2, SegmentManager, NodesPerBlock> other;
+ };
+
+ private:
+ //!Not assignable from
+ //!related private_node_allocator
+ template<class T2, class SegmentManager2, std::size_t N2>
+ private_node_allocator& operator=
+ (const private_node_allocator<T2, SegmentManager2, N2>&);
+
+ //!Not assignable from
+ //!other private_node_allocator
+ private_node_allocator& operator=(const private_node_allocator&);
+
+ public:
+ //!Constructor from a segment manager. If not present, constructs a node
+ //!pool. Increments the reference count of the associated node pool.
+ //!Can throw boost::interprocess::bad_alloc
+ private_node_allocator(segment_manager *segment_mngr);
+
+ //!Copy constructor from other private_node_allocator. Increments the reference
+ //!count of the associated node pool. Never throws
+ private_node_allocator(const private_node_allocator &other);
+
+ //!Copy constructor from related private_node_allocator. If not present, constructs
+ //!a node pool. Increments the reference count of the associated node pool.
+ //!Can throw boost::interprocess::bad_alloc
+ template<class T2>
+ private_node_allocator
+ (const private_node_allocator<T2, SegmentManager, NodesPerBlock> &other);
+
+ //!Destructor, removes node_pool_t from memory
+ //!if its reference count reaches to zero. Never throws
+ ~private_node_allocator();
+
+ //!Returns a pointer to the node pool.
+ //!Never throws
+ node_pool_t* get_node_pool() const;
+
+ //!Returns the segment manager.
+ //!Never throws
+ segment_manager* get_segment_manager()const;
+
+ //!Returns the number of elements that could be allocated.
+ //!Never throws
+ size_type max_size() const;
+
+ //!Allocate memory for an array of count elements.
+ //!Throws boost::interprocess::bad_alloc if there is no enough memory
+ pointer allocate(size_type count, cvoid_pointer hint = 0);
+
+ //!Deallocate allocated memory.
+ //!Never throws
+ void deallocate(const pointer &ptr, size_type count);
+
+ //!Deallocates all free blocks
+ //!of the pool
+ void deallocate_free_blocks();
+
+ //!Swaps allocators. Does not throw. If each allocator is placed in a
+ //!different memory segment, the result is undefined.
+ friend void swap(self_t &alloc1, self_t &alloc2);
+
+ //!Returns address of mutable object.
+ //!Never throws
+ pointer address(reference value) const;
+
+ //!Returns address of non mutable object.
+ //!Never throws
+ const_pointer address(const_reference value) const;
+
+ //!Copy construct an object.
+ //!Throws if T's copy constructor throws
+ void construct(const pointer &ptr, const_reference v);
+
+ //!Destroys object. Throws if object's
+ //!destructor throws
+ void destroy(const pointer &ptr);
+
+ //!Returns maximum the number of objects the previously allocated memory
+ //!pointed by p can hold. This size only works for memory allocated with
+ //!allocate, allocation_command and allocate_many.
+ size_type size(const pointer &p) const;
+
+ std::pair<pointer, bool>
+ allocation_command(allocation_type command,
+ size_type limit_size,
+ size_type preferred_size,
+ size_type &received_size, const pointer &reuse = 0);
+
+ //!Allocates many elements of size elem_size in a contiguous block
+ //!of memory. The minimum number to be allocated is min_elements,
+ //!the preferred and maximum number is
+ //!preferred_elements. The number of actually allocated elements is
+ //!will be assigned to received_size. The elements must be deallocated
+ //!with deallocate(...)
+ multiallocation_chain allocate_many(size_type elem_size, std::size_t num_elements);
+
+ //!Allocates n_elements elements, each one of size elem_sizes[i]in a
+ //!contiguous block
+ //!of memory. The elements must be deallocated
+ multiallocation_chain allocate_many(const size_type *elem_sizes, size_type n_elements);
+
+ //!Allocates many elements of size elem_size in a contiguous block
+ //!of memory. The minimum number to be allocated is min_elements,
+ //!the preferred and maximum number is
+ //!preferred_elements. The number of actually allocated elements is
+ //!will be assigned to received_size. The elements must be deallocated
+ //!with deallocate(...)
+ void deallocate_many(multiallocation_chain chain);
+
+ //!Allocates just one object. Memory allocated with this function
+ //!must be deallocated only with deallocate_one().
+ //!Throws boost::interprocess::bad_alloc if there is no enough memory
+ pointer allocate_one();
+
+ //!Allocates many elements of size == 1 in a contiguous block
+ //!of memory. The minimum number to be allocated is min_elements,
+ //!the preferred and maximum number is
+ //!preferred_elements. The number of actually allocated elements is
+ //!will be assigned to received_size. Memory allocated with this function
+ //!must be deallocated only with deallocate_one().
+ multiallocation_chain allocate_individual(std::size_t num_elements);
+
+ //!Deallocates memory previously allocated with allocate_one().
+ //!You should never use deallocate_one to deallocate memory allocated
+ //!with other functions different from allocate_one(). Never throws
+ void deallocate_one(const pointer &p);
+
+ //!Allocates many elements of size == 1 in a contiguous block
+ //!of memory. The minimum number to be allocated is min_elements,
+ //!the preferred and maximum number is
+ //!preferred_elements. The number of actually allocated elements is
+ //!will be assigned to received_size. Memory allocated with this function
+ //!must be deallocated only with deallocate_one().
+ void deallocate_individual(multiallocation_chain chain);
+ #endif
+};
+
+#ifdef BOOST_INTERPROCESS_DOXYGEN_INVOKED
+
+//!Equality test for same type
+//!of private_node_allocator
+template<class T, class S, std::size_t NodesPerBlock, std::size_t F, unsigned char OP> inline
+bool operator==(const private_node_allocator<T, S, NodesPerBlock, F, OP> &alloc1,
+ const private_node_allocator<T, S, NodesPerBlock, F, OP> &alloc2);
+
+//!Inequality test for same type
+//!of private_node_allocator
+template<class T, class S, std::size_t NodesPerBlock, std::size_t F, unsigned char OP> inline
+bool operator!=(const private_node_allocator<T, S, NodesPerBlock, F, OP> &alloc1,
+ const private_node_allocator<T, S, NodesPerBlock, F, OP> &alloc2);
+
+#endif
+
+} //namespace interprocess {
+} //namespace boost {
+
+#include <boost/interprocess/detail/config_end.hpp>
+
+#endif //#ifndef BOOST_INTERPROCESS_PRIVATE_NODE_ALLOCATOR_HPP
+

Added: sandbox/boost/interprocess/anonymous_shared_memory.hpp
==============================================================================
--- (empty file)
+++ sandbox/boost/interprocess/anonymous_shared_memory.hpp 2009-02-17 13:04:56 EST (Tue, 17 Feb 2009)
@@ -0,0 +1,119 @@
+//////////////////////////////////////////////////////////////////////////////
+//
+// (C) Copyright Ion Gaztanaga 2005-2008. Distributed under the Boost
+// Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+//
+// See http://www.boost.org/libs/interprocess for documentation.
+//
+//////////////////////////////////////////////////////////////////////////////
+
+#ifndef BOOST_INTERPROCESS_ANONYMOUS_SHARED_MEMORY_HPP
+#define BOOST_INTERPROCESS_ANONYMOUS_SHARED_MEMORY_HPP
+
+#include <boost/interprocess/detail/config_begin.hpp>
+#include <boost/interprocess/detail/workaround.hpp>
+#include <boost/interprocess/creation_tags.hpp>
+#include <boost/move_semantics/move.hpp>
+#include <boost/interprocess/interprocess_fwd.hpp>
+#include <boost/interprocess/mapped_region.hpp>
+#include <cstddef>
+
+#if (!defined(BOOST_INTERPROCESS_WINDOWS))
+# include <fcntl.h> //open, O_CREAT, O_*...
+# include <sys/mman.h> //mmap
+# include <sys/stat.h> //mode_t, S_IRWXG, S_IRWXO, S_IRWXU,
+#else
+#include <boost/interprocess/windows_shared_memory.hpp>
+#endif
+
+
+//!\file
+//!Describes a function that creates anonymous shared memory that can be
+//!shared between forked processes
+
+namespace boost {
+namespace interprocess {
+
+/// @cond
+
+namespace detail{
+
+ class raw_mapped_region_creator
+ {
+ public:
+ static mapped_region
+ create_posix_mapped_region(void *address, offset_t offset, std::size_t size)
+ {
+ mapped_region region;
+ region.m_base = address;
+ region.m_offset = offset;
+ region.m_extra_offset = 0;
+ region.m_size = size;
+ return region;
+ }
+ };
+}
+
+/// @endcond
+
+//!A function that creates an anonymous shared memory segment of size "size".
+//!If "address" is passed the function will try to map the segment in that address.
+//!Otherwise the operating system will choose the mapping address.
+//!The function returns a mapped_region holding that segment or throws
+//!interprocess_exception if the function fails.
+//static mapped_region
+static mapped_region
+anonymous_shared_memory(std::size_t size, void *address = 0)
+#if (!defined(BOOST_INTERPROCESS_WINDOWS))
+{
+ int flags;
+ int fd = -1;
+
+ #if defined(MAP_ANONYMOUS) //Use MAP_ANONYMOUS
+ flags = MAP_ANONYMOUS | MAP_SHARED;
+ #elif !defined(MAP_ANONYMOUS) && defined(MAP_ANON) //use MAP_ANON
+ flags = MAP_ANON | MAP_SHARED;
+ #else // Use "/dev/zero"
+ fd = open("/dev/zero", O_RDWR);
+ flags = MAP_SHARED;
+ if(fd == -1){
+ error_info err = system_error_code();
+ throw interprocess_exception(err);
+ }
+ #endif
+
+
+ address = mmap( address
+ , size
+ , PROT_READ|PROT_WRITE
+ , flags
+ , fd
+ , 0);
+
+ if(address == MAP_FAILED){
+ if(fd != -1)
+ close(fd);
+ error_info err = system_error_code();
+ throw interprocess_exception(err);
+ }
+
+ if(fd != -1)
+ close(fd);
+
+ return detail::raw_mapped_region_creator::create_posix_mapped_region(address, 0, size);
+}
+#else
+{
+ windows_shared_memory anonymous_mapping(create_only, 0, read_write, size);
+ return mapped_region(anonymous_mapping, read_write, 0, size, address);
+}
+
+#endif
+
+} //namespace interprocess {
+} //namespace boost {
+
+#include <boost/interprocess/detail/config_end.hpp>
+
+#endif //BOOST_INTERPROCESS_ANONYMOUS_SHARED_MEMORY_HPP

Added: sandbox/boost/interprocess/containers/deque.hpp
==============================================================================
--- (empty file)
+++ sandbox/boost/interprocess/containers/deque.hpp 2009-02-17 13:04:56 EST (Tue, 17 Feb 2009)
@@ -0,0 +1,1524 @@
+/*
+ *
+ * Copyright (c) 1994
+ * Hewlett-Packard Company
+ *
+ * Permission to use, copy, modify, distribute and sell this software
+ * and its documentation for any purpose is hereby granted without fee,
+ * provided that the above copyright notice appear in all copies and
+ * that both that copyright notice and this permission notice appear
+ * in supporting documentation. Hewlett-Packard Company makes no
+ * representations about the suitability of this software for any
+ * purpose. It is provided "as is" without express or implied warranty.
+ *
+ *
+ * Copyright (c) 1996
+ * Silicon Graphics Computer Systems, Inc.
+ *
+ * Permission to use, copy, modify, distribute and sell this software
+ * and its documentation for any purpose is hereby granted without fee,
+ * provided that the above copyright notice appear in all copies and
+ * that both that copyright notice and this permission notice appear
+ * in supporting documentation. Silicon Graphics makes no
+ * representations about the suitability of this software for any
+ * purpose. It is provided "as is" without express or implied warranty.
+ *
+ */
+//////////////////////////////////////////////////////////////////////////////
+//
+// (C) Copyright Ion Gaztanaga 2005-2006. Distributed under the Boost
+// Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+//
+// See http://www.boost.org/libs/interprocess for documentation.
+//
+//////////////////////////////////////////////////////////////////////////////
+//
+// This file comes from SGI's stl_deque.h and stl_uninitialized.h files.
+// Modified by Ion Gaztanaga 2005.
+// Renaming, isolating and porting to generic algorithms. Pointer typedef
+// set to allocator::pointer to allow placing it in shared memory.
+//
+///////////////////////////////////////////////////////////////////////////////
+
+#ifndef BOOST_INTERPROCESS_DEQUE_HPP
+#define BOOST_INTERPROCESS_DEQUE_HPP
+
+#if (defined _MSC_VER) && (_MSC_VER >= 1200)
+# pragma once
+#endif
+
+#include <boost/interprocess/detail/config_begin.hpp>
+#include <boost/interprocess/detail/workaround.hpp>
+
+#include <boost/interprocess/detail/utilities.hpp>
+#include <boost/interprocess/detail/iterators.hpp>
+#include <boost/interprocess/detail/algorithms.hpp>
+#include <boost/interprocess/detail/min_max.hpp>
+#include <boost/interprocess/detail/mpl.hpp>
+#include <boost/interprocess/interprocess_fwd.hpp>
+#include <cstddef>
+#include <iterator>
+#include <cassert>
+#include <memory>
+#include <algorithm>
+#include <stdexcept>
+#include <boost/detail/no_exceptions_support.hpp>
+#include <boost/type_traits/has_trivial_destructor.hpp>
+#include <boost/type_traits/has_trivial_copy.hpp>
+#include <boost/type_traits/has_trivial_assign.hpp>
+#include <boost/type_traits/has_nothrow_copy.hpp>
+#include <boost/type_traits/has_nothrow_assign.hpp>
+#include <boost/move_semantics/move.hpp>
+#include <boost/interprocess/detail/advanced_insert_int.hpp>
+
+namespace boost {
+namespace interprocess {
+
+/// @cond
+template <class T, class Alloc>
+class deque;
+
+template <class T, class A>
+struct deque_value_traits
+{
+ typedef T value_type;
+ typedef A allocator_type;
+ static const bool trivial_dctr = boost::has_trivial_destructor<value_type>::value;
+ static const bool trivial_dctr_after_move =
+ has_trivial_destructor_after_move<value_type>::value || trivial_dctr;
+ static const bool trivial_copy = has_trivial_copy<value_type>::value;
+ static const bool nothrow_copy = has_nothrow_copy<value_type>::value;
+ static const bool trivial_assign = has_trivial_assign<value_type>::value;
+ static const bool nothrow_assign = has_nothrow_assign<value_type>::value;
+
+};
+
+// Note: this function is simply a kludge to work around several compilers'
+// bugs in handling constant expressions.
+inline std::size_t deque_buf_size(std::size_t size)
+ { return size < 512 ? std::size_t(512 / size) : std::size_t(1); }
+
+// Deque base class. It has two purposes. First, its constructor
+// and destructor allocate (but don't initialize) storage. This makes
+// exception safety easier.
+template <class T, class Alloc>
+class deque_base
+{
+ public:
+ typedef typename Alloc::value_type val_alloc_val;
+ typedef typename Alloc::pointer val_alloc_ptr;
+ typedef typename Alloc::const_pointer val_alloc_cptr;
+ typedef typename Alloc::reference val_alloc_ref;
+ typedef typename Alloc::const_reference val_alloc_cref;
+ typedef typename Alloc::value_type val_alloc_diff;
+ typedef typename Alloc::template rebind
+ <typename Alloc::pointer>::other ptr_alloc_t;
+ typedef typename ptr_alloc_t::value_type ptr_alloc_val;
+ typedef typename ptr_alloc_t::pointer ptr_alloc_ptr;
+ typedef typename ptr_alloc_t::const_pointer ptr_alloc_cptr;
+ typedef typename ptr_alloc_t::reference ptr_alloc_ref;
+ typedef typename ptr_alloc_t::const_reference ptr_alloc_cref;
+ typedef typename Alloc::template
+ rebind<T>::other allocator_type;
+ typedef allocator_type stored_allocator_type;
+
+ protected:
+
+ typedef deque_value_traits<T, Alloc> traits_t;
+ typedef typename Alloc::template
+ rebind<typename Alloc::pointer>::other map_allocator_type;
+
+ static std::size_t s_buffer_size() { return deque_buf_size(sizeof(T)); }
+
+ val_alloc_ptr priv_allocate_node()
+ { return this->alloc().allocate(s_buffer_size()); }
+
+ void priv_deallocate_node(val_alloc_ptr p)
+ { this->alloc().deallocate(p, s_buffer_size()); }
+
+ ptr_alloc_ptr priv_allocate_map(std::size_t n)
+ { return this->ptr_alloc().allocate(n); }
+
+ void priv_deallocate_map(ptr_alloc_ptr p, std::size_t n)
+ { this->ptr_alloc().deallocate(p, n); }
+
+ public:
+ // Class invariants:
+ // For any nonsingular iterator i:
+ // i.node is the address of an element in the map array. The
+ // contents of i.node is a pointer to the beginning of a node.
+ // i.first == //(i.node)
+ // i.last == i.first + node_size
+ // i.cur is a pointer in the range [i.first, i.last). NOTE:
+ // the implication of this is that i.cur is always a dereferenceable
+ // pointer, even if i is a past-the-end iterator.
+ // Start and Finish are always nonsingular iterators. NOTE: this means
+ // that an empty deque must have one node, and that a deque
+ // with N elements, where N is the buffer size, must have two nodes.
+ // For every node other than start.node and finish.node, every element
+ // in the node is an initialized object. If start.node == finish.node,
+ // then [start.cur, finish.cur) are initialized objects, and
+ // the elements outside that range are uninitialized storage. Otherwise,
+ // [start.cur, start.last) and [finish.first, finish.cur) are initialized
+ // objects, and [start.first, start.cur) and [finish.cur, finish.last)
+ // are uninitialized storage.
+ // [map, map + map_size) is a valid, non-empty range.
+ // [start.node, finish.node] is a valid range contained within
+ // [map, map + map_size).
+ // A pointer in the range [map, map + map_size) points to an allocated node
+ // if and only if the pointer is in the range [start.node, finish.node].
+ class const_iterator
+ : public std::iterator<std::random_access_iterator_tag,
+ val_alloc_val, val_alloc_diff,
+ val_alloc_cptr, val_alloc_cref>
+ {
+ public:
+ static std::size_t s_buffer_size() { return deque_base<T, Alloc>::s_buffer_size(); }
+
+ typedef std::random_access_iterator_tag iterator_category;
+ typedef val_alloc_val value_type;
+ typedef val_alloc_cptr pointer;
+ typedef val_alloc_cref reference;
+ typedef std::size_t size_type;
+ typedef std::ptrdiff_t difference_type;
+
+ typedef ptr_alloc_ptr index_pointer;
+ typedef const_iterator self_t;
+
+ friend class deque<T, Alloc>;
+ friend class deque_base<T, Alloc>;
+
+ protected:
+ val_alloc_ptr m_cur;
+ val_alloc_ptr m_first;
+ val_alloc_ptr m_last;
+ index_pointer m_node;
+
+ public:
+ const_iterator(val_alloc_ptr x, index_pointer y)
+ : m_cur(x), m_first(*y),
+ m_last(*y + s_buffer_size()), m_node(y) {}
+
+ const_iterator() : m_cur(0), m_first(0), m_last(0), m_node(0) {}
+
+ const_iterator(const const_iterator& x)
+ : m_cur(x.m_cur), m_first(x.m_first),
+ m_last(x.m_last), m_node(x.m_node) {}
+
+ reference operator*() const
+ { return *this->m_cur; }
+
+ pointer operator->() const
+ { return this->m_cur; }
+
+ difference_type operator-(const self_t& x) const
+ {
+ if(!this->m_cur && !x.m_cur){
+ return 0;
+ }
+ return difference_type(this->s_buffer_size()) * (this->m_node - x.m_node - 1) +
+ (this->m_cur - this->m_first) + (x.m_last - x.m_cur);
+ }
+
+ self_t& operator++()
+ {
+ ++this->m_cur;
+ if (this->m_cur == this->m_last) {
+ this->priv_set_node(this->m_node + 1);
+ this->m_cur = this->m_first;
+ }
+ return *this;
+ }
+
+ self_t operator++(int)
+ {
+ self_t tmp = *this;
+ ++*this;
+ return tmp;
+ }
+
+ self_t& operator--()
+ {
+ if (this->m_cur == this->m_first) {
+ this->priv_set_node(this->m_node - 1);
+ this->m_cur = this->m_last;
+ }
+ --this->m_cur;
+ return *this;
+ }
+
+ self_t operator--(int)
+ {
+ self_t tmp = *this;
+ --*this;
+ return tmp;
+ }
+
+ self_t& operator+=(difference_type n)
+ {
+ difference_type offset = n + (this->m_cur - this->m_first);
+ if (offset >= 0 && offset < difference_type(this->s_buffer_size()))
+ this->m_cur += n;
+ else {
+ difference_type node_offset =
+ offset > 0 ? offset / difference_type(this->s_buffer_size())
+ : -difference_type((-offset - 1) / this->s_buffer_size()) - 1;
+ this->priv_set_node(this->m_node + node_offset);
+ this->m_cur = this->m_first +
+ (offset - node_offset * difference_type(this->s_buffer_size()));
+ }
+ return *this;
+ }
+
+ self_t operator+(difference_type n) const
+ { self_t tmp = *this; return tmp += n; }
+
+ self_t& operator-=(difference_type n)
+ { return *this += -n; }
+
+ self_t operator-(difference_type n) const
+ { self_t tmp = *this; return tmp -= n; }
+
+ reference operator[](difference_type n) const
+ { return *(*this + n); }
+
+ bool operator==(const self_t& x) const
+ { return this->m_cur == x.m_cur; }
+
+ bool operator!=(const self_t& x) const
+ { return !(*this == x); }
+
+ bool operator<(const self_t& x) const
+ {
+ return (this->m_node == x.m_node) ?
+ (this->m_cur < x.m_cur) : (this->m_node < x.m_node);
+ }
+
+ bool operator>(const self_t& x) const
+ { return x < *this; }
+
+ bool operator<=(const self_t& x) const
+ { return !(x < *this); }
+
+ bool operator>=(const self_t& x) const
+ { return !(*this < x); }
+
+ void priv_set_node(index_pointer new_node)
+ {
+ this->m_node = new_node;
+ this->m_first = *new_node;
+ this->m_last = this->m_first + difference_type(this->s_buffer_size());
+ }
+
+ friend const_iterator operator+(std::ptrdiff_t n, const const_iterator& x)
+ { return x + n; }
+ };
+
+ //Deque iterator
+ class iterator : public const_iterator
+ {
+ public:
+ typedef std::random_access_iterator_tag iterator_category;
+ typedef val_alloc_val value_type;
+ typedef val_alloc_ptr pointer;
+ typedef val_alloc_ref reference;
+ typedef std::size_t size_type;
+ typedef std::ptrdiff_t difference_type;
+ typedef ptr_alloc_ptr index_pointer;
+ typedef const_iterator self_t;
+
+ friend class deque<T, Alloc>;
+ friend class deque_base<T, Alloc>;
+
+ private:
+ explicit iterator(const const_iterator& x) : const_iterator(x){}
+
+ public:
+ //Constructors
+ iterator(val_alloc_ptr x, index_pointer y) : const_iterator(x, y){}
+ iterator() : const_iterator(){}
+ //iterator(const const_iterator &cit) : const_iterator(cit){}
+ iterator(const iterator& x) : const_iterator(x){}
+
+ //Pointer like operators
+ reference operator*() const { return *this->m_cur; }
+ pointer operator->() const { return this->m_cur; }
+
+ reference operator[](difference_type n) const { return *(*this + n); }
+
+ //Increment / Decrement
+ iterator& operator++()
+ { this->const_iterator::operator++(); return *this; }
+
+ iterator operator++(int)
+ { iterator tmp = *this; ++*this; return tmp; }
+
+ iterator& operator--()
+ { this->const_iterator::operator--(); return *this; }
+
+ iterator operator--(int)
+ { iterator tmp = *this; --*this; return tmp; }
+
+ // Arithmetic
+ iterator& operator+=(difference_type off)
+ { this->const_iterator::operator+=(off); return *this; }
+
+ iterator operator+(difference_type off) const
+ { return iterator(this->const_iterator::operator+(off)); }
+
+ friend iterator operator+(difference_type off, const iterator& right)
+ { return iterator(off+static_cast<const const_iterator &>(right)); }
+
+ iterator& operator-=(difference_type off)
+ { this->const_iterator::operator-=(off); return *this; }
+
+ iterator operator-(difference_type off) const
+ { return iterator(this->const_iterator::operator-(off)); }
+
+ difference_type operator-(const const_iterator& right) const
+ { return static_cast<const const_iterator&>(*this) - right; }
+ };
+
+ deque_base(const allocator_type& a, std::size_t num_elements)
+ : members_(a)
+ { this->priv_initialize_map(num_elements); }
+
+ deque_base(const allocator_type& a)
+ : members_(a)
+ {}
+
+ ~deque_base()
+ {
+ if (this->members_.m_map) {
+ this->priv_destroy_nodes(this->members_.m_start.m_node, this->members_.m_finish.m_node + 1);
+ this->priv_deallocate_map(this->members_.m_map, this->members_.m_map_size);
+ }
+ }
+
+ private:
+ deque_base(const deque_base&);
+
+ protected:
+
+ void priv_initialize_map(std::size_t num_elements)
+ {
+// if(num_elements){
+ std::size_t num_nodes = num_elements / s_buffer_size() + 1;
+
+ this->members_.m_map_size = max_value((std::size_t) InitialMapSize, num_nodes + 2);
+ this->members_.m_map = this->priv_allocate_map(this->members_.m_map_size);
+
+ ptr_alloc_ptr nstart = this->members_.m_map + (this->members_.m_map_size - num_nodes) / 2;
+ ptr_alloc_ptr nfinish = nstart + num_nodes;
+
+ BOOST_TRY {
+ this->priv_create_nodes(nstart, nfinish);
+ }
+ BOOST_CATCH(...){
+ this->priv_deallocate_map(this->members_.m_map, this->members_.m_map_size);
+ this->members_.m_map = 0;
+ this->members_.m_map_size = 0;
+ BOOST_RETHROW
+ }
+ BOOST_CATCH_END
+
+ this->members_.m_start.priv_set_node(nstart);
+ this->members_.m_finish.priv_set_node(nfinish - 1);
+ this->members_.m_start.m_cur = this->members_.m_start.m_first;
+ this->members_.m_finish.m_cur = this->members_.m_finish.m_first +
+ num_elements % s_buffer_size();
+// }
+ }
+
+ void priv_create_nodes(ptr_alloc_ptr nstart, ptr_alloc_ptr nfinish)
+ {
+ ptr_alloc_ptr cur;
+ BOOST_TRY {
+ for (cur = nstart; cur < nfinish; ++cur)
+ *cur = this->priv_allocate_node();
+ }
+ BOOST_CATCH(...){
+ this->priv_destroy_nodes(nstart, cur);
+ BOOST_RETHROW
+ }
+ BOOST_CATCH_END
+ }
+
+ void priv_destroy_nodes(ptr_alloc_ptr nstart, ptr_alloc_ptr nfinish)
+ {
+ for (ptr_alloc_ptr n = nstart; n < nfinish; ++n)
+ this->priv_deallocate_node(*n);
+ }
+
+ enum { InitialMapSize = 8 };
+
+ protected:
+ struct members_holder
+ : public ptr_alloc_t
+ , public allocator_type
+ {
+ members_holder(const allocator_type &a)
+ : map_allocator_type(a), allocator_type(a)
+ , m_map(0), m_map_size(0)
+ , m_start(), m_finish(m_start)
+ {}
+
+ ptr_alloc_ptr m_map;
+ std::size_t m_map_size;
+ iterator m_start;
+ iterator m_finish;
+ } members_;
+
+ ptr_alloc_t &ptr_alloc()
+ { return members_; }
+
+ const ptr_alloc_t &ptr_alloc() const
+ { return members_; }
+
+ allocator_type &alloc()
+ { return members_; }
+
+ const allocator_type &alloc() const
+ { return members_; }
+};
+/// @endcond
+
+//! Deque class
+//!
+template <class T, class Alloc>
+class deque : protected deque_base<T, Alloc>
+{
+ /// @cond
+ typedef deque_base<T, Alloc> Base;
+
+ public: // Basic types
+ typedef typename Alloc::value_type val_alloc_val;
+ typedef typename Alloc::pointer val_alloc_ptr;
+ typedef typename Alloc::const_pointer val_alloc_cptr;
+ typedef typename Alloc::reference val_alloc_ref;
+ typedef typename Alloc::const_reference val_alloc_cref;
+ typedef typename Alloc::template
+ rebind<val_alloc_ptr>::other ptr_alloc_t;
+ typedef typename ptr_alloc_t::value_type ptr_alloc_val;
+ typedef typename ptr_alloc_t::pointer ptr_alloc_ptr;
+ typedef typename ptr_alloc_t::const_pointer ptr_alloc_cptr;
+ typedef typename ptr_alloc_t::reference ptr_alloc_ref;
+ typedef typename ptr_alloc_t::const_reference ptr_alloc_cref;
+ /// @endcond
+
+ typedef T value_type;
+ typedef val_alloc_ptr pointer;
+ typedef val_alloc_cptr const_pointer;
+ typedef val_alloc_ref reference;
+ typedef val_alloc_cref const_reference;
+ typedef std::size_t size_type;
+ typedef std::ptrdiff_t difference_type;
+
+ typedef typename Base::allocator_type allocator_type;
+
+ public: // Iterators
+ typedef typename Base::iterator iterator;
+ typedef typename Base::const_iterator const_iterator;
+
+ typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
+ typedef std::reverse_iterator<iterator> reverse_iterator;
+
+ /// @cond
+ private: // Internal typedefs
+ typedef ptr_alloc_ptr index_pointer;
+ static std::size_t s_buffer_size()
+ { return Base::s_buffer_size(); }
+ typedef detail::advanced_insert_aux_int<value_type, iterator> advanced_insert_aux_int_t;
+ typedef repeat_iterator<T, difference_type> r_iterator;
+ typedef boost::move_iterator<r_iterator> move_it;
+
+ /// @endcond
+
+ allocator_type get_allocator() const { return Base::alloc(); }
+
+ public: // Basic accessors
+ BOOST_ENABLE_MOVE_EMULATION(deque)
+
+ iterator begin()
+ { return this->members_.m_start; }
+
+ iterator end()
+ { return this->members_.m_finish; }
+
+ const_iterator begin() const
+ { return this->members_.m_start; }
+
+ const_iterator end() const
+ { return this->members_.m_finish; }
+
+ reverse_iterator rbegin()
+ { return reverse_iterator(this->members_.m_finish); }
+
+ reverse_iterator rend()
+ { return reverse_iterator(this->members_.m_start); }
+
+ const_reverse_iterator rbegin() const
+ { return const_reverse_iterator(this->members_.m_finish); }
+
+ const_reverse_iterator rend() const
+ { return const_reverse_iterator(this->members_.m_start); }
+
+ const_iterator cbegin() const
+ { return this->members_.m_start; }
+
+ const_iterator cend() const
+ { return this->members_.m_finish; }
+
+ const_reverse_iterator crbegin() const
+ { return const_reverse_iterator(this->members_.m_finish); }
+
+ const_reverse_iterator crend() const
+ { return const_reverse_iterator(this->members_.m_start); }
+
+ reference operator[](size_type n)
+ { return this->members_.m_start[difference_type(n)]; }
+
+ const_reference operator[](size_type n) const
+ { return this->members_.m_start[difference_type(n)]; }
+
+ void priv_range_check(size_type n) const
+ { if (n >= this->size()) BOOST_RETHROW std::out_of_range("deque"); }
+
+ reference at(size_type n)
+ { this->priv_range_check(n); return (*this)[n]; }
+
+ const_reference at(size_type n) const
+ { this->priv_range_check(n); return (*this)[n]; }
+
+ reference front() { return *this->members_.m_start; }
+
+ reference back() { return *(end()-1); }
+
+ const_reference front() const
+ { return *this->members_.m_start; }
+
+ const_reference back() const { return *(cend()-1); }
+
+ size_type size() const
+ { return this->members_.m_finish - this->members_.m_start; }
+
+ size_type max_size() const
+ { return this->alloc().max_size(); }
+
+ bool empty() const
+ { return this->members_.m_finish == this->members_.m_start; }
+
+ explicit deque(const allocator_type& a = allocator_type())
+ : Base(a)
+ {}
+
+ deque(const deque& x)
+ : Base(x.alloc())
+ {
+ if(x.size()){
+ this->priv_initialize_map(x.size());
+ std::uninitialized_copy(x.begin(), x.end(), this->members_.m_start);
+ }
+ }
+
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ deque(boost::rv<deque> &mx)
+ : Base(mx.get().alloc())
+ { this->swap(mx.get()); }
+ #else
+ deque(deque &&x)
+ : Base(x.alloc())
+ { this->swap(x); }
+ #endif
+
+ deque(size_type n, const value_type& value,
+ const allocator_type& a = allocator_type()) : Base(a, n)
+ { this->priv_fill_initialize(value); }
+
+ explicit deque(size_type n) : Base(allocator_type(), n)
+ { this->resize(n); }
+
+ // Check whether it's an integral type. If so, it's not an iterator.
+ template <class InpIt>
+ deque(InpIt first, InpIt last, const allocator_type& a = allocator_type())
+ : Base(a)
+ {
+ //Dispatch depending on integer/iterator
+ const bool aux_boolean = detail::is_convertible<InpIt, std::size_t>::value;
+ typedef detail::bool_<aux_boolean> Result;
+ this->priv_initialize_dispatch(first, last, Result());
+ }
+
+ ~deque()
+ {
+ priv_destroy_range(this->members_.m_start, this->members_.m_finish);
+ }
+
+ deque& operator= (const deque& x)
+ {
+ const size_type len = size();
+ if (&x != this) {
+ if (len >= x.size())
+ this->erase(std::copy(x.begin(), x.end(), this->members_.m_start), this->members_.m_finish);
+ else {
+ const_iterator mid = x.begin() + difference_type(len);
+ std::copy(x.begin(), mid, this->members_.m_start);
+ this->insert(this->members_.m_finish, mid, x.end());
+ }
+ }
+ return *this;
+ }
+
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ deque& operator= (boost::rv<deque> &mx)
+ {
+ deque &x = mx.get();
+ #else
+ deque& operator= (deque &&x)
+ {
+ #endif
+ this->clear();
+ this->swap(x);
+ return *this;
+ }
+
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ void swap(boost::rv<deque> &x)
+ { this->swap(x.get()); }
+ void swap(deque& x)
+ #else
+ void swap(deque &&x)
+ #endif
+ {
+ std::swap(this->members_.m_start, x.members_.m_start);
+ std::swap(this->members_.m_finish, x.members_.m_finish);
+ std::swap(this->members_.m_map, x.members_.m_map);
+ std::swap(this->members_.m_map_size, x.members_.m_map_size);
+ }
+
+ void assign(size_type n, const T& val)
+ { this->priv_fill_assign(n, val); }
+
+ template <class InpIt>
+ void assign(InpIt first, InpIt last)
+ {
+ //Dispatch depending on integer/iterator
+ const bool aux_boolean = detail::is_convertible<InpIt, std::size_t>::value;
+ typedef detail::bool_<aux_boolean> Result;
+ this->priv_assign_dispatch(first, last, Result());
+ }
+
+ void push_back(const value_type& t)
+ {
+ if(this->priv_push_back_simple_available()){
+ new(this->priv_push_back_simple_pos())value_type(t);
+ this->priv_push_back_simple_commit();
+ }
+ else{
+ this->priv_insert_aux(cend(), size_type(1), t);
+ }
+ }
+
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ void push_back(boost::rv<value_type> &mt)
+ {
+ value_type &t = mt.get();
+ #else
+ void push_back(value_type &&t)
+ {
+ #endif
+ if(this->priv_push_back_simple_available()){
+ new(this->priv_push_back_simple_pos())value_type(boost::move(t));
+ this->priv_push_back_simple_commit();
+ }
+ else{
+ this->priv_insert_aux(cend(), move_it(r_iterator(t, 1)), move_it(r_iterator()));
+ }
+ }
+
+ void push_front(const value_type& t)
+ {
+ if(this->priv_push_front_simple_available()){
+ new(this->priv_push_front_simple_pos())value_type(t);
+ this->priv_push_front_simple_commit();
+ }
+ else{
+ this->priv_insert_aux(cbegin(), size_type(1), t);
+ }
+ }
+
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ void push_front(boost::rv<value_type> &mt)
+ {
+ value_type &t = mt.get();
+ #else
+ void push_front(value_type &&t)
+ {
+ #endif
+ if(this->priv_push_front_simple_available()){
+ new(this->priv_push_front_simple_pos())value_type(boost::move(t));
+ this->priv_push_front_simple_commit();
+ }
+ else{
+ this->priv_insert_aux(cbegin(), move_it(r_iterator(t, 1)), move_it(r_iterator()));
+ }
+ }
+
+ void pop_back()
+ {
+ if (this->members_.m_finish.m_cur != this->members_.m_finish.m_first) {
+ --this->members_.m_finish.m_cur;
+ detail::get_pointer(this->members_.m_finish.m_cur)->~value_type();
+ }
+ else
+ this->priv_pop_back_aux();
+ }
+
+ void pop_front()
+ {
+ if (this->members_.m_start.m_cur != this->members_.m_start.m_last - 1) {
+ detail::get_pointer(this->members_.m_start.m_cur)->~value_type();
+ ++this->members_.m_start.m_cur;
+ }
+ else
+ this->priv_pop_front_aux();
+ }
+
+ iterator insert(const_iterator position, const value_type& x)
+ {
+ if (position == cbegin()){
+ this->push_front(x);
+ return begin();
+ }
+ else if (position == cend()){
+ this->push_back(x);
+ return (end()-1);
+ }
+ else {
+ size_type n = position - cbegin();
+ this->priv_insert_aux(position, size_type(1), x);
+ return iterator(this->begin() + n);
+ }
+ }
+
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ iterator insert(const_iterator position, boost::rv<value_type> &m)
+ {
+ value_type &mx = m.get();
+ #else
+ iterator insert(const_iterator position, value_type &&mx)
+ {
+ #endif
+ if (position == cbegin()) {
+ this->push_front(boost::move(mx));
+ return begin();
+ }
+ else if (position == cend()) {
+ this->push_back(boost::move(mx));
+ return(end()-1);
+ }
+ else {
+ //Just call more general insert(pos, size, value) and return iterator
+ size_type n = position - begin();
+ this->priv_insert_aux(position, move_it(r_iterator(mx, 1)), move_it(r_iterator()));
+ return iterator(this->begin() + n);
+ }
+ }
+
+ void insert(const_iterator pos, size_type n, const value_type& x)
+ { this->priv_fill_insert(pos, n, x); }
+
+ // Check whether it's an integral type. If so, it's not an iterator.
+ template <class InpIt>
+ void insert(const_iterator pos, InpIt first, InpIt last)
+ {
+ //Dispatch depending on integer/iterator
+ const bool aux_boolean = detail::is_convertible<InpIt, std::size_t>::value;
+ typedef detail::bool_<aux_boolean> Result;
+ this->priv_insert_dispatch(pos, first, last, Result());
+ }
+
+ #ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING
+
+ template <class... Args>
+ void emplace_back(Args&&... args)
+ {
+ if(this->priv_push_back_simple_available()){
+ new(this->priv_push_back_simple_pos())value_type(boost::forward_constructor<Args>(args)...);
+ this->priv_push_back_simple_commit();
+ }
+ else{
+ detail::advanced_insert_aux_emplace<T, iterator, Args...> proxy(boost::forward_constructor<Args>(args)...);
+ this->priv_insert_aux_impl(this->cend(), 1, proxy);
+ }
+ }
+
+ template <class... Args>
+ void emplace_front(Args&&... args)
+ {
+ if(this->priv_push_front_simple_available()){
+ new(this->priv_push_front_simple_pos())value_type(boost::forward_constructor<Args>(args)...);
+ this->priv_push_front_simple_commit();
+ }
+ else{
+ detail::advanced_insert_aux_emplace<T, iterator, Args...> proxy(boost::forward_constructor<Args>(args)...);
+ this->priv_insert_aux_impl(this->cbegin(), 1, proxy);
+ }
+ }
+
+ template <class... Args>
+ iterator emplace(const_iterator p, Args&&... args)
+ {
+ if(p == this->cbegin()){
+ this->emplace_front(boost::forward_constructor<Args>(args)...);
+ return this->begin();
+ }
+ else if(p == this->cend()){
+ this->emplace_back(boost::forward_constructor<Args>(args)...);
+ return (this->end()-1);
+ }
+ else{
+ size_type n = p - this->cbegin();
+ detail::advanced_insert_aux_emplace<T, iterator, Args...> proxy(boost::forward_constructor<Args>(args)...);
+ this->priv_insert_aux_impl(p, 1, proxy);
+ return iterator(this->begin() + n);
+ }
+ }
+
+ #else //#ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING
+
+ //0 args
+ void emplace_back()
+ {
+ if(priv_push_front_simple_available()){
+ new(priv_push_front_simple_pos())value_type();
+ priv_push_front_simple_commit();
+ }
+ else{
+ detail::advanced_insert_aux_emplace<T, iterator> proxy;
+ priv_insert_aux_impl(cend(), 1, proxy);
+ }
+ }
+
+ void emplace_front()
+ {
+ if(priv_push_front_simple_available()){
+ new(priv_push_front_simple_pos())value_type();
+ priv_push_front_simple_commit();
+ }
+ else{
+ detail::advanced_insert_aux_emplace<T, iterator> proxy;
+ priv_insert_aux_impl(cbegin(), 1, proxy);
+ }
+ }
+
+ iterator emplace(const_iterator p)
+ {
+ if(p == cbegin()){
+ emplace_front();
+ return begin();
+ }
+ else if(p == cend()){
+ emplace_back();
+ return (end()-1);
+ }
+ else{
+ size_type n = p - cbegin();
+ detail::advanced_insert_aux_emplace<T, iterator> proxy;
+ priv_insert_aux_impl(p, 1, proxy);
+ return iterator(this->begin() + n);
+ }
+ }
+
+ //advanced_insert_int.hpp includes all necessary preprocessor machinery...
+ #define BOOST_PP_LOCAL_MACRO(n) \
+ template<BOOST_PP_ENUM_PARAMS(n, class P)> \
+ void emplace_back(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_LIST, _)) \
+ { \
+ if(priv_push_back_simple_available()){ \
+ new(priv_push_back_simple_pos())value_type \
+ (BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _)); \
+ priv_push_back_simple_commit(); \
+ } \
+ else{ \
+ detail::BOOST_PP_CAT(BOOST_PP_CAT(advanced_insert_aux_emplace, n), arg) \
+ <value_type, iterator, BOOST_PP_ENUM_PARAMS(n, P)> \
+ proxy(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _)); \
+ priv_insert_aux_impl(cend(), 1, proxy); \
+ } \
+ } \
+ \
+ template<BOOST_PP_ENUM_PARAMS(n, class P)> \
+ void emplace_front(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_LIST, _)) \
+ { \
+ if(priv_push_front_simple_available()){ \
+ new(priv_push_front_simple_pos())value_type \
+ (BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _)); \
+ priv_push_front_simple_commit(); \
+ } \
+ else{ \
+ detail::BOOST_PP_CAT(BOOST_PP_CAT(advanced_insert_aux_emplace, n), arg) \
+ <value_type, iterator, BOOST_PP_ENUM_PARAMS(n, P)> \
+ proxy(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _)); \
+ priv_insert_aux_impl(cbegin(), 1, proxy); \
+ } \
+ } \
+ \
+ template<BOOST_PP_ENUM_PARAMS(n, class P)> \
+ iterator emplace(const_iterator p, BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_LIST, _)) \
+ { \
+ if(p == this->cbegin()){ \
+ this->emplace_front(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _)); \
+ return this->begin(); \
+ } \
+ else if(p == cend()){ \
+ this->emplace_back(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _)); \
+ return (this->end()-1); \
+ } \
+ else{ \
+ size_type pos_num = p - this->cbegin(); \
+ detail::BOOST_PP_CAT(BOOST_PP_CAT(advanced_insert_aux_emplace, n), arg) \
+ <value_type, iterator, BOOST_PP_ENUM_PARAMS(n, P)> \
+ proxy(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _)); \
+ this->priv_insert_aux_impl(p, 1, proxy); \
+ return iterator(this->begin() + pos_num); \
+ } \
+ } \
+ //!
+ #define BOOST_PP_LOCAL_LIMITS (1, BOOST_INTERPROCESS_MAX_CONSTRUCTOR_PARAMETERS)
+ #include BOOST_PP_LOCAL_ITERATE()
+
+ #endif //#ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING
+
+ void resize(size_type new_size, const value_type& x)
+ {
+ const size_type len = size();
+ if (new_size < len)
+ this->erase(this->members_.m_start + new_size, this->members_.m_finish);
+ else
+ this->insert(this->members_.m_finish, new_size - len, x);
+ }
+
+ void resize(size_type new_size)
+ {
+ const size_type len = size();
+ if (new_size < len)
+ this->erase(this->members_.m_start + new_size, this->members_.m_finish);
+ else{
+ size_type n = new_size - this->size();
+ detail::default_construct_aux_proxy<T, iterator, size_type> proxy(n);
+ priv_insert_aux_impl(this->cend(), n, proxy);
+ }
+ }
+
+ iterator erase(const_iterator pos)
+ {
+ const_iterator next = pos;
+ ++next;
+ difference_type index = pos - this->members_.m_start;
+ if (size_type(index) < (this->size() >> 1)) {
+ boost::move_backward(begin(), iterator(pos), iterator(next));
+ pop_front();
+ }
+ else {
+ boost::move(iterator(next), end(), iterator(pos));
+ pop_back();
+ }
+ return this->members_.m_start + index;
+ }
+
+ iterator erase(const_iterator first, const_iterator last)
+ {
+ if (first == this->members_.m_start && last == this->members_.m_finish) {
+ this->clear();
+ return this->members_.m_finish;
+ }
+ else {
+ difference_type n = last - first;
+ difference_type elems_before = first - this->members_.m_start;
+ if (elems_before < static_cast<difference_type>(this->size() - n) - elems_before) {
+ boost::move_backward(begin(), iterator(first), iterator(last));
+ iterator new_start = this->members_.m_start + n;
+ if(!Base::traits_t::trivial_dctr_after_move)
+ this->priv_destroy_range(this->members_.m_start, new_start);
+ this->priv_destroy_nodes(new_start.m_node, this->members_.m_start.m_node);
+ this->members_.m_start = new_start;
+ }
+ else {
+ boost::move(iterator(last), end(), iterator(first));
+ iterator new_finish = this->members_.m_finish - n;
+ if(!Base::traits_t::trivial_dctr_after_move)
+ this->priv_destroy_range(new_finish, this->members_.m_finish);
+ this->priv_destroy_nodes(new_finish.m_node + 1, this->members_.m_finish.m_node + 1);
+ this->members_.m_finish = new_finish;
+ }
+ return this->members_.m_start + elems_before;
+ }
+ }
+
+ void clear()
+ {
+ for (index_pointer node = this->members_.m_start.m_node + 1;
+ node < this->members_.m_finish.m_node;
+ ++node) {
+ this->priv_destroy_range(*node, *node + this->s_buffer_size());
+ this->priv_deallocate_node(*node);
+ }
+
+ if (this->members_.m_start.m_node != this->members_.m_finish.m_node) {
+ this->priv_destroy_range(this->members_.m_start.m_cur, this->members_.m_start.m_last);
+ this->priv_destroy_range(this->members_.m_finish.m_first, this->members_.m_finish.m_cur);
+ this->priv_deallocate_node(this->members_.m_finish.m_first);
+ }
+ else
+ this->priv_destroy_range(this->members_.m_start.m_cur, this->members_.m_finish.m_cur);
+
+ this->members_.m_finish = this->members_.m_start;
+ }
+
+ /// @cond
+ private:
+
+ bool priv_push_back_simple_available() const
+ {
+ return this->members_.m_map &&
+ (this->members_.m_finish.m_cur != (this->members_.m_finish.m_last - 1));
+ }
+
+ void *priv_push_back_simple_pos() const
+ {
+ return static_cast<void*>(detail::get_pointer(this->members_.m_finish.m_cur));
+ }
+
+ void priv_push_back_simple_commit()
+ {
+ ++this->members_.m_finish.m_cur;
+ }
+
+ bool priv_push_front_simple_available() const
+ {
+ return this->members_.m_map &&
+ (this->members_.m_start.m_cur != this->members_.m_start.m_first);
+ }
+
+ void *priv_push_front_simple_pos() const
+ { return static_cast<void*>(detail::get_pointer(this->members_.m_start.m_cur) - 1); }
+
+ void priv_push_front_simple_commit()
+ { --this->members_.m_start.m_cur; }
+
+ template <class InpIt>
+ void priv_insert_aux(const_iterator pos, InpIt first, InpIt last, std::input_iterator_tag)
+ {
+ for(;first != last; ++first){
+ this->insert(pos, boost::move(value_type(*first)));
+ }
+ }
+
+ template <class FwdIt>
+ void priv_insert_aux(const_iterator pos, FwdIt first, FwdIt last, std::forward_iterator_tag)
+ { this->priv_insert_aux(pos, first, last); }
+
+ // assign(), a generalized assignment member function. Two
+ // versions: one that takes a count, and one that takes a range.
+ // The range version is a member template, so we dispatch on whether
+ // or not the type is an integer.
+ void priv_fill_assign(size_type n, const T& val)
+ {
+ if (n > size()) {
+ std::fill(begin(), end(), val);
+ this->insert(cend(), n - size(), val);
+ }
+ else {
+ this->erase(cbegin() + n, cend());
+ std::fill(begin(), end(), val);
+ }
+ }
+
+ template <class Integer>
+ void priv_initialize_dispatch(Integer n, Integer x, detail::true_)
+ {
+ this->priv_initialize_map(n);
+ this->priv_fill_initialize(x);
+ }
+
+ template <class InpIt>
+ void priv_initialize_dispatch(InpIt first, InpIt last, detail::false_)
+ {
+ typedef typename std::iterator_traits<InpIt>::iterator_category ItCat;
+ this->priv_range_initialize(first, last, ItCat());
+ }
+
+ void priv_destroy_range(iterator p, iterator p2)
+ {
+ for(;p != p2; ++p)
+ detail::get_pointer(&*p)->~value_type();
+ }
+
+ void priv_destroy_range(pointer p, pointer p2)
+ {
+ for(;p != p2; ++p)
+ detail::get_pointer(&*p)->~value_type();
+ }
+
+ template <class Integer>
+ void priv_assign_dispatch(Integer n, Integer val, detail::true_)
+ { this->priv_fill_assign((size_type) n, (T) val); }
+
+ template <class InpIt>
+ void priv_assign_dispatch(InpIt first, InpIt last, detail::false_)
+ {
+ typedef typename std::iterator_traits<InpIt>::iterator_category ItCat;
+ this->priv_assign_aux(first, last, ItCat());
+ }
+
+ template <class InpIt>
+ void priv_assign_aux(InpIt first, InpIt last, std::input_iterator_tag)
+ {
+ iterator cur = begin();
+ for ( ; first != last && cur != end(); ++cur, ++first)
+ *cur = *first;
+ if (first == last)
+ this->erase(cur, cend());
+ else
+ this->insert(cend(), first, last);
+ }
+
+ template <class FwdIt>
+ void priv_assign_aux(FwdIt first, FwdIt last, std::forward_iterator_tag)
+ {
+ size_type len = std::distance(first, last);
+ if (len > size()) {
+ FwdIt mid = first;
+ std::advance(mid, size());
+ std::copy(first, mid, begin());
+ this->insert(cend(), mid, last);
+ }
+ else
+ this->erase(std::copy(first, last, begin()), cend());
+ }
+
+ template <class Integer>
+ void priv_insert_dispatch(const_iterator pos, Integer n, Integer x, detail::true_)
+ { this->priv_fill_insert(pos, (size_type) n, (value_type) x); }
+
+ template <class InpIt>
+ void priv_insert_dispatch(const_iterator pos,InpIt first, InpIt last, detail::false_)
+ {
+ typedef typename std::iterator_traits<InpIt>::iterator_category ItCat;
+ this->priv_insert_aux(pos, first, last, ItCat());
+ }
+
+ void priv_insert_aux(const_iterator pos, size_type n, const value_type& x)
+ {
+ typedef constant_iterator<value_type, difference_type> c_it;
+ this->priv_insert_aux(pos, c_it(x, n), c_it());
+ }
+
+ //Just forward all operations to priv_insert_aux_impl
+ template <class FwdIt>
+ void priv_insert_aux(const_iterator p, FwdIt first, FwdIt last)
+ {
+ detail::advanced_insert_aux_proxy<T, FwdIt, iterator> proxy(first, last);
+ priv_insert_aux_impl(p, (size_type)std::distance(first, last), proxy);
+ }
+
+ void priv_insert_aux_impl(const_iterator p, size_type n, advanced_insert_aux_int_t &interf)
+ {
+ iterator pos(p);
+ if(!this->members_.m_map){
+ this->priv_initialize_map(0);
+ pos = this->begin();
+ }
+
+ const difference_type elemsbefore = pos - this->members_.m_start;
+ size_type length = this->size();
+ if (elemsbefore < static_cast<difference_type>(length / 2)) {
+ iterator new_start = this->priv_reserve_elements_at_front(n);
+ iterator old_start = this->members_.m_start;
+ pos = this->members_.m_start + elemsbefore;
+ if (elemsbefore >= difference_type(n)) {
+ iterator start_n = this->members_.m_start + difference_type(n);
+ boost::uninitialized_move(this->members_.m_start, start_n, new_start);
+ this->members_.m_start = new_start;
+ boost::move(start_n, pos, old_start);
+ interf.copy_all_to(pos - difference_type(n));
+ }
+ else {
+ difference_type mid_count = (difference_type(n) - elemsbefore);
+ iterator mid_start = old_start - mid_count;
+ interf.uninitialized_copy_some_and_update(mid_start, mid_count, true);
+ this->members_.m_start = mid_start;
+ boost::uninitialized_move(old_start, pos, new_start);
+ this->members_.m_start = new_start;
+ interf.copy_all_to(old_start);
+ }
+ }
+ else {
+ iterator new_finish = this->priv_reserve_elements_at_back(n);
+ iterator old_finish = this->members_.m_finish;
+ const difference_type elemsafter =
+ difference_type(length) - elemsbefore;
+ pos = this->members_.m_finish - elemsafter;
+ if (elemsafter >= difference_type(n)) {
+ iterator finish_n = this->members_.m_finish - difference_type(n);
+ boost::uninitialized_move(finish_n, this->members_.m_finish, this->members_.m_finish);
+ this->members_.m_finish = new_finish;
+ boost::move_backward(pos, finish_n, old_finish);
+ interf.copy_all_to(pos);
+ }
+ else {
+ interf.uninitialized_copy_some_and_update(old_finish, elemsafter, false);
+ this->members_.m_finish += n-elemsafter;
+ boost::uninitialized_move(pos, old_finish, this->members_.m_finish);
+ this->members_.m_finish = new_finish;
+ interf.copy_all_to(pos);
+ }
+ }
+ }
+
+ void priv_fill_insert(const_iterator pos, size_type n, const value_type& x)
+ {
+ typedef constant_iterator<value_type, difference_type> c_it;
+ this->insert(pos, c_it(x, n), c_it());
+ }
+
+ // Precondition: this->members_.m_start and this->members_.m_finish have already been initialized,
+ // but none of the deque's elements have yet been constructed.
+ void priv_fill_initialize(const value_type& value)
+ {
+ index_pointer cur;
+ BOOST_TRY {
+ for (cur = this->members_.m_start.m_node; cur < this->members_.m_finish.m_node; ++cur){
+ std::uninitialized_fill(*cur, *cur + this->s_buffer_size(), value);
+ }
+ std::uninitialized_fill(this->members_.m_finish.m_first, this->members_.m_finish.m_cur, value);
+ }
+ BOOST_CATCH(...){
+ this->priv_destroy_range(this->members_.m_start, iterator(*cur, cur));
+ BOOST_RETHROW
+ }
+ BOOST_CATCH_END
+ }
+
+ template <class InpIt>
+ void priv_range_initialize(InpIt first, InpIt last, std::input_iterator_tag)
+ {
+ this->priv_initialize_map(0);
+ BOOST_TRY {
+ for ( ; first != last; ++first)
+ this->push_back(*first);
+ }
+ BOOST_CATCH(...){
+ this->clear();
+ BOOST_RETHROW
+ }
+ BOOST_CATCH_END
+ }
+
+ template <class FwdIt>
+ void priv_range_initialize(FwdIt first, FwdIt last, std::forward_iterator_tag)
+ {
+ size_type n = 0;
+ n = std::distance(first, last);
+ this->priv_initialize_map(n);
+
+ index_pointer cur_node;
+ BOOST_TRY {
+ for (cur_node = this->members_.m_start.m_node;
+ cur_node < this->members_.m_finish.m_node;
+ ++cur_node) {
+ FwdIt mid = first;
+ std::advance(mid, this->s_buffer_size());
+ boost::uninitialized_copy_or_move(first, mid, *cur_node);
+ first = mid;
+ }
+ boost::uninitialized_copy_or_move(first, last, this->members_.m_finish.m_first);
+ }
+ BOOST_CATCH(...){
+ this->priv_destroy_range(this->members_.m_start, iterator(*cur_node, cur_node));
+ BOOST_RETHROW
+ }
+ BOOST_CATCH_END
+ }
+
+ // Called only if this->members_.m_finish.m_cur == this->members_.m_finish.m_first.
+ void priv_pop_back_aux()
+ {
+ this->priv_deallocate_node(this->members_.m_finish.m_first);
+ this->members_.m_finish.priv_set_node(this->members_.m_finish.m_node - 1);
+ this->members_.m_finish.m_cur = this->members_.m_finish.m_last - 1;
+ detail::get_pointer(this->members_.m_finish.m_cur)->~value_type();
+ }
+
+ // Called only if this->members_.m_start.m_cur == this->members_.m_start.m_last - 1. Note that
+ // if the deque has at least one element (a precondition for this member
+ // function), and if this->members_.m_start.m_cur == this->members_.m_start.m_last, then the deque
+ // must have at least two nodes.
+ void priv_pop_front_aux()
+ {
+ detail::get_pointer(this->members_.m_start.m_cur)->~value_type();
+ this->priv_deallocate_node(this->members_.m_start.m_first);
+ this->members_.m_start.priv_set_node(this->members_.m_start.m_node + 1);
+ this->members_.m_start.m_cur = this->members_.m_start.m_first;
+ }
+
+ iterator priv_reserve_elements_at_front(size_type n)
+ {
+ size_type vacancies = this->members_.m_start.m_cur - this->members_.m_start.m_first;
+ if (n > vacancies){
+ size_type new_elems = n-vacancies;
+ size_type new_nodes = (new_elems + this->s_buffer_size() - 1) /
+ this->s_buffer_size();
+ size_type s = (size_type)(this->members_.m_start.m_node - this->members_.m_map);
+ if (new_nodes > s){
+ this->priv_reallocate_map(new_nodes, true);
+ }
+ size_type i = 1;
+ BOOST_TRY {
+ for (; i <= new_nodes; ++i)
+ *(this->members_.m_start.m_node - i) = this->priv_allocate_node();
+ }
+ BOOST_CATCH(...) {
+ for (size_type j = 1; j < i; ++j)
+ this->priv_deallocate_node(*(this->members_.m_start.m_node - j));
+ BOOST_RETHROW
+ }
+ BOOST_CATCH_END
+ }
+ return this->members_.m_start - difference_type(n);
+ }
+
+ iterator priv_reserve_elements_at_back(size_type n)
+ {
+ size_type vacancies = (this->members_.m_finish.m_last - this->members_.m_finish.m_cur) - 1;
+ if (n > vacancies){
+ size_type new_elems = n - vacancies;
+ size_type new_nodes = (new_elems + this->s_buffer_size() - 1)/s_buffer_size();
+ size_type s = (size_type)(this->members_.m_map_size - (this->members_.m_finish.m_node - this->members_.m_map));
+ if (new_nodes + 1 > s){
+ this->priv_reallocate_map(new_nodes, false);
+ }
+ size_type i;
+ BOOST_TRY {
+ for (i = 1; i <= new_nodes; ++i)
+ *(this->members_.m_finish.m_node + i) = this->priv_allocate_node();
+ }
+ BOOST_CATCH(...) {
+ for (size_type j = 1; j < i; ++j)
+ this->priv_deallocate_node(*(this->members_.m_finish.m_node + j));
+ BOOST_RETHROW
+ }
+ BOOST_CATCH_END
+ }
+ return this->members_.m_finish + difference_type(n);
+ }
+
+ void priv_reallocate_map(size_type nodes_to_add, bool add_at_front)
+ {
+ size_type old_num_nodes = this->members_.m_finish.m_node - this->members_.m_start.m_node + 1;
+ size_type new_num_nodes = old_num_nodes + nodes_to_add;
+
+ index_pointer new_nstart;
+ if (this->members_.m_map_size > 2 * new_num_nodes) {
+ new_nstart = this->members_.m_map + (this->members_.m_map_size - new_num_nodes) / 2
+ + (add_at_front ? nodes_to_add : 0);
+ if (new_nstart < this->members_.m_start.m_node)
+ boost::move(this->members_.m_start.m_node, this->members_.m_finish.m_node + 1, new_nstart);
+ else
+ boost::move_backward
+ (this->members_.m_start.m_node, this->members_.m_finish.m_node + 1, new_nstart + old_num_nodes);
+ }
+ else {
+ size_type new_map_size =
+ this->members_.m_map_size + max_value(this->members_.m_map_size, nodes_to_add) + 2;
+
+ index_pointer new_map = this->priv_allocate_map(new_map_size);
+ new_nstart = new_map + (new_map_size - new_num_nodes) / 2
+ + (add_at_front ? nodes_to_add : 0);
+ boost::move(this->members_.m_start.m_node, this->members_.m_finish.m_node + 1, new_nstart);
+ this->priv_deallocate_map(this->members_.m_map, this->members_.m_map_size);
+
+ this->members_.m_map = new_map;
+ this->members_.m_map_size = new_map_size;
+ }
+
+ this->members_.m_start.priv_set_node(new_nstart);
+ this->members_.m_finish.priv_set_node(new_nstart + old_num_nodes - 1);
+ }
+ /// @endcond
+};
+
+// Nonmember functions.
+template <class T, class Alloc>
+inline bool operator==(const deque<T, Alloc>& x,
+ const deque<T, Alloc>& y)
+{
+ return x.size() == y.size() && equal(x.begin(), x.end(), y.begin());
+}
+
+template <class T, class Alloc>
+inline bool operator<(const deque<T, Alloc>& x,
+ const deque<T, Alloc>& y)
+{
+ return lexicographical_compare(x.begin(), x.end(), y.begin(), y.end());
+}
+
+template <class T, class Alloc>
+inline bool operator!=(const deque<T, Alloc>& x,
+ const deque<T, Alloc>& y)
+ { return !(x == y); }
+
+template <class T, class Alloc>
+inline bool operator>(const deque<T, Alloc>& x,
+ const deque<T, Alloc>& y)
+ { return y < x; }
+
+template <class T, class Alloc>
+inline bool operator<=(const deque<T, Alloc>& x,
+ const deque<T, Alloc>& y)
+ { return !(y < x); }
+
+template <class T, class Alloc>
+inline bool operator>=(const deque<T, Alloc>& x,
+ const deque<T, Alloc>& y)
+ { return !(x < y); }
+
+
+#if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+template <class T, class A>
+inline void swap(deque<T, A>& x, deque<T, A>& y)
+{ x.swap(y); }
+
+template <class T, class A>
+inline void swap(boost::rv<deque<T, A> > x, deque<T, A>& y)
+{ x.get().swap(y); }
+
+template <class T, class A>
+inline void swap(deque<T, A> &x, boost::rv<deque<T, A> > &y)
+{ x.swap(y.get()); }
+#else
+template <class T, class A>
+inline void swap(deque<T, A>&&x, deque<T, A>&&y)
+{ x.swap(y); }
+#endif
+
+/// @cond
+
+//!has_trivial_destructor_after_move<> == true_type
+//!specialization for optimizations
+template <class T, class A>
+struct has_trivial_destructor_after_move<deque<T, A> >
+{
+ enum { value = has_trivial_destructor<A>::value };
+};
+/// @endcond
+
+} //namespace interprocess {
+} //namespace boost {
+
+#include <boost/interprocess/detail/config_end.hpp>
+
+#endif // #ifndef BOOST_INTERPROCESS_DEQUE_HPP
+

Added: sandbox/boost/interprocess/containers/detail/flat_tree.hpp
==============================================================================
--- (empty file)
+++ sandbox/boost/interprocess/containers/detail/flat_tree.hpp 2009-02-17 13:04:56 EST (Tue, 17 Feb 2009)
@@ -0,0 +1,890 @@
+////////////////////////////////////////////////////////////////////////////////
+//
+// (C) Copyright Ion Gaztanaga 2005-2008. Distributed under the Boost
+// Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+//
+// See http://www.boost.org/libs/interprocess for documentation.
+//
+////////////////////////////////////////////////////////////////////////////////
+// The Loki Library
+// Copyright (c) 2001 by Andrei Alexandrescu
+// This code accompanies the book:
+// Alexandrescu, Andrei. "Modern C++ Design: Generic Programming and Design
+// Patterns Applied". Copyright (c) 2001. Addison-Wesley.
+// Permission to use, copy, modify, distribute and sell this software for any
+// purpose is hereby granted without fee, provided that the above copyright
+// notice appear in all copies and that both that copyright notice and this
+// permission notice appear in supporting documentation.
+// The author or Addison-Welsey Longman make no representations about the
+// suitability of this software for any purpose. It is provided "as is"
+// without express or implied warranty.
+///////////////////////////////////////////////////////////////////////////////
+//
+// Parts of this file come from AssocVector.h file from Loki library
+//
+////////////////////////////////////////////////////////////////////////////////
+
+#ifndef BOOST_INTERPROCESS_FLAT_TREE_HPP
+#define BOOST_INTERPROCESS_FLAT_TREE_HPP
+
+#if (defined _MSC_VER) && (_MSC_VER >= 1200)
+# pragma once
+#endif
+
+#include <boost/interprocess/detail/config_begin.hpp>
+#include <boost/interprocess/detail/workaround.hpp>
+
+#include <boost/interprocess/containers/vector.hpp>
+#include <boost/interprocess/detail/utilities.hpp>
+#include <boost/move_semantics/move.hpp>
+#include <boost/type_traits/has_trivial_destructor.hpp>
+#include <algorithm>
+#include <functional>
+#include <utility>
+
+namespace boost {
+
+namespace interprocess {
+
+namespace detail {
+
+template <class Key, class Value, class KeyOfValue,
+ class Compare, class Alloc>
+class flat_tree
+{
+ typedef boost::interprocess::vector<Value, Alloc> vector_t;
+ typedef Alloc allocator_t;
+
+ public:
+ class value_compare
+ : private Compare
+ {
+ typedef Value first_argument_type;
+ typedef Value second_argument_type;
+ typedef bool return_type;
+ public:
+ value_compare(const Compare &pred)
+ : Compare(pred)
+ {}
+
+ bool operator()(const Value& lhs, const Value& rhs) const
+ {
+ KeyOfValue key_extract;
+ return Compare::operator()(key_extract(lhs), key_extract(rhs));
+ }
+
+ const Compare &get_comp() const
+ { return *this; }
+
+ Compare &get_comp()
+ { return *this; }
+ };
+
+ private:
+ struct Data
+ //Inherit from value_compare to do EBO
+ : public value_compare
+ {
+ public:
+ Data(const Compare &comp,
+ const vector_t &vect)
+ : value_compare(comp), m_vect(vect){}
+
+ Data(const value_compare &comp,
+ const vector_t &vect)
+ : value_compare(comp), m_vect(vect){}
+
+ Data(const Compare &comp,
+ const allocator_t &alloc)
+ : value_compare(comp), m_vect(alloc){}
+ public:
+ vector_t m_vect;
+ };
+
+ Data m_data;
+
+ public:
+ BOOST_ENABLE_MOVE_EMULATION(flat_tree)
+
+ typedef typename vector_t::value_type value_type;
+ typedef typename vector_t::pointer pointer;
+ typedef typename vector_t::const_pointer const_pointer;
+ typedef typename vector_t::reference reference;
+ typedef typename vector_t::const_reference const_reference;
+ typedef Key key_type;
+ typedef Compare key_compare;
+ typedef typename vector_t::allocator_type allocator_type;
+ typedef allocator_type stored_allocator_type;
+ typedef typename allocator_type::size_type size_type;
+ typedef typename allocator_type::difference_type difference_type;
+ typedef typename vector_t::iterator iterator;
+ typedef typename vector_t::const_iterator const_iterator;
+ typedef std::reverse_iterator<iterator> reverse_iterator;
+ typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
+
+
+ // allocation/deallocation
+ flat_tree(const Compare& comp = Compare(),
+ const allocator_type& a = allocator_type())
+ : m_data(comp, a)
+ { }
+
+ flat_tree(const flat_tree& x)
+ : m_data(x.m_data, x.m_data.m_vect)
+ { }
+
+ #ifndef BOOST_HAS_RVALUE_REFS
+ flat_tree(boost::rv<flat_tree> &x)
+ : m_data(boost::move(x.get().m_data))
+ { }
+ #else
+ flat_tree(flat_tree &&x)
+ : m_data(boost::move(x.m_data))
+ { }
+ #endif
+
+ ~flat_tree()
+ { }
+
+ flat_tree& operator=(const flat_tree& x)
+ { m_data = x.m_data; return *this; }
+
+ #ifndef BOOST_HAS_RVALUE_REFS
+ flat_tree& operator=(boost::rv<flat_tree> &mx)
+ { m_data = boost::move(mx.get().m_data); return *this; }
+ #else
+ flat_tree& operator=(flat_tree &&mx)
+ { m_data = boost::move(mx.m_data); return *this; }
+ #endif
+
+ public:
+ // accessors:
+ Compare key_comp() const
+ { return this->m_data.get_comp(); }
+
+ allocator_type get_allocator() const
+ { return this->m_data.m_vect.get_allocator(); }
+
+ const stored_allocator_type &get_stored_allocator() const
+ { return this->m_data.m_vect.get_stored_allocator(); }
+
+ stored_allocator_type &get_stored_allocator()
+ { return this->m_data.m_vect.get_stored_allocator(); }
+
+ iterator begin()
+ { return this->m_data.m_vect.begin(); }
+
+ const_iterator begin() const
+ { return this->cbegin(); }
+
+ const_iterator cbegin() const
+ { return this->m_data.m_vect.begin(); }
+
+ iterator end()
+ { return this->m_data.m_vect.end(); }
+
+ const_iterator end() const
+ { return this->cend(); }
+
+ const_iterator cend() const
+ { return this->m_data.m_vect.end(); }
+
+ reverse_iterator rbegin()
+ { return reverse_iterator(this->end()); }
+
+ const_reverse_iterator rbegin() const
+ { return this->crbegin(); }
+
+ const_reverse_iterator crbegin() const
+ { return const_reverse_iterator(this->cend()); }
+
+ reverse_iterator rend()
+ { return reverse_iterator(this->begin()); }
+
+ const_reverse_iterator rend() const
+ { return this->crend(); }
+
+ const_reverse_iterator crend() const
+ { return const_reverse_iterator(this->cbegin()); }
+
+ bool empty() const
+ { return this->m_data.m_vect.empty(); }
+
+ size_type size() const
+ { return this->m_data.m_vect.size(); }
+
+ size_type max_size() const
+ { return this->m_data.m_vect.max_size(); }
+
+ void swap(flat_tree& other)
+ {
+ value_compare& mycomp = this->m_data;
+ value_compare& othercomp = other.m_data;
+ detail::do_swap(mycomp, othercomp);
+ vector_t & myvect = this->m_data.m_vect;
+ vector_t & othervect = other.m_data.m_vect;
+ myvect.swap(othervect);
+ }
+
+ #ifndef BOOST_HAS_RVALUE_REFS
+ void swap(boost::rv<flat_tree> &other)
+ { this->swap(other.get()); }
+ #else
+ void swap(flat_tree &&other)
+ { this->swap(other); }
+ #endif
+
+ public:
+ // insert/erase
+ std::pair<iterator,bool> insert_unique(const value_type& val)
+ {
+ insert_commit_data data;
+ std::pair<iterator,bool> ret = priv_insert_unique_prepare(val, data);
+ if(ret.second){
+ ret.first = priv_insert_commit(data, val);
+ }
+ return ret;
+ }
+
+ #ifndef BOOST_HAS_RVALUE_REFS
+ std::pair<iterator,bool> insert_unique(boost::rv<value_type> &mval)
+ {
+ value_type &val = mval.get();
+ #else
+ std::pair<iterator,bool> insert_unique(value_type && val)
+ {
+ #endif
+ insert_commit_data data;
+ std::pair<iterator,bool> ret = priv_insert_unique_prepare(val, data);
+ if(ret.second){
+ ret.first = priv_insert_commit(data, boost::move(val));
+ }
+ return ret;
+ }
+
+
+ iterator insert_equal(const value_type& val)
+ {
+ iterator i = this->upper_bound(KeyOfValue()(val));
+ i = this->m_data.m_vect.insert(i, val);
+ return i;
+ }
+
+ #ifndef BOOST_HAS_RVALUE_REFS
+ iterator insert_equal(boost::rv<value_type> &mval)
+ {
+ iterator i = this->upper_bound(KeyOfValue()(mval.get()));
+ i = this->m_data.m_vect.insert(i, mval);
+ return i;
+ }
+ #else
+ iterator insert_equal(value_type && mval)
+ {
+ iterator i = this->upper_bound(KeyOfValue()(mval));
+ i = this->m_data.m_vect.insert(i, boost::move(mval));
+ return i;
+ }
+ #endif
+
+ iterator insert_unique(const_iterator pos, const value_type& val)
+ {
+ insert_commit_data data;
+ std::pair<iterator,bool> ret = priv_insert_unique_prepare(pos, val, data);
+ if(ret.second){
+ ret.first = priv_insert_commit(data, val);
+ }
+ return ret.first;
+ }
+
+ #ifndef BOOST_HAS_RVALUE_REFS
+ iterator insert_unique(const_iterator pos, boost::rv<value_type> &mval)
+ {
+ insert_commit_data data;
+ std::pair<iterator,bool> ret = priv_insert_unique_prepare(pos, mval.get(), data);
+ if(ret.second){
+ ret.first = priv_insert_commit(data, mval);
+ }
+ return ret.first;
+ }
+ #else
+ iterator insert_unique(const_iterator pos, value_type&&mval)
+ {
+ insert_commit_data data;
+ std::pair<iterator,bool> ret = priv_insert_unique_prepare(pos, mval, data);
+ if(ret.second){
+ ret.first = priv_insert_commit(data, boost::move(mval));
+ }
+ return ret.first;
+ }
+ #endif
+
+ iterator insert_equal(const_iterator pos, const value_type& val)
+ {
+ insert_commit_data data;
+ priv_insert_equal_prepare(pos, val, data);
+ return priv_insert_commit(data, val);
+ }
+
+ #ifndef BOOST_HAS_RVALUE_REFS
+ iterator insert_equal(const_iterator pos, boost::rv<value_type> &mval)
+ {
+ insert_commit_data data;
+ priv_insert_equal_prepare(pos, mval.get(), data);
+ return priv_insert_commit(data, mval);
+ }
+ #else
+ iterator insert_equal(const_iterator pos, value_type && mval)
+ {
+ insert_commit_data data;
+ priv_insert_equal_prepare(pos, mval, data);
+ return priv_insert_commit(data, boost::move(mval));
+ }
+ #endif
+
+ template <class InIt>
+ void insert_unique(InIt first, InIt last)
+ {
+ for ( ; first != last; ++first)
+ this->insert_unique(*first);
+ }
+
+ template <class InIt>
+ void insert_equal(InIt first, InIt last)
+ {
+ typedef typename
+ std::iterator_traits<InIt>::iterator_category ItCat;
+ priv_insert_equal(first, last, ItCat());
+ }
+
+ #ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING
+
+ template <class... Args>
+ iterator emplace_unique(Args&&... args)
+ {
+ value_type val(boost::forward_constructor<Args>(args)...);
+ insert_commit_data data;
+ std::pair<iterator,bool> ret =
+ priv_insert_unique_prepare(val, data);
+ if(ret.second){
+ ret.first = priv_insert_commit(data, boost::move<value_type>(val));
+ }
+ return ret.first;
+ }
+
+ template <class... Args>
+ iterator emplace_hint_unique(const_iterator hint, Args&&... args)
+ {
+ value_type val(boost::forward_constructor<Args>(args)...);
+ insert_commit_data data;
+ std::pair<iterator,bool> ret = priv_insert_unique_prepare(hint, val, data);
+ if(ret.second){
+ ret.first = priv_insert_commit(data, boost::move<value_type>(val));
+ }
+ return ret.first;
+ }
+
+ template <class... Args>
+ iterator emplace_equal(Args&&... args)
+ {
+ value_type val(boost::forward_constructor<Args>(args)...);
+ iterator i = this->upper_bound(KeyOfValue()(val));
+ i = this->m_data.m_vect.insert(i, boost::move<value_type>(val));
+ return i;
+ }
+
+ template <class... Args>
+ iterator emplace_hint_equal(const_iterator hint, Args&&... args)
+ {
+ value_type val(boost::forward_constructor<Args>(args)...);
+ insert_commit_data data;
+ priv_insert_equal_prepare(hint, val, data);
+ return priv_insert_commit(data, boost::move<value_type>(val));
+ }
+
+ #else //#ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING
+
+ iterator emplace_unique()
+ {
+ detail::value_init<value_type> vval;
+ value_type &val = vval.m_t;
+ insert_commit_data data;
+ std::pair<iterator,bool> ret =
+ priv_insert_unique_prepare(val, data);
+ if(ret.second){
+ ret.first = priv_insert_commit(data, boost::move<value_type>(val));
+ }
+ return ret.first;
+ }
+
+ iterator emplace_hint_unique(const_iterator hint)
+ {
+ detail::value_init<value_type> vval;
+ value_type &val = vval.m_t;
+ insert_commit_data data;
+ std::pair<iterator,bool> ret = priv_insert_unique_prepare(hint, val, data);
+ if(ret.second){
+ ret.first = priv_insert_commit(data, boost::move<value_type>(val));
+ }
+ return ret.first;
+ }
+
+ iterator emplace_equal()
+ {
+ detail::value_init<value_type> vval;
+ value_type &val = vval.m_t;
+ iterator i = this->upper_bound(KeyOfValue()(val));
+ i = this->m_data.m_vect.insert(i, boost::move<value_type>(val));
+ return i;
+ }
+
+ iterator emplace_hint_equal(const_iterator hint)
+ {
+ detail::value_init<value_type> vval;
+ value_type &val = vval.m_t;
+ insert_commit_data data;
+ priv_insert_equal_prepare(hint, val, data);
+ return priv_insert_commit(data, boost::move<value_type>(val));
+ }
+
+ #define BOOST_PP_LOCAL_MACRO(n) \
+ template<BOOST_PP_ENUM_PARAMS(n, class P)> \
+ iterator emplace_unique(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_LIST, _)) \
+ { \
+ value_type val(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _)); \
+ insert_commit_data data; \
+ std::pair<iterator,bool> ret = priv_insert_unique_prepare(val, data); \
+ if(ret.second){ \
+ ret.first = priv_insert_commit(data, boost::move<value_type>(val)); \
+ } \
+ return ret.first; \
+ } \
+ \
+ template<BOOST_PP_ENUM_PARAMS(n, class P)> \
+ iterator emplace_hint_unique(const_iterator hint, \
+ BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_LIST, _)) \
+ { \
+ value_type val(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _)); \
+ insert_commit_data data; \
+ std::pair<iterator,bool> ret = priv_insert_unique_prepare(hint, val, data); \
+ if(ret.second){ \
+ ret.first = priv_insert_commit(data, boost::move<value_type>(val)); \
+ } \
+ return ret.first; \
+ } \
+ \
+ template<BOOST_PP_ENUM_PARAMS(n, class P)> \
+ iterator emplace_equal(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_LIST, _)) \
+ { \
+ value_type val(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _)); \
+ iterator i = this->upper_bound(KeyOfValue()(val)); \
+ i = this->m_data.m_vect.insert(i, boost::move<value_type>(val)); \
+ return i; \
+ } \
+ \
+ template<BOOST_PP_ENUM_PARAMS(n, class P)> \
+ iterator emplace_hint_equal(const_iterator hint, \
+ BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_LIST, _)) \
+ { \
+ value_type val(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _)); \
+ insert_commit_data data; \
+ priv_insert_equal_prepare(hint, val, data); \
+ return priv_insert_commit(data, boost::move<value_type>(val)); \
+ } \
+ //!
+ #define BOOST_PP_LOCAL_LIMITS (1, BOOST_INTERPROCESS_MAX_CONSTRUCTOR_PARAMETERS)
+ #include BOOST_PP_LOCAL_ITERATE()
+
+ #endif //#ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING
+
+ iterator erase(const_iterator position)
+ { return this->m_data.m_vect.erase(position); }
+
+ size_type erase(const key_type& k)
+ {
+ std::pair<iterator,iterator > itp = this->equal_range(k);
+ size_type ret = static_cast<size_type>(itp.second-itp.first);
+ if (ret){
+ this->m_data.m_vect.erase(itp.first, itp.second);
+ }
+ return ret;
+ }
+
+ iterator erase(const_iterator first, const_iterator last)
+ { return this->m_data.m_vect.erase(first, last); }
+
+ void clear()
+ { this->m_data.m_vect.clear(); }
+
+ //! <b>Effects</b>: Tries to deallocate the excess of memory created
+ // with previous allocations. The size of the vector is unchanged
+ //!
+ //! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws.
+ //!
+ //! <b>Complexity</b>: Linear to size().
+ void shrink_to_fit()
+ { this->m_data.m_vect.shrink_to_fit(); }
+
+ // set operations:
+ iterator find(const key_type& k)
+ {
+ const Compare &key_comp = this->m_data.get_comp();
+ iterator i = this->lower_bound(k);
+
+ if (i != this->end() && key_comp(k, KeyOfValue()(*i))){
+ i = this->end();
+ }
+ return i;
+ }
+
+ const_iterator find(const key_type& k) const
+ {
+ const Compare &key_comp = this->m_data.get_comp();
+ const_iterator i = this->lower_bound(k);
+
+ if (i != this->end() && key_comp(k, KeyOfValue()(*i))){
+ i = this->end();
+ }
+ return i;
+ }
+
+ size_type count(const key_type& k) const
+ {
+ std::pair<const_iterator, const_iterator> p = this->equal_range(k);
+ size_type n = p.second - p.first;
+ return n;
+ }
+
+ iterator lower_bound(const key_type& k)
+ { return this->priv_lower_bound(this->begin(), this->end(), k); }
+
+ const_iterator lower_bound(const key_type& k) const
+ { return this->priv_lower_bound(this->begin(), this->end(), k); }
+
+ iterator upper_bound(const key_type& k)
+ { return this->priv_upper_bound(this->begin(), this->end(), k); }
+
+ const_iterator upper_bound(const key_type& k) const
+ { return this->priv_upper_bound(this->begin(), this->end(), k); }
+
+ std::pair<iterator,iterator> equal_range(const key_type& k)
+ { return this->priv_equal_range(this->begin(), this->end(), k); }
+
+ std::pair<const_iterator, const_iterator> equal_range(const key_type& k) const
+ { return this->priv_equal_range(this->begin(), this->end(), k); }
+
+ size_type capacity() const
+ { return this->m_data.m_vect.capacity(); }
+
+ void reserve(size_type count)
+ { this->m_data.m_vect.reserve(count); }
+
+ private:
+ struct insert_commit_data
+ {
+ const_iterator position;
+ };
+
+ // insert/erase
+ void priv_insert_equal_prepare
+ (const_iterator pos, const value_type& val, insert_commit_data &data)
+ {
+ // N1780
+ // To insert val at pos:
+ // if pos == end || val <= *pos
+ // if pos == begin || val >= *(pos-1)
+ // insert val before pos
+ // else
+ // insert val before upper_bound(val)
+ // else if pos+1 == end || val <= *(pos+1)
+ // insert val after pos
+ // else
+ // insert val before lower_bound(val)
+ const value_compare &value_comp = this->m_data;
+
+ if(pos == this->cend() || !value_comp(*pos, val)){
+ if (pos == this->cbegin() || !value_comp(val, pos[-1])){
+ data.position = pos;
+ }
+ else{
+ data.position =
+ this->priv_upper_bound(this->cbegin(), pos, KeyOfValue()(val));
+ }
+ }
+ //Works, but increases code complexity
+ //else if (++pos == this->end() || !value_comp(*pos, val)){
+ // return this->m_data.m_vect.insert(pos, val);
+ //}
+ else{
+ data.position =
+ this->priv_lower_bound(pos, this->cend(), KeyOfValue()(val));
+ }
+ }
+
+ std::pair<iterator,bool> priv_insert_unique_prepare
+ (const_iterator beg, const_iterator end, const value_type& val, insert_commit_data &commit_data)
+ {
+ const value_compare &value_comp = this->m_data;
+ commit_data.position = this->priv_lower_bound(beg, end, KeyOfValue()(val));
+ return std::pair<iterator,bool>
+ ( *reinterpret_cast<iterator*>(&commit_data.position)
+ , commit_data.position == end || value_comp(val, *commit_data.position));
+ }
+
+ std::pair<iterator,bool> priv_insert_unique_prepare
+ (const value_type& val, insert_commit_data &commit_data)
+ { return priv_insert_unique_prepare(this->begin(), this->end(), val, commit_data); }
+
+ std::pair<iterator,bool> priv_insert_unique_prepare
+ (const_iterator pos, const value_type& val, insert_commit_data &commit_data)
+ {
+ //N1780. Props to Howard Hinnant!
+ //To insert val at pos:
+ //if pos == end || val <= *pos
+ // if pos == begin || val >= *(pos-1)
+ // insert val before pos
+ // else
+ // insert val before upper_bound(val)
+ //else if pos+1 == end || val <= *(pos+1)
+ // insert val after pos
+ //else
+ // insert val before lower_bound(val)
+ const value_compare &value_comp = this->m_data;
+
+ if(pos == this->cend() || value_comp(val, *pos)){
+ if(pos != this->cbegin() && !value_comp(val, pos[-1])){
+ if(value_comp(pos[-1], val)){
+ commit_data.position = pos;
+ return std::pair<iterator,bool>(*reinterpret_cast<iterator*>(&pos), true);
+ }
+ else{
+ return std::pair<iterator,bool>(*reinterpret_cast<iterator*>(&pos), false);
+ }
+ }
+ return this->priv_insert_unique_prepare(this->cbegin(), pos, val, commit_data);
+ }
+
+ // Works, but increases code complexity
+ //Next check
+ //else if (value_comp(*pos, val) && !value_comp(pos[1], val)){
+ // if(value_comp(val, pos[1])){
+ // commit_data.position = pos+1;
+ // return std::pair<iterator,bool>(pos+1, true);
+ // }
+ // else{
+ // return std::pair<iterator,bool>(pos+1, false);
+ // }
+ //}
+ else{
+ //[... pos ... val ... ]
+ //The hint is before the insertion position, so insert it
+ //in the remaining range
+ return this->priv_insert_unique_prepare(pos, this->end(), val, commit_data);
+ }
+ }
+
+ template<class Convertible>
+ #ifndef BOOST_HAS_RVALUE_REFS
+ iterator priv_insert_commit
+ (insert_commit_data &commit_data, const Convertible &convertible)
+ #else
+ iterator priv_insert_commit
+ (insert_commit_data &commit_data, Convertible &&convertible)
+ #endif
+ {
+ return this->m_data.m_vect.insert
+ ( commit_data.position
+ , boost::forward_constructor<Convertible>(convertible));
+ }
+
+ template <class RanIt>
+ RanIt priv_lower_bound(RanIt first, RanIt last,
+ const key_type & key) const
+ {
+ const Compare &key_comp = this->m_data.get_comp();
+ KeyOfValue key_extract;
+ difference_type len = last - first, half;
+ RanIt middle;
+
+ while (len > 0) {
+ half = len >> 1;
+ middle = first;
+ middle += half;
+
+ if (key_comp(key_extract(*middle), key)) {
+ ++middle;
+ first = middle;
+ len = len - half - 1;
+ }
+ else
+ len = half;
+ }
+ return first;
+ }
+
+ template <class RanIt>
+ RanIt priv_upper_bound(RanIt first, RanIt last,
+ const key_type & key) const
+ {
+ const Compare &key_comp = this->m_data.get_comp();
+ KeyOfValue key_extract;
+ difference_type len = last - first, half;
+ RanIt middle;
+
+ while (len > 0) {
+ half = len >> 1;
+ middle = first;
+ middle += half;
+
+ if (key_comp(key, key_extract(*middle))) {
+ len = half;
+ }
+ else{
+ first = ++middle;
+ len = len - half - 1;
+ }
+ }
+ return first;
+ }
+
+ template <class RanIt>
+ std::pair<RanIt, RanIt>
+ priv_equal_range(RanIt first, RanIt last, const key_type& key) const
+ {
+ const Compare &key_comp = this->m_data.get_comp();
+ KeyOfValue key_extract;
+ difference_type len = last - first, half;
+ RanIt middle, left, right;
+
+ while (len > 0) {
+ half = len >> 1;
+ middle = first;
+ middle += half;
+
+ if (key_comp(key_extract(*middle), key)){
+ first = middle;
+ ++first;
+ len = len - half - 1;
+ }
+ else if (key_comp(key, key_extract(*middle))){
+ len = half;
+ }
+ else {
+ left = this->priv_lower_bound(first, middle, key);
+ first += len;
+ right = this->priv_upper_bound(++middle, first, key);
+ return std::pair<RanIt, RanIt>(left, right);
+ }
+ }
+ return std::pair<RanIt, RanIt>(first, first);
+ }
+
+ template <class FwdIt>
+ void priv_insert_equal(FwdIt first, FwdIt last, std::forward_iterator_tag)
+ {
+ size_type len = static_cast<size_type>(std::distance(first, last));
+ this->reserve(this->size()+len);
+ this->priv_insert_equal(first, last, std::input_iterator_tag());
+ }
+
+ template <class InIt>
+ void priv_insert_equal(InIt first, InIt last, std::input_iterator_tag)
+ {
+ for ( ; first != last; ++first)
+ this->insert_equal(*first);
+ }
+
+/*
+ template <class FwdIt>
+ void priv_insert_unique(FwdIt first, FwdIt last, std::forward_iterator_tag)
+ {
+ size_type len = static_cast<size_type>(std::distance(first, last));
+ this->reserve(this->size()+len);
+ priv_insert_unique(first, last, std::input_iterator_tag());
+ }
+
+ template <class InIt>
+ void priv_insert_unique(InIt first, InIt last, std::input_iterator_tag)
+ {
+ for ( ; first != last; ++first)
+ this->insert_unique(*first);
+ }
+*/
+};
+
+template <class Key, class Value, class KeyOfValue,
+ class Compare, class Alloc>
+inline bool
+operator==(const flat_tree<Key,Value,KeyOfValue,Compare,Alloc>& x,
+ const flat_tree<Key,Value,KeyOfValue,Compare,Alloc>& y)
+{
+ return x.size() == y.size() &&
+ std::equal(x.begin(), x.end(), y.begin());
+}
+
+template <class Key, class Value, class KeyOfValue,
+ class Compare, class Alloc>
+inline bool
+operator<(const flat_tree<Key,Value,KeyOfValue,Compare,Alloc>& x,
+ const flat_tree<Key,Value,KeyOfValue,Compare,Alloc>& y)
+{
+ return std::lexicographical_compare(x.begin(), x.end(),
+ y.begin(), y.end());
+}
+
+template <class Key, class Value, class KeyOfValue,
+ class Compare, class Alloc>
+inline bool
+operator!=(const flat_tree<Key,Value,KeyOfValue,Compare,Alloc>& x,
+ const flat_tree<Key,Value,KeyOfValue,Compare,Alloc>& y)
+ { return !(x == y); }
+
+template <class Key, class Value, class KeyOfValue,
+ class Compare, class Alloc>
+inline bool
+operator>(const flat_tree<Key,Value,KeyOfValue,Compare,Alloc>& x,
+ const flat_tree<Key,Value,KeyOfValue,Compare,Alloc>& y)
+ { return y < x; }
+
+template <class Key, class Value, class KeyOfValue,
+ class Compare, class Alloc>
+inline bool
+operator<=(const flat_tree<Key,Value,KeyOfValue,Compare,Alloc>& x,
+ const flat_tree<Key,Value,KeyOfValue,Compare,Alloc>& y)
+ { return !(y < x); }
+
+template <class Key, class Value, class KeyOfValue,
+ class Compare, class Alloc>
+inline bool
+operator>=(const flat_tree<Key,Value,KeyOfValue,Compare,Alloc>& x,
+ const flat_tree<Key,Value,KeyOfValue,Compare,Alloc>& y)
+ { return !(x < y); }
+
+
+template <class Key, class Value, class KeyOfValue,
+ class Compare, class Alloc>
+inline void
+swap(flat_tree<Key,Value,KeyOfValue,Compare,Alloc>& x,
+ flat_tree<Key,Value,KeyOfValue,Compare,Alloc>& y)
+ { x.swap(y); }
+
+} //namespace detail {
+
+//!has_trivial_destructor_after_move<> == true_type
+//!specialization for optimizations
+template <class K, class V, class KOV,
+ class C, class A>
+struct has_trivial_destructor_after_move<detail::flat_tree<K, V, KOV, C, A> >
+{
+ enum { value =
+ has_trivial_destructor<A>::value &&
+ has_trivial_destructor<C>::value };
+};
+
+} //namespace interprocess {
+
+} //namespace boost {
+
+#include <boost/interprocess/detail/config_end.hpp>
+
+#endif // BOOST_INTERPROCESS_FLAT_TREE_HPP

Added: sandbox/boost/interprocess/containers/detail/node_alloc_holder.hpp
==============================================================================
--- (empty file)
+++ sandbox/boost/interprocess/containers/detail/node_alloc_holder.hpp 2009-02-17 13:04:56 EST (Tue, 17 Feb 2009)
@@ -0,0 +1,431 @@
+//////////////////////////////////////////////////////////////////////////////
+//
+// (C) Copyright Ion Gaztanaga 2005-2008. Distributed under the Boost
+// Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+//
+// See http://www.boost.org/libs/interprocess for documentation.
+//
+//////////////////////////////////////////////////////////////////////////////
+
+#ifndef BOOST_INTERPROCESS_DETAIL_NODE_ALLOC_HPP_
+#define BOOST_INTERPROCESS_DETAIL_NODE_ALLOC_HPP_
+
+#if (defined _MSC_VER) && (_MSC_VER >= 1200)
+# pragma once
+#endif
+
+#include <boost/interprocess/detail/config_begin.hpp>
+#include <boost/interprocess/detail/workaround.hpp>
+
+#include <boost/interprocess/interprocess_fwd.hpp>
+#include <boost/interprocess/detail/version_type.hpp>
+#include <boost/move_semantics/move.hpp>
+#include <boost/interprocess/detail/algorithms.hpp>
+#include <boost/interprocess/detail/type_traits.hpp>
+#include <boost/interprocess/detail/utilities.hpp>
+#include <boost/interprocess/detail/mpl.hpp>
+#include <boost/intrusive/options.hpp>
+
+#include <utility>
+#include <functional>
+
+
+namespace boost {
+namespace interprocess {
+namespace detail {
+
+template<class ValueCompare, class Node>
+struct node_compare
+ : private ValueCompare
+{
+ typedef typename ValueCompare::key_type key_type;
+ typedef typename ValueCompare::value_type value_type;
+ typedef typename ValueCompare::key_of_value key_of_value;
+
+ node_compare(const ValueCompare &pred)
+ : ValueCompare(pred)
+ {}
+
+ ValueCompare &value_comp()
+ { return static_cast<ValueCompare &>(*this); }
+
+ ValueCompare &value_comp() const
+ { return static_cast<const ValueCompare &>(*this); }
+
+ bool operator()(const Node &a, const Node &b) const
+ { return ValueCompare::operator()(a.get_data(), b.get_data()); }
+};
+
+template<class A, class ICont>
+struct node_alloc_holder
+{
+ typedef node_alloc_holder<A, ICont> self_t;
+ typedef typename A::value_type value_type;
+ typedef typename ICont::value_type Node;
+ typedef typename A::template rebind<Node>::other NodeAlloc;
+ typedef A ValAlloc;
+ typedef typename NodeAlloc::pointer NodePtr;
+ typedef detail::scoped_deallocator<NodeAlloc> Deallocator;
+ typedef typename NodeAlloc::size_type size_type;
+ typedef typename NodeAlloc::difference_type difference_type;
+ typedef detail::integral_constant<unsigned, 1> allocator_v1;
+ typedef detail::integral_constant<unsigned, 2> allocator_v2;
+ typedef detail::integral_constant<unsigned,
+ boost::interprocess::detail::
+ version<NodeAlloc>::value> alloc_version;
+ typedef typename ICont::iterator icont_iterator;
+ typedef typename ICont::const_iterator icont_citerator;
+ typedef allocator_destroyer<NodeAlloc> Destroyer;
+
+ private:
+ node_alloc_holder(node_alloc_holder&);
+ node_alloc_holder & operator=(node_alloc_holder&);
+
+ public:
+ BOOST_ENABLE_MOVE_EMULATION(node_alloc_holder)
+
+ node_alloc_holder(const ValAlloc &a)
+ : members_(a)
+ {}
+
+ node_alloc_holder(const node_alloc_holder &other)
+ : members_(other.node_alloc())
+ {}
+
+ #ifndef BOOST_HAS_RVALUE_REFS
+ node_alloc_holder(boost::rv<node_alloc_holder> &other)
+ : members_(boost::move(other.get().node_alloc()))
+ { this->swap(other.get()); }
+ #else
+ node_alloc_holder(node_alloc_holder &&other)
+ : members_(boost::move(other.node_alloc()))
+ { this->swap(other); }
+ #endif
+
+ template<class Pred>
+ node_alloc_holder(const ValAlloc &a, const Pred &c)
+ : members_(a, typename ICont::value_compare(c))
+ {}
+
+ #ifndef BOOST_HAS_RVALUE_REFS
+ template<class Pred>
+ node_alloc_holder(boost::rv<ValAlloc> &a, const Pred &c)
+ : members_(a.get(), typename ICont::value_compare(c))
+ {}
+ #else
+ template<class Pred>
+ node_alloc_holder(ValAlloc &&a, const Pred &c)
+ : members_(a, typename ICont::value_compare(c))
+ {}
+ #endif
+
+ template<class Pred>
+ node_alloc_holder(const node_alloc_holder &other, const Pred &c)
+ : members_(other.node_alloc(), typename ICont::value_compare(c))
+ {}
+
+ ~node_alloc_holder()
+ { this->clear(alloc_version()); }
+
+ size_type max_size() const
+ { return this->node_alloc().max_size(); }
+
+ NodePtr allocate_one()
+ { return this->allocate_one(alloc_version()); }
+
+ NodePtr allocate_one(allocator_v1)
+ { return this->node_alloc().allocate(1); }
+
+ NodePtr allocate_one(allocator_v2)
+ { return this->node_alloc().allocate_one(); }
+
+ void deallocate_one(NodePtr p)
+ { return this->deallocate_one(p, alloc_version()); }
+
+ void deallocate_one(NodePtr p, allocator_v1)
+ { this->node_alloc().deallocate(p, 1); }
+
+ void deallocate_one(NodePtr p, allocator_v2)
+ { this->node_alloc().deallocate_one(p); }
+
+ #ifndef BOOST_HAS_RVALUE_REFS
+ template<class Convertible1, class Convertible2>
+ static void construct(const NodePtr &ptr, boost::rv<std::pair<Convertible1, Convertible2> > &value)
+ {
+ typedef typename Node::hook_type hook_type;
+ typedef typename Node::value_type::first_type first_type;
+ typedef typename Node::value_type::second_type second_type;
+ Node *nodeptr = detail::get_pointer(ptr);
+
+ //Hook constructor does not throw
+ new(static_cast<hook_type*>(nodeptr))hook_type();
+ //Now construct pair members_holder
+ value_type *valueptr = &nodeptr->get_data();
+ new((void*)&valueptr->first) first_type(boost::move(value.get().first));
+ BOOST_TRY{
+ new((void*)&valueptr->second) second_type(boost::move(value.get().second));
+ }
+ BOOST_CATCH(...){
+ valueptr->first.~first_type();
+ static_cast<hook_type*>(nodeptr)->~hook_type();
+ BOOST_RETHROW
+ }
+ BOOST_CATCH_END
+ }
+ #else
+ template<class Convertible1, class Convertible2>
+ static void construct(const NodePtr &ptr, std::pair<Convertible1, Convertible2> &&value)
+ {
+ typedef typename Node::hook_type hook_type;
+ typedef typename Node::value_type::first_type first_type;
+ typedef typename Node::value_type::second_type second_type;
+ Node *nodeptr = detail::get_pointer(ptr);
+
+ //Hook constructor does not throw
+ new(static_cast<hook_type*>(nodeptr))hook_type();
+ //Now construct pair members_holder
+ value_type *valueptr = &nodeptr->get_data();
+ new((void*)&valueptr->first) first_type(boost::move(value.first));
+ BOOST_TRY{
+ new((void*)&valueptr->second) second_type(boost::move(value.second));
+ }
+ BOOST_CATCH(...){
+ valueptr->first.~first_type();
+ static_cast<hook_type*>(nodeptr)->~hook_type();
+ BOOST_RETHROW
+ }
+ BOOST_CATCH_END
+ }
+ #endif
+
+ static void destroy(const NodePtr &ptr)
+ { detail::get_pointer(ptr)->~Node(); }
+
+ Deallocator create_node_and_deallocator()
+ {
+ return Deallocator(this->allocate_one(), this->node_alloc());
+ }
+
+ #ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING
+
+ template<class ...Args>
+ static void construct(const NodePtr &ptr, Args &&...args)
+ { new((void*)detail::get_pointer(ptr)) Node(boost::forward_constructor<Args>(args)...); }
+
+ template<class ...Args>
+ NodePtr create_node(Args &&...args)
+ {
+ NodePtr p = this->allocate_one();
+ Deallocator node_deallocator(p, this->node_alloc());
+ self_t::construct(p, boost::forward_constructor<Args>(args)...);
+ node_deallocator.release();
+ return (p);
+ }
+
+ #else //#ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING
+
+ static void construct(const NodePtr &ptr)
+ { new((void*)detail::get_pointer(ptr)) Node(); }
+
+ NodePtr create_node()
+ {
+ NodePtr p = this->allocate_one();
+ Deallocator node_deallocator(p, this->node_alloc());
+ self_t::construct(p);
+ node_deallocator.release();
+ return (p);
+ }
+
+ #define BOOST_PP_LOCAL_MACRO(n) \
+ template<BOOST_PP_ENUM_PARAMS(n, class P)> \
+ void construct(const NodePtr &ptr, BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_LIST, _)) \
+ { \
+ new((void*)detail::get_pointer(ptr)) \
+ Node(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _)); \
+ } \
+ //!
+ #define BOOST_PP_LOCAL_LIMITS (1, BOOST_INTERPROCESS_MAX_CONSTRUCTOR_PARAMETERS)
+ #include BOOST_PP_LOCAL_ITERATE()
+
+ #define BOOST_PP_LOCAL_MACRO(n) \
+ template<BOOST_PP_ENUM_PARAMS(n, class P)> \
+ NodePtr create_node(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_LIST, _)) \
+ { \
+ NodePtr p = this->allocate_one(); \
+ Deallocator node_deallocator(p, this->node_alloc()); \
+ self_t::construct(p, BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _)); \
+ node_deallocator.release(); \
+ return (p); \
+ } \
+ //!
+ #define BOOST_PP_LOCAL_LIMITS (1, BOOST_INTERPROCESS_MAX_CONSTRUCTOR_PARAMETERS)
+ #include BOOST_PP_LOCAL_ITERATE()
+
+ #endif //#ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING
+
+ template<class It>
+ NodePtr create_node_from_it(It it)
+ {
+ NodePtr p = this->allocate_one();
+ Deallocator node_deallocator(p, this->node_alloc());
+ ::boost::interprocess::construct_in_place(detail::get_pointer(p), it);
+ node_deallocator.release();
+ return (p);
+ }
+
+ void destroy_node(NodePtr node)
+ {
+ self_t::destroy(node);
+ this->deallocate_one(node);
+ }
+
+ void swap(node_alloc_holder &x)
+ {
+ NodeAlloc& this_alloc = this->node_alloc();
+ NodeAlloc& other_alloc = x.node_alloc();
+
+ if (this_alloc != other_alloc){
+ detail::do_swap(this_alloc, other_alloc);
+ }
+
+ this->icont().swap(x.icont());
+ }
+
+ template<class FwdIterator, class Inserter>
+ FwdIterator allocate_many_and_construct
+ (FwdIterator beg, difference_type n, Inserter inserter)
+ {
+ if(n){
+ typedef typename NodeAlloc::multiallocation_chain multiallocation_chain;
+
+ //Try to allocate memory in a single block
+ multiallocation_chain mem(this->node_alloc().allocate_individual(n));
+ int constructed = 0;
+ Node *p = 0;
+ BOOST_TRY{
+ for(difference_type i = 0; i < n; ++i, ++beg, --constructed){
+ p = detail::get_pointer(mem.front());
+ mem.pop_front();
+ //This can throw
+ constructed = 0;
+ boost::interprocess::construct_in_place(p, beg);
+ ++constructed;
+ //This can throw in some containers (predicate might throw)
+ inserter(*p);
+ }
+ }
+ BOOST_CATCH(...){
+ if(constructed){
+ this->destroy(p);
+ }
+ this->node_alloc().deallocate_individual(boost::move(mem));
+ BOOST_RETHROW
+ }
+ BOOST_CATCH_END
+ }
+ return beg;
+
+ }
+
+ void clear(allocator_v1)
+ { this->icont().clear_and_dispose(Destroyer(this->node_alloc())); }
+
+ void clear(allocator_v2)
+ {
+ typename NodeAlloc::multiallocation_chain chain;
+ allocator_destroyer_and_chain_builder<NodeAlloc> builder(this->node_alloc(), chain);
+ this->icont().clear_and_dispose(builder);
+ BOOST_STATIC_ASSERT((boost::is_movable<typename NodeAlloc::multiallocation_chain>::value == true));
+ if(!chain.empty())
+ this->node_alloc().deallocate_individual(boost::move(chain));
+ }
+
+ icont_iterator erase_range(icont_iterator first, icont_iterator last, allocator_v1)
+ { return this->icont().erase_and_dispose(first, last, Destroyer(this->node_alloc())); }
+
+ icont_iterator erase_range(icont_iterator first, icont_iterator last, allocator_v2)
+ {
+ allocator_multialloc_chain_node_deallocator<NodeAlloc> chain_holder(this->node_alloc());
+ return this->icont().erase_and_dispose(first, last, chain_holder.get_chain_builder());
+ }
+
+ template<class Key, class Comparator>
+ size_type erase_key(const Key& k, const Comparator &comp, allocator_v1)
+ { return this->icont().erase_and_dispose(k, comp, Destroyer(this->node_alloc())); }
+
+ template<class Key, class Comparator>
+ size_type erase_key(const Key& k, const Comparator &comp, allocator_v2)
+ {
+ allocator_multialloc_chain_node_deallocator<NodeAlloc> chain_holder(this->node_alloc());
+ return this->icont().erase_and_dispose(k, comp, chain_holder.get_chain_builder());
+ }
+
+ protected:
+ struct cloner
+ {
+ cloner(node_alloc_holder &holder)
+ : m_holder(holder)
+ {}
+
+ NodePtr operator()(const Node &other) const
+ { return m_holder.create_node(other.get_data()); }
+
+ node_alloc_holder &m_holder;
+ };
+
+ struct destroyer
+ {
+ destroyer(node_alloc_holder &holder)
+ : m_holder(holder)
+ {}
+
+ void operator()(NodePtr n) const
+ { m_holder.destroy_node(n); }
+
+ node_alloc_holder &m_holder;
+ };
+
+ struct members_holder
+ : public NodeAlloc
+ {
+ private:
+ members_holder(const members_holder&);
+
+ public:
+ template<class ConvertibleToAlloc>
+ members_holder(const ConvertibleToAlloc &c2alloc)
+ : NodeAlloc(c2alloc)
+ {}
+
+ template<class ConvertibleToAlloc, class Pred>
+ members_holder(const ConvertibleToAlloc &c2alloc, const Pred &c)
+ : NodeAlloc(c2alloc), m_icont(c)
+ {}
+ //The intrusive container
+ ICont m_icont;
+ } members_;
+
+ ICont &non_const_icont() const
+ { return const_cast<ICont&>(this->members_.m_icont); }
+
+ ICont &icont()
+ { return this->members_.m_icont; }
+
+ const ICont &icont() const
+ { return this->members_.m_icont; }
+
+ NodeAlloc &node_alloc()
+ { return static_cast<NodeAlloc &>(this->members_); }
+
+ const NodeAlloc &node_alloc() const
+ { return static_cast<const NodeAlloc &>(this->members_); }
+};
+
+} //namespace detail {
+} //namespace interprocess {
+} //namespace boost {
+
+#include <boost/interprocess/detail/config_end.hpp>
+
+#endif // BOOST_INTERPROCESS_DETAIL_NODE_ALLOC_HPP_

Added: sandbox/boost/interprocess/containers/detail/tree.hpp
==============================================================================
--- (empty file)
+++ sandbox/boost/interprocess/containers/detail/tree.hpp 2009-02-17 13:04:56 EST (Tue, 17 Feb 2009)
@@ -0,0 +1,1092 @@
+//////////////////////////////////////////////////////////////////////////////
+//
+// (C) Copyright Ion Gaztanaga 2005-2008. Distributed under the Boost
+// Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+//
+// See http://www.boost.org/libs/interprocess for documentation.
+//
+//////////////////////////////////////////////////////////////////////////////
+//
+// This file comes from SGI's stl_tree file. Modified by Ion Gaztanaga 2005.
+// Renaming, isolating and porting to generic algorithms. Pointer typedef
+// set to allocator::pointer to allow placing it in shared memory.
+//
+///////////////////////////////////////////////////////////////////////////////
+/*
+ *
+ * Copyright (c) 1994
+ * Hewlett-Packard Company
+ *
+ * Permission to use, copy, modify, distribute and sell this software
+ * and its documentation for any purpose is hereby granted without fee,
+ * provided that the above copyright notice appear in all copies and
+ * that both that copyright notice and this permission notice appear
+ * in supporting documentation. Hewlett-Packard Company makes no
+ * representations about the suitability of this software for any
+ * purpose. It is provided "as is" without express or implied warranty.
+ *
+ *
+ * Copyright (c) 1996
+ * Silicon Graphics Computer Systems, Inc.
+ *
+ * Permission to use, copy, modify, distribute and sell this software
+ * and its documentation for any purpose is hereby granted without fee,
+ * provided that the above copyright notice appear in all copies and
+ * that both that copyright notice and this permission notice appear
+ * in supporting documentation. Silicon Graphics makes no
+ * representations about the suitability of this software for any
+ * purpose. It is provided "as is" without express or implied warranty.
+ *
+ */
+#ifndef BOOST_INTERPROCESS_TREE_HPP
+#define BOOST_INTERPROCESS_TREE_HPP
+
+#include <boost/interprocess/detail/config_begin.hpp>
+#include <boost/interprocess/detail/workaround.hpp>
+
+#include <boost/move_semantics/move.hpp>
+#include <boost/interprocess/detail/utilities.hpp>
+#include <boost/interprocess/detail/algorithms.hpp>
+#include <boost/type_traits/has_trivial_destructor.hpp>
+#include <boost/detail/no_exceptions_support.hpp>
+#include <boost/interprocess/containers/detail/node_alloc_holder.hpp>
+#include <boost/intrusive/rbtree.hpp>
+#ifndef BOOST_INTERPROCESS_PERFECT_FORWARDING
+#include <boost/interprocess/detail/preprocessor.hpp>
+#endif
+
+#include <utility> //std::pair
+#include <iterator>
+#include <algorithm>
+
+namespace boost {
+namespace interprocess {
+namespace detail {
+
+template<class Key, class Value, class KeyCompare, class KeyOfValue>
+struct value_compare_impl
+ : public KeyCompare
+{
+ typedef Value value_type;
+ typedef KeyCompare key_compare;
+ typedef KeyOfValue key_of_value;
+ typedef Key key_type;
+
+ value_compare_impl(key_compare kcomp)
+ : key_compare(kcomp)
+ {}
+
+ const key_compare &key_comp() const
+ { return static_cast<const key_compare &>(*this); }
+
+ key_compare &key_comp()
+ { return static_cast<key_compare &>(*this); }
+
+ template<class A, class B>
+ bool operator()(const A &a, const B &b) const
+ { return key_compare::operator()(KeyOfValue()(a), KeyOfValue()(b)); }
+};
+
+template<class VoidPointer>
+struct rbtree_hook
+{
+ typedef typename bi::make_set_base_hook
+ < bi::void_pointer<VoidPointer>
+ , bi::link_mode<bi::normal_link>
+ , bi::optimize_size<true>
+ >::type type;
+};
+
+template<class T>
+struct rbtree_type
+{
+ typedef T type;
+};
+
+template<class T1, class T2>
+struct rbtree_type< std::pair<T1, T2> >
+{
+ typedef pair<T1, T2> type;
+};
+
+template <class T, class VoidPointer>
+struct rbtree_node
+ : public rbtree_hook<VoidPointer>::type
+{
+ typedef typename rbtree_hook<VoidPointer>::type hook_type;
+
+ typedef T value_type;
+ typedef typename rbtree_type<T>::type internal_type;
+
+ typedef rbtree_node<T, VoidPointer> node_type;
+
+ #ifndef BOOST_INTERPROCESS_PERFECT_FORWARDING
+
+ rbtree_node()
+ : m_data()
+ {}
+
+ rbtree_node(const rbtree_node &other)
+ : m_data(other.m_data)
+ {}
+
+ #define BOOST_PP_LOCAL_MACRO(n) \
+ template<BOOST_PP_ENUM_PARAMS(n, class P)> \
+ rbtree_node(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_LIST, _)) \
+ : m_data(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _)) \
+ {} \
+ //!
+ #define BOOST_PP_LOCAL_LIMITS (1, BOOST_INTERPROCESS_MAX_CONSTRUCTOR_PARAMETERS)
+ #include BOOST_PP_LOCAL_ITERATE()
+
+ #else //#ifndef BOOST_INTERPROCESS_PERFECT_FORWARDING
+
+ template<class ...Args>
+ rbtree_node(Args &&...args)
+ : m_data(boost::forward_constructor<Args>(args)...)
+ {}
+ #endif//#ifndef BOOST_INTERPROCESS_PERFECT_FORWARDING
+
+ rbtree_node &operator=(const rbtree_node &other)
+ { do_assign(other.m_data); return *this; }
+
+ T &get_data()
+ {
+ T* ptr = reinterpret_cast<T*>(&this->m_data);
+ return *ptr;
+ }
+
+ const T &get_data() const
+ {
+ const T* ptr = reinterpret_cast<const T*>(&this->m_data);
+ return *ptr;
+ }
+
+ private:
+ internal_type m_data;
+
+ template<class A, class B>
+ void do_assign(const std::pair<const A, B> &p)
+ {
+ const_cast<A&>(m_data.first) = p.first;
+ m_data.second = p.second;
+ }
+
+ template<class A, class B>
+ void do_assign(const pair<const A, B> &p)
+ {
+ const_cast<A&>(m_data.first) = p.first;
+ m_data.second = p.second;
+ }
+
+ template<class V>
+ void do_assign(const V &v)
+ { m_data = v; }
+
+ public:
+ template<class Convertible>
+ #if !defined(BOOST_HAS_RVALUE_REFS)
+ static void construct(node_type *ptr, const Convertible &convertible)
+ #else
+ static void construct(node_type *ptr, Convertible &&convertible)
+ #endif
+ { new(ptr) node_type(boost::forward_constructor<Convertible>(convertible)); }
+};
+
+}//namespace detail {
+#if !defined(BOOST_HAS_RVALUE_REFS) || !defined(BOOST_INTERPROCESS_RVALUE_PAIR)
+template<class T, class VoidPointer>
+struct has_own_construct_from_it
+ < boost::interprocess::detail::rbtree_node<T, VoidPointer> >
+{
+ static const bool value = true;
+};
+#endif
+namespace detail {
+
+template<class A, class ValueCompare>
+struct intrusive_rbtree_type
+{
+ typedef typename A::value_type value_type;
+ typedef typename detail::pointer_to_other
+ <typename A::pointer, void>::type void_pointer;
+ typedef typename detail::rbtree_node
+ <value_type, void_pointer> node_type;
+ typedef node_compare<ValueCompare, node_type> node_compare_type;
+ typedef typename bi::make_rbtree
+ <node_type
+ ,bi::compare<node_compare_type>
+ ,bi::base_hook<typename rbtree_hook<void_pointer>::type>
+ ,bi::constant_time_size<true>
+ ,bi::size_type<typename A::size_type>
+ >::type container_type;
+ typedef container_type type ;
+};
+
+} //namespace detail {
+
+namespace detail {
+
+template <class Key, class Value, class KeyOfValue,
+ class KeyCompare, class A>
+class rbtree
+ : protected detail::node_alloc_holder
+ <A, typename detail::intrusive_rbtree_type
+ <A, value_compare_impl<Key, Value, KeyCompare, KeyOfValue>
+ >::type
+ >
+{
+ typedef typename detail::intrusive_rbtree_type
+ <A, value_compare_impl
+ <Key, Value, KeyCompare, KeyOfValue>
+ >::type Icont;
+ typedef detail::node_alloc_holder<A, Icont> AllocHolder;
+ typedef typename AllocHolder::NodePtr NodePtr;
+ typedef rbtree < Key, Value, KeyOfValue
+ , KeyCompare, A> ThisType;
+ typedef typename AllocHolder::NodeAlloc NodeAlloc;
+ typedef typename AllocHolder::ValAlloc ValAlloc;
+ typedef typename AllocHolder::Node Node;
+ typedef typename Icont::iterator iiterator;
+ typedef typename Icont::const_iterator iconst_iterator;
+ typedef detail::allocator_destroyer<NodeAlloc> Destroyer;
+ typedef typename AllocHolder::allocator_v1 allocator_v1;
+ typedef typename AllocHolder::allocator_v2 allocator_v2;
+ typedef typename AllocHolder::alloc_version alloc_version;
+
+ class RecyclingCloner;
+ friend class RecyclingCloner;
+
+ class RecyclingCloner
+ {
+ public:
+ RecyclingCloner(AllocHolder &holder, Icont &irbtree)
+ : m_holder(holder), m_icont(irbtree)
+ {}
+
+ NodePtr operator()(const Node &other) const
+ {
+// if(!m_icont.empty()){
+ if(NodePtr p = m_icont.unlink_leftmost_without_rebalance()){
+ //First recycle a node (this can't throw)
+ //NodePtr p = m_icont.unlink_leftmost_without_rebalance();
+ try{
+ //This can throw
+ *p = other;
+ return p;
+ }
+ catch(...){
+ //If there is an exception destroy the whole source
+ m_holder.destroy_node(p);
+ while((p = m_icont.unlink_leftmost_without_rebalance())){
+ m_holder.destroy_node(p);
+ }
+ throw;
+ }
+ }
+ else{
+ return m_holder.create_node(other);
+ }
+ }
+
+ AllocHolder &m_holder;
+ Icont &m_icont;
+ };
+
+ public:
+ BOOST_ENABLE_MOVE_EMULATION(rbtree)
+
+ typedef Key key_type;
+ typedef Value value_type;
+ typedef A allocator_type;
+ typedef KeyCompare key_compare;
+ typedef value_compare_impl< Key, Value
+ , KeyCompare, KeyOfValue> value_compare;
+ typedef typename A::pointer pointer;
+ typedef typename A::const_pointer const_pointer;
+ typedef typename A::reference reference;
+ typedef typename A::const_reference const_reference;
+ typedef typename A::size_type size_type;
+ typedef typename A::difference_type difference_type;
+ typedef difference_type rbtree_difference_type;
+ typedef pointer rbtree_pointer;
+ typedef const_pointer rbtree_const_pointer;
+ typedef reference rbtree_reference;
+ typedef const_reference rbtree_const_reference;
+ typedef NodeAlloc stored_allocator_type;
+
+ private:
+
+ template<class KeyValueCompare>
+ struct key_node_compare
+ : private KeyValueCompare
+ {
+ key_node_compare(KeyValueCompare comp)
+ : KeyValueCompare(comp)
+ {}
+
+ template<class KeyType>
+ bool operator()(const Node &n, const KeyType &k) const
+ { return KeyValueCompare::operator()(n.get_data(), k); }
+
+ template<class KeyType>
+ bool operator()(const KeyType &k, const Node &n) const
+ { return KeyValueCompare::operator()(k, n.get_data()); }
+ };
+
+ typedef key_node_compare<value_compare> KeyNodeCompare;
+
+ public:
+ //rbtree const_iterator
+ class const_iterator
+ : public std::iterator
+ < std::bidirectional_iterator_tag
+ , value_type , rbtree_difference_type
+ , rbtree_const_pointer , rbtree_const_reference>
+ {
+ protected:
+ typedef typename Icont::iterator iiterator;
+ iiterator m_it;
+ explicit const_iterator(iiterator it) : m_it(it){}
+ void prot_incr() { ++m_it; }
+ void prot_decr() { --m_it; }
+
+ private:
+ iiterator get()
+ { return this->m_it; }
+
+ public:
+ friend class rbtree <Key, Value, KeyOfValue, KeyCompare, A>;
+ typedef rbtree_difference_type difference_type;
+
+ //Constructors
+ const_iterator()
+ : m_it()
+ {}
+
+ //Pointer like operators
+ const_reference operator*() const
+ { return m_it->get_data(); }
+
+ const_pointer operator->() const
+ { return const_pointer(&m_it->get_data()); }
+
+ //Increment / Decrement
+ const_iterator& operator++()
+ { prot_incr(); return *this; }
+
+ const_iterator operator++(int)
+ { iiterator tmp = m_it; ++*this; return const_iterator(tmp); }
+
+ const_iterator& operator--()
+ { prot_decr(); return *this; }
+
+ const_iterator operator--(int)
+ { iiterator tmp = m_it; --*this; return const_iterator(tmp); }
+
+ //Comparison operators
+ bool operator== (const const_iterator& r) const
+ { return m_it == r.m_it; }
+
+ bool operator!= (const const_iterator& r) const
+ { return m_it != r.m_it; }
+ };
+
+ //rbtree iterator
+ class iterator : public const_iterator
+ {
+ private:
+ explicit iterator(iiterator it)
+ : const_iterator(it)
+ {}
+
+ iiterator get()
+ { return this->m_it; }
+
+ public:
+ friend class rbtree <Key, Value, KeyOfValue, KeyCompare, A>;
+ typedef rbtree_pointer pointer;
+ typedef rbtree_reference reference;
+
+ //Constructors
+ iterator(){}
+
+ //Pointer like operators
+ reference operator*() const { return this->m_it->get_data(); }
+ pointer operator->() const { return pointer(&this->m_it->get_data()); }
+
+ //Increment / Decrement
+ iterator& operator++()
+ { this->prot_incr(); return *this; }
+
+ iterator operator++(int)
+ { iiterator tmp = this->m_it; ++*this; return iterator(tmp); }
+
+ iterator& operator--()
+ { this->prot_decr(); return *this; }
+
+ iterator operator--(int)
+ { iterator tmp = *this; --*this; return tmp; }
+ };
+
+ typedef std::reverse_iterator<iterator> reverse_iterator;
+ typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
+
+ rbtree(const key_compare& comp = key_compare(),
+ const allocator_type& a = allocator_type())
+ : AllocHolder(a, comp)
+ {}
+
+ template <class InputIterator>
+ rbtree(InputIterator first, InputIterator last, const key_compare& comp,
+ const allocator_type& a, bool unique_insertion)
+ : AllocHolder(a, comp)
+ {
+ typedef typename std::iterator_traits<InputIterator>::iterator_category ItCat;
+ priv_create_and_insert_nodes(first, last, unique_insertion, alloc_version(), ItCat());
+ }
+
+ rbtree(const rbtree& x)
+ : AllocHolder(x, x.key_comp())
+ {
+ this->icont().clone_from
+ (x.icont(), typename AllocHolder::cloner(*this), Destroyer(this->node_alloc()));
+ }
+
+ #ifndef BOOST_HAS_RVALUE_REFS
+ rbtree(boost::rv<rbtree> &x)
+ : AllocHolder(x.get(), x.get().key_comp())
+ { this->swap(x.get()); }
+ #else
+ rbtree(rbtree &&x)
+ : AllocHolder(x, x.key_comp())
+ { this->swap(x); }
+ #endif
+
+ ~rbtree()
+ {} //AllocHolder clears the tree
+
+ rbtree& operator=(const rbtree& x)
+ {
+ if (this != &x) {
+ //Transfer all the nodes to a temporary tree
+ //If anything goes wrong, all the nodes will be destroyed
+ //automatically
+ Icont other_tree(this->icont().value_comp());
+ other_tree.swap(this->icont());
+
+ //Now recreate the source tree reusing nodes stored by other_tree
+ this->icont().clone_from
+ (x.icont()
+ , RecyclingCloner(*this, other_tree)
+ //, AllocHolder::cloner(*this)
+ , Destroyer(this->node_alloc()));
+
+ //If there are remaining nodes, destroy them
+ NodePtr p;
+ while((p = other_tree.unlink_leftmost_without_rebalance())){
+ AllocHolder::destroy_node(p);
+ }
+ }
+ return *this;
+ }
+
+ #ifndef BOOST_HAS_RVALUE_REFS
+ rbtree& operator=(boost::rv<rbtree> &mx)
+ { this->clear(); this->swap(mx.get()); return *this; }
+ #else
+ rbtree& operator=(rbtree &&mx)
+ { this->clear(); this->swap(mx); return *this; }
+ #endif
+
+ public:
+ // accessors:
+ value_compare value_comp() const
+ { return this->icont().value_comp().value_comp(); }
+
+ key_compare key_comp() const
+ { return this->icont().value_comp().value_comp().key_comp(); }
+
+ allocator_type get_allocator() const
+ { return allocator_type(this->node_alloc()); }
+
+ const stored_allocator_type &get_stored_allocator() const
+ { return this->node_alloc(); }
+
+ stored_allocator_type &get_stored_allocator()
+ { return this->node_alloc(); }
+
+ iterator begin()
+ { return iterator(this->icont().begin()); }
+
+ const_iterator begin() const
+ { return this->cbegin(); }
+
+ iterator end()
+ { return iterator(this->icont().end()); }
+
+ const_iterator end() const
+ { return this->cend(); }
+
+ reverse_iterator rbegin()
+ { return reverse_iterator(end()); }
+
+ const_reverse_iterator rbegin() const
+ { return this->crbegin(); }
+
+ reverse_iterator rend()
+ { return reverse_iterator(begin()); }
+
+ const_reverse_iterator rend() const
+ { return this->crend(); }
+
+ //! <b>Effects</b>: Returns a const_iterator to the first element contained in the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_iterator cbegin() const
+ { return const_iterator(this->non_const_icont().begin()); }
+
+ //! <b>Effects</b>: Returns a const_iterator to the end of the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_iterator cend() const
+ { return const_iterator(this->non_const_icont().end()); }
+
+ //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
+ //! of the reversed container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_reverse_iterator crbegin() const
+ { return const_reverse_iterator(cend()); }
+
+ //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
+ //! of the reversed container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_reverse_iterator crend() const
+ { return const_reverse_iterator(cbegin()); }
+
+ bool empty() const
+ { return !this->size(); }
+
+ size_type size() const
+ { return this->icont().size(); }
+
+ size_type max_size() const
+ { return AllocHolder::max_size(); }
+
+ void swap(ThisType& x)
+ { AllocHolder::swap(x); }
+
+ #ifndef BOOST_HAS_RVALUE_REFS
+ void swap(boost::rv<rbtree> &mt)
+ { this->swap(mt.get()); }
+ #else
+ void swap(rbtree &&mt)
+ { this->swap(mt); }
+ #endif
+
+ public:
+
+ typedef typename Icont::insert_commit_data insert_commit_data;
+
+ // insert/erase
+ std::pair<iterator,bool> insert_unique_check
+ (const key_type& key, insert_commit_data &data)
+ {
+ std::pair<iiterator, bool> ret =
+ this->icont().insert_unique_check(key, KeyNodeCompare(value_comp()), data);
+ return std::pair<iterator, bool>(iterator(ret.first), ret.second);
+ }
+
+ std::pair<iterator,bool> insert_unique_check
+ (const_iterator hint, const key_type& key, insert_commit_data &data)
+ {
+ std::pair<iiterator, bool> ret =
+ this->icont().insert_unique_check(hint.get(), key, KeyNodeCompare(value_comp()), data);
+ return std::pair<iterator, bool>(iterator(ret.first), ret.second);
+ }
+
+ iterator insert_unique_commit(const value_type& v, insert_commit_data &data)
+ {
+ NodePtr tmp = AllocHolder::create_node(v);
+ iiterator it(this->icont().insert_unique_commit(*tmp, data));
+ return iterator(it);
+ }
+
+ #ifndef BOOST_HAS_RVALUE_REFS
+ template<class MovableConvertible>
+ iterator insert_unique_commit
+ (boost::rv<MovableConvertible> &mv, insert_commit_data &data)
+ {
+ NodePtr tmp = AllocHolder::create_node(mv);
+ iiterator it(this->icont().insert_unique_commit(*tmp, data));
+ return iterator(it);
+ }
+ #else
+ template<class MovableConvertible>
+ iterator insert_unique_commit
+ (MovableConvertible && mv, insert_commit_data &data)
+ {
+ NodePtr tmp = AllocHolder::create_node(boost::forward_constructor<MovableConvertible>(mv));
+ iiterator it(this->icont().insert_unique_commit(*tmp, data));
+ return iterator(it);
+ }
+ #endif
+
+ std::pair<iterator,bool> insert_unique(const value_type& v)
+ {
+ insert_commit_data data;
+ std::pair<iterator,bool> ret =
+ this->insert_unique_check(KeyOfValue()(v), data);
+ if(!ret.second)
+ return ret;
+ return std::pair<iterator,bool>
+ (this->insert_unique_commit(v, data), true);
+ }
+
+ #ifndef BOOST_HAS_RVALUE_REFS
+ template<class MovableConvertible>
+ std::pair<iterator,bool> insert_unique(boost::rv<MovableConvertible> &mv)
+ {
+ insert_commit_data data;
+ std::pair<iterator,bool> ret =
+ this->insert_unique_check(KeyOfValue()(mv.get()), data);
+ if(!ret.second)
+ return ret;
+ return std::pair<iterator,bool>
+ (this->insert_unique_commit(mv, data), true);
+ }
+ #else
+ template<class MovableConvertible>
+ std::pair<iterator,bool> insert_unique(MovableConvertible &&mv)
+ {
+ insert_commit_data data;
+ std::pair<iterator,bool> ret =
+ this->insert_unique_check(KeyOfValue()(mv), data);
+ if(!ret.second)
+ return ret;
+ return std::pair<iterator,bool>
+ (this->insert_unique_commit(boost::forward_constructor<MovableConvertible>(mv), data), true);
+ }
+ #endif
+
+ private:
+ iterator emplace_unique_impl(NodePtr p)
+ {
+ value_type &v = p->get_data();
+ insert_commit_data data;
+ std::pair<iterator,bool> ret =
+ this->insert_unique_check(KeyOfValue()(v), data);
+ if(!ret.second){
+ Destroyer(this->node_alloc())(p);
+ return ret.first;
+ }
+ return iterator(iiterator(this->icont().insert_unique_commit(*p, data)));
+ }
+
+ iterator emplace_unique_hint_impl(const_iterator hint, NodePtr p)
+ {
+ value_type &v = p->get_data();
+ insert_commit_data data;
+ std::pair<iterator,bool> ret =
+ this->insert_unique_check(hint, KeyOfValue()(v), data);
+ if(!ret.second){
+ Destroyer(this->node_alloc())(p);
+ return ret.first;
+ }
+ return iterator(iiterator(this->icont().insert_unique_commit(*p, data)));
+ }
+
+ public:
+
+ #ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING
+
+ template <class... Args>
+ iterator emplace_unique(Args&&... args)
+ { return this->emplace_unique_impl(AllocHolder::create_node(boost::forward_constructor<Args>(args)...)); }
+
+ template <class... Args>
+ iterator emplace_hint_unique(const_iterator hint, Args&&... args)
+ { return this->emplace_unique_hint_impl(hint, AllocHolder::create_node(boost::forward_constructor<Args>(args)...)); }
+
+ template <class... Args>
+ iterator emplace_equal(Args&&... args)
+ {
+ NodePtr p(AllocHolder::create_node(boost::forward_constructor<Args>(args)...));
+ return iterator(this->icont().insert_equal(this->icont().end(), *p));
+ }
+
+ template <class... Args>
+ iterator emplace_hint_equal(const_iterator hint, Args&&... args)
+ {
+ NodePtr p(AllocHolder::create_node(boost::forward_constructor<Args>(args)...));
+ return iterator(this->icont().insert_equal(hint.get(), *p));
+ }
+
+ #else //#ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING
+
+ iterator emplace_unique()
+ { return this->emplace_unique_impl(AllocHolder::create_node()); }
+
+ iterator emplace_hint_unique(const_iterator hint)
+ { return this->emplace_unique_hint_impl(hint, AllocHolder::create_node()); }
+
+ iterator emplace_equal()
+ {
+ NodePtr p(AllocHolder::create_node());
+ return iterator(this->icont().insert_equal(this->icont().end(), *p));
+ }
+
+ iterator emplace_hint_equal(const_iterator hint)
+ {
+ NodePtr p(AllocHolder::create_node());
+ return iterator(this->icont().insert_equal(hint.get(), *p));
+ }
+
+ #define BOOST_PP_LOCAL_MACRO(n) \
+ template<BOOST_PP_ENUM_PARAMS(n, class P)> \
+ iterator emplace_unique(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_LIST, _)) \
+ { \
+ return this->emplace_unique_impl \
+ (AllocHolder::create_node(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _))); \
+ } \
+ \
+ template<BOOST_PP_ENUM_PARAMS(n, class P)> \
+ iterator emplace_hint_unique(const_iterator hint, BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_LIST, _)) \
+ { \
+ return this->emplace_unique_hint_impl \
+ (hint, AllocHolder::create_node(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _))); \
+ } \
+ \
+ template<BOOST_PP_ENUM_PARAMS(n, class P)> \
+ iterator emplace_equal(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_LIST, _)) \
+ { \
+ NodePtr p(AllocHolder::create_node(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _))); \
+ return iterator(this->icont().insert_equal(this->icont().end(), *p)); \
+ } \
+ \
+ template<BOOST_PP_ENUM_PARAMS(n, class P)> \
+ iterator emplace_hint_equal(const_iterator hint, BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_LIST, _)) \
+ { \
+ NodePtr p(AllocHolder::create_node(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _))); \
+ return iterator(this->icont().insert_equal(hint.get(), *p)); \
+ } \
+ //!
+ #define BOOST_PP_LOCAL_LIMITS (1, BOOST_INTERPROCESS_MAX_CONSTRUCTOR_PARAMETERS)
+ #include BOOST_PP_LOCAL_ITERATE()
+
+ #endif //#ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING
+
+ iterator insert_unique(const_iterator hint, const value_type& v)
+ {
+ insert_commit_data data;
+ std::pair<iterator,bool> ret =
+ this->insert_unique_check(hint, KeyOfValue()(v), data);
+ if(!ret.second)
+ return ret.first;
+ return this->insert_unique_commit(v, data);
+ }
+
+ #ifndef BOOST_HAS_RVALUE_REFS
+ template<class MovableConvertible>
+ iterator insert_unique(const_iterator hint, boost::rv<MovableConvertible> &mv)
+ {
+ insert_commit_data data;
+ std::pair<iterator,bool> ret =
+ this->insert_unique_check(hint, KeyOfValue()(mv.get()), data);
+ if(!ret.second)
+ return ret.first;
+ return this->insert_unique_commit(mv, data);
+ }
+ #else
+ template<class MovableConvertible>
+ iterator insert_unique
+ (const_iterator hint, MovableConvertible &&mv)
+ {
+ insert_commit_data data;
+ std::pair<iterator,bool> ret =
+ this->insert_unique_check(hint, KeyOfValue()(mv), data);
+ if(!ret.second)
+ return ret.first;
+ return this->insert_unique_commit(boost::forward_constructor<MovableConvertible>(mv), data);
+ }
+ #endif
+
+ template <class InputIterator>
+ void insert_unique(InputIterator first, InputIterator last)
+ {
+ if(this->empty()){
+ //Insert with end hint, to achieve linear
+ //complexity if [first, last) is ordered
+ const_iterator end(this->end());
+ for( ; first != last; ++first)
+ this->insert_unique(end, *first);
+ }
+ else{
+ for( ; first != last; ++first)
+ this->insert_unique(*first);
+ }
+ }
+
+ iterator insert_equal(const value_type& v)
+ {
+ NodePtr p(AllocHolder::create_node(v));
+ return iterator(this->icont().insert_equal(this->icont().end(), *p));
+ }
+
+ #ifndef BOOST_HAS_RVALUE_REFS
+ template<class MovableConvertible>
+ iterator insert_equal(boost::rv<MovableConvertible> &mv)
+ {
+ NodePtr p(AllocHolder::create_node(mv));
+ return iterator(this->icont().insert_equal(this->icont().end(), *p));
+ }
+ #else
+ template<class MovableConvertible>
+ iterator insert_equal(MovableConvertible &&mv)
+ {
+ NodePtr p(AllocHolder::create_node(boost::forward_constructor<MovableConvertible>(mv)));
+ return iterator(this->icont().insert_equal(this->icont().end(), *p));
+ }
+ #endif
+
+ iterator insert_equal(const_iterator hint, const value_type& v)
+ {
+ NodePtr p(AllocHolder::create_node(v));
+ return iterator(this->icont().insert_equal(hint.get(), *p));
+ }
+
+ #ifndef BOOST_HAS_RVALUE_REFS
+ template<class MovableConvertible>
+ iterator insert_equal(const_iterator hint, boost::rv<MovableConvertible> &mv)
+ {
+ NodePtr p(AllocHolder::create_node(mv));
+ return iterator(this->icont().insert_equal(hint.get(), *p));
+ }
+ #else
+ template<class MovableConvertible>
+ iterator insert_equal(const_iterator hint, MovableConvertible &&mv)
+ {
+ NodePtr p(AllocHolder::create_node(boost::move(mv)));
+ return iterator(this->icont().insert_equal(hint.get(), *p));
+ }
+ #endif
+
+ template <class InputIterator>
+ void insert_equal(InputIterator first, InputIterator last)
+ {
+ //Insert with end hint, to achieve linear
+ //complexity if [first, last) is ordered
+ const_iterator end(this->cend());
+ for( ; first != last; ++first)
+ this->insert_equal(end, *first);
+ }
+
+ iterator erase(const_iterator position)
+ { return iterator(this->icont().erase_and_dispose(position.get(), Destroyer(this->node_alloc()))); }
+
+ size_type erase(const key_type& k)
+ { return AllocHolder::erase_key(k, KeyNodeCompare(value_comp()), alloc_version()); }
+
+ iterator erase(const_iterator first, const_iterator last)
+ { return iterator(AllocHolder::erase_range(first.get(), last.get(), alloc_version())); }
+
+ void clear()
+ { AllocHolder::clear(alloc_version()); }
+
+ // set operations:
+ iterator find(const key_type& k)
+ { return iterator(this->icont().find(k, KeyNodeCompare(value_comp()))); }
+
+ const_iterator find(const key_type& k) const
+ { return const_iterator(this->non_const_icont().find(k, KeyNodeCompare(value_comp()))); }
+
+ size_type count(const key_type& k) const
+ { return size_type(this->icont().count(k, KeyNodeCompare(value_comp()))); }
+
+ iterator lower_bound(const key_type& k)
+ { return iterator(this->icont().lower_bound(k, KeyNodeCompare(value_comp()))); }
+
+ const_iterator lower_bound(const key_type& k) const
+ { return const_iterator(this->non_const_icont().lower_bound(k, KeyNodeCompare(value_comp()))); }
+
+ iterator upper_bound(const key_type& k)
+ { return iterator(this->icont().upper_bound(k, KeyNodeCompare(value_comp()))); }
+
+ const_iterator upper_bound(const key_type& k) const
+ { return const_iterator(this->non_const_icont().upper_bound(k, KeyNodeCompare(value_comp()))); }
+
+ std::pair<iterator,iterator> equal_range(const key_type& k)
+ {
+ std::pair<iiterator, iiterator> ret =
+ this->icont().equal_range(k, KeyNodeCompare(value_comp()));
+ return std::pair<iterator,iterator>(iterator(ret.first), iterator(ret.second));
+ }
+
+ std::pair<const_iterator, const_iterator> equal_range(const key_type& k) const
+ {
+ std::pair<iiterator, iiterator> ret =
+ this->non_const_icont().equal_range(k, KeyNodeCompare(value_comp()));
+ return std::pair<const_iterator,const_iterator>
+ (const_iterator(ret.first), const_iterator(ret.second));
+ }
+
+ private:
+ //Iterator range version
+ template<class InpIterator>
+ void priv_create_and_insert_nodes
+ (InpIterator beg, InpIterator end, bool unique)
+ {
+ typedef typename std::iterator_traits<InpIterator>::iterator_category ItCat;
+ priv_create_and_insert_nodes(beg, end, unique, alloc_version(), ItCat());
+ }
+
+ template<class InpIterator>
+ void priv_create_and_insert_nodes
+ (InpIterator beg, InpIterator end, bool unique, allocator_v1, std::input_iterator_tag)
+ {
+ if(unique){
+ for (; beg != end; ++beg){
+ this->insert_unique(*beg);
+ }
+ }
+ else{
+ for (; beg != end; ++beg){
+ this->insert_equal(*beg);
+ }
+ }
+ }
+
+ template<class InpIterator>
+ void priv_create_and_insert_nodes
+ (InpIterator beg, InpIterator end, bool unique, allocator_v2, std::input_iterator_tag)
+ { //Just forward to the default one
+ priv_create_and_insert_nodes(beg, end, unique, allocator_v1(), std::input_iterator_tag());
+ }
+
+ class insertion_functor;
+ friend class insertion_functor;
+
+ class insertion_functor
+ {
+ Icont &icont_;
+
+ public:
+ insertion_functor(Icont &icont)
+ : icont_(icont)
+ {}
+
+ void operator()(Node &n)
+ { this->icont_.insert_equal(this->icont_.cend(), n); }
+ };
+
+
+ template<class FwdIterator>
+ void priv_create_and_insert_nodes
+ (FwdIterator beg, FwdIterator end, bool unique, allocator_v2, std::forward_iterator_tag)
+ {
+ if(beg != end){
+ if(unique){
+ priv_create_and_insert_nodes(beg, end, unique, allocator_v2(), std::input_iterator_tag());
+ }
+ else{
+ //Optimized allocation and construction
+ this->allocate_many_and_construct
+ (beg, std::distance(beg, end), insertion_functor(this->icont()));
+ }
+ }
+ }
+};
+
+template <class Key, class Value, class KeyOfValue,
+ class KeyCompare, class A>
+inline bool
+operator==(const rbtree<Key,Value,KeyOfValue,KeyCompare,A>& x,
+ const rbtree<Key,Value,KeyOfValue,KeyCompare,A>& y)
+{
+ return x.size() == y.size() &&
+ std::equal(x.begin(), x.end(), y.begin());
+}
+
+template <class Key, class Value, class KeyOfValue,
+ class KeyCompare, class A>
+inline bool
+operator<(const rbtree<Key,Value,KeyOfValue,KeyCompare,A>& x,
+ const rbtree<Key,Value,KeyOfValue,KeyCompare,A>& y)
+{
+ return std::lexicographical_compare(x.begin(), x.end(),
+ y.begin(), y.end());
+}
+
+template <class Key, class Value, class KeyOfValue,
+ class KeyCompare, class A>
+inline bool
+operator!=(const rbtree<Key,Value,KeyOfValue,KeyCompare,A>& x,
+ const rbtree<Key,Value,KeyOfValue,KeyCompare,A>& y) {
+ return !(x == y);
+}
+
+template <class Key, class Value, class KeyOfValue,
+ class KeyCompare, class A>
+inline bool
+operator>(const rbtree<Key,Value,KeyOfValue,KeyCompare,A>& x,
+ const rbtree<Key,Value,KeyOfValue,KeyCompare,A>& y) {
+ return y < x;
+}
+
+template <class Key, class Value, class KeyOfValue,
+ class KeyCompare, class A>
+inline bool
+operator<=(const rbtree<Key,Value,KeyOfValue,KeyCompare,A>& x,
+ const rbtree<Key,Value,KeyOfValue,KeyCompare,A>& y) {
+ return !(y < x);
+}
+
+template <class Key, class Value, class KeyOfValue,
+ class KeyCompare, class A>
+inline bool
+operator>=(const rbtree<Key,Value,KeyOfValue,KeyCompare,A>& x,
+ const rbtree<Key,Value,KeyOfValue,KeyCompare,A>& y) {
+ return !(x < y);
+}
+
+
+template <class Key, class Value, class KeyOfValue,
+ class KeyCompare, class A>
+inline void
+swap(rbtree<Key,Value,KeyOfValue,KeyCompare,A>& x,
+ rbtree<Key,Value,KeyOfValue,KeyCompare,A>& y)
+{
+ x.swap(y);
+}
+
+} //namespace detail {
+
+//!has_trivial_destructor_after_move<> == true_type
+//!specialization for optimizations
+template <class K, class V, class KOV,
+ class C, class A>
+struct has_trivial_destructor_after_move<detail::rbtree<K, V, KOV, C, A> >
+{
+ enum { value =
+ has_trivial_destructor<A>::value &&
+ has_trivial_destructor<C>::value };
+};
+
+
+} //namespace interprocess {
+} //namespace boost {
+
+#include <boost/interprocess/detail/config_end.hpp>
+
+#endif //BOOST_INTERPROCESS_TREE_HPP

Added: sandbox/boost/interprocess/containers/flat_map.hpp
==============================================================================
--- (empty file)
+++ sandbox/boost/interprocess/containers/flat_map.hpp 2009-02-17 13:04:56 EST (Tue, 17 Feb 2009)
@@ -0,0 +1,1506 @@
+//////////////////////////////////////////////////////////////////////////////
+//
+// (C) Copyright Ion Gaztanaga 2005-2008. Distributed under the Boost
+// Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+//
+// See http://www.boost.org/libs/interprocess for documentation.
+//
+//////////////////////////////////////////////////////////////////////////////
+
+#ifndef BOOST_INTERPROCESS_FLAT_MAP_HPP
+#define BOOST_INTERPROCESS_FLAT_MAP_HPP
+
+#if (defined _MSC_VER) && (_MSC_VER >= 1200)
+# pragma once
+#endif
+
+#include <boost/interprocess/detail/config_begin.hpp>
+#include <boost/interprocess/detail/workaround.hpp>
+
+#include <boost/interprocess/interprocess_fwd.hpp>
+#include <utility>
+#include <functional>
+#include <memory>
+#include <stdexcept>
+#include <boost/interprocess/containers/detail/flat_tree.hpp>
+#include <boost/interprocess/detail/utilities.hpp>
+#include <boost/type_traits/has_trivial_destructor.hpp>
+#include <boost/interprocess/detail/mpl.hpp>
+#include <boost/move_semantics/move.hpp>
+
+namespace boost { namespace interprocess {
+
+/// @cond
+// Forward declarations of operators == and <, needed for friend declarations.
+template <class Key, class T, class Pred, class Alloc>
+class flat_map;
+
+template <class Key, class T, class Pred, class Alloc>
+inline bool operator==(const flat_map<Key,T,Pred,Alloc>& x,
+ const flat_map<Key,T,Pred,Alloc>& y);
+
+template <class Key, class T, class Pred, class Alloc>
+inline bool operator<(const flat_map<Key,T,Pred,Alloc>& x,
+ const flat_map<Key,T,Pred,Alloc>& y);
+/// @endcond
+
+//! A flat_map is a kind of associative container that supports unique keys (contains at
+//! most one of each key value) and provides for fast retrieval of values of another
+//! type T based on the keys. The flat_map class supports random-access iterators.
+//!
+//! A flat_map satisfies all of the requirements of a container and of a reversible
+//! container and of an associative container. A flat_map also provides
+//! most operations described for unique keys. For a
+//! flat_map<Key,T> the key_type is Key and the value_type is std::pair<Key,T>
+//! (unlike std::map<Key, T> which value_type is std::pair<<b>const</b> Key, T>).
+//!
+//! Pred is the ordering function for Keys (e.g. <i>std::less<Key></i>).
+//!
+//! Alloc is the allocator to allocate the value_types
+//! (e.g. <i>boost::interprocess:allocator< std::pair<Key, T></i>).
+//!
+//! flat_map is similar to std::map but it's implemented like an ordered vector.
+//! This means that inserting a new element into a flat_map invalidates
+//! previous iterators and references
+//!
+//! Erasing an element of a flat_map invalidates iterators and references
+//! pointing to elements that come after (their keys are bigger) the erased element.
+template <class Key, class T, class Pred, class Alloc>
+class flat_map
+{
+ /// @cond
+ private:
+ //This is the tree that we should store if pair was movable
+ typedef detail::flat_tree<Key,
+ std::pair<Key, T>,
+ detail::select1st< std::pair<Key, T> >,
+ Pred,
+ Alloc> tree_t;
+
+ //#ifndef BOOST_HAS_RVALUE_REFS
+ //This is the real tree stored here. It's based on a movable pair
+ typedef detail::flat_tree<Key,
+ pair<Key, T>,
+ detail::select1st< pair<Key, T> >,
+ Pred,
+ typename Alloc::template
+ rebind<pair<Key, T> >::other> impl_tree_t;
+/*
+ #else
+ typedef tree_t impl_tree_t;
+ #endif
+*/
+ impl_tree_t m_flat_tree; // flat tree representing flat_map
+
+ typedef typename impl_tree_t::value_type impl_value_type;
+ typedef typename impl_tree_t::pointer impl_pointer;
+ typedef typename impl_tree_t::const_pointer impl_const_pointer;
+ typedef typename impl_tree_t::reference impl_reference;
+ typedef typename impl_tree_t::const_reference impl_const_reference;
+ typedef typename impl_tree_t::value_compare impl_value_compare;
+ typedef typename impl_tree_t::iterator impl_iterator;
+ typedef typename impl_tree_t::const_iterator impl_const_iterator;
+ typedef typename impl_tree_t::reverse_iterator impl_reverse_iterator;
+ typedef typename impl_tree_t::const_reverse_iterator impl_const_reverse_iterator;
+ typedef typename impl_tree_t::allocator_type impl_allocator_type;
+ #ifndef BOOST_HAS_RVALUE_REFS
+ typedef boost::rv<impl_value_type> impl_moved_value_type;
+ #endif
+
+ //#ifndef BOOST_HAS_RVALUE_REFS
+ template<class D, class S>
+ static D &force(const S &s)
+ { return *const_cast<D*>(reinterpret_cast<const D*>(&s)); }
+
+ template<class D, class S>
+ static D force_copy(S s)
+ {
+ value_type *vp = reinterpret_cast<value_type *>(&*s);
+ return D(vp);
+ }
+
+ /// @endcond
+
+ public:
+ BOOST_ENABLE_MOVE_EMULATION(flat_map)
+
+ // typedefs:
+ typedef typename tree_t::key_type key_type;
+ typedef typename tree_t::value_type value_type;
+ typedef typename tree_t::pointer pointer;
+ typedef typename tree_t::const_pointer const_pointer;
+ typedef typename tree_t::reference reference;
+ typedef typename tree_t::const_reference const_reference;
+ typedef typename tree_t::value_compare value_compare;
+ typedef T mapped_type;
+ typedef typename tree_t::key_compare key_compare;
+ typedef typename tree_t::iterator iterator;
+ typedef typename tree_t::const_iterator const_iterator;
+ typedef typename tree_t::reverse_iterator reverse_iterator;
+ typedef typename tree_t::const_reverse_iterator const_reverse_iterator;
+ typedef typename tree_t::size_type size_type;
+ typedef typename tree_t::difference_type difference_type;
+ typedef typename tree_t::allocator_type allocator_type;
+ typedef typename tree_t::stored_allocator_type stored_allocator_type;
+
+ //! <b>Effects</b>: Constructs an empty flat_map using the specified
+ //! comparison object and allocator.
+ //!
+ //! <b>Complexity</b>: Constant.
+ explicit flat_map(const Pred& comp = Pred(), const allocator_type& a = allocator_type())
+ : m_flat_tree(comp, force<impl_allocator_type>(a)) {}
+
+ //! <b>Effects</b>: Constructs an empty flat_map using the specified comparison object and
+ //! allocator, and inserts elements from the range [first ,last ).
+ //!
+ //! <b>Complexity</b>: Linear in N if the range [first ,last ) is already sorted using
+ //! comp and otherwise N logN, where N is last - first.
+ template <class InputIterator>
+ flat_map(InputIterator first, InputIterator last, const Pred& comp = Pred(),
+ const allocator_type& a = allocator_type())
+ : m_flat_tree(comp, force<impl_allocator_type>(a))
+ { m_flat_tree.insert_unique(first, last); }
+
+ //! <b>Effects</b>: Copy constructs a flat_map.
+ //!
+ //! <b>Complexity</b>: Linear in x.size().
+ flat_map(const flat_map<Key,T,Pred,Alloc>& x)
+ : m_flat_tree(x.m_flat_tree) {}
+
+ //! <b>Effects</b>: Move constructs a flat_map.
+ //! Constructs *this using x's resources.
+ //!
+ //! <b>Complexity</b>: Construct.
+ //!
+ //! <b>Postcondition</b>: x is emptied.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ flat_map(boost::rv<flat_map<Key,T,Pred,Alloc> > &x)
+ : m_flat_tree(boost::move(x.get().m_flat_tree)) {}
+
+ #else
+ flat_map(flat_map<Key,T,Pred,Alloc> && x)
+ : m_flat_tree(boost::move(x.m_flat_tree)) {}
+ #endif
+
+ //! <b>Effects</b>: Makes *this a copy of x.
+ //!
+ //! <b>Complexity</b>: Linear in x.size().
+ flat_map<Key,T,Pred,Alloc>& operator=(const flat_map<Key, T, Pred, Alloc>& x)
+ { m_flat_tree = x.m_flat_tree; return *this; }
+
+ //! <b>Effects</b>: Move constructs a flat_map.
+ //! Constructs *this using x's resources.
+ //!
+ //! <b>Complexity</b>: Construct.
+ //!
+ //! <b>Postcondition</b>: x is emptied.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ flat_map<Key,T,Pred,Alloc>& operator=(boost::rv<flat_map<Key, T, Pred, Alloc> > &mx)
+ { m_flat_tree = boost::move(mx.get().m_flat_tree); return *this; }
+ #else
+ flat_map<Key,T,Pred,Alloc>& operator=(flat_map<Key, T, Pred, Alloc> && mx)
+ { m_flat_tree = boost::move(mx.m_flat_tree); return *this; }
+ #endif
+
+ //! <b>Effects</b>: Returns the comparison object out
+ //! of which a was constructed.
+ //!
+ //! <b>Complexity</b>: Constant.
+ key_compare key_comp() const
+ { return force<key_compare>(m_flat_tree.key_comp()); }
+
+ //! <b>Effects</b>: Returns an object of value_compare constructed out
+ //! of the comparison object.
+ //!
+ //! <b>Complexity</b>: Constant.
+ value_compare value_comp() const
+ { return value_compare(force<key_compare>(m_flat_tree.key_comp())); }
+
+ //! <b>Effects</b>: Returns a copy of the Allocator that
+ //! was passed to the object's constructor.
+ //!
+ //! <b>Complexity</b>: Constant.
+ allocator_type get_allocator() const
+ { return force<allocator_type>(m_flat_tree.get_allocator()); }
+
+ const stored_allocator_type &get_stored_allocator() const
+ { return force<stored_allocator_type>(m_flat_tree.get_stored_allocator()); }
+
+ stored_allocator_type &get_stored_allocator()
+ { return force<stored_allocator_type>(m_flat_tree.get_stored_allocator()); }
+
+ //! <b>Effects</b>: Returns an iterator to the first element contained in the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ iterator begin()
+ { return force_copy<iterator>(m_flat_tree.begin()); }
+
+ //! <b>Effects</b>: Returns a const_iterator to the first element contained in the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_iterator begin() const
+ { return force<const_iterator>(m_flat_tree.begin()); }
+
+ //! <b>Effects</b>: Returns a const_iterator to the first element contained in the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_iterator cbegin() const
+ { return force<const_iterator>(m_flat_tree.cbegin()); }
+
+ //! <b>Effects</b>: Returns an iterator to the end of the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ iterator end()
+ { return force_copy<iterator>(m_flat_tree.end()); }
+
+ //! <b>Effects</b>: Returns a const_iterator to the end of the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_iterator end() const
+ { return force<const_iterator>(m_flat_tree.end()); }
+
+ //! <b>Effects</b>: Returns a const_iterator to the end of the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_iterator cend() const
+ { return force<const_iterator>(m_flat_tree.cend()); }
+
+ //! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning
+ //! of the reversed container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ reverse_iterator rbegin()
+ { return force<reverse_iterator>(m_flat_tree.rbegin()); }
+
+ //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
+ //! of the reversed container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_reverse_iterator rbegin() const
+ { return force<const_reverse_iterator>(m_flat_tree.rbegin()); }
+
+ //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
+ //! of the reversed container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_reverse_iterator crbegin() const
+ { return force<const_reverse_iterator>(m_flat_tree.crbegin()); }
+
+ //! <b>Effects</b>: Returns a reverse_iterator pointing to the end
+ //! of the reversed container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ reverse_iterator rend()
+ { return force<reverse_iterator>(m_flat_tree.rend()); }
+
+ //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
+ //! of the reversed container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_reverse_iterator rend() const
+ { return force<const_reverse_iterator>(m_flat_tree.rend()); }
+
+ //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
+ //! of the reversed container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_reverse_iterator crend() const
+ { return force<const_reverse_iterator>(m_flat_tree.crend()); }
+
+ //! <b>Effects</b>: Returns true if the container contains no elements.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ bool empty() const
+ { return m_flat_tree.empty(); }
+
+ //! <b>Effects</b>: Returns the number of the elements contained in the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ size_type size() const
+ { return m_flat_tree.size(); }
+
+ //! <b>Effects</b>: Returns the largest possible size of the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ size_type max_size() const
+ { return m_flat_tree.max_size(); }
+
+ //! Effects: If there is no key equivalent to x in the flat_map, inserts
+ //! value_type(x, T()) into the flat_map.
+ //!
+ //! Returns: A reference to the mapped_type corresponding to x in *this.
+ //!
+ //! Complexity: Logarithmic.
+ T &operator[](const key_type& k)
+ {
+ iterator i = lower_bound(k);
+ // i->first is greater than or equivalent to k.
+ if (i == end() || key_comp()(k, (*i).first))
+ i = insert(i, value_type(k, T()));
+ return (*i).second;
+ }
+
+ //! Effects: If there is no key equivalent to x in the flat_map, inserts
+ //! value_type(move(x), T()) into the flat_map (the key is move-constructed)
+ //!
+ //! Returns: A reference to the mapped_type corresponding to x in *this.
+ //!
+ //! Complexity: Logarithmic.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ T &operator[](boost::rv<key_type> &mk)
+ {
+ key_type &k = mk.get();
+ iterator i = lower_bound(k);
+ // i->first is greater than or equivalent to k.
+ if (i == end() || key_comp()(k, (*i).first))
+ i = insert(i, value_type(k, boost::move(T())));
+ return (*i).second;
+ }
+ #else
+ T &operator[](key_type &&mk)
+ {
+ key_type &k = mk;
+ iterator i = lower_bound(k);
+ // i->first is greater than or equivalent to k.
+ if (i == end() || key_comp()(k, (*i).first))
+ i = insert(i, value_type(boost::forward_constructor<key_type>(k), boost::move(T())));
+ return (*i).second;
+ }
+ #endif
+
+ //! Returns: A reference to the element whose key is equivalent to x.
+ //! Throws: An exception object of type out_of_range if no such element is present.
+ //! Complexity: logarithmic.
+ T& at(const key_type& k)
+ {
+ iterator i = this->find(k);
+ if(i == this->end()){
+ throw std::out_of_range("key not found");
+ }
+ return i->second;
+ }
+
+ //! Returns: A reference to the element whose key is equivalent to x.
+ //! Throws: An exception object of type out_of_range if no such element is present.
+ //! Complexity: logarithmic.
+ const T& at(const key_type& k) const
+ {
+ const_iterator i = this->find(k);
+ if(i == this->end()){
+ throw std::out_of_range("key not found");
+ }
+ return i->second;
+ }
+
+ //! <b>Effects</b>: Swaps the contents of *this and x.
+ //! If this->allocator_type() != x.allocator_type() allocators are also swapped.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ void swap(boost::rv<flat_map> &x)
+ { this->swap(x.get()); }
+ void swap(flat_map& x)
+ #else
+ void swap(flat_map &&x)
+ #endif
+ { m_flat_tree.swap(x.m_flat_tree); }
+
+ //! <b>Effects</b>: Inserts x if and only if there is no element in the container
+ //! with key equivalent to the key of x.
+ //!
+ //! <b>Returns</b>: The bool component of the returned pair is true if and only
+ //! if the insertion takes place, and the iterator component of the pair
+ //! points to the element with key equivalent to the key of x.
+ //!
+ //! <b>Complexity</b>: Logarithmic search time plus linear insertion
+ //! to the elements with bigger keys than x.
+ //!
+ //! <b>Note</b>: If an element it's inserted it might invalidate elements.
+ std::pair<iterator,bool> insert(const value_type& x)
+ { return force<std::pair<iterator,bool> >(
+ m_flat_tree.insert_unique(force<impl_value_type>(x))); }
+
+ //! <b>Effects</b>: Inserts a new value_type move constructed from the pair if and
+ //! only if there is no element in the container with key equivalent to the key of x.
+ //!
+ //! <b>Returns</b>: The bool component of the returned pair is true if and only
+ //! if the insertion takes place, and the iterator component of the pair
+ //! points to the element with key equivalent to the key of x.
+ //!
+ //! <b>Complexity</b>: Logarithmic search time plus linear insertion
+ //! to the elements with bigger keys than x.
+ //!
+ //! <b>Note</b>: If an element it's inserted it might invalidate elements.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ std::pair<iterator,bool> insert(boost::rv<value_type> &x)
+ { return force<std::pair<iterator,bool> >(
+ m_flat_tree.insert_unique(force<impl_moved_value_type>(x))); }
+ #else
+ std::pair<iterator,bool> insert(value_type &&x)
+ { return force<std::pair<iterator,bool> >(
+ m_flat_tree.insert_unique(boost::move(force<impl_value_type>(x)))); }
+ #endif
+
+ //! <b>Effects</b>: Inserts a new value_type move constructed from the pair if and
+ //! only if there is no element in the container with key equivalent to the key of x.
+ //!
+ //! <b>Returns</b>: The bool component of the returned pair is true if and only
+ //! if the insertion takes place, and the iterator component of the pair
+ //! points to the element with key equivalent to the key of x.
+ //!
+ //! <b>Complexity</b>: Logarithmic search time plus linear insertion
+ //! to the elements with bigger keys than x.
+ //!
+ //! <b>Note</b>: If an element it's inserted it might invalidate elements.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ std::pair<iterator,bool> insert(boost::rv<impl_value_type> &x)
+ { return force<std::pair<iterator,bool> >(
+ m_flat_tree.insert_unique(x)); }
+ #else
+ std::pair<iterator,bool> insert(impl_value_type &&x)
+ { return force<std::pair<iterator,bool> >
+ (m_flat_tree.insert_unique(boost::move(x)));
+ }
+ #endif
+
+ //! <b>Effects</b>: Inserts a copy of x in the container if and only if there is
+ //! no element in the container with key equivalent to the key of x.
+ //! p is a hint pointing to where the insert should start to search.
+ //!
+ //! <b>Returns</b>: An iterator pointing to the element with key equivalent
+ //! to the key of x.
+ //!
+ //! <b>Complexity</b>: Logarithmic search time (constant if x is inserted
+ //! right before p) plus insertion linear to the elements with bigger keys than x.
+ //!
+ //! <b>Note</b>: If an element it's inserted it might invalidate elements.
+ iterator insert(const_iterator position, const value_type& x)
+ { return force_copy<iterator>(
+ m_flat_tree.insert_unique(force<impl_const_iterator>(position), force<impl_value_type>(x))); }
+
+ //! <b>Effects</b>: Inserts an element move constructed from x in the container.
+ //! p is a hint pointing to where the insert should start to search.
+ //!
+ //! <b>Returns</b>: An iterator pointing to the element with key equivalent to the key of x.
+ //!
+ //! <b>Complexity</b>: Logarithmic search time (constant if x is inserted
+ //! right before p) plus insertion linear to the elements with bigger keys than x.
+ //!
+ //! <b>Note</b>: If an element it's inserted it might invalidate elements.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ iterator insert(const_iterator position, boost::rv<value_type> &x)
+ { return force_copy<iterator>(
+ m_flat_tree.insert_unique(force<impl_const_iterator>(position), force<impl_moved_value_type>(x))); }
+ #else
+ iterator insert(const_iterator position, value_type &&x)
+ { return force_copy<iterator>(
+ m_flat_tree.insert_unique(force<impl_const_iterator>(position), boost::move(force<impl_value_type>(x)))); }
+ #endif
+
+ //! <b>Effects</b>: Inserts an element move constructed from x in the container.
+ //! p is a hint pointing to where the insert should start to search.
+ //!
+ //! <b>Returns</b>: An iterator pointing to the element with key equivalent to the key of x.
+ //!
+ //! <b>Complexity</b>: Logarithmic search time (constant if x is inserted
+ //! right before p) plus insertion linear to the elements with bigger keys than x.
+ //!
+ //! <b>Note</b>: If an element it's inserted it might invalidate elements.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ iterator insert(const_iterator position, boost::rv<impl_value_type> &x)
+ { return force_copy<iterator>(
+ m_flat_tree.insert_unique(force<impl_const_iterator>(position), x)); }
+ #else
+ iterator insert(const_iterator position, impl_value_type &&x)
+ { return force_copy<iterator>(
+ m_flat_tree.insert_unique(force<impl_const_iterator>(position), boost::move(x))); }
+ #endif
+
+ //! <b>Requires</b>: i, j are not iterators into *this.
+ //!
+ //! <b>Effects</b>: inserts each element from the range [i,j) if and only
+ //! if there is no element with key equivalent to the key of that element.
+ //!
+ //! <b>Complexity</b>: N log(size()+N) (N is the distance from i to j)
+ //! search time plus N*size() insertion time.
+ //!
+ //! <b>Note</b>: If an element it's inserted it might invalidate elements.
+ template <class InputIterator>
+ void insert(InputIterator first, InputIterator last)
+ { m_flat_tree.insert_unique(first, last); }
+
+ #ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING
+
+ //! <b>Effects</b>: Inserts an object of type T constructed with
+ //! std::forward<Args>(args)... if and only if there is no element in the container
+ //! with key equivalent to the key of x.
+ //!
+ //! <b>Returns</b>: The bool component of the returned pair is true if and only
+ //! if the insertion takes place, and the iterator component of the pair
+ //! points to the element with key equivalent to the key of x.
+ //!
+ //! <b>Complexity</b>: Logarithmic search time plus linear insertion
+ //! to the elements with bigger keys than x.
+ //!
+ //! <b>Note</b>: If an element it's inserted it might invalidate elements.
+ template <class... Args>
+ iterator emplace(Args&&... args)
+ { return force_copy<iterator>(m_flat_tree.emplace_unique(boost::forward_constructor<Args>(args)...)); }
+
+ //! <b>Effects</b>: Inserts an object of type T constructed with
+ //! std::forward<Args>(args)... in the container if and only if there is
+ //! no element in the container with key equivalent to the key of x.
+ //! p is a hint pointing to where the insert should start to search.
+ //!
+ //! <b>Returns</b>: An iterator pointing to the element with key equivalent
+ //! to the key of x.
+ //!
+ //! <b>Complexity</b>: Logarithmic search time (constant if x is inserted
+ //! right before p) plus insertion linear to the elements with bigger keys than x.
+ //!
+ //! <b>Note</b>: If an element it's inserted it might invalidate elements.
+ template <class... Args>
+ iterator emplace_hint(const_iterator hint, Args&&... args)
+ { return force_copy<iterator>(m_flat_tree.emplace_hint_unique(force<impl_const_iterator>(hint), boost::forward_constructor<Args>(args)...)); }
+
+ #else //#ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING
+
+ iterator emplace()
+ { return force_copy<iterator>(m_flat_tree.emplace_unique()); }
+
+ iterator emplace_hint(const_iterator hint)
+ { return force_copy<iterator>(m_flat_tree.emplace_hint_unique(force<impl_const_iterator>(hint))); }
+
+ #define BOOST_PP_LOCAL_MACRO(n) \
+ template<BOOST_PP_ENUM_PARAMS(n, class P)> \
+ iterator emplace(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_LIST, _)) \
+ { \
+ return force_copy<iterator>(m_flat_tree.emplace_unique \
+ (BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _))); \
+ } \
+ \
+ template<BOOST_PP_ENUM_PARAMS(n, class P)> \
+ iterator emplace_hint(const_iterator hint, BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_LIST, _)) \
+ { \
+ return force_copy<iterator>(m_flat_tree.emplace_hint_unique \
+ (force<impl_const_iterator>(hint), \
+ BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _))); \
+ } \
+ //!
+ #define BOOST_PP_LOCAL_LIMITS (1, BOOST_INTERPROCESS_MAX_CONSTRUCTOR_PARAMETERS)
+ #include BOOST_PP_LOCAL_ITERATE()
+
+ #endif //#ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING
+
+ //! <b>Effects</b>: Erases the element pointed to by position.
+ //!
+ //! <b>Returns</b>: Returns an iterator pointing to the element immediately
+ //! following q prior to the element being erased. If no such element exists,
+ //! returns end().
+ //!
+ //! <b>Complexity</b>: Linear to the elements with keys bigger than position
+ //!
+ //! <b>Note</b>: Invalidates elements with keys
+ //! not less than the erased element.
+ iterator erase(const_iterator position)
+ { return force_copy<iterator>(m_flat_tree.erase(force<impl_const_iterator>(position))); }
+
+ //! <b>Effects</b>: Erases all elements in the container with key equivalent to x.
+ //!
+ //! <b>Returns</b>: Returns the number of erased elements.
+ //!
+ //! <b>Complexity</b>: Logarithmic search time plus erasure time
+ //! linear to the elements with bigger keys.
+ size_type erase(const key_type& x)
+ { return m_flat_tree.erase(x); }
+
+ //! <b>Effects</b>: Erases all the elements in the range [first, last).
+ //!
+ //! <b>Returns</b>: Returns last.
+ //!
+ //! <b>Complexity</b>: size()*N where N is the distance from first to last.
+ //!
+ //! <b>Complexity</b>: Logarithmic search time plus erasure time
+ //! linear to the elements with bigger keys.
+ iterator erase(const_iterator first, const_iterator last)
+ { return force_copy<iterator>(m_flat_tree.erase(force<impl_const_iterator>(first), force<impl_const_iterator>(last))); }
+
+ //! <b>Effects</b>: erase(a.begin(),a.end()).
+ //!
+ //! <b>Postcondition</b>: size() == 0.
+ //!
+ //! <b>Complexity</b>: linear in size().
+ void clear()
+ { m_flat_tree.clear(); }
+
+ //! <b>Effects</b>: Tries to deallocate the excess of memory created
+ // with previous allocations. The size of the vector is unchanged
+ //!
+ //! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws.
+ //!
+ //! <b>Complexity</b>: Linear to size().
+ void shrink_to_fit()
+ { m_flat_tree.shrink_to_fit(); }
+
+ //! <b>Returns</b>: An iterator pointing to an element with the key
+ //! equivalent to x, or end() if such an element is not found.
+ //!
+ //! <b>Complexity</b>: Logarithmic.
+ iterator find(const key_type& x)
+ { return force_copy<iterator>(m_flat_tree.find(x)); }
+
+ //! <b>Returns</b>: A const_iterator pointing to an element with the key
+ //! equivalent to x, or end() if such an element is not found.
+ //!
+ //! <b>Complexity</b>: Logarithmic.s
+ const_iterator find(const key_type& x) const
+ { return force<const_iterator>(m_flat_tree.find(x)); }
+
+ //! <b>Returns</b>: The number of elements with key equivalent to x.
+ //!
+ //! <b>Complexity</b>: log(size())+count(k)
+ size_type count(const key_type& x) const
+ { return m_flat_tree.find(x) == m_flat_tree.end() ? 0 : 1; }
+
+ //! <b>Returns</b>: An iterator pointing to the first element with key not less
+ //! than k, or a.end() if such an element is not found.
+ //!
+ //! <b>Complexity</b>: Logarithmic
+ iterator lower_bound(const key_type& x)
+ { return force_copy<iterator>(m_flat_tree.lower_bound(x)); }
+
+ //! <b>Returns</b>: A const iterator pointing to the first element with key not
+ //! less than k, or a.end() if such an element is not found.
+ //!
+ //! <b>Complexity</b>: Logarithmic
+ const_iterator lower_bound(const key_type& x) const
+ { return force<const_iterator>(m_flat_tree.lower_bound(x)); }
+
+ //! <b>Returns</b>: An iterator pointing to the first element with key not less
+ //! than x, or end() if such an element is not found.
+ //!
+ //! <b>Complexity</b>: Logarithmic
+ iterator upper_bound(const key_type& x)
+ { return force_copy<iterator>(m_flat_tree.upper_bound(x)); }
+
+ //! <b>Returns</b>: A const iterator pointing to the first element with key not
+ //! less than x, or end() if such an element is not found.
+ //!
+ //! <b>Complexity</b>: Logarithmic
+ const_iterator upper_bound(const key_type& x) const
+ { return force<const_iterator>(m_flat_tree.upper_bound(x)); }
+
+ //! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
+ //!
+ //! <b>Complexity</b>: Logarithmic
+ std::pair<iterator,iterator> equal_range(const key_type& x)
+ { return force<std::pair<iterator,iterator> >(m_flat_tree.equal_range(x)); }
+
+ //! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
+ //!
+ //! <b>Complexity</b>: Logarithmic
+ std::pair<const_iterator,const_iterator> equal_range(const key_type& x) const
+ { return force<std::pair<const_iterator,const_iterator> >(m_flat_tree.equal_range(x)); }
+
+ //! <b>Effects</b>: Number of elements for which memory has been allocated.
+ //! capacity() is always greater than or equal to size().
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ size_type capacity() const
+ { return m_flat_tree.capacity(); }
+
+ //! <b>Effects</b>: If n is less than or equal to capacity(), this call has no
+ //! effect. Otherwise, it is a request for allocation of additional memory.
+ //! If the request is successful, then capacity() is greater than or equal to
+ //! n; otherwise, capacity() is unchanged. In either case, size() is unchanged.
+ //!
+ //! <b>Throws</b>: If memory allocation allocation throws or T's copy constructor throws.
+ //!
+ //! <b>Note</b>: If capacity() is less than "count", iterators and references to
+ //! to values might be invalidated.
+ void reserve(size_type count)
+ { m_flat_tree.reserve(count); }
+
+ /// @cond
+ template <class K1, class T1, class C1, class A1>
+ friend bool operator== (const flat_map<K1, T1, C1, A1>&,
+ const flat_map<K1, T1, C1, A1>&);
+ template <class K1, class T1, class C1, class A1>
+ friend bool operator< (const flat_map<K1, T1, C1, A1>&,
+ const flat_map<K1, T1, C1, A1>&);
+ /// @endcond
+};
+
+template <class Key, class T, class Pred, class Alloc>
+inline bool operator==(const flat_map<Key,T,Pred,Alloc>& x,
+ const flat_map<Key,T,Pred,Alloc>& y)
+ { return x.m_flat_tree == y.m_flat_tree; }
+
+template <class Key, class T, class Pred, class Alloc>
+inline bool operator<(const flat_map<Key,T,Pred,Alloc>& x,
+ const flat_map<Key,T,Pred,Alloc>& y)
+ { return x.m_flat_tree < y.m_flat_tree; }
+
+template <class Key, class T, class Pred, class Alloc>
+inline bool operator!=(const flat_map<Key,T,Pred,Alloc>& x,
+ const flat_map<Key,T,Pred,Alloc>& y)
+ { return !(x == y); }
+
+template <class Key, class T, class Pred, class Alloc>
+inline bool operator>(const flat_map<Key,T,Pred,Alloc>& x,
+ const flat_map<Key,T,Pred,Alloc>& y)
+ { return y < x; }
+
+template <class Key, class T, class Pred, class Alloc>
+inline bool operator<=(const flat_map<Key,T,Pred,Alloc>& x,
+ const flat_map<Key,T,Pred,Alloc>& y)
+ { return !(y < x); }
+
+template <class Key, class T, class Pred, class Alloc>
+inline bool operator>=(const flat_map<Key,T,Pred,Alloc>& x,
+ const flat_map<Key,T,Pred,Alloc>& y)
+ { return !(x < y); }
+
+#if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+template <class Key, class T, class Pred, class Alloc>
+inline void swap(flat_map<Key,T,Pred,Alloc>& x,
+ flat_map<Key,T,Pred,Alloc>& y)
+ { x.swap(y); }
+
+template <class Key, class T, class Pred, class Alloc>
+inline void swap(boost::rv<flat_map<Key,T,Pred,Alloc> > &x,
+ flat_map<Key,T,Pred,Alloc>& y)
+ { x.get().swap(y); }
+
+template <class Key, class T, class Pred, class Alloc>
+inline void swap(flat_map<Key,T,Pred,Alloc>& x,
+ boost::rv<flat_map<Key,T,Pred,Alloc> > &y)
+ { x.swap(y.get()); }
+#else
+template <class Key, class T, class Pred, class Alloc>
+inline void swap(flat_map<Key,T,Pred,Alloc>&&x,
+ flat_map<Key,T,Pred,Alloc>&&y)
+ { x.swap(y); }
+#endif
+
+/// @cond
+
+//!has_trivial_destructor_after_move<> == true_type
+//!specialization for optimizations
+template <class K, class T, class C, class A>
+struct has_trivial_destructor_after_move<flat_map<K, T, C, A> >
+{
+ enum { value =
+ has_trivial_destructor<A>::value &&
+ has_trivial_destructor<C>::value };
+};
+
+// Forward declaration of operators < and ==, needed for friend declaration.
+template <class Key, class T,
+ class Pred,
+ class Alloc>
+class flat_multimap;
+
+template <class Key, class T, class Pred, class Alloc>
+inline bool operator==(const flat_multimap<Key,T,Pred,Alloc>& x,
+ const flat_multimap<Key,T,Pred,Alloc>& y);
+
+template <class Key, class T, class Pred, class Alloc>
+inline bool operator<(const flat_multimap<Key,T,Pred,Alloc>& x,
+ const flat_multimap<Key,T,Pred,Alloc>& y);
+/// @endcond
+
+//! A flat_multimap is a kind of associative container that supports equivalent keys
+//! (possibly containing multiple copies of the same key value) and provides for
+//! fast retrieval of values of another type T based on the keys. The flat_multimap
+//! class supports random-access iterators.
+//!
+//! A flat_multimap satisfies all of the requirements of a container and of a reversible
+//! container and of an associative container. For a
+//! flat_multimap<Key,T> the key_type is Key and the value_type is std::pair<Key,T>
+//! (unlike std::multimap<Key, T> which value_type is std::pair<<b>const</b> Key, T>).
+//!
+//! Pred is the ordering function for Keys (e.g. <i>std::less<Key></i>).
+//!
+//! Alloc is the allocator to allocate the value_types
+//! (e.g. <i>boost::interprocess:allocator< std::pair<Key, T></i>).
+template <class Key, class T, class Pred, class Alloc>
+class flat_multimap
+{
+ /// @cond
+ private:
+ typedef detail::flat_tree<Key,
+ std::pair<Key, T>,
+ detail::select1st< std::pair<Key, T> >,
+ Pred,
+ Alloc> tree_t;
+ //#ifndef BOOST_HAS_RVALUE_REFS
+ //This is the real tree stored here. It's based on a movable pair
+ typedef detail::flat_tree<Key,
+ pair<Key, T>,
+ detail::select1st< pair<Key, T> >,
+ Pred,
+ typename Alloc::template
+ rebind<pair<Key, T> >::other> impl_tree_t;
+/*
+ #else
+ typedef tree_t impl_tree_t;
+ #endif
+*/
+ impl_tree_t m_flat_tree; // flat tree representing flat_map
+
+ typedef typename impl_tree_t::value_type impl_value_type;
+ typedef typename impl_tree_t::pointer impl_pointer;
+ typedef typename impl_tree_t::const_pointer impl_const_pointer;
+ typedef typename impl_tree_t::reference impl_reference;
+ typedef typename impl_tree_t::const_reference impl_const_reference;
+ typedef typename impl_tree_t::value_compare impl_value_compare;
+ typedef typename impl_tree_t::iterator impl_iterator;
+ typedef typename impl_tree_t::const_iterator impl_const_iterator;
+ typedef typename impl_tree_t::reverse_iterator impl_reverse_iterator;
+ typedef typename impl_tree_t::const_reverse_iterator impl_const_reverse_iterator;
+ typedef typename impl_tree_t::allocator_type impl_allocator_type;
+ #ifndef BOOST_HAS_RVALUE_REFS
+ typedef boost::rv<impl_value_type> impl_moved_value_type;
+ #endif
+
+ //#ifndef BOOST_HAS_RVALUE_REFS
+ template<class D, class S>
+ static D &force(const S &s)
+ { return *const_cast<D*>((reinterpret_cast<const D*>(&s))); }
+
+ template<class D, class S>
+ static D force_copy(S s)
+ {
+ value_type *vp = reinterpret_cast<value_type *>(&*s);
+ return D(vp);
+ }
+ /// @endcond
+
+ public:
+ BOOST_ENABLE_MOVE_EMULATION(flat_multimap)
+
+ // typedefs:
+ typedef typename tree_t::key_type key_type;
+ typedef typename tree_t::value_type value_type;
+ typedef typename tree_t::pointer pointer;
+ typedef typename tree_t::const_pointer const_pointer;
+ typedef typename tree_t::reference reference;
+ typedef typename tree_t::const_reference const_reference;
+ typedef typename tree_t::value_compare value_compare;
+ typedef T mapped_type;
+ typedef typename tree_t::key_compare key_compare;
+ typedef typename tree_t::iterator iterator;
+ typedef typename tree_t::const_iterator const_iterator;
+ typedef typename tree_t::reverse_iterator reverse_iterator;
+ typedef typename tree_t::const_reverse_iterator const_reverse_iterator;
+ typedef typename tree_t::size_type size_type;
+ typedef typename tree_t::difference_type difference_type;
+ typedef typename tree_t::allocator_type allocator_type;
+ typedef typename tree_t::stored_allocator_type stored_allocator_type;
+
+ //! <b>Effects</b>: Constructs an empty flat_multimap using the specified comparison
+ //! object and allocator.
+ //!
+ //! <b>Complexity</b>: Constant.
+ explicit flat_multimap(const Pred& comp = Pred(),
+ const allocator_type& a = allocator_type())
+ : m_flat_tree(comp, force<impl_allocator_type>(a)) { }
+
+ //! <b>Effects</b>: Constructs an empty flat_multimap using the specified comparison object
+ //! and allocator, and inserts elements from the range [first ,last ).
+ //!
+ //! <b>Complexity</b>: Linear in N if the range [first ,last ) is already sorted using
+ //! comp and otherwise N logN, where N is last - first.
+ template <class InputIterator>
+ flat_multimap(InputIterator first, InputIterator last,
+ const Pred& comp = Pred(),
+ const allocator_type& a = allocator_type())
+ : m_flat_tree(comp, force<impl_allocator_type>(a))
+ { m_flat_tree.insert_equal(first, last); }
+
+ //! <b>Effects</b>: Copy constructs a flat_multimap.
+ //!
+ //! <b>Complexity</b>: Linear in x.size().
+ flat_multimap(const flat_multimap<Key,T,Pred,Alloc>& x)
+ : m_flat_tree(x.m_flat_tree) { }
+
+ //! <b>Effects</b>: Move constructs a flat_multimap. Constructs *this using x's resources.
+ //!
+ //! <b>Complexity</b>: Construct.
+ //!
+ //! <b>Postcondition</b>: x is emptied.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ flat_multimap(boost::rv<flat_multimap<Key,T,Pred,Alloc> > &x)
+ : m_flat_tree(boost::move(x.get().m_flat_tree)) { }
+ #else
+ flat_multimap(flat_multimap<Key,T,Pred,Alloc> && x)
+ : m_flat_tree(boost::move(x.m_flat_tree)) { }
+ #endif
+
+ //! <b>Effects</b>: Makes *this a copy of x.
+ //!
+ //! <b>Complexity</b>: Linear in x.size().
+ flat_multimap<Key,T,Pred,Alloc>& operator=(const flat_multimap<Key,T,Pred,Alloc>& x)
+ { m_flat_tree = x.m_flat_tree; return *this; }
+
+ //! <b>Effects</b>: this->swap(x.get()).
+ //!
+ //! <b>Complexity</b>: Constant.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ flat_multimap<Key,T,Pred,Alloc>& operator=(boost::rv<flat_multimap<Key,T,Pred,Alloc> > &mx)
+ { m_flat_tree = boost::move(mx.get().m_flat_tree); return *this; }
+ #else
+ flat_multimap<Key,T,Pred,Alloc>& operator=(flat_multimap<Key,T,Pred,Alloc> && mx)
+ { m_flat_tree = boost::move(mx.m_flat_tree); return *this; }
+ #endif
+
+ //! <b>Effects</b>: Returns the comparison object out
+ //! of which a was constructed.
+ //!
+ //! <b>Complexity</b>: Constant.
+ key_compare key_comp() const
+ { return force<key_compare>(m_flat_tree.key_comp()); }
+
+ //! <b>Effects</b>: Returns an object of value_compare constructed out
+ //! of the comparison object.
+ //!
+ //! <b>Complexity</b>: Constant.
+ value_compare value_comp() const
+ { return value_compare(force<key_compare>(m_flat_tree.key_comp())); }
+
+ //! <b>Effects</b>: Returns a copy of the Allocator that
+ //! was passed to the object's constructor.
+ //!
+ //! <b>Complexity</b>: Constant.
+ allocator_type get_allocator() const
+ { return force<allocator_type>(m_flat_tree.get_allocator()); }
+
+ const stored_allocator_type &get_stored_allocator() const
+ { return force<stored_allocator_type>(m_flat_tree.get_stored_allocator()); }
+
+ stored_allocator_type &get_stored_allocator()
+ { return force<stored_allocator_type>(m_flat_tree.get_stored_allocator()); }
+
+ //! <b>Effects</b>: Returns an iterator to the first element contained in the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ iterator begin()
+ { return force_copy<iterator>(m_flat_tree.begin()); }
+
+ //! <b>Effects</b>: Returns a const_iterator to the first element contained in the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_iterator begin() const
+ { return force<const_iterator>(m_flat_tree.begin()); }
+
+ //! <b>Effects</b>: Returns an iterator to the end of the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ iterator end()
+ { return force_copy<iterator>(m_flat_tree.end()); }
+
+ //! <b>Effects</b>: Returns a const_iterator to the end of the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_iterator end() const
+ { return force<const_iterator>(m_flat_tree.end()); }
+
+ //! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning
+ //! of the reversed container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ reverse_iterator rbegin()
+ { return force<reverse_iterator>(m_flat_tree.rbegin()); }
+
+ //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
+ //! of the reversed container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_reverse_iterator rbegin() const
+ { return force<const_reverse_iterator>(m_flat_tree.rbegin()); }
+
+ //! <b>Effects</b>: Returns a reverse_iterator pointing to the end
+ //! of the reversed container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ reverse_iterator rend()
+ { return force<reverse_iterator>(m_flat_tree.rend()); }
+
+ //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
+ //! of the reversed container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_reverse_iterator rend() const
+ { return force<const_reverse_iterator>(m_flat_tree.rend()); }
+
+ //! <b>Effects</b>: Returns true if the container contains no elements.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ bool empty() const
+ { return m_flat_tree.empty(); }
+
+ //! <b>Effects</b>: Returns the number of the elements contained in the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ size_type size() const
+ { return m_flat_tree.size(); }
+
+ //! <b>Effects</b>: Returns the largest possible size of the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ size_type max_size() const
+ { return m_flat_tree.max_size(); }
+
+ //! <b>Effects</b>: Swaps the contents of *this and x.
+ //! If this->allocator_type() != x.allocator_type() allocators are also swapped.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ void swap(boost::rv<flat_multimap> &x)
+ { this->swap(x.get()); }
+ void swap(flat_multimap& x)
+ #else
+ void swap(flat_multimap &&x)
+ #endif
+ { m_flat_tree.swap(x.m_flat_tree); }
+
+ //! <b>Effects</b>: Inserts x and returns the iterator pointing to the
+ //! newly inserted element.
+ //!
+ //! <b>Complexity</b>: Logarithmic search time plus linear insertion
+ //! to the elements with bigger keys than x.
+ //!
+ //! <b>Note</b>: If an element it's inserted it might invalidate elements.
+ iterator insert(const value_type& x)
+ { return force_copy<iterator>(m_flat_tree.insert_equal(force<impl_value_type>(x))); }
+
+ //! <b>Effects</b>: Inserts a new value move-constructed from x and returns
+ //! the iterator pointing to the newly inserted element.
+ //!
+ //! <b>Complexity</b>: Logarithmic search time plus linear insertion
+ //! to the elements with bigger keys than x.
+ //!
+ //! <b>Note</b>: If an element it's inserted it might invalidate elements.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ iterator insert(boost::rv<value_type> &x)
+ { return force_copy<iterator>(m_flat_tree.insert_equal(force<impl_moved_value_type>(x))); }
+ #else
+ iterator insert(value_type &&x)
+ { return force_copy<iterator>(m_flat_tree.insert_equal(boost::move(x))); }
+ #endif
+
+ //! <b>Effects</b>: Inserts a new value move-constructed from x and returns
+ //! the iterator pointing to the newly inserted element.
+ //!
+ //! <b>Complexity</b>: Logarithmic search time plus linear insertion
+ //! to the elements with bigger keys than x.
+ //!
+ //! <b>Note</b>: If an element it's inserted it might invalidate elements.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ iterator insert(boost::rv<impl_value_type> &x)
+ { return force_copy<iterator>(m_flat_tree.insert_equal(force<impl_moved_value_type>(x))); }
+ #else
+ iterator insert(impl_value_type &&x)
+ { return force_copy<iterator>(m_flat_tree.insert_equal(boost::move(x))); }
+ #endif
+
+ //! <b>Effects</b>: Inserts a copy of x in the container.
+ //! p is a hint pointing to where the insert should start to search.
+ //!
+ //! <b>Returns</b>: An iterator pointing to the element with key equivalent
+ //! to the key of x.
+ //!
+ //! <b>Complexity</b>: Logarithmic search time (constant time if the value
+ //! is to be inserted before p) plus linear insertion
+ //! to the elements with bigger keys than x.
+ //!
+ //! <b>Note</b>: If an element it's inserted it might invalidate elements.
+ iterator insert(const_iterator position, const value_type& x)
+ { return force_copy<iterator>(m_flat_tree.insert_equal(force<impl_const_iterator>(position), force<impl_value_type>(x))); }
+
+ //! <b>Effects</b>: Inserts a value move constructed from x in the container.
+ //! p is a hint pointing to where the insert should start to search.
+ //!
+ //! <b>Returns</b>: An iterator pointing to the element with key equivalent
+ //! to the key of x.
+ //!
+ //! <b>Complexity</b>: Logarithmic search time (constant time if the value
+ //! is to be inserted before p) plus linear insertion
+ //! to the elements with bigger keys than x.
+ //!
+ //! <b>Note</b>: If an element it's inserted it might invalidate elements.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ iterator insert(const_iterator position, boost::rv<value_type> &x)
+ { return force_copy<iterator>(m_flat_tree.insert_equal(force<impl_const_iterator>(position), force<impl_moved_value_type>(x))); }
+ #else
+ iterator insert(const_iterator position, value_type &&x)
+ { return force_copy<iterator>(m_flat_tree.insert_equal(force<impl_const_iterator>(position), boost::move(x))); }
+ #endif
+
+ //! <b>Effects</b>: Inserts a value move constructed from x in the container.
+ //! p is a hint pointing to where the insert should start to search.
+ //!
+ //! <b>Returns</b>: An iterator pointing to the element with key equivalent
+ //! to the key of x.
+ //!
+ //! <b>Complexity</b>: Logarithmic search time (constant time if the value
+ //! is to be inserted before p) plus linear insertion
+ //! to the elements with bigger keys than x.
+ //!
+ //! <b>Note</b>: If an element it's inserted it might invalidate elements.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ iterator insert(const_iterator position, boost::rv<impl_value_type> &x)
+ { return force_copy<iterator>(m_flat_tree.insert_equal(force<impl_const_iterator>(position), x)); }
+ #else
+ iterator insert(const_iterator position, impl_value_type &&x)
+ { return force_copy<iterator>(m_flat_tree.insert_equal(force<impl_const_iterator>(position), boost::move(x))); }
+ #endif
+
+ //! <b>Requires</b>: i, j are not iterators into *this.
+ //!
+ //! <b>Effects</b>: inserts each element from the range [i,j) .
+ //!
+ //! <b>Complexity</b>: N log(size()+N) (N is the distance from i to j)
+ //! search time plus N*size() insertion time.
+ //!
+ //! <b>Note</b>: If an element it's inserted it might invalidate elements.
+ template <class InputIterator>
+ void insert(InputIterator first, InputIterator last)
+ { m_flat_tree.insert_equal(first, last); }
+
+ #ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING
+
+ //! <b>Effects</b>: Inserts an object of type T constructed with
+ //! std::forward<Args>(args)... and returns the iterator pointing to the
+ //! newly inserted element.
+ //!
+ //! <b>Complexity</b>: Logarithmic search time plus linear insertion
+ //! to the elements with bigger keys than x.
+ //!
+ //! <b>Note</b>: If an element it's inserted it might invalidate elements.
+ template <class... Args>
+ iterator emplace(Args&&... args)
+ { return force_copy<iterator>(m_flat_tree.emplace_equal(boost::forward_constructor<Args>(args)...)); }
+
+ //! <b>Effects</b>: Inserts an object of type T constructed with
+ //! std::forward<Args>(args)... in the container.
+ //! p is a hint pointing to where the insert should start to search.
+ //!
+ //! <b>Returns</b>: An iterator pointing to the element with key equivalent
+ //! to the key of x.
+ //!
+ //! <b>Complexity</b>: Logarithmic search time (constant time if the value
+ //! is to be inserted before p) plus linear insertion
+ //! to the elements with bigger keys than x.
+ //!
+ //! <b>Note</b>: If an element it's inserted it might invalidate elements.
+ template <class... Args>
+ iterator emplace_hint(const_iterator hint, Args&&... args)
+ {
+ return force_copy<iterator>(m_flat_tree.emplace_hint_equal
+ (force<impl_const_iterator>(hint), boost::forward_constructor<Args>(args)...));
+ }
+
+ #else //#ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING
+
+ iterator emplace()
+ { return force_copy<iterator>(m_flat_tree.emplace_equal()); }
+
+ iterator emplace_hint(const_iterator hint)
+ { return force_copy<iterator>(m_flat_tree.emplace_hint_equal(force<impl_const_iterator>(hint))); }
+
+ #define BOOST_PP_LOCAL_MACRO(n) \
+ template<BOOST_PP_ENUM_PARAMS(n, class P)> \
+ iterator emplace(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_LIST, _)) \
+ { \
+ return force_copy<iterator>(m_flat_tree.emplace_equal \
+ (BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _))); \
+ } \
+ \
+ template<BOOST_PP_ENUM_PARAMS(n, class P)> \
+ iterator emplace_hint(const_iterator hint, BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_LIST, _)) \
+ { \
+ return force_copy<iterator>(m_flat_tree.emplace_hint_equal \
+ (force<impl_const_iterator>(hint), \
+ BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _))); \
+ } \
+ //!
+ #define BOOST_PP_LOCAL_LIMITS (1, BOOST_INTERPROCESS_MAX_CONSTRUCTOR_PARAMETERS)
+ #include BOOST_PP_LOCAL_ITERATE()
+
+ #endif //#ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING
+
+ //! <b>Effects</b>: Erases the element pointed to by position.
+ //!
+ //! <b>Returns</b>: Returns an iterator pointing to the element immediately
+ //! following q prior to the element being erased. If no such element exists,
+ //! returns end().
+ //!
+ //! <b>Complexity</b>: Linear to the elements with keys bigger than position
+ //!
+ //! <b>Note</b>: Invalidates elements with keys
+ //! not less than the erased element.
+ iterator erase(const_iterator position)
+ { return force_copy<iterator>(m_flat_tree.erase(force<impl_const_iterator>(position))); }
+
+ //! <b>Effects</b>: Erases all elements in the container with key equivalent to x.
+ //!
+ //! <b>Returns</b>: Returns the number of erased elements.
+ //!
+ //! <b>Complexity</b>: Logarithmic search time plus erasure time
+ //! linear to the elements with bigger keys.
+ size_type erase(const key_type& x)
+ { return m_flat_tree.erase(x); }
+
+ //! <b>Effects</b>: Erases all the elements in the range [first, last).
+ //!
+ //! <b>Returns</b>: Returns last.
+ //!
+ //! <b>Complexity</b>: size()*N where N is the distance from first to last.
+ //!
+ //! <b>Complexity</b>: Logarithmic search time plus erasure time
+ //! linear to the elements with bigger keys.
+ iterator erase(const_iterator first, const_iterator last)
+ { return force_copy<iterator>(m_flat_tree.erase(force<impl_const_iterator>(first), force<impl_const_iterator>(last))); }
+
+ //! <b>Effects</b>: erase(a.begin(),a.end()).
+ //!
+ //! <b>Postcondition</b>: size() == 0.
+ //!
+ //! <b>Complexity</b>: linear in size().
+ void clear()
+ { m_flat_tree.clear(); }
+
+ //! <b>Effects</b>: Tries to deallocate the excess of memory created
+ // with previous allocations. The size of the vector is unchanged
+ //!
+ //! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws.
+ //!
+ //! <b>Complexity</b>: Linear to size().
+ void shrink_to_fit()
+ { m_flat_tree.shrink_to_fit(); }
+
+ //! <b>Returns</b>: An iterator pointing to an element with the key
+ //! equivalent to x, or end() if such an element is not found.
+ //!
+ //! <b>Complexity</b>: Logarithmic.
+ iterator find(const key_type& x)
+ { return force_copy<iterator>(m_flat_tree.find(x)); }
+
+ //! <b>Returns</b>: An const_iterator pointing to an element with the key
+ //! equivalent to x, or end() if such an element is not found.
+ //!
+ //! <b>Complexity</b>: Logarithmic.
+ const_iterator find(const key_type& x) const
+ { return force<const_iterator>(m_flat_tree.find(x)); }
+
+ //! <b>Returns</b>: The number of elements with key equivalent to x.
+ //!
+ //! <b>Complexity</b>: log(size())+count(k)
+ size_type count(const key_type& x) const
+ { return m_flat_tree.count(x); }
+
+ //! <b>Returns</b>: An iterator pointing to the first element with key not less
+ //! than k, or a.end() if such an element is not found.
+ //!
+ //! <b>Complexity</b>: Logarithmic
+ iterator lower_bound(const key_type& x)
+ {return force_copy<iterator>(m_flat_tree.lower_bound(x)); }
+
+ //! <b>Returns</b>: A const iterator pointing to the first element with key
+ //! not less than k, or a.end() if such an element is not found.
+ //!
+ //! <b>Complexity</b>: Logarithmic
+ const_iterator lower_bound(const key_type& x) const
+ { return force<const_iterator>(m_flat_tree.lower_bound(x)); }
+
+ //! <b>Returns</b>: An iterator pointing to the first element with key not less
+ //! than x, or end() if such an element is not found.
+ //!
+ //! <b>Complexity</b>: Logarithmic
+ iterator upper_bound(const key_type& x)
+ {return force_copy<iterator>(m_flat_tree.upper_bound(x)); }
+
+ //! <b>Returns</b>: A const iterator pointing to the first element with key
+ //! not less than x, or end() if such an element is not found.
+ //!
+ //! <b>Complexity</b>: Logarithmic
+ const_iterator upper_bound(const key_type& x) const
+ { return force<const_iterator>(m_flat_tree.upper_bound(x)); }
+
+ //! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
+ //!
+ //! <b>Complexity</b>: Logarithmic
+ std::pair<iterator,iterator> equal_range(const key_type& x)
+ { return force_copy<std::pair<iterator,iterator> >(m_flat_tree.equal_range(x)); }
+
+ //! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
+ //!
+ //! <b>Complexity</b>: Logarithmic
+ std::pair<const_iterator,const_iterator>
+ equal_range(const key_type& x) const
+ { return force_copy<std::pair<const_iterator,const_iterator> >(m_flat_tree.equal_range(x)); }
+
+ //! <b>Effects</b>: Number of elements for which memory has been allocated.
+ //! capacity() is always greater than or equal to size().
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ size_type capacity() const
+ { return m_flat_tree.capacity(); }
+
+ //! <b>Effects</b>: If n is less than or equal to capacity(), this call has no
+ //! effect. Otherwise, it is a request for allocation of additional memory.
+ //! If the request is successful, then capacity() is greater than or equal to
+ //! n; otherwise, capacity() is unchanged. In either case, size() is unchanged.
+ //!
+ //! <b>Throws</b>: If memory allocation allocation throws or T's copy constructor throws.
+ //!
+ //! <b>Note</b>: If capacity() is less than "count", iterators and references to
+ //! to values might be invalidated.
+ void reserve(size_type count)
+ { m_flat_tree.reserve(count); }
+
+ /// @cond
+ template <class K1, class T1, class C1, class A1>
+ friend bool operator== (const flat_multimap<K1, T1, C1, A1>& x,
+ const flat_multimap<K1, T1, C1, A1>& y);
+
+ template <class K1, class T1, class C1, class A1>
+ friend bool operator< (const flat_multimap<K1, T1, C1, A1>& x,
+ const flat_multimap<K1, T1, C1, A1>& y);
+ /// @endcond
+};
+
+template <class Key, class T, class Pred, class Alloc>
+inline bool operator==(const flat_multimap<Key,T,Pred,Alloc>& x,
+ const flat_multimap<Key,T,Pred,Alloc>& y)
+ { return x.m_flat_tree == y.m_flat_tree; }
+
+template <class Key, class T, class Pred, class Alloc>
+inline bool operator<(const flat_multimap<Key,T,Pred,Alloc>& x,
+ const flat_multimap<Key,T,Pred,Alloc>& y)
+ { return x.m_flat_tree < y.m_flat_tree; }
+
+template <class Key, class T, class Pred, class Alloc>
+inline bool operator!=(const flat_multimap<Key,T,Pred,Alloc>& x,
+ const flat_multimap<Key,T,Pred,Alloc>& y)
+ { return !(x == y); }
+
+template <class Key, class T, class Pred, class Alloc>
+inline bool operator>(const flat_multimap<Key,T,Pred,Alloc>& x,
+ const flat_multimap<Key,T,Pred,Alloc>& y)
+ { return y < x; }
+
+template <class Key, class T, class Pred, class Alloc>
+inline bool operator<=(const flat_multimap<Key,T,Pred,Alloc>& x,
+ const flat_multimap<Key,T,Pred,Alloc>& y)
+ { return !(y < x); }
+
+template <class Key, class T, class Pred, class Alloc>
+inline bool operator>=(const flat_multimap<Key,T,Pred,Alloc>& x,
+ const flat_multimap<Key,T,Pred,Alloc>& y)
+ { return !(x < y); }
+
+#if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+template <class Key, class T, class Pred, class Alloc>
+inline void swap(flat_multimap<Key,T,Pred,Alloc>& x,
+ flat_multimap<Key,T,Pred,Alloc>& y)
+ { x.swap(y); }
+
+template <class Key, class T, class Pred, class Alloc>
+inline void swap(boost::rv<flat_multimap<Key,T,Pred,Alloc> > &x,
+ flat_multimap<Key,T,Pred,Alloc>& y)
+ { x.get().swap(y); }
+
+
+template <class Key, class T, class Pred, class Alloc>
+inline void swap(flat_multimap<Key,T,Pred,Alloc>& x,
+ boost::rv<flat_multimap<Key,T,Pred,Alloc> > &y)
+ { x.swap(y.get()); }
+#else
+template <class Key, class T, class Pred, class Alloc>
+inline void swap(flat_multimap<Key,T,Pred,Alloc>&&x,
+ flat_multimap<Key,T,Pred,Alloc>&&y)
+ { x.swap(y); }
+#endif
+
+/// @cond
+
+//!has_trivial_destructor_after_move<> == true_type
+//!specialization for optimizations
+template <class K, class T, class C, class A>
+struct has_trivial_destructor_after_move<flat_multimap<K, T, C, A> >
+{
+ enum { value =
+ has_trivial_destructor<A>::value &&
+ has_trivial_destructor<C>::value };
+};
+/// @endcond
+
+}} //namespace boost { namespace interprocess {
+
+#include <boost/interprocess/detail/config_end.hpp>
+
+#endif /* BOOST_INTERPROCESS_FLAT_MAP_HPP */

Added: sandbox/boost/interprocess/containers/flat_set.hpp
==============================================================================
--- (empty file)
+++ sandbox/boost/interprocess/containers/flat_set.hpp 2009-02-17 13:04:56 EST (Tue, 17 Feb 2009)
@@ -0,0 +1,1234 @@
+//////////////////////////////////////////////////////////////////////////////
+//
+// (C) Copyright Ion Gaztanaga 2005-2008. Distributed under the Boost
+// Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+//
+// See http://www.boost.org/libs/interprocess for documentation.
+//
+//////////////////////////////////////////////////////////////////////////////
+
+#ifndef BOOST_INTERPROCESS_FLAT_SET_HPP
+#define BOOST_INTERPROCESS_FLAT_SET_HPP
+
+#if (defined _MSC_VER) && (_MSC_VER >= 1200)
+# pragma once
+#endif
+
+#include <boost/interprocess/detail/config_begin.hpp>
+#include <boost/interprocess/detail/workaround.hpp>
+
+#include <boost/interprocess/interprocess_fwd.hpp>
+#include <utility>
+#include <functional>
+#include <memory>
+#include <boost/interprocess/containers/detail/flat_tree.hpp>
+#include <boost/interprocess/detail/mpl.hpp>
+#include <boost/move_semantics/move.hpp>
+
+
+namespace boost { namespace interprocess {
+
+/// @cond
+// Forward declarations of operators < and ==, needed for friend declaration.
+
+template <class T, class Pred, class Alloc>
+class flat_set;
+
+template <class T, class Pred, class Alloc>
+inline bool operator==(const flat_set<T,Pred,Alloc>& x,
+ const flat_set<T,Pred,Alloc>& y);
+
+template <class T, class Pred, class Alloc>
+inline bool operator<(const flat_set<T,Pred,Alloc>& x,
+ const flat_set<T,Pred,Alloc>& y);
+/// @endcond
+
+//! flat_set is a Sorted Associative Container that stores objects of type Key.
+//! flat_set is a Simple Associative Container, meaning that its value type,
+//! as well as its key type, is Key. It is also a Unique Associative Container,
+//! meaning that no two elements are the same.
+//!
+//! flat_set is similar to std::set but it's implemented like an ordered vector.
+//! This means that inserting a new element into a flat_set invalidates
+//! previous iterators and references
+//!
+//! Erasing an element of a flat_set invalidates iterators and references
+//! pointing to elements that come after (their keys are bigger) the erased element.
+template <class T, class Pred, class Alloc>
+class flat_set
+{
+ /// @cond
+ private:
+ typedef detail::flat_tree<T, T, detail::identity<T>, Pred, Alloc> tree_t;
+ tree_t m_flat_tree; // flat tree representing flat_set
+ /// @endcond
+
+ public:
+ BOOST_ENABLE_MOVE_EMULATION(flat_set)
+
+ // typedefs:
+ typedef typename tree_t::key_type key_type;
+ typedef typename tree_t::value_type value_type;
+ typedef typename tree_t::pointer pointer;
+ typedef typename tree_t::const_pointer const_pointer;
+ typedef typename tree_t::reference reference;
+ typedef typename tree_t::const_reference const_reference;
+ typedef typename tree_t::key_compare key_compare;
+ typedef typename tree_t::value_compare value_compare;
+ typedef typename tree_t::iterator iterator;
+ typedef typename tree_t::const_iterator const_iterator;
+ typedef typename tree_t::reverse_iterator reverse_iterator;
+ typedef typename tree_t::const_reverse_iterator const_reverse_iterator;
+ typedef typename tree_t::size_type size_type;
+ typedef typename tree_t::difference_type difference_type;
+ typedef typename tree_t::allocator_type allocator_type;
+ typedef typename tree_t::stored_allocator_type stored_allocator_type;
+
+ //! <b>Effects</b>: Constructs an empty flat_map using the specified
+ //! comparison object and allocator.
+ //!
+ //! <b>Complexity</b>: Constant.
+ explicit flat_set(const Pred& comp = Pred(),
+ const allocator_type& a = allocator_type())
+ : m_flat_tree(comp, a)
+ {}
+
+ //! <b>Effects</b>: Constructs an empty map using the specified comparison object and
+ //! allocator, and inserts elements from the range [first ,last ).
+ //!
+ //! <b>Complexity</b>: Linear in N if the range [first ,last ) is already sorted using
+ //! comp and otherwise N logN, where N is last - first.
+ template <class InputIterator>
+ flat_set(InputIterator first, InputIterator last,
+ const Pred& comp = Pred(),
+ const allocator_type& a = allocator_type())
+ : m_flat_tree(comp, a)
+ { m_flat_tree.insert_unique(first, last); }
+
+ //! <b>Effects</b>: Copy constructs a map.
+ //!
+ //! <b>Complexity</b>: Linear in x.size().
+ flat_set(const flat_set<T,Pred,Alloc>& x)
+ : m_flat_tree(x.m_flat_tree) {}
+
+ //! <b>Effects</b>: Move constructs a map. Constructs *this using x's resources.
+ //!
+ //! <b>Complexity</b>: Construct.
+ //!
+ //! <b>Postcondition</b>: x is emptied.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ flat_set(boost::rv<flat_set<T,Pred,Alloc> > &mx)
+ : m_flat_tree(boost::move(mx.get().m_flat_tree)) {}
+ #else
+ flat_set(flat_set<T,Pred,Alloc> && mx)
+ : m_flat_tree(boost::move(mx.m_flat_tree)) {}
+ #endif
+
+ //! <b>Effects</b>: Makes *this a copy of x.
+ //!
+ //! <b>Complexity</b>: Linear in x.size().
+ flat_set<T,Pred,Alloc>& operator=(const flat_set<T, Pred, Alloc>& x)
+ { m_flat_tree = x.m_flat_tree; return *this; }
+
+ //! <b>Effects</b>: Makes *this a copy of x.
+ //!
+ //! <b>Complexity</b>: Linear in x.size().
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ flat_set<T,Pred,Alloc>& operator=(boost::rv<flat_set<T, Pred, Alloc> > &mx)
+ { m_flat_tree = boost::move(mx.get().m_flat_tree); return *this; }
+
+ #else
+ flat_set<T,Pred,Alloc>& operator=(flat_set<T, Pred, Alloc> &&mx)
+ { m_flat_tree = boost::move(mx.m_flat_tree); return *this; }
+
+ #endif
+
+ //! <b>Effects</b>: Returns the comparison object out
+ //! of which a was constructed.
+ //!
+ //! <b>Complexity</b>: Constant.
+ key_compare key_comp() const
+ { return m_flat_tree.key_comp(); }
+
+ //! <b>Effects</b>: Returns an object of value_compare constructed out
+ //! of the comparison object.
+ //!
+ //! <b>Complexity</b>: Constant.
+ value_compare value_comp() const
+ { return m_flat_tree.key_comp(); }
+
+ //! <b>Effects</b>: Returns a copy of the Allocator that
+ //! was passed to the object's constructor.
+ //!
+ //! <b>Complexity</b>: Constant.
+ allocator_type get_allocator() const
+ { return m_flat_tree.get_allocator(); }
+
+ const stored_allocator_type &get_stored_allocator() const
+ { return m_flat_tree.get_stored_allocator(); }
+
+ stored_allocator_type &get_stored_allocator()
+ { return m_flat_tree.get_stored_allocator(); }
+
+ //! <b>Effects</b>: Returns an iterator to the first element contained in the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ iterator begin()
+ { return m_flat_tree.begin(); }
+
+ //! <b>Effects</b>: Returns a const_iterator to the first element contained in the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_iterator begin() const
+ { return m_flat_tree.begin(); }
+
+ //! <b>Effects</b>: Returns a const_iterator to the first element contained in the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_iterator cbegin() const
+ { return m_flat_tree.cbegin(); }
+
+ //! <b>Effects</b>: Returns an iterator to the end of the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ iterator end()
+ { return m_flat_tree.end(); }
+
+ //! <b>Effects</b>: Returns a const_iterator to the end of the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_iterator end() const
+ { return m_flat_tree.end(); }
+
+ //! <b>Effects</b>: Returns a const_iterator to the end of the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_iterator cend() const
+ { return m_flat_tree.cend(); }
+
+ //! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning
+ //! of the reversed container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ reverse_iterator rbegin()
+ { return m_flat_tree.rbegin(); }
+
+ //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
+ //! of the reversed container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_reverse_iterator rbegin() const
+ { return m_flat_tree.rbegin(); }
+
+ //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
+ //! of the reversed container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_reverse_iterator crbegin() const
+ { return m_flat_tree.crbegin(); }
+
+ //! <b>Effects</b>: Returns a reverse_iterator pointing to the end
+ //! of the reversed container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ reverse_iterator rend()
+ { return m_flat_tree.rend(); }
+
+ //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
+ //! of the reversed container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_reverse_iterator rend() const
+ { return m_flat_tree.rend(); }
+
+ //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
+ //! of the reversed container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_reverse_iterator crend() const
+ { return m_flat_tree.crend(); }
+
+ //! <b>Effects</b>: Returns true if the container contains no elements.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ bool empty() const
+ { return m_flat_tree.empty(); }
+
+ //! <b>Effects</b>: Returns the number of the elements contained in the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ size_type size() const
+ { return m_flat_tree.size(); }
+
+ //! <b>Effects</b>: Returns the largest possible size of the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ size_type max_size() const
+ { return m_flat_tree.max_size(); }
+
+ //! <b>Effects</b>: Swaps the contents of *this and x.
+ //! If this->allocator_type() != x.allocator_type() allocators are also swapped.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ void swap(boost::rv<flat_set> &x)
+ { this->swap(x.get()); }
+ void swap(flat_set& x)
+ #else
+ void swap(flat_set &&x)
+ #endif
+ { m_flat_tree.swap(x.m_flat_tree); }
+
+ //! <b>Effects</b>: Inserts x if and only if there is no element in the container
+ //! with key equivalent to the key of x.
+ //!
+ //! <b>Returns</b>: The bool component of the returned pair is true if and only
+ //! if the insertion takes place, and the iterator component of the pair
+ //! points to the element with key equivalent to the key of x.
+ //!
+ //! <b>Complexity</b>: Logarithmic search time plus linear insertion
+ //! to the elements with bigger keys than x.
+ //!
+ //! <b>Note</b>: If an element it's inserted it might invalidate elements.
+ std::pair<iterator,bool> insert(const value_type& x)
+ { return m_flat_tree.insert_unique(x); }
+
+ //! <b>Effects</b>: Inserts a new value_type move constructed from the pair if and
+ //! only if there is no element in the container with key equivalent to the key of x.
+ //!
+ //! <b>Returns</b>: The bool component of the returned pair is true if and only
+ //! if the insertion takes place, and the iterator component of the pair
+ //! points to the element with key equivalent to the key of x.
+ //!
+ //! <b>Complexity</b>: Logarithmic search time plus linear insertion
+ //! to the elements with bigger keys than x.
+ //!
+ //! <b>Note</b>: If an element it's inserted it might invalidate elements.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ std::pair<iterator,bool> insert(boost::rv<value_type> &x)
+ { return m_flat_tree.insert_unique(x); }
+ #else
+ std::pair<iterator,bool> insert(value_type && x)
+ { return m_flat_tree.insert_unique(boost::move(x)); }
+ #endif
+
+ //! <b>Effects</b>: Inserts a copy of x in the container if and only if there is
+ //! no element in the container with key equivalent to the key of x.
+ //! p is a hint pointing to where the insert should start to search.
+ //!
+ //! <b>Returns</b>: An iterator pointing to the element with key equivalent
+ //! to the key of x.
+ //!
+ //! <b>Complexity</b>: Logarithmic search time (constant if x is inserted
+ //! right before p) plus insertion linear to the elements with bigger keys than x.
+ //!
+ //! <b>Note</b>: If an element it's inserted it might invalidate elements.
+ iterator insert(const_iterator position, const value_type& x)
+ { return m_flat_tree.insert_unique(position, x); }
+
+ //! <b>Effects</b>: Inserts an element move constructed from x in the container.
+ //! p is a hint pointing to where the insert should start to search.
+ //!
+ //! <b>Returns</b>: An iterator pointing to the element with key equivalent to the key of x.
+ //!
+ //! <b>Complexity</b>: Logarithmic search time (constant if x is inserted
+ //! right before p) plus insertion linear to the elements with bigger keys than x.
+ //!
+ //! <b>Note</b>: If an element it's inserted it might invalidate elements.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ iterator insert(const_iterator position, boost::rv<value_type> &x)
+ { return m_flat_tree.insert_unique(position, x); }
+ #else
+ iterator insert(const_iterator position, value_type && x)
+ { return m_flat_tree.insert_unique(position, boost::move(x)); }
+ #endif
+
+ //! <b>Requires</b>: i, j are not iterators into *this.
+ //!
+ //! <b>Effects</b>: inserts each element from the range [i,j) if and only
+ //! if there is no element with key equivalent to the key of that element.
+ //!
+ //! <b>Complexity</b>: N log(size()+N) (N is the distance from i to j)
+ //! search time plus N*size() insertion time.
+ //!
+ //! <b>Note</b>: If an element it's inserted it might invalidate elements.
+ template <class InputIterator>
+ void insert(InputIterator first, InputIterator last)
+ { m_flat_tree.insert_unique(first, last); }
+
+ #ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING
+
+ //! <b>Effects</b>: Inserts an object of type T constructed with
+ //! std::forward<Args>(args)... if and only if there is no element in the container
+ //! with key equivalent to the key of x.
+ //!
+ //! <b>Returns</b>: The bool component of the returned pair is true if and only
+ //! if the insertion takes place, and the iterator component of the pair
+ //! points to the element with key equivalent to the key of x.
+ //!
+ //! <b>Complexity</b>: Logarithmic search time plus linear insertion
+ //! to the elements with bigger keys than x.
+ //!
+ //! <b>Note</b>: If an element it's inserted it might invalidate elements.
+ template <class... Args>
+ iterator emplace(Args&&... args)
+ { return m_flat_tree.emplace_unique(boost::forward_constructor<Args>(args)...); }
+
+ //! <b>Effects</b>: Inserts an object of type T constructed with
+ //! std::forward<Args>(args)... in the container if and only if there is
+ //! no element in the container with key equivalent to the key of x.
+ //! p is a hint pointing to where the insert should start to search.
+ //!
+ //! <b>Returns</b>: An iterator pointing to the element with key equivalent
+ //! to the key of x.
+ //!
+ //! <b>Complexity</b>: Logarithmic search time (constant if x is inserted
+ //! right before p) plus insertion linear to the elements with bigger keys than x.
+ //!
+ //! <b>Note</b>: If an element it's inserted it might invalidate elements.
+ template <class... Args>
+ iterator emplace_hint(const_iterator hint, Args&&... args)
+ { return m_flat_tree.emplace_hint_unique(hint, boost::forward_constructor<Args>(args)...); }
+
+ #else //#ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING
+
+ iterator emplace()
+ { return m_flat_tree.emplace_unique(); }
+
+ iterator emplace_hint(const_iterator hint)
+ { return m_flat_tree.emplace_hint_unique(hint); }
+
+ #define BOOST_PP_LOCAL_MACRO(n) \
+ template<BOOST_PP_ENUM_PARAMS(n, class P)> \
+ iterator emplace(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_LIST, _)) \
+ { return m_flat_tree.emplace_unique(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _)); } \
+ \
+ template<BOOST_PP_ENUM_PARAMS(n, class P)> \
+ iterator emplace_hint(const_iterator hint, BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_LIST, _)) \
+ { return m_flat_tree.emplace_hint_unique(hint, BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _)); }\
+ //!
+ #define BOOST_PP_LOCAL_LIMITS (1, BOOST_INTERPROCESS_MAX_CONSTRUCTOR_PARAMETERS)
+ #include BOOST_PP_LOCAL_ITERATE()
+
+ #endif //#ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING
+
+ //! <b>Effects</b>: Erases the element pointed to by position.
+ //!
+ //! <b>Returns</b>: Returns an iterator pointing to the element immediately
+ //! following q prior to the element being erased. If no such element exists,
+ //! returns end().
+ //!
+ //! <b>Complexity</b>: Linear to the elements with keys bigger than position
+ //!
+ //! <b>Note</b>: Invalidates elements with keys
+ //! not less than the erased element.
+ iterator erase(const_iterator position)
+ { return m_flat_tree.erase(position); }
+
+ //! <b>Effects</b>: Erases all elements in the container with key equivalent to x.
+ //!
+ //! <b>Returns</b>: Returns the number of erased elements.
+ //!
+ //! <b>Complexity</b>: Logarithmic search time plus erasure time
+ //! linear to the elements with bigger keys.
+ size_type erase(const key_type& x)
+ { return m_flat_tree.erase(x); }
+
+ //! <b>Effects</b>: Erases all the elements in the range [first, last).
+ //!
+ //! <b>Returns</b>: Returns last.
+ //!
+ //! <b>Complexity</b>: size()*N where N is the distance from first to last.
+ //!
+ //! <b>Complexity</b>: Logarithmic search time plus erasure time
+ //! linear to the elements with bigger keys.
+ iterator erase(const_iterator first, const_iterator last)
+ { return m_flat_tree.erase(first, last); }
+
+ //! <b>Effects</b>: erase(a.begin(),a.end()).
+ //!
+ //! <b>Postcondition</b>: size() == 0.
+ //!
+ //! <b>Complexity</b>: linear in size().
+ void clear()
+ { m_flat_tree.clear(); }
+
+ //! <b>Effects</b>: Tries to deallocate the excess of memory created
+ // with previous allocations. The size of the vector is unchanged
+ //!
+ //! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws.
+ //!
+ //! <b>Complexity</b>: Linear to size().
+ void shrink_to_fit()
+ { m_flat_tree.shrink_to_fit(); }
+
+ //! <b>Returns</b>: An iterator pointing to an element with the key
+ //! equivalent to x, or end() if such an element is not found.
+ //!
+ //! <b>Complexity</b>: Logarithmic.
+ iterator find(const key_type& x)
+ { return m_flat_tree.find(x); }
+
+ //! <b>Returns</b>: A const_iterator pointing to an element with the key
+ //! equivalent to x, or end() if such an element is not found.
+ //!
+ //! <b>Complexity</b>: Logarithmic.s
+ const_iterator find(const key_type& x) const
+ { return m_flat_tree.find(x); }
+
+ //! <b>Returns</b>: The number of elements with key equivalent to x.
+ //!
+ //! <b>Complexity</b>: log(size())+count(k)
+ size_type count(const key_type& x) const
+ { return m_flat_tree.find(x) == m_flat_tree.end() ? 0 : 1; }
+
+ //! <b>Returns</b>: An iterator pointing to the first element with key not less
+ //! than k, or a.end() if such an element is not found.
+ //!
+ //! <b>Complexity</b>: Logarithmic
+ iterator lower_bound(const key_type& x)
+ { return m_flat_tree.lower_bound(x); }
+
+ //! <b>Returns</b>: A const iterator pointing to the first element with key not
+ //! less than k, or a.end() if such an element is not found.
+ //!
+ //! <b>Complexity</b>: Logarithmic
+ const_iterator lower_bound(const key_type& x) const
+ { return m_flat_tree.lower_bound(x); }
+
+ //! <b>Returns</b>: An iterator pointing to the first element with key not less
+ //! than x, or end() if such an element is not found.
+ //!
+ //! <b>Complexity</b>: Logarithmic
+ iterator upper_bound(const key_type& x)
+ { return m_flat_tree.upper_bound(x); }
+
+ //! <b>Returns</b>: A const iterator pointing to the first element with key not
+ //! less than x, or end() if such an element is not found.
+ //!
+ //! <b>Complexity</b>: Logarithmic
+ const_iterator upper_bound(const key_type& x) const
+ { return m_flat_tree.upper_bound(x); }
+
+ //! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
+ //!
+ //! <b>Complexity</b>: Logarithmic
+ std::pair<const_iterator, const_iterator>
+ equal_range(const key_type& x) const
+ { return m_flat_tree.equal_range(x); }
+
+ //! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
+ //!
+ //! <b>Complexity</b>: Logarithmic
+ std::pair<iterator,iterator>
+ equal_range(const key_type& x)
+ { return m_flat_tree.equal_range(x); }
+
+ //! <b>Effects</b>: Number of elements for which memory has been allocated.
+ //! capacity() is always greater than or equal to size().
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ size_type capacity() const
+ { return m_flat_tree.capacity(); }
+
+ //! <b>Effects</b>: If n is less than or equal to capacity(), this call has no
+ //! effect. Otherwise, it is a request for allocation of additional memory.
+ //! If the request is successful, then capacity() is greater than or equal to
+ //! n; otherwise, capacity() is unchanged. In either case, size() is unchanged.
+ //!
+ //! <b>Throws</b>: If memory allocation allocation throws or T's copy constructor throws.
+ //!
+ //! <b>Note</b>: If capacity() is less than "count", iterators and references to
+ //! to values might be invalidated.
+ void reserve(size_type count)
+ { m_flat_tree.reserve(count); }
+
+ /// @cond
+ template <class K1, class C1, class A1>
+ friend bool operator== (const flat_set<K1,C1,A1>&, const flat_set<K1,C1,A1>&);
+
+ template <class K1, class C1, class A1>
+ friend bool operator< (const flat_set<K1,C1,A1>&, const flat_set<K1,C1,A1>&);
+ /// @endcond
+};
+
+template <class T, class Pred, class Alloc>
+inline bool operator==(const flat_set<T,Pred,Alloc>& x,
+ const flat_set<T,Pred,Alloc>& y)
+ { return x.m_flat_tree == y.m_flat_tree; }
+
+template <class T, class Pred, class Alloc>
+inline bool operator<(const flat_set<T,Pred,Alloc>& x,
+ const flat_set<T,Pred,Alloc>& y)
+ { return x.m_flat_tree < y.m_flat_tree; }
+
+template <class T, class Pred, class Alloc>
+inline bool operator!=(const flat_set<T,Pred,Alloc>& x,
+ const flat_set<T,Pred,Alloc>& y)
+ { return !(x == y); }
+
+template <class T, class Pred, class Alloc>
+inline bool operator>(const flat_set<T,Pred,Alloc>& x,
+ const flat_set<T,Pred,Alloc>& y)
+ { return y < x; }
+
+template <class T, class Pred, class Alloc>
+inline bool operator<=(const flat_set<T,Pred,Alloc>& x,
+ const flat_set<T,Pred,Alloc>& y)
+ { return !(y < x); }
+
+template <class T, class Pred, class Alloc>
+inline bool operator>=(const flat_set<T,Pred,Alloc>& x,
+ const flat_set<T,Pred,Alloc>& y)
+ { return !(x < y); }
+
+#if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+template <class T, class Pred, class Alloc>
+inline void swap(flat_set<T,Pred,Alloc>& x, flat_set<T,Pred,Alloc>& y)
+ { x.swap(y); }
+
+template <class T, class Pred, class Alloc>
+inline void swap(boost::rv<flat_set<T,Pred,Alloc> > &x, flat_set<T,Pred,Alloc>& y)
+ { x.get().swap(y); }
+
+template <class T, class Pred, class Alloc>
+inline void swap(flat_set<T,Pred,Alloc>& x, boost::rv<flat_set<T,Pred,Alloc> > &y)
+ { x.swap(y.get()); }
+#else
+template <class T, class Pred, class Alloc>
+inline void swap(flat_set<T,Pred,Alloc>&&x, flat_set<T,Pred,Alloc>&&y)
+ { x.swap(y); }
+#endif
+
+/// @cond
+
+//!has_trivial_destructor_after_move<> == true_type
+//!specialization for optimizations
+template <class T, class C, class A>
+struct has_trivial_destructor_after_move<flat_set<T, C, A> >
+{
+ enum { value =
+ has_trivial_destructor<A>::value &&
+ has_trivial_destructor<C>::value };
+};
+
+// Forward declaration of operators < and ==, needed for friend declaration.
+
+template <class T, class Pred, class Alloc>
+class flat_multiset;
+
+template <class T, class Pred, class Alloc>
+inline bool operator==(const flat_multiset<T,Pred,Alloc>& x,
+ const flat_multiset<T,Pred,Alloc>& y);
+
+template <class T, class Pred, class Alloc>
+inline bool operator<(const flat_multiset<T,Pred,Alloc>& x,
+ const flat_multiset<T,Pred,Alloc>& y);
+/// @endcond
+
+//! flat_multiset is a Sorted Associative Container that stores objects of type Key.
+//! flat_multiset is a Simple Associative Container, meaning that its value type,
+//! as well as its key type, is Key.
+//! flat_Multiset can store multiple copies of the same key value.
+//!
+//! flat_multiset is similar to std::multiset but it's implemented like an ordered vector.
+//! This means that inserting a new element into a flat_multiset invalidates
+//! previous iterators and references
+//!
+//! Erasing an element of a flat_multiset invalidates iterators and references
+//! pointing to elements that come after (their keys are equal or bigger) the erased element.
+template <class T, class Pred, class Alloc>
+class flat_multiset
+{
+ /// @cond
+ private:
+ typedef detail::flat_tree<T, T, detail::identity<T>, Pred, Alloc> tree_t;
+ tree_t m_flat_tree; // flat tree representing flat_multiset
+ /// @endcond
+
+ public:
+ BOOST_ENABLE_MOVE_EMULATION(flat_multiset)
+
+ // typedefs:
+ typedef typename tree_t::key_type key_type;
+ typedef typename tree_t::value_type value_type;
+ typedef typename tree_t::pointer pointer;
+ typedef typename tree_t::const_pointer const_pointer;
+ typedef typename tree_t::reference reference;
+ typedef typename tree_t::const_reference const_reference;
+ typedef typename tree_t::key_compare key_compare;
+ typedef typename tree_t::value_compare value_compare;
+ typedef typename tree_t::iterator iterator;
+ typedef typename tree_t::const_iterator const_iterator;
+ typedef typename tree_t::reverse_iterator reverse_iterator;
+ typedef typename tree_t::const_reverse_iterator const_reverse_iterator;
+ typedef typename tree_t::size_type size_type;
+ typedef typename tree_t::difference_type difference_type;
+ typedef typename tree_t::allocator_type allocator_type;
+ typedef typename tree_t::stored_allocator_type stored_allocator_type;
+
+ // allocation/deallocation
+ explicit flat_multiset(const Pred& comp = Pred(),
+ const allocator_type& a = allocator_type())
+ : m_flat_tree(comp, a) {}
+
+ template <class InputIterator>
+ flat_multiset(InputIterator first, InputIterator last,
+ const Pred& comp = Pred(),
+ const allocator_type& a = allocator_type())
+ : m_flat_tree(comp, a)
+ { m_flat_tree.insert_equal(first, last); }
+
+ flat_multiset(const flat_multiset<T,Pred,Alloc>& x)
+ : m_flat_tree(x.m_flat_tree) {}
+
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ flat_multiset(boost::rv<flat_multiset<T,Pred,Alloc> > &x)
+ : m_flat_tree(boost::move(x.get().m_flat_tree)) {}
+ #else
+ flat_multiset(flat_multiset<T,Pred,Alloc> && x)
+ : m_flat_tree(boost::move(x.m_flat_tree)) {}
+ #endif
+
+ flat_multiset<T,Pred,Alloc>& operator=(const flat_multiset<T,Pred,Alloc>& x)
+ { m_flat_tree = x.m_flat_tree; return *this; }
+
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ flat_multiset<T,Pred,Alloc>& operator=(boost::rv<flat_multiset<T,Pred,Alloc> > &mx)
+ { m_flat_tree = boost::move(mx.get().m_flat_tree); return *this; }
+ #else
+ flat_multiset<T,Pred,Alloc>& operator=(flat_multiset<T,Pred,Alloc> && mx)
+ { m_flat_tree = boost::move(mx.m_flat_tree); return *this; }
+ #endif
+
+ //! <b>Effects</b>: Returns the comparison object out
+ //! of which a was constructed.
+ //!
+ //! <b>Complexity</b>: Constant.
+ key_compare key_comp() const
+ { return m_flat_tree.key_comp(); }
+
+ //! <b>Effects</b>: Returns an object of value_compare constructed out
+ //! of the comparison object.
+ //!
+ //! <b>Complexity</b>: Constant.
+ value_compare value_comp() const
+ { return m_flat_tree.key_comp(); }
+
+ //! <b>Effects</b>: Returns a copy of the Allocator that
+ //! was passed to the object's constructor.
+ //!
+ //! <b>Complexity</b>: Constant.
+ allocator_type get_allocator() const
+ { return m_flat_tree.get_allocator(); }
+
+ const stored_allocator_type &get_stored_allocator() const
+ { return m_flat_tree.get_stored_allocator(); }
+
+ stored_allocator_type &get_stored_allocator()
+ { return m_flat_tree.get_stored_allocator(); }
+
+ //! <b>Effects</b>: Returns an iterator to the first element contained in the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ iterator begin()
+ { return m_flat_tree.begin(); }
+
+ //! <b>Effects</b>: Returns a const_iterator to the first element contained in the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_iterator begin() const
+ { return m_flat_tree.begin(); }
+
+ //! <b>Effects</b>: Returns a const_iterator to the first element contained in the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_iterator cbegin() const
+ { return m_flat_tree.cbegin(); }
+
+ //! <b>Effects</b>: Returns an iterator to the end of the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ iterator end()
+ { return m_flat_tree.end(); }
+
+ //! <b>Effects</b>: Returns a const_iterator to the end of the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_iterator end() const
+ { return m_flat_tree.end(); }
+
+ //! <b>Effects</b>: Returns a const_iterator to the end of the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_iterator cend() const
+ { return m_flat_tree.cend(); }
+
+ //! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning
+ //! of the reversed container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ reverse_iterator rbegin()
+ { return m_flat_tree.rbegin(); }
+
+ //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
+ //! of the reversed container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_reverse_iterator rbegin() const
+ { return m_flat_tree.rbegin(); }
+
+ //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
+ //! of the reversed container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_reverse_iterator crbegin() const
+ { return m_flat_tree.crbegin(); }
+
+ //! <b>Effects</b>: Returns a reverse_iterator pointing to the end
+ //! of the reversed container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ reverse_iterator rend()
+ { return m_flat_tree.rend(); }
+
+ //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
+ //! of the reversed container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_reverse_iterator rend() const
+ { return m_flat_tree.rend(); }
+
+ //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
+ //! of the reversed container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_reverse_iterator crend() const
+ { return m_flat_tree.crend(); }
+
+ //! <b>Effects</b>: Returns true if the container contains no elements.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ bool empty() const
+ { return m_flat_tree.empty(); }
+
+ //! <b>Effects</b>: Returns the number of the elements contained in the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ size_type size() const
+ { return m_flat_tree.size(); }
+
+ //! <b>Effects</b>: Returns the largest possible size of the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ size_type max_size() const
+ { return m_flat_tree.max_size(); }
+
+ //! <b>Effects</b>: Swaps the contents of *this and x.
+ //! If this->allocator_type() != x.allocator_type() allocators are also swapped.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ void swap(boost::rv<flat_multiset> &x)
+ { this->swap(x.get()); }
+ void swap(flat_multiset& x)
+ #else
+ void swap(flat_multiset &&x)
+ #endif
+ { m_flat_tree.swap(x.m_flat_tree); }
+
+ //! <b>Effects</b>: Inserts x and returns the iterator pointing to the
+ //! newly inserted element.
+ //!
+ //! <b>Complexity</b>: Logarithmic search time plus linear insertion
+ //! to the elements with bigger keys than x.
+ //!
+ //! <b>Note</b>: If an element it's inserted it might invalidate elements.
+ iterator insert(const value_type& x)
+ { return m_flat_tree.insert_equal(x); }
+
+ //! <b>Effects</b>: Inserts a new value_type move constructed from x
+ //! and returns the iterator pointing to the newly inserted element.
+ //!
+ //! <b>Complexity</b>: Logarithmic search time plus linear insertion
+ //! to the elements with bigger keys than x.
+ //!
+ //! <b>Note</b>: If an element it's inserted it might invalidate elements.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ iterator insert(boost::rv<value_type> &x)
+ { return m_flat_tree.insert_equal(x); }
+ #else
+ iterator insert(value_type && x)
+ { return m_flat_tree.insert_equal(boost::move(x)); }
+ #endif
+
+ //! <b>Effects</b>: Inserts a copy of x in the container.
+ //! p is a hint pointing to where the insert should start to search.
+ //!
+ //! <b>Returns</b>: An iterator pointing to the element with key equivalent
+ //! to the key of x.
+ //!
+ //! <b>Complexity</b>: Logarithmic search time (constant if x is inserted
+ //! right before p) plus insertion linear to the elements with bigger keys than x.
+ //!
+ //! <b>Note</b>: If an element it's inserted it might invalidate elements.
+ iterator insert(const_iterator position, const value_type& x)
+ { return m_flat_tree.insert_equal(position, x); }
+
+ //! <b>Effects</b>: Inserts a new value move constructed from x in the container.
+ //! p is a hint pointing to where the insert should start to search.
+ //!
+ //! <b>Returns</b>: An iterator pointing to the element with key equivalent
+ //! to the key of x.
+ //!
+ //! <b>Complexity</b>: Logarithmic search time (constant if x is inserted
+ //! right before p) plus insertion linear to the elements with bigger keys than x.
+ //!
+ //! <b>Note</b>: If an element it's inserted it might invalidate elements.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ iterator insert(const_iterator position, boost::rv<value_type> &x)
+ { return m_flat_tree.insert_equal(position, x); }
+ #else
+ iterator insert(const_iterator position, value_type && x)
+ { return m_flat_tree.insert_equal(position, boost::move(x)); }
+ #endif
+
+ //! <b>Requires</b>: i, j are not iterators into *this.
+ //!
+ //! <b>Effects</b>: inserts each element from the range [i,j) .
+ //!
+ //! <b>Complexity</b>: N log(size()+N) (N is the distance from i to j)
+ //! search time plus N*size() insertion time.
+ //!
+ //! <b>Note</b>: If an element it's inserted it might invalidate elements.
+ template <class InputIterator>
+ void insert(InputIterator first, InputIterator last)
+ { m_flat_tree.insert_equal(first, last); }
+
+ #ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING
+
+ //! <b>Effects</b>: Inserts an object of type T constructed with
+ //! std::forward<Args>(args)... and returns the iterator pointing to the
+ //! newly inserted element.
+ //!
+ //! <b>Complexity</b>: Logarithmic search time plus linear insertion
+ //! to the elements with bigger keys than x.
+ //!
+ //! <b>Note</b>: If an element it's inserted it might invalidate elements.
+ template <class... Args>
+ iterator emplace(Args&&... args)
+ { return m_flat_tree.emplace_equal(boost::forward_constructor<Args>(args)...); }
+
+ //! <b>Effects</b>: Inserts an object of type T constructed with
+ //! std::forward<Args>(args)... in the container.
+ //! p is a hint pointing to where the insert should start to search.
+ //!
+ //! <b>Returns</b>: An iterator pointing to the element with key equivalent
+ //! to the key of x.
+ //!
+ //! <b>Complexity</b>: Logarithmic search time (constant if x is inserted
+ //! right before p) plus insertion linear to the elements with bigger keys than x.
+ //!
+ //! <b>Note</b>: If an element it's inserted it might invalidate elements.
+ template <class... Args>
+ iterator emplace_hint(const_iterator hint, Args&&... args)
+ { return m_flat_tree.emplace_hint_equal(hint, boost::forward_constructor<Args>(args)...); }
+
+ #else //#ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING
+
+ iterator emplace()
+ { return m_flat_tree.emplace_equal(); }
+
+ iterator emplace_hint(const_iterator hint)
+ { return m_flat_tree.emplace_hint_equal(hint); }
+
+ #define BOOST_PP_LOCAL_MACRO(n) \
+ template<BOOST_PP_ENUM_PARAMS(n, class P)> \
+ iterator emplace(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_LIST, _)) \
+ { return m_flat_tree.emplace_equal(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _)); } \
+ \
+ template<BOOST_PP_ENUM_PARAMS(n, class P)> \
+ iterator emplace_hint(const_iterator hint, BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_LIST, _)) \
+ { return m_flat_tree.emplace_hint_equal(hint, BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _)); } \
+ //!
+ #define BOOST_PP_LOCAL_LIMITS (1, BOOST_INTERPROCESS_MAX_CONSTRUCTOR_PARAMETERS)
+ #include BOOST_PP_LOCAL_ITERATE()
+
+ #endif //#ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING
+
+ //! <b>Effects</b>: Erases the element pointed to by position.
+ //!
+ //! <b>Returns</b>: Returns an iterator pointing to the element immediately
+ //! following q prior to the element being erased. If no such element exists,
+ //! returns end().
+ //!
+ //! <b>Complexity</b>: Linear to the elements with keys bigger than position
+ //!
+ //! <b>Note</b>: Invalidates elements with keys
+ //! not less than the erased element.
+ iterator erase(const_iterator position)
+ { return m_flat_tree.erase(position); }
+
+ //! <b>Effects</b>: Erases all elements in the container with key equivalent to x.
+ //!
+ //! <b>Returns</b>: Returns the number of erased elements.
+ //!
+ //! <b>Complexity</b>: Logarithmic search time plus erasure time
+ //! linear to the elements with bigger keys.
+ size_type erase(const key_type& x)
+ { return m_flat_tree.erase(x); }
+
+ //! <b>Effects</b>: Erases all the elements in the range [first, last).
+ //!
+ //! <b>Returns</b>: Returns last.
+ //!
+ //! <b>Complexity</b>: size()*N where N is the distance from first to last.
+ //!
+ //! <b>Complexity</b>: Logarithmic search time plus erasure time
+ //! linear to the elements with bigger keys.
+ iterator erase(const_iterator first, const_iterator last)
+ { return m_flat_tree.erase(first, last); }
+
+ //! <b>Effects</b>: erase(a.begin(),a.end()).
+ //!
+ //! <b>Postcondition</b>: size() == 0.
+ //!
+ //! <b>Complexity</b>: linear in size().
+ void clear()
+ { m_flat_tree.clear(); }
+
+ //! <b>Effects</b>: Tries to deallocate the excess of memory created
+ // with previous allocations. The size of the vector is unchanged
+ //!
+ //! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws.
+ //!
+ //! <b>Complexity</b>: Linear to size().
+ void shrink_to_fit()
+ { m_flat_tree.shrink_to_fit(); }
+
+ //! <b>Returns</b>: An iterator pointing to an element with the key
+ //! equivalent to x, or end() if such an element is not found.
+ //!
+ //! <b>Complexity</b>: Logarithmic.
+ iterator find(const key_type& x)
+ { return m_flat_tree.find(x); }
+
+ //! <b>Returns</b>: A const_iterator pointing to an element with the key
+ //! equivalent to x, or end() if such an element is not found.
+ //!
+ //! <b>Complexity</b>: Logarithmic.s
+ const_iterator find(const key_type& x) const
+ { return m_flat_tree.find(x); }
+
+ //! <b>Returns</b>: The number of elements with key equivalent to x.
+ //!
+ //! <b>Complexity</b>: log(size())+count(k)
+ size_type count(const key_type& x) const
+ { return m_flat_tree.count(x); }
+
+ //! <b>Returns</b>: An iterator pointing to the first element with key not less
+ //! than k, or a.end() if such an element is not found.
+ //!
+ //! <b>Complexity</b>: Logarithmic
+ iterator lower_bound(const key_type& x)
+ { return m_flat_tree.lower_bound(x); }
+
+ //! <b>Returns</b>: A const iterator pointing to the first element with key not
+ //! less than k, or a.end() if such an element is not found.
+ //!
+ //! <b>Complexity</b>: Logarithmic
+ const_iterator lower_bound(const key_type& x) const
+ { return m_flat_tree.lower_bound(x); }
+
+ //! <b>Returns</b>: An iterator pointing to the first element with key not less
+ //! than x, or end() if such an element is not found.
+ //!
+ //! <b>Complexity</b>: Logarithmic
+ iterator upper_bound(const key_type& x)
+ { return m_flat_tree.upper_bound(x); }
+
+ //! <b>Returns</b>: A const iterator pointing to the first element with key not
+ //! less than x, or end() if such an element is not found.
+ //!
+ //! <b>Complexity</b>: Logarithmic
+ const_iterator upper_bound(const key_type& x) const
+ { return m_flat_tree.upper_bound(x); }
+
+ //! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
+ //!
+ //! <b>Complexity</b>: Logarithmic
+ std::pair<const_iterator, const_iterator>
+ equal_range(const key_type& x) const
+ { return m_flat_tree.equal_range(x); }
+
+ //! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
+ //!
+ //! <b>Complexity</b>: Logarithmic
+ std::pair<iterator,iterator>
+ equal_range(const key_type& x)
+ { return m_flat_tree.equal_range(x); }
+
+ //! <b>Effects</b>: Number of elements for which memory has been allocated.
+ //! capacity() is always greater than or equal to size().
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ size_type capacity() const
+ { return m_flat_tree.capacity(); }
+
+ //! <b>Effects</b>: If n is less than or equal to capacity(), this call has no
+ //! effect. Otherwise, it is a request for allocation of additional memory.
+ //! If the request is successful, then capacity() is greater than or equal to
+ //! n; otherwise, capacity() is unchanged. In either case, size() is unchanged.
+ //!
+ //! <b>Throws</b>: If memory allocation allocation throws or T's copy constructor throws.
+ //!
+ //! <b>Note</b>: If capacity() is less than "count", iterators and references to
+ //! to values might be invalidated.
+ void reserve(size_type count)
+ { m_flat_tree.reserve(count); }
+
+ /// @cond
+ template <class K1, class C1, class A1>
+ friend bool operator== (const flat_multiset<K1,C1,A1>&,
+ const flat_multiset<K1,C1,A1>&);
+ template <class K1, class C1, class A1>
+ friend bool operator< (const flat_multiset<K1,C1,A1>&,
+ const flat_multiset<K1,C1,A1>&);
+ /// @endcond
+};
+
+template <class T, class Pred, class Alloc>
+inline bool operator==(const flat_multiset<T,Pred,Alloc>& x,
+ const flat_multiset<T,Pred,Alloc>& y)
+ { return x.m_flat_tree == y.m_flat_tree; }
+
+template <class T, class Pred, class Alloc>
+inline bool operator<(const flat_multiset<T,Pred,Alloc>& x,
+ const flat_multiset<T,Pred,Alloc>& y)
+ { return x.m_flat_tree < y.m_flat_tree; }
+
+template <class T, class Pred, class Alloc>
+inline bool operator!=(const flat_multiset<T,Pred,Alloc>& x,
+ const flat_multiset<T,Pred,Alloc>& y)
+ { return !(x == y); }
+
+template <class T, class Pred, class Alloc>
+inline bool operator>(const flat_multiset<T,Pred,Alloc>& x,
+ const flat_multiset<T,Pred,Alloc>& y)
+ { return y < x; }
+
+template <class T, class Pred, class Alloc>
+inline bool operator<=(const flat_multiset<T,Pred,Alloc>& x,
+ const flat_multiset<T,Pred,Alloc>& y)
+ { return !(y < x); }
+
+template <class T, class Pred, class Alloc>
+inline bool operator>=(const flat_multiset<T,Pred,Alloc>& x,
+ const flat_multiset<T,Pred,Alloc>& y)
+{ return !(x < y); }
+
+#if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+template <class T, class Pred, class Alloc>
+inline void swap(flat_multiset<T,Pred,Alloc>& x, flat_multiset<T,Pred,Alloc>& y)
+ { x.swap(y); }
+
+template <class T, class Pred, class Alloc>
+inline void swap(boost::rv<flat_multiset<T,Pred,Alloc> > &x, flat_multiset<T,Pred,Alloc>& y)
+ { x.get().swap(y); }
+
+template <class T, class Pred, class Alloc>
+inline void swap(flat_multiset<T,Pred,Alloc>& x, boost::rv<flat_multiset<T,Pred,Alloc> > &y)
+ { x.swap(y.get()); }
+#else
+template <class T, class Pred, class Alloc>
+inline void swap(flat_multiset<T,Pred,Alloc>&&x, flat_multiset<T,Pred,Alloc>&&y)
+ { x.swap(y); }
+#endif
+
+/// @cond
+
+//!has_trivial_destructor_after_move<> == true_type
+//!specialization for optimizations
+template <class T, class C, class A>
+struct has_trivial_destructor_after_move<flat_multiset<T, C, A> >
+{
+ enum { value =
+ has_trivial_destructor<A>::value &&
+ has_trivial_destructor<C>::value };
+};
+/// @endcond
+
+}} //namespace boost { namespace interprocess {
+
+#include <boost/interprocess/detail/config_end.hpp>
+
+#endif /* BOOST_INTERPROCESS_FLAT_SET_HPP */

Added: sandbox/boost/interprocess/containers/list.hpp
==============================================================================
--- (empty file)
+++ sandbox/boost/interprocess/containers/list.hpp 2009-02-17 13:04:56 EST (Tue, 17 Feb 2009)
@@ -0,0 +1,1456 @@
+//////////////////////////////////////////////////////////////////////////////
+//
+// (C) Copyright Ion Gaztanaga 2005-2008. Distributed under the Boost
+// Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+//
+// See http://www.boost.org/libs/interprocess for documentation.
+//
+//////////////////////////////////////////////////////////////////////////////
+//
+// This file comes from SGI's stl_list.h file. Modified by Ion Gaztanaga 2004
+// Renaming, isolating and porting to generic algorithms. Pointer typedef
+// set to allocator::pointer to allow placing it in shared memory.
+//
+///////////////////////////////////////////////////////////////////////////////
+/*
+ *
+ * Copyright (c) 1994
+ * Hewlett-Packard Company
+ *
+ * Permission to use, copy, modify, distribute and sell this software
+ * and its documentation for any purpose is hereby granted without fee,
+ * provided that the above copyright notice appear in all copies and
+ * that both that copyright notice and this permission notice appear
+ * in supporting documentation. Hewlett-Packard Company makes no
+ * representations about the suitability of this software for any
+ * purpose. It is provided "as is" without express or implied warranty.
+ *
+ *
+ * Copyright (c) 1996
+ * Silicon Graphics Computer Systems, Inc.
+ *
+ * Permission to use, copy, modify, distribute and sell this software
+ * and its documentation for any purpose is hereby granted without fee,
+ * provided that the above copyright notice appear in all copies and
+ * that both that copyright notice and this permission notice appear
+ * in supporting documentation. Silicon Graphics makes no
+ * representations about the suitability of this software for any
+ * purpose. It is provided "as is" without express or implied warranty.
+ *
+ */
+
+#ifndef BOOST_INTERPROCESS_LIST_HPP_
+#define BOOST_INTERPROCESS_LIST_HPP_
+
+#if (defined _MSC_VER) && (_MSC_VER >= 1200)
+# pragma once
+#endif
+
+#include <boost/interprocess/detail/config_begin.hpp>
+#include <boost/interprocess/detail/workaround.hpp>
+#include <boost/interprocess/interprocess_fwd.hpp>
+#include <boost/interprocess/detail/version_type.hpp>
+#include <boost/move_semantics/move.hpp>
+#include <boost/interprocess/detail/utilities.hpp>
+#include <boost/interprocess/detail/algorithms.hpp>
+#include <boost/type_traits/has_trivial_destructor.hpp>
+#include <boost/interprocess/detail/mpl.hpp>
+#include <boost/intrusive/list.hpp>
+#include <boost/interprocess/containers/detail/node_alloc_holder.hpp>
+
+#ifndef BOOST_INTERPROCESS_PERFECT_FORWARDING
+//Preprocessor library to emulate perfect forwarding
+#include <boost/interprocess/detail/preprocessor.hpp>
+#endif
+
+#include <iterator>
+#include <utility>
+#include <memory>
+#include <functional>
+#include <algorithm>
+#include <stdexcept>
+
+namespace boost {
+namespace interprocess {
+
+/// @cond
+namespace detail {
+
+template<class VoidPointer>
+struct list_hook
+{
+ typedef typename bi::make_list_base_hook
+ <bi::void_pointer<VoidPointer>, bi::link_mode<bi::normal_link> >::type type;
+};
+
+template <class T, class VoidPointer>
+struct list_node
+ : public list_hook<VoidPointer>::type
+{
+
+ #ifndef BOOST_INTERPROCESS_PERFECT_FORWARDING
+
+ list_node()
+ : m_data()
+ {}
+
+ #define BOOST_PP_LOCAL_MACRO(n) \
+ template<BOOST_PP_ENUM_PARAMS(n, class P)> \
+ list_node(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_LIST, _)) \
+ : m_data(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _)) \
+ {} \
+ //!
+ #define BOOST_PP_LOCAL_LIMITS (1, BOOST_INTERPROCESS_MAX_CONSTRUCTOR_PARAMETERS)
+ #include BOOST_PP_LOCAL_ITERATE()
+
+ #else //#ifndef BOOST_INTERPROCESS_PERFECT_FORWARDING
+
+ template<class ...Args>
+ list_node(Args &&...args)
+ : m_data(boost::forward_constructor<Args>(args)...)
+ {}
+ #endif//#ifndef BOOST_INTERPROCESS_PERFECT_FORWARDING
+
+ T m_data;
+};
+
+template<class A>
+struct intrusive_list_type
+{
+ typedef typename A::value_type value_type;
+ typedef typename detail::pointer_to_other
+ <typename A::pointer, void>::type void_pointer;
+ typedef typename detail::list_node
+ <value_type, void_pointer> node_type;
+ typedef typename bi::make_list
+ < node_type
+ , bi::base_hook<typename list_hook<void_pointer>::type>
+ , bi::constant_time_size<true>
+ , bi::size_type<typename A::size_type>
+ >::type container_type;
+ typedef container_type type ;
+};
+
+} //namespace detail {
+/// @endcond
+
+//! A list is a doubly linked list. That is, it is a Sequence that supports both
+//! forward and backward traversal, and (amortized) constant time insertion and
+//! removal of elements at the beginning or the end, or in the middle. Lists have
+//! the important property that insertion and splicing do not invalidate iterators
+//! to list elements, and that even removal invalidates only the iterators that point
+//! to the elements that are removed. The ordering of iterators may be changed
+//! (that is, list<T>::iterator might have a different predecessor or successor
+//! after a list operation than it did before), but the iterators themselves will
+//! not be invalidated or made to point to different elements unless that invalidation
+//! or mutation is explicit.
+template <class T, class A>
+class list
+ : protected detail::node_alloc_holder
+ <A, typename detail::intrusive_list_type<A>::type>
+{
+ /// @cond
+ typedef typename
+ detail::intrusive_list_type<A>::type Icont;
+ typedef list <T, A> ThisType;
+ typedef detail::node_alloc_holder<A, Icont> AllocHolder;
+ typedef typename AllocHolder::NodePtr NodePtr;
+ typedef typename AllocHolder::NodeAlloc NodeAlloc;
+ typedef typename AllocHolder::ValAlloc ValAlloc;
+ typedef typename AllocHolder::Node Node;
+ typedef detail::allocator_destroyer<NodeAlloc> Destroyer;
+ typedef typename AllocHolder::allocator_v1 allocator_v1;
+ typedef typename AllocHolder::allocator_v2 allocator_v2;
+ typedef typename AllocHolder::alloc_version alloc_version;
+
+ class equal_to_value
+ {
+ typedef typename AllocHolder::value_type value_type;
+ const value_type &t_;
+
+ public:
+ equal_to_value(const value_type &t)
+ : t_(t)
+ {}
+
+ bool operator()(const value_type &t)const
+ { return t_ == t; }
+ };
+
+ template<class Pred>
+ struct ValueCompareToNodeCompare
+ : Pred
+ {
+ ValueCompareToNodeCompare(Pred pred)
+ : Pred(pred)
+ {}
+
+ bool operator()(const Node &a, const Node &b) const
+ { return static_cast<const Pred&>(*this)(a.m_data, b.m_data); }
+
+ bool operator()(const Node &a) const
+ { return static_cast<const Pred&>(*this)(a.m_data); }
+ };
+ /// @endcond
+
+ public:
+ //! The type of object, T, stored in the list
+ typedef T value_type;
+ //! Pointer to T
+ typedef typename A::pointer pointer;
+ //! Const pointer to T
+ typedef typename A::const_pointer const_pointer;
+ //! Reference to T
+ typedef typename A::reference reference;
+ //! Const reference to T
+ typedef typename A::const_reference const_reference;
+ //! An unsigned integral type
+ typedef typename A::size_type size_type;
+ //! A signed integral type
+ typedef typename A::difference_type difference_type;
+ //! The allocator type
+ typedef A allocator_type;
+ //! The stored allocator type
+ typedef NodeAlloc stored_allocator_type;
+
+ /// @cond
+ private:
+ typedef difference_type list_difference_type;
+ typedef pointer list_pointer;
+ typedef const_pointer list_const_pointer;
+ typedef reference list_reference;
+ typedef const_reference list_const_reference;
+ /// @endcond
+
+ public:
+ BOOST_ENABLE_MOVE_EMULATION(list)
+
+ //! Const iterator used to iterate through a list.
+ class const_iterator
+ /// @cond
+ : public std::iterator<std::bidirectional_iterator_tag,
+ value_type, list_difference_type,
+ list_const_pointer, list_const_reference>
+ {
+
+ protected:
+ typename Icont::iterator m_it;
+ explicit const_iterator(typename Icont::iterator it) : m_it(it){}
+ void prot_incr() { ++m_it; }
+ void prot_decr() { --m_it; }
+
+ private:
+ typename Icont::iterator get()
+ { return this->m_it; }
+
+ public:
+ friend class list<T, A>;
+ typedef list_difference_type difference_type;
+
+ //Constructors
+ const_iterator()
+ : m_it()
+ {}
+
+ //Pointer like operators
+ const_reference operator*() const
+ { return m_it->m_data; }
+
+ const_pointer operator->() const
+ { return const_pointer(&m_it->m_data); }
+
+ //Increment / Decrement
+ const_iterator& operator++()
+ { prot_incr(); return *this; }
+
+ const_iterator operator++(int)
+ { typename Icont::iterator tmp = m_it; ++*this; return const_iterator(tmp); }
+
+ const_iterator& operator--()
+ { prot_decr(); return *this; }
+
+ const_iterator operator--(int)
+ { typename Icont::iterator tmp = m_it; --*this; return const_iterator(tmp); }
+
+ //Comparison operators
+ bool operator== (const const_iterator& r) const
+ { return m_it == r.m_it; }
+
+ bool operator!= (const const_iterator& r) const
+ { return m_it != r.m_it; }
+ }
+ /// @endcond
+ ;
+
+ //! Iterator used to iterate through a list
+ class iterator
+ /// @cond
+ : public const_iterator
+ {
+
+ private:
+ explicit iterator(typename Icont::iterator it)
+ : const_iterator(it)
+ {}
+
+ typename Icont::iterator get()
+ { return this->m_it; }
+
+ public:
+ friend class list<T, A>;
+ typedef list_pointer pointer;
+ typedef list_reference reference;
+
+ //Constructors
+ iterator(){}
+
+ //Pointer like operators
+ reference operator*() const { return this->m_it->m_data; }
+ pointer operator->() const { return pointer(&this->m_it->m_data); }
+
+ //Increment / Decrement
+ iterator& operator++()
+ { this->prot_incr(); return *this; }
+
+ iterator operator++(int)
+ { typename Icont::iterator tmp = this->m_it; ++*this; return iterator(tmp); }
+
+ iterator& operator--()
+ { this->prot_decr(); return *this; }
+
+ iterator operator--(int)
+ { iterator tmp = *this; --*this; return tmp; }
+ };
+ /// @endcond
+
+ //! Iterator used to iterate backwards through a list.
+ typedef std::reverse_iterator<iterator> reverse_iterator;
+ //! Const iterator used to iterate backwards through a list.
+ typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
+
+ //! <b>Effects</b>: Constructs a list taking the allocator as parameter.
+ //!
+ //! <b>Throws</b>: If allocator_type's copy constructor throws.
+ //!
+ //! <b>Complexity</b>: Constant.
+ explicit list(const allocator_type &a = A())
+ : AllocHolder(a)
+ {}
+
+ //! <b>Effects</b>: Constructs a list that will use a copy of allocator a
+ //! and inserts n copies of value.
+ //!
+ //! <b>Throws</b>: If allocator_type's default constructor or copy constructor
+ //! throws or T's default or copy constructor throws.
+ //!
+ //! <b>Complexity</b>: Linear to n.
+ list(size_type n)
+ : AllocHolder(A())
+ { this->resize(n); }
+
+ //! <b>Effects</b>: Constructs a list that will use a copy of allocator a
+ //! and inserts n copies of value.
+ //!
+ //! <b>Throws</b>: If allocator_type's default constructor or copy constructor
+ //! throws or T's default or copy constructor throws.
+ //!
+ //! <b>Complexity</b>: Linear to n.
+ list(size_type n, const T& value, const A& a = A())
+ : AllocHolder(a)
+ { this->insert(this->cbegin(), n, value); }
+
+ //! <b>Effects</b>: Copy constructs a list.
+ //!
+ //! <b>Postcondition</b>: x == *this.
+ //!
+ //! <b>Throws</b>: If allocator_type's default constructor or copy constructor throws.
+ //!
+ //! <b>Complexity</b>: Linear to the elements x contains.
+ list(const list& x)
+ : AllocHolder(x)
+ { this->insert(this->cbegin(), x.begin(), x.end()); }
+
+ //! <b>Effects</b>: Move constructor. Moves mx's resources to *this.
+ //!
+ //! <b>Throws</b>: If allocator_type's copy constructor throws.
+ //!
+ //! <b>Complexity</b>: Constant.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ list(boost::rv<list> &x)
+ : AllocHolder(boost::move((AllocHolder&)x.get()))
+ {}
+ #else
+ list(list &&x)
+ : AllocHolder(boost::move((AllocHolder&)x))
+ {}
+ #endif
+
+ //! <b>Effects</b>: Constructs a list that will use a copy of allocator a
+ //! and inserts a copy of the range [first, last) in the list.
+ //!
+ //! <b>Throws</b>: If allocator_type's default constructor or copy constructor
+ //! throws or T's constructor taking an dereferenced InIt throws.
+ //!
+ //! <b>Complexity</b>: Linear to the range [first, last).
+ template <class InpIt>
+ list(InpIt first, InpIt last, const A &a = A())
+ : AllocHolder(a)
+ { this->insert(this->cbegin(), first, last); }
+
+ //! <b>Effects</b>: Destroys the list. All stored values are destroyed
+ //! and used memory is deallocated.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Linear to the number of elements.
+ ~list()
+ {} //AllocHolder clears the list
+
+ //! <b>Effects</b>: Returns a copy of the internal allocator.
+ //!
+ //! <b>Throws</b>: If allocator's copy constructor throws.
+ //!
+ //! <b>Complexity</b>: Constant.
+ allocator_type get_allocator() const
+ { return allocator_type(this->node_alloc()); }
+
+ const stored_allocator_type &get_stored_allocator() const
+ { return this->node_alloc(); }
+
+ stored_allocator_type &get_stored_allocator()
+ { return this->node_alloc(); }
+
+ //! <b>Effects</b>: Erases all the elements of the list.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Linear to the number of elements in the list.
+ void clear()
+ { AllocHolder::clear(alloc_version()); }
+
+ //! <b>Effects</b>: Returns an iterator to the first element contained in the list.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ iterator begin()
+ { return iterator(this->icont().begin()); }
+
+ //! <b>Effects</b>: Returns a const_iterator to the first element contained in the list.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_iterator begin() const
+ { return this->cbegin(); }
+
+ //! <b>Effects</b>: Returns an iterator to the end of the list.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ iterator end()
+ { return iterator(this->icont().end()); }
+
+ //! <b>Effects</b>: Returns a const_iterator to the end of the list.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_iterator end() const
+ { return this->cend(); }
+
+ //! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning
+ //! of the reversed list.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ reverse_iterator rbegin()
+ { return reverse_iterator(end()); }
+
+ //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
+ //! of the reversed list.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_reverse_iterator rbegin() const
+ { return this->crbegin(); }
+
+ //! <b>Effects</b>: Returns a reverse_iterator pointing to the end
+ //! of the reversed list.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ reverse_iterator rend()
+ { return reverse_iterator(begin()); }
+
+ //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
+ //! of the reversed list.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_reverse_iterator rend() const
+ { return this->crend(); }
+
+ //! <b>Effects</b>: Returns a const_iterator to the first element contained in the list.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_iterator cbegin() const
+ { return const_iterator(this->non_const_icont().begin()); }
+
+ //! <b>Effects</b>: Returns a const_iterator to the end of the list.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_iterator cend() const
+ { return const_iterator(this->non_const_icont().end()); }
+
+ //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
+ //! of the reversed list.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_reverse_iterator crbegin() const
+ { return const_reverse_iterator(this->cend()); }
+
+ //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
+ //! of the reversed list.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_reverse_iterator crend() const
+ { return const_reverse_iterator(this->cbegin()); }
+
+ //! <b>Effects</b>: Returns true if the list contains no elements.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ bool empty() const
+ { return !this->size(); }
+
+ //! <b>Effects</b>: Returns the number of the elements contained in the list.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ size_type size() const
+ { return this->icont().size(); }
+
+ //! <b>Effects</b>: Returns the largest possible size of the list.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ size_type max_size() const
+ { return AllocHolder::max_size(); }
+
+ //! <b>Effects</b>: Inserts a copy of t in the beginning of the list.
+ //!
+ //! <b>Throws</b>: If memory allocation throws or
+ //! T's copy constructor throws.
+ //!
+ //! <b>Complexity</b>: Amortized constant time.
+ void push_front(const T& x)
+ { this->insert(this->cbegin(), x); }
+
+ //! <b>Effects</b>: Constructs a new element in the beginning of the list
+ //! and moves the resources of t to this new element.
+ //!
+ //! <b>Throws</b>: If memory allocation throws.
+ //!
+ //! <b>Complexity</b>: Amortized constant time.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ void push_front(boost::rv<T> &x)
+ { this->insert(this->cbegin(), x); }
+ #else
+ void push_front(T &&x)
+ { this->insert(this->cbegin(), boost::move(x)); }
+ #endif
+
+ //! <b>Effects</b>: Removes the last element from the list.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Amortized constant time.
+ void push_back (const T& x)
+ { this->insert(this->cend(), x); }
+
+ //! <b>Effects</b>: Removes the first element from the list.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Amortized constant time.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ void push_back (boost::rv<T> &x)
+ { this->insert(this->cend(), x); }
+ #else
+ void push_back (T &&x)
+ { this->insert(this->cend(), boost::move(x)); }
+ #endif
+
+ //! <b>Effects</b>: Removes the first element from the list.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Amortized constant time.
+ void pop_front()
+ { this->erase(this->cbegin()); }
+
+ //! <b>Effects</b>: Removes the last element from the list.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Amortized constant time.
+ void pop_back()
+ { const_iterator tmp = this->cend(); this->erase(--tmp); }
+
+ //! <b>Requires</b>: !empty()
+ //!
+ //! <b>Effects</b>: Returns a reference to the first element
+ //! from the beginning of the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ reference front()
+ { return *this->begin(); }
+
+ //! <b>Requires</b>: !empty()
+ //!
+ //! <b>Effects</b>: Returns a const reference to the first element
+ //! from the beginning of the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_reference front() const
+ { return *this->begin(); }
+
+ //! <b>Requires</b>: !empty()
+ //!
+ //! <b>Effects</b>: Returns a reference to the first element
+ //! from the beginning of the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ reference back()
+ { return *(--this->end()); }
+
+ //! <b>Requires</b>: !empty()
+ //!
+ //! <b>Effects</b>: Returns a const reference to the first element
+ //! from the beginning of the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_reference back() const
+ { return *(--this->end()); }
+
+ //! <b>Effects</b>: Inserts or erases elements at the end such that
+ //! the size becomes n. New elements are copy constructed from x.
+ //!
+ //! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws.
+ //!
+ //! <b>Complexity</b>: Linear to the difference between size() and new_size.
+ void resize(size_type new_size, const T& x)
+ {
+ const_iterator iend = this->cend();
+ size_type len = this->size();
+
+ if(len > new_size){
+ size_type to_erase = len - new_size;
+ while(to_erase--){
+ --iend;
+ }
+ this->erase(iend, this->cend());
+ }
+ else{
+ this->priv_create_and_insert_nodes(iend, new_size - len, x);
+ }
+ }
+
+ //! <b>Effects</b>: Inserts or erases elements at the end such that
+ //! the size becomes n. New elements are default constructed.
+ //!
+ //! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws.
+ //!
+ //! <b>Complexity</b>: Linear to the difference between size() and new_size.
+ void resize(size_type new_size)
+ {
+ const_iterator iend = this->end();
+ size_type len = this->size();
+
+ if(len > new_size){
+ size_type to_erase = len - new_size;
+ const_iterator ifirst;
+ if(to_erase < len/2u){
+ ifirst = iend;
+ while(to_erase--){
+ --ifirst;
+ }
+ }
+ else{
+ ifirst = this->begin();
+ size_type to_skip = len - to_erase;
+ while(to_skip--){
+ ++ifirst;
+ }
+ }
+ this->erase(ifirst, iend);
+ }
+ else{
+ this->priv_create_and_insert_nodes(this->cend(), new_size - len);
+ }
+ }
+
+ //! <b>Effects</b>: Swaps the contents of *this and x.
+ //! If this->allocator_type() != x.allocator_type()
+ //! allocators are also swapped.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ void swap(boost::rv<ThisType> &x)
+ { this->swap(x.get()); }
+ void swap(ThisType& x)
+ #else
+ void swap(ThisType &&x)
+ #endif
+ { AllocHolder::swap(x); }
+
+ //! <b>Effects</b>: Makes *this contain the same elements as x.
+ //!
+ //! <b>Postcondition</b>: this->size() == x.size(). *this contains a copy
+ //! of each of x's elements.
+ //!
+ //! <b>Throws</b>: If memory allocation throws or T's copy constructor throws.
+ //!
+ //! <b>Complexity</b>: Linear to the number of elements in x.
+ ThisType& operator=(const ThisType& x)
+ {
+ if (this != &x) {
+ this->assign(x.begin(), x.end());
+ }
+ return *this;
+ }
+
+ //! <b>Effects</b>: Move assignment. All mx's values are transferred to *this.
+ //!
+ //! <b>Postcondition</b>: x.empty(). *this contains a the elements x had
+ //! before the function.
+ //!
+ //! <b>Throws</b>: If allocator_type's copy constructor throws.
+ //!
+ //! <b>Complexity</b>: Constant.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ ThisType& operator=(boost::rv<ThisType> &mx)
+ {
+ this->clear();
+ this->swap(mx.get());
+ return *this;
+ }
+ #else
+ ThisType& operator=(ThisType &&mx)
+ {
+ this->clear();
+ this->swap(mx);
+ return *this;
+ }
+ #endif
+
+ //! <b>Requires</b>: p must be a valid iterator of *this.
+ //!
+ //! <b>Effects</b>: Inserts n copies of x before p.
+ //!
+ //! <b>Throws</b>: If memory allocation throws or T's copy constructor throws.
+ //!
+ //! <b>Complexity</b>: Linear to n.
+ void insert(const_iterator p, size_type n, const T& x)
+ { this->priv_create_and_insert_nodes(p, n, x); }
+
+ //! <b>Requires</b>: p must be a valid iterator of *this.
+ //!
+ //! <b>Effects</b>: Insert a copy of the [first, last) range before p.
+ //!
+ //! <b>Throws</b>: If memory allocation throws, T's constructor from a
+ //! dereferenced InpIt throws.
+ //!
+ //! <b>Complexity</b>: Linear to std::distance [first, last).
+ template <class InpIt>
+ void insert(const_iterator p, InpIt first, InpIt last)
+ {
+ const bool aux_boolean = detail::is_convertible<InpIt, std::size_t>::value;
+ typedef detail::bool_<aux_boolean> Result;
+ this->priv_insert_dispatch(p, first, last, Result());
+ }
+
+ //! <b>Requires</b>: p must be a valid iterator of *this.
+ //!
+ //! <b>Effects</b>: Insert a copy of x before p.
+ //!
+ //! <b>Throws</b>: If memory allocation throws or x's copy constructor throws.
+ //!
+ //! <b>Complexity</b>: Amortized constant time.
+ iterator insert(const_iterator p, const T& x)
+ {
+ NodePtr tmp = AllocHolder::create_node(x);
+ return iterator(this->icont().insert(p.get(), *tmp));
+ }
+
+ //! <b>Requires</b>: p must be a valid iterator of *this.
+ //!
+ //! <b>Effects</b>: Insert a new element before p with mx's resources.
+ //!
+ //! <b>Throws</b>: If memory allocation throws.
+ //!
+ //! <b>Complexity</b>: Amortized constant time.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ iterator insert(const_iterator p, boost::rv<T> &x)
+ {
+ NodePtr tmp = AllocHolder::create_node(x);
+ return iterator(this->icont().insert(p.get(), *tmp));
+ }
+ #else
+ iterator insert(const_iterator p, T &&x)
+ {
+ NodePtr tmp = AllocHolder::create_node(boost::move(x));
+ return iterator(this->icont().insert(p.get(), *tmp));
+ }
+ #endif
+
+ #ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING
+
+ //! <b>Effects</b>: Inserts an object of type T constructed with
+ //! std::forward<Args>(args)... in the end of the list.
+ //!
+ //! <b>Throws</b>: If memory allocation throws or
+ //! T's in-place constructor throws.
+ //!
+ //! <b>Complexity</b>: Constant
+ template <class... Args>
+ void emplace_back(Args&&... args)
+ {
+ this->emplace(this->cend(), boost::forward_constructor<Args>(args)...);
+ }
+
+ //! <b>Effects</b>: Inserts an object of type T constructed with
+ //! std::forward<Args>(args)... in the beginning of the list.
+ //!
+ //! <b>Throws</b>: If memory allocation throws or
+ //! T's in-place constructor throws.
+ //!
+ //! <b>Complexity</b>: Constant
+ template <class... Args>
+ void emplace_front(Args&&... args)
+ {
+ this->emplace(this->cbegin(), boost::forward_constructor<Args>(args)...);
+ }
+
+ //! <b>Effects</b>: Inserts an object of type T constructed with
+ //! std::forward<Args>(args)... before p.
+ //!
+ //! <b>Throws</b>: If memory allocation throws or
+ //! T's in-place constructor throws.
+ //!
+ //! <b>Complexity</b>: Constant
+ template <class... Args>
+ iterator emplace(const_iterator p, Args&&... args)
+ {
+ typename AllocHolder::Deallocator d(AllocHolder::create_node_and_deallocator());
+ new ((void*)detail::get_pointer(d.get())) Node(boost::forward_constructor<Args>(args)...);
+ NodePtr node = d.get();
+ d.release();
+ return iterator(this->icont().insert(p.get(), *node));
+ }
+
+ #else //#ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING
+
+ //0 args
+ void emplace_back()
+ { this->emplace(this->cend()); }
+
+ void emplace_front()
+ { this->emplace(this->cbegin()); }
+
+ iterator emplace(const_iterator p)
+ {
+ typename AllocHolder::Deallocator d(AllocHolder::create_node_and_deallocator());
+ new ((void*)detail::get_pointer(d.get())) Node();
+ NodePtr node = d.get();
+ d.release();
+ return iterator(this->icont().insert(p.get(), *node));
+ }
+
+ #define BOOST_PP_LOCAL_MACRO(n) \
+ template<BOOST_PP_ENUM_PARAMS(n, class P)> \
+ void emplace_back(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_LIST, _)) \
+ { \
+ this->emplace(this->cend(), BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _)); \
+ } \
+ \
+ template<BOOST_PP_ENUM_PARAMS(n, class P)> \
+ void emplace_front(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_LIST, _)) \
+ { this->emplace(this->cbegin(), BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _));} \
+ \
+ template<BOOST_PP_ENUM_PARAMS(n, class P)> \
+ iterator emplace(const_iterator p, BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_LIST, _)) \
+ { \
+ typename AllocHolder::Deallocator d(AllocHolder::create_node_and_deallocator()); \
+ new ((void*)detail::get_pointer(d.get())) \
+ Node(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _)); \
+ NodePtr node = d.get(); \
+ d.release(); \
+ return iterator(this->icont().insert(p.get(), *node)); \
+ } \
+ //!
+ #define BOOST_PP_LOCAL_LIMITS (1, BOOST_INTERPROCESS_MAX_CONSTRUCTOR_PARAMETERS)
+ #include BOOST_PP_LOCAL_ITERATE()
+
+ #endif //#ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING
+
+ //! <b>Requires</b>: p must be a valid iterator of *this.
+ //!
+ //! <b>Effects</b>: Erases the element at p p.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Amortized constant time.
+ iterator erase(const_iterator p)
+ { return iterator(this->icont().erase_and_dispose(p.get(), Destroyer(this->node_alloc()))); }
+
+ //! <b>Requires</b>: first and last must be valid iterator to elements in *this.
+ //!
+ //! <b>Effects</b>: Erases the elements pointed by [first, last).
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Linear to the distance between first and last.
+ iterator erase(const_iterator first, const_iterator last)
+ { return iterator(AllocHolder::erase_range(first.get(), last.get(), alloc_version())); }
+
+ //! <b>Effects</b>: Assigns the n copies of val to *this.
+ //!
+ //! <b>Throws</b>: If memory allocation throws or T's copy constructor throws.
+ //!
+ //! <b>Complexity</b>: Linear to n.
+ void assign(size_type n, const T& val)
+ { this->priv_fill_assign(n, val); }
+
+ //! <b>Effects</b>: Assigns the the range [first, last) to *this.
+ //!
+ //! <b>Throws</b>: If memory allocation throws or
+ //! T's constructor from dereferencing InpIt throws.
+ //!
+ //! <b>Complexity</b>: Linear to n.
+ template <class InpIt>
+ void assign(InpIt first, InpIt last)
+ {
+ const bool aux_boolean = detail::is_convertible<InpIt, std::size_t>::value;
+ typedef detail::bool_<aux_boolean> Result;
+ this->priv_assign_dispatch(first, last, Result());
+ }
+
+ //! <b>Requires</b>: p must point to an element contained
+ //! by the list. x != *this
+ //!
+ //! <b>Effects</b>: Transfers all the elements of list x to this list, before the
+ //! the element pointed by p. No destructors or copy constructors are called.
+ //!
+ //! <b>Throws</b>: std::runtime_error if this' allocator and x's allocator
+ //! are not equal.
+ //!
+ //! <b>Complexity</b>: Constant.
+ //!
+ //! <b>Note</b>: Iterators of values obtained from list x now point to elements of
+ //! this list. Iterators of this list and all the references are not invalidated.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ void splice(iterator p, boost::rv<ThisType> &x)
+ { this->splice(p, x.get()); }
+ void splice(iterator p, ThisType& x)
+ #else
+ void splice(iterator p, ThisType&& x)
+ #endif
+ {
+ if((NodeAlloc&)*this == (NodeAlloc&)x){
+ this->icont().splice(p.get(), x.icont());
+ }
+ else{
+ throw std::runtime_error("list::splice called with unequal allocators");
+ }
+ }
+
+ //! <b>Requires</b>: p must point to an element contained
+ //! by this list. i must point to an element contained in list x.
+ //!
+ //! <b>Effects</b>: Transfers the value pointed by i, from list x to this list,
+ //! before the the element pointed by p. No destructors or copy constructors are called.
+ //! If p == i or p == ++i, this function is a null operation.
+ //!
+ //! <b>Throws</b>: std::runtime_error if this' allocator and x's allocator
+ //! are not equal.
+ //!
+ //! <b>Complexity</b>: Constant.
+ //!
+ //! <b>Note</b>: Iterators of values obtained from list x now point to elements of this
+ //! list. Iterators of this list and all the references are not invalidated.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ void splice(const_iterator p, boost::rv<ThisType> &x, const_iterator i)
+ { this->splice(p, x.get(), i); }
+ void splice(const_iterator p, ThisType &x, const_iterator i)
+ #else
+ void splice(const_iterator p, ThisType &&x, const_iterator i)
+ #endif
+ {
+ if((NodeAlloc&)*this == (NodeAlloc&)x){
+ this->icont().splice(p.get(), x.icont(), i.get());
+ }
+ else{
+ throw std::runtime_error("list::splice called with unequal allocators");
+ }
+ }
+
+ //! <b>Requires</b>: p must point to an element contained
+ //! by this list. first and last must point to elements contained in list x.
+ //!
+ //! <b>Effects</b>: Transfers the range pointed by first and last from list x to this list,
+ //! before the the element pointed by p. No destructors or copy constructors are called.
+ //!
+ //! <b>Throws</b>: std::runtime_error if this' allocator and x's allocator
+ //! are not equal.
+ //!
+ //! <b>Complexity</b>: Linear to the number of elements transferred.
+ //!
+ //! <b>Note</b>: Iterators of values obtained from list x now point to elements of this
+ //! list. Iterators of this list and all the references are not invalidated.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ void splice(const_iterator p, boost::rv<ThisType> &x, const_iterator first, const_iterator last)
+ { this->splice(p, x.get(), first, last); }
+ void splice(const_iterator p, ThisType &x, const_iterator first, const_iterator last)
+ #else
+ void splice(const_iterator p, ThisType &&x, const_iterator first, const_iterator last)
+ #endif
+ {
+ if((NodeAlloc&)*this == (NodeAlloc&)x){
+ this->icont().splice(p.get(), x.icont(), first.get(), last.get());
+ }
+ else{
+ throw std::runtime_error("list::splice called with unequal allocators");
+ }
+ }
+
+ //! <b>Requires</b>: p must point to an element contained
+ //! by this list. first and last must point to elements contained in list x.
+ //! n == std::distance(first, last)
+ //!
+ //! <b>Effects</b>: Transfers the range pointed by first and last from list x to this list,
+ //! before the the element pointed by p. No destructors or copy constructors are called.
+ //!
+ //! <b>Throws</b>: std::runtime_error if this' allocator and x's allocator
+ //! are not equal.
+ //!
+ //! <b>Complexity</b>: Constant.
+ //!
+ //! <b>Note</b>: Iterators of values obtained from list x now point to elements of this
+ //! list. Iterators of this list and all the references are not invalidated.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ void splice(const_iterator p, boost::rv<ThisType> &x, const_iterator first, const_iterator last, size_type n)
+ { this->splice(p, x.get(), first, last, n); }
+ void splice(const_iterator p, ThisType &x, const_iterator first, const_iterator last, size_type n)
+ #else
+ void splice(const_iterator p, ThisType &&x, const_iterator first, const_iterator last, size_type n)
+ #endif
+ {
+ if((NodeAlloc&)*this == (NodeAlloc&)x){
+ this->icont().splice(p.get(), x.icont(), first.get(), last.get(), n);
+ }
+ else{
+ throw std::runtime_error("list::splice called with unequal allocators");
+ }
+ }
+
+ //! <b>Effects</b>: Reverses the order of elements in the list.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: This function is linear time.
+ //!
+ //! <b>Note</b>: Iterators and references are not invalidated
+ void reverse()
+ { this->icont().reverse(); }
+
+ //! <b>Effects</b>: Removes all the elements that compare equal to value.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Linear time. It performs exactly size() comparisons for equality.
+ //!
+ //! <b>Note</b>: The relative order of elements that are not removed is unchanged,
+ //! and iterators to elements that are not removed remain valid.
+ void remove(const T& value)
+ { remove_if(equal_to_value(value)); }
+
+ //! <b>Effects</b>: Removes all the elements for which a specified
+ //! predicate is satisfied.
+ //!
+ //! <b>Throws</b>: If pred throws.
+ //!
+ //! <b>Complexity</b>: Linear time. It performs exactly size() calls to the predicate.
+ //!
+ //! <b>Note</b>: The relative order of elements that are not removed is unchanged,
+ //! and iterators to elements that are not removed remain valid.
+ template <class Pred>
+ void remove_if(Pred pred)
+ {
+ typedef ValueCompareToNodeCompare<Pred> Predicate;
+ this->icont().remove_and_dispose_if(Predicate(pred), Destroyer(this->node_alloc()));
+ }
+
+ //! <b>Effects</b>: Removes adjacent duplicate elements or adjacent
+ //! elements that are equal from the list.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Linear time (size()-1 comparisons calls to pred()).
+ //!
+ //! <b>Note</b>: The relative order of elements that are not removed is unchanged,
+ //! and iterators to elements that are not removed remain valid.
+ void unique()
+ { this->unique(value_equal()); }
+
+ //! <b>Effects</b>: Removes adjacent duplicate elements or adjacent
+ //! elements that satisfy some binary predicate from the list.
+ //!
+ //! <b>Throws</b>: If pred throws.
+ //!
+ //! <b>Complexity</b>: Linear time (size()-1 comparisons equality comparisons).
+ //!
+ //! <b>Note</b>: The relative order of elements that are not removed is unchanged,
+ //! and iterators to elements that are not removed remain valid.
+ template <class BinaryPredicate>
+ void unique(BinaryPredicate binary_pred)
+ {
+ typedef ValueCompareToNodeCompare<BinaryPredicate> Predicate;
+ this->icont().unique_and_dispose(Predicate(binary_pred), Destroyer(this->node_alloc()));
+ }
+
+ //! <b>Requires</b>: The lists x and *this must be distinct.
+ //!
+ //! <b>Effects</b>: This function removes all of x's elements and inserts them
+ //! in order into *this according to std::less<value_type>. The merge is stable;
+ //! that is, if an element from *this is equivalent to one from x, then the element
+ //! from *this will precede the one from x.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: This function is linear time: it performs at most
+ //! size() + x.size() - 1 comparisons.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ void merge(boost::rv<list<T, A> > &x)
+ { this->merge(x.get()); }
+ void merge(list<T, A>& x)
+ #else
+ void merge(list<T, A>&& x)
+ #endif
+ { this->merge(x, value_less()); }
+
+ //! <b>Requires</b>: p must be a comparison function that induces a strict weak
+ //! ordering and both *this and x must be sorted according to that ordering
+ //! The lists x and *this must be distinct.
+ //!
+ //! <b>Effects</b>: This function removes all of x's elements and inserts them
+ //! in order into *this. The merge is stable; that is, if an element from *this is
+ //! equivalent to one from x, then the element from *this will precede the one from x.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: This function is linear time: it performs at most
+ //! size() + x.size() - 1 comparisons.
+ //!
+ //! <b>Note</b>: Iterators and references to *this are not invalidated.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ template <class StrictWeakOrdering>
+ void merge(boost::rv<list<T, A> > &x, StrictWeakOrdering comp)
+ { this->merge(x.get(), comp); }
+ template <class StrictWeakOrdering>
+ void merge(list<T, A>& x, StrictWeakOrdering comp)
+ #else
+ template <class StrictWeakOrdering>
+ void merge(list<T, A>&& x, StrictWeakOrdering comp)
+ #endif
+ {
+ if((NodeAlloc&)*this == (NodeAlloc&)x){
+ this->icont().merge(x.icont(),
+ ValueCompareToNodeCompare<StrictWeakOrdering>(comp));
+ }
+ else{
+ throw std::runtime_error("list::merge called with unequal allocators");
+ }
+ }
+
+ //! <b>Effects</b>: This function sorts the list *this according to std::less<value_type>.
+ //! The sort is stable, that is, the relative order of equivalent elements is preserved.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Notes</b>: Iterators and references are not invalidated.
+ //!
+ //! <b>Complexity</b>: The number of comparisons is approximately N log N, where N
+ //! is the list's size.
+ void sort()
+ { this->sort(value_less()); }
+
+ //! <b>Effects</b>: This function sorts the list *this according to std::less<value_type>.
+ //! The sort is stable, that is, the relative order of equivalent elements is preserved.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Notes</b>: Iterators and references are not invalidated.
+ //!
+ //! <b>Complexity</b>: The number of comparisons is approximately N log N, where N
+ //! is the list's size.
+ template <class StrictWeakOrdering>
+ void sort(StrictWeakOrdering comp)
+ {
+ // nothing if the list has length 0 or 1.
+ if (this->size() < 2)
+ return;
+ this->icont().sort(ValueCompareToNodeCompare<StrictWeakOrdering>(comp));
+ }
+
+ /// @cond
+ private:
+
+ //Iterator range version
+ template<class InpIterator>
+ void priv_create_and_insert_nodes
+ (const_iterator pos, InpIterator beg, InpIterator end)
+ {
+ typedef typename std::iterator_traits<InpIterator>::iterator_category ItCat;
+ priv_create_and_insert_nodes(pos, beg, end, alloc_version(), ItCat());
+ }
+
+ template<class InpIterator>
+ void priv_create_and_insert_nodes
+ (const_iterator pos, InpIterator beg, InpIterator end, allocator_v1, std::input_iterator_tag)
+ {
+ for (; beg != end; ++beg){
+ this->icont().insert(pos.get(), *this->create_node_from_it(beg));
+ }
+ }
+
+ template<class InpIterator>
+ void priv_create_and_insert_nodes
+ (const_iterator pos, InpIterator beg, InpIterator end, allocator_v2, std::input_iterator_tag)
+ { //Just forward to the default one
+ priv_create_and_insert_nodes(pos, beg, end, allocator_v1(), std::input_iterator_tag());
+ }
+
+ class insertion_functor;
+ friend class insertion_functor;
+
+ class insertion_functor
+ {
+ Icont &icont_;
+ typename Icont::const_iterator pos_;
+
+ public:
+ insertion_functor(Icont &icont, typename Icont::const_iterator pos)
+ : icont_(icont), pos_(pos)
+ {}
+
+ void operator()(Node &n)
+ { this->icont_.insert(pos_, n); }
+ };
+
+
+ template<class FwdIterator>
+ void priv_create_and_insert_nodes
+ (const_iterator pos, FwdIterator beg, FwdIterator end, allocator_v2, std::forward_iterator_tag)
+ {
+ if(beg != end){
+ //Optimized allocation and construction
+ this->allocate_many_and_construct
+ (beg, std::distance(beg, end), insertion_functor(this->icont(), pos.get()));
+ }
+ }
+
+ //Default constructed version
+ void priv_create_and_insert_nodes(const_iterator pos, size_type n)
+ {
+ typedef default_construct_iterator<value_type, difference_type> default_iterator;
+ this->priv_create_and_insert_nodes(pos, default_iterator(n), default_iterator());
+ }
+
+ //Copy constructed version
+ void priv_create_and_insert_nodes(const_iterator pos, size_type n, const T& x)
+ {
+ typedef constant_iterator<value_type, difference_type> cvalue_iterator;
+ this->priv_create_and_insert_nodes(pos, cvalue_iterator(x, n), cvalue_iterator());
+ }
+
+ //Dispatch to detect iterator range or integer overloads
+ template <class InputIter>
+ void priv_insert_dispatch(const_iterator p,
+ InputIter first, InputIter last,
+ detail::false_)
+ { this->priv_create_and_insert_nodes(p, first, last); }
+
+ template<class Integer>
+ void priv_insert_dispatch(const_iterator p, Integer n, Integer x, detail::true_)
+ { this->insert(p, (size_type)n, x); }
+
+ void priv_fill_assign(size_type n, const T& val)
+ {
+ iterator i = this->begin(), iend = this->end();
+
+ for ( ; i != iend && n > 0; ++i, --n)
+ *i = val;
+ if (n > 0){
+ this->priv_create_and_insert_nodes(this->cend(), n, val);
+ }
+ else{
+ this->erase(i, cend());
+ }
+ }
+
+ template <class Integer>
+ void priv_assign_dispatch(Integer n, Integer val, detail::true_)
+ { this->priv_fill_assign((size_type) n, (T) val); }
+
+ template <class InputIter>
+ void priv_assign_dispatch(InputIter first2, InputIter last2, detail::false_)
+ {
+ iterator first1 = this->begin();
+ iterator last1 = this->end();
+ for ( ; first1 != last1 && first2 != last2; ++first1, ++first2)
+ *first1 = *first2;
+ if (first2 == last2)
+ this->erase(first1, last1);
+ else{
+ this->priv_create_and_insert_nodes(last1, first2, last2);
+ }
+ }
+
+ //Functors for member algorithm defaults
+ struct value_less
+ {
+ bool operator()(const value_type &a, const value_type &b) const
+ { return a < b; }
+ };
+
+ struct value_equal
+ {
+ bool operator()(const value_type &a, const value_type &b) const
+ { return a == b; }
+ };
+ /// @endcond
+
+};
+
+template <class T, class A>
+inline bool operator==(const list<T,A>& x, const list<T,A>& y)
+{
+ if(x.size() != y.size()){
+ return false;
+ }
+ typedef typename list<T,A>::const_iterator const_iterator;
+ const_iterator end1 = x.end();
+
+ const_iterator i1 = x.begin();
+ const_iterator i2 = y.begin();
+ while (i1 != end1 && *i1 == *i2) {
+ ++i1;
+ ++i2;
+ }
+ return i1 == end1;
+}
+
+template <class T, class A>
+inline bool operator<(const list<T,A>& x,
+ const list<T,A>& y)
+{
+ return std::lexicographical_compare(x.begin(), x.end(), y.begin(), y.end());
+}
+
+template <class T, class A>
+inline bool operator!=(const list<T,A>& x, const list<T,A>& y)
+{
+ return !(x == y);
+}
+
+template <class T, class A>
+inline bool operator>(const list<T,A>& x, const list<T,A>& y)
+{
+ return y < x;
+}
+
+template <class T, class A>
+inline bool operator<=(const list<T,A>& x, const list<T,A>& y)
+{
+ return !(y < x);
+}
+
+template <class T, class A>
+inline bool operator>=(const list<T,A>& x, const list<T,A>& y)
+{
+ return !(x < y);
+}
+
+#if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+template <class T, class A>
+inline void swap(list<T, A>& x, list<T, A>& y)
+{
+ x.swap(y);
+}
+
+template <class T, class A>
+inline void swap(boost::rv<list<T, A> >& x, list<T, A> y)
+{
+ x.get().swap(y);
+}
+
+template <class T, class A>
+inline void swap(list<T, A>& x, boost::rv<list<T, A> > &y)
+{
+ x.swap(y.get());
+}
+#else
+template <class T, class A>
+inline void swap(list<T, A> &&x, list<T, A> &&y)
+{
+ x.swap(y);
+}
+
+#endif
+
+/// @cond
+
+//!has_trivial_destructor_after_move<> == true_type
+//!specialization for optimizations
+template <class T, class A>
+struct has_trivial_destructor_after_move<list<T, A> >
+{
+ enum { value = has_trivial_destructor<A>::value };
+};
+/// @endcond
+
+} //namespace interprocess {
+} //namespace boost {
+
+#include <boost/interprocess/detail/config_end.hpp>
+
+#endif // BOOST_INTERPROCESS_LIST_HPP_

Added: sandbox/boost/interprocess/containers/map.hpp
==============================================================================
--- (empty file)
+++ sandbox/boost/interprocess/containers/map.hpp 2009-02-17 13:04:56 EST (Tue, 17 Feb 2009)
@@ -0,0 +1,1368 @@
+//////////////////////////////////////////////////////////////////////////////
+//
+// (C) Copyright Ion Gaztanaga 2005-2008. Distributed under the Boost
+// Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+//
+// See http://www.boost.org/libs/interprocess for documentation.
+//
+//////////////////////////////////////////////////////////////////////////////
+//
+// This file comes from SGI's stl_map/stl_multimap files. Modified by Ion Gaztanaga.
+// Renaming, isolating and porting to generic algorithms. Pointer typedef
+// set to allocator::pointer to allow placing it in shared memory.
+//
+///////////////////////////////////////////////////////////////////////////////
+/*
+ *
+ * Copyright (c) 1994
+ * Hewlett-Packard Company
+ *
+ * Permission to use, copy, modify, distribute and sell this software
+ * and its documentation for any purpose is hereby granted without fee,
+ * provided that the above copyright notice appear in all copies and
+ * that both that copyright notice and this permission notice appear
+ * in supporting documentation. Hewlett-Packard Company makes no
+ * representations about the suitability of this software for any
+ * purpose. It is provided "as is" without express or implied warranty.
+ *
+ *
+ * Copyright (c) 1996
+ * Silicon Graphics Computer Systems, Inc.
+ *
+ * Permission to use, copy, modify, distribute and sell this software
+ * and its documentation for any purpose is hereby granted without fee,
+ * provided that the above copyright notice appear in all copies and
+ * that both that copyright notice and this permission notice appear
+ * in supporting documentation. Silicon Graphics makes no
+ * representations about the suitability of this software for any
+ * purpose. It is provided "as is" without express or implied warranty.
+ *
+ */
+
+#ifndef BOOST_INTERPROCESS_MAP_HPP
+#define BOOST_INTERPROCESS_MAP_HPP
+
+#if (defined _MSC_VER) && (_MSC_VER >= 1200)
+# pragma once
+#endif
+
+#include <boost/interprocess/detail/config_begin.hpp>
+#include <boost/interprocess/detail/workaround.hpp>
+
+#include <boost/interprocess/interprocess_fwd.hpp>
+#include <utility>
+#include <functional>
+#include <memory>
+#include <stdexcept>
+#include <boost/interprocess/containers/detail/tree.hpp>
+#include <boost/type_traits/has_trivial_destructor.hpp>
+#include <boost/interprocess/detail/mpl.hpp>
+#include <boost/interprocess/detail/utilities.hpp>
+#include <boost/move_semantics/move.hpp>
+
+namespace boost { namespace interprocess {
+
+/// @cond
+// Forward declarations of operators == and <, needed for friend declarations.
+template <class Key, class T, class Pred, class Alloc>
+inline bool operator==(const map<Key,T,Pred,Alloc>& x,
+ const map<Key,T,Pred,Alloc>& y);
+
+template <class Key, class T, class Pred, class Alloc>
+inline bool operator<(const map<Key,T,Pred,Alloc>& x,
+ const map<Key,T,Pred,Alloc>& y);
+/// @endcond
+
+//! A map is a kind of associative container that supports unique keys (contains at
+//! most one of each key value) and provides for fast retrieval of values of another
+//! type T based on the keys. The map class supports bidirectional iterators.
+//!
+//! A map satisfies all of the requirements of a container and of a reversible
+//! container and of an associative container. For a
+//! map<Key,T> the key_type is Key and the value_type is std::pair<const Key,T>.
+//!
+//! Pred is the ordering function for Keys (e.g. <i>std::less<Key></i>).
+//!
+//! Alloc is the allocator to allocate the value_types
+//! (e.g. <i>boost::interprocess:allocator< std::pair<const Key, T></i>).
+template <class Key, class T, class Pred, class Alloc>
+class map
+{
+ /// @cond
+ private:
+ typedef detail::rbtree<Key,
+ std::pair<const Key, T>,
+ detail::select1st< std::pair<const Key, T> >,
+ Pred,
+ Alloc> tree_t;
+ tree_t m_tree; // red-black tree representing map
+ /// @endcond
+
+ public:
+ BOOST_ENABLE_MOVE_EMULATION(map)
+
+ // typedefs:
+ typedef typename tree_t::key_type key_type;
+ typedef typename tree_t::value_type value_type;
+ typedef typename tree_t::pointer pointer;
+ typedef typename tree_t::const_pointer const_pointer;
+ typedef typename tree_t::reference reference;
+ typedef typename tree_t::const_reference const_reference;
+ typedef T mapped_type;
+ typedef Pred key_compare;
+ typedef typename tree_t::iterator iterator;
+ typedef typename tree_t::const_iterator const_iterator;
+ typedef typename tree_t::reverse_iterator reverse_iterator;
+ typedef typename tree_t::const_reverse_iterator const_reverse_iterator;
+ typedef typename tree_t::size_type size_type;
+ typedef typename tree_t::difference_type difference_type;
+ typedef typename tree_t::allocator_type allocator_type;
+ typedef typename tree_t::stored_allocator_type stored_allocator_type;
+
+ /// @cond
+ class value_compare_impl
+ : public Pred,
+ public std::binary_function<value_type, value_type, bool>
+ {
+ friend class map<Key,T,Pred,Alloc>;
+ protected :
+ value_compare_impl(const Pred &c) : Pred(c) {}
+ public:
+ bool operator()(const value_type& x, const value_type& y) const {
+ return Pred::operator()(x.first, y.first);
+ }
+ };
+ /// @endcond
+ typedef value_compare_impl value_compare;
+
+ //! <b>Effects</b>: Constructs an empty map using the specified comparison object
+ //! and allocator.
+ //!
+ //! <b>Complexity</b>: Constant.
+ explicit map(const Pred& comp = Pred(),
+ const allocator_type& a = allocator_type())
+ : m_tree(comp, a)
+ {}
+
+ //! <b>Effects</b>: Constructs an empty map using the specified comparison object and
+ //! allocator, and inserts elements from the range [first ,last ).
+ //!
+ //! <b>Complexity</b>: Linear in N if the range [first ,last ) is already sorted using
+ //! comp and otherwise N logN, where N is last - first.
+ template <class InputIterator>
+ map(InputIterator first, InputIterator last, const Pred& comp = Pred(),
+ const allocator_type& a = allocator_type())
+ : m_tree(first, last, comp, a, true)
+ {}
+
+ //! <b>Effects</b>: Copy constructs a map.
+ //!
+ //! <b>Complexity</b>: Linear in x.size().
+ map(const map<Key,T,Pred,Alloc>& x)
+ : m_tree(x.m_tree)
+ {}
+
+ //! <b>Effects</b>: Move constructs a map. Constructs *this using x's resources.
+ //!
+ //! <b>Complexity</b>: Construct.
+ //!
+ //! <b>Postcondition</b>: x is emptied.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ map(boost::rv<map<Key,T,Pred,Alloc> > &x)
+ : m_tree(boost::move(x.get().m_tree))
+ {}
+ #else
+ map(map<Key,T,Pred,Alloc> &&x)
+ : m_tree(boost::move(x.m_tree))
+ {}
+ #endif
+
+ //! <b>Effects</b>: Makes *this a copy of x.
+ //!
+ //! <b>Complexity</b>: Linear in x.size().
+ map<Key,T,Pred,Alloc>& operator=(const map<Key, T, Pred, Alloc>& x)
+ { m_tree = x.m_tree; return *this; }
+
+ //! <b>Effects</b>: this->swap(x.get()).
+ //!
+ //! <b>Complexity</b>: Constant.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ map<Key,T,Pred,Alloc>& operator=(boost::rv<map<Key,T,Pred,Alloc> > &x)
+ { m_tree = boost::move(x.get().m_tree); return *this; }
+ #else
+ map<Key,T,Pred,Alloc>& operator=(map<Key,T,Pred,Alloc> &&x)
+ { m_tree = boost::move(x.m_tree); return *this; }
+ #endif
+
+ //! <b>Effects</b>: Returns the comparison object out
+ //! of which a was constructed.
+ //!
+ //! <b>Complexity</b>: Constant.
+ key_compare key_comp() const
+ { return m_tree.key_comp(); }
+
+ //! <b>Effects</b>: Returns an object of value_compare constructed out
+ //! of the comparison object.
+ //!
+ //! <b>Complexity</b>: Constant.
+ value_compare value_comp() const
+ { return value_compare(m_tree.key_comp()); }
+
+ //! <b>Effects</b>: Returns a copy of the Allocator that
+ //! was passed to the object's constructor.
+ //!
+ //! <b>Complexity</b>: Constant.
+ allocator_type get_allocator() const
+ { return m_tree.get_allocator(); }
+
+ const stored_allocator_type &get_stored_allocator() const
+ { return m_tree.get_stored_allocator(); }
+
+ stored_allocator_type &get_stored_allocator()
+ { return m_tree.get_stored_allocator(); }
+
+ //! <b>Effects</b>: Returns an iterator to the first element contained in the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ iterator begin()
+ { return m_tree.begin(); }
+
+ //! <b>Effects</b>: Returns a const_iterator to the first element contained in the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_iterator begin() const
+ { return m_tree.begin(); }
+
+ //! <b>Effects</b>: Returns an iterator to the end of the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ iterator end()
+ { return m_tree.end(); }
+
+ //! <b>Effects</b>: Returns a const_iterator to the end of the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_iterator end() const
+ { return m_tree.end(); }
+
+ //! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning
+ //! of the reversed container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ reverse_iterator rbegin()
+ { return m_tree.rbegin(); }
+
+ //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
+ //! of the reversed container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_reverse_iterator rbegin() const
+ { return m_tree.rbegin(); }
+
+ //! <b>Effects</b>: Returns a reverse_iterator pointing to the end
+ //! of the reversed container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ reverse_iterator rend()
+ { return m_tree.rend(); }
+
+ //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
+ //! of the reversed container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_reverse_iterator rend() const
+ { return m_tree.rend(); }
+
+ //! <b>Effects</b>: Returns true if the container contains no elements.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ bool empty() const
+ { return m_tree.empty(); }
+
+ //! <b>Effects</b>: Returns the number of the elements contained in the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ size_type size() const
+ { return m_tree.size(); }
+
+ //! <b>Effects</b>: Returns the largest possible size of the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ size_type max_size() const
+ { return m_tree.max_size(); }
+
+ //! Effects: If there is no key equivalent to x in the map, inserts
+ //! value_type(x, T()) into the map.
+ //!
+ //! Returns: A reference to the mapped_type corresponding to x in *this.
+ //!
+ //! Complexity: Logarithmic.
+ T& operator[](const key_type& k)
+ {
+ //we can optimize this
+ iterator i = lower_bound(k);
+ // i->first is greater than or equivalent to k.
+ if (i == end() || key_comp()(k, (*i).first)){
+ detail::value_init<T> v;
+ value_type val(k, boost::move(v.m_t));
+ i = insert(i, boost::move(val));
+ }
+ return (*i).second;
+ }
+
+ //! Effects: If there is no key equivalent to x in the map, inserts
+ //! value_type(boost::move(x), T()) into the map (the key is move-constructed)
+ //!
+ //! Returns: A reference to the mapped_type corresponding to x in *this.
+ //!
+ //! Complexity: Logarithmic.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ T& operator[](boost::rv<key_type> &mk)
+ {
+ key_type &k = mk.get();
+ //we can optimize this
+ iterator i = lower_bound(k);
+ // i->first is greater than or equivalent to k.
+ if (i == end() || key_comp()(k, (*i).first)){
+ value_type val(k, boost::move(T()));
+ i = insert(i, boost::move(val));
+ }
+ return (*i).second;
+ }
+ #else
+ T& operator[](key_type &&mk)
+ {
+ key_type &k = mk;
+ //we can optimize this
+ iterator i = lower_bound(k);
+ // i->first is greater than or equivalent to k.
+ if (i == end() || key_comp()(k, (*i).first)){
+ value_type val(boost::move(k), boost::move(T()));
+ i = insert(i, boost::move(val));
+ }
+ return (*i).second;
+ }
+ #endif
+
+ //! Returns: A reference to the element whose key is equivalent to x.
+ //! Throws: An exception object of type out_of_range if no such element is present.
+ //! Complexity: logarithmic.
+ T& at(const key_type& k)
+ {
+ iterator i = this->find(k);
+ if(i == this->end()){
+ throw std::out_of_range("key not found");
+ }
+ return i->second;
+ }
+
+ //! Returns: A reference to the element whose key is equivalent to x.
+ //! Throws: An exception object of type out_of_range if no such element is present.
+ //! Complexity: logarithmic.
+ const T& at(const key_type& k) const
+ {
+ const_iterator i = this->find(k);
+ if(i == this->end()){
+ throw std::out_of_range("key not found");
+ }
+ return i->second;
+ }
+
+ //! <b>Effects</b>: Swaps the contents of *this and x.
+ //! If this->allocator_type() != x.allocator_type() allocators are also swapped.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ void swap(boost::rv<map> &x)
+ { this->swap(x.get()); }
+ void swap(map& x)
+ #else
+ void swap(map &&x)
+ #endif
+ { m_tree.swap(x.m_tree); }
+
+ //! <b>Effects</b>: Inserts x if and only if there is no element in the container
+ //! with key equivalent to the key of x.
+ //!
+ //! <b>Returns</b>: The bool component of the returned pair is true if and only
+ //! if the insertion takes place, and the iterator component of the pair
+ //! points to the element with key equivalent to the key of x.
+ //!
+ //! <b>Complexity</b>: Logarithmic.
+ std::pair<iterator,bool> insert(const value_type& x)
+ { return m_tree.insert_unique(x); }
+
+ //! <b>Effects</b>: Inserts a new value_type created from the pair if and only if
+ //! there is no element in the container with key equivalent to the key of x.
+ //!
+ //! <b>Returns</b>: The bool component of the returned pair is true if and only
+ //! if the insertion takes place, and the iterator component of the pair
+ //! points to the element with key equivalent to the key of x.
+ //!
+ //! <b>Complexity</b>: Logarithmic.
+ std::pair<iterator,bool> insert(const std::pair<key_type, mapped_type>& x)
+ { return m_tree.insert_unique(x); }
+
+ //! <b>Effects</b>: Inserts a new value_type move constructed from the pair if and
+ //! only if there is no element in the container with key equivalent to the key of x.
+ //!
+ //! <b>Returns</b>: The bool component of the returned pair is true if and only
+ //! if the insertion takes place, and the iterator component of the pair
+ //! points to the element with key equivalent to the key of x.
+ //!
+ //! <b>Complexity</b>: Logarithmic.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ std::pair<iterator,bool> insert(boost::rv<std::pair<key_type, mapped_type> > &x)
+ { return m_tree.insert_unique(x); }
+ #else
+ std::pair<iterator,bool> insert(std::pair<key_type, mapped_type> &&x)
+ { return m_tree.insert_unique(boost::move(x)); }
+ #endif
+
+ //! <b>Effects</b>: Inserts a new value_type move constructed from the pair if and
+ //! only if there is no element in the container with key equivalent to the key of x.
+ //!
+ //! <b>Returns</b>: The bool component of the returned pair is true if and only
+ //! if the insertion takes place, and the iterator component of the pair
+ //! points to the element with key equivalent to the key of x.
+ //!
+ //! <b>Complexity</b>: Logarithmic.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ std::pair<iterator,bool> insert(boost::rv<pair<key_type, mapped_type> > &x)
+ { return m_tree.insert_unique(x); }
+ #else
+ std::pair<iterator,bool> insert(pair<key_type, mapped_type> &&x)
+ { return m_tree.insert_unique(boost::move(x)); }
+ #endif
+
+ //! <b>Effects</b>: Move constructs a new value from x if and only if there is
+ //! no element in the container with key equivalent to the key of x.
+ //!
+ //! <b>Returns</b>: The bool component of the returned pair is true if and only
+ //! if the insertion takes place, and the iterator component of the pair
+ //! points to the element with key equivalent to the key of x.
+ //!
+ //! <b>Complexity</b>: Logarithmic.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ std::pair<iterator,bool> insert(boost::rv<value_type> &x)
+ { return m_tree.insert_unique(x); }
+ #else
+ std::pair<iterator,bool> insert(value_type &&x)
+ { return m_tree.insert_unique(boost::move(x)); }
+ #endif
+
+ //! <b>Effects</b>: Inserts a copy of x in the container if and only if there is
+ //! no element in the container with key equivalent to the key of x.
+ //! p is a hint pointing to where the insert should start to search.
+ //!
+ //! <b>Returns</b>: An iterator pointing to the element with key equivalent
+ //! to the key of x.
+ //!
+ //! <b>Complexity</b>: Logarithmic in general, but amortized constant if t
+ //! is inserted right before p.
+ iterator insert(iterator position, const value_type& x)
+ { return m_tree.insert_unique(position, x); }
+
+ //! <b>Effects</b>: Move constructs a new value from x if and only if there is
+ //! no element in the container with key equivalent to the key of x.
+ //! p is a hint pointing to where the insert should start to search.
+ //!
+ //! <b>Returns</b>: An iterator pointing to the element with key equivalent
+ //! to the key of x.
+ //!
+ //! <b>Complexity</b>: Logarithmic in general, but amortized constant if t
+ //! is inserted right before p.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ iterator insert(iterator position, boost::rv<std::pair<key_type, mapped_type> > &x)
+ { return m_tree.insert_unique(position, x); }
+ #else
+ iterator insert(iterator position, std::pair<key_type, mapped_type> &&x)
+ { return m_tree.insert_unique(position, boost::move(x)); }
+ #endif
+
+ //! <b>Effects</b>: Move constructs a new value from x if and only if there is
+ //! no element in the container with key equivalent to the key of x.
+ //! p is a hint pointing to where the insert should start to search.
+ //!
+ //! <b>Returns</b>: An iterator pointing to the element with key equivalent
+ //! to the key of x.
+ //!
+ //! <b>Complexity</b>: Logarithmic in general, but amortized constant if t
+ //! is inserted right before p.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ iterator insert(iterator position, boost::rv<pair<key_type, mapped_type> > &x)
+ { return m_tree.insert_unique(position, x); }
+ #else
+ iterator insert(iterator position, pair<key_type, mapped_type> &&x)
+ { return m_tree.insert_unique(position, boost::move(x)); }
+ #endif
+
+ //! <b>Effects</b>: Inserts a copy of x in the container.
+ //! p is a hint pointing to where the insert should start to search.
+ //!
+ //! <b>Returns</b>: An iterator pointing to the element with key equivalent to the key of x.
+ //!
+ //! <b>Complexity</b>: Logarithmic.
+ iterator insert(iterator position, const std::pair<key_type, mapped_type>& x)
+ { return m_tree.insert_unique(position, x); }
+
+ //! <b>Effects</b>: Inserts an element move constructed from x in the container.
+ //! p is a hint pointing to where the insert should start to search.
+ //!
+ //! <b>Returns</b>: An iterator pointing to the element with key equivalent to the key of x.
+ //!
+ //! <b>Complexity</b>: Logarithmic.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ iterator insert(iterator position, boost::rv<value_type> &x)
+ { return m_tree.insert_unique(position, x); }
+ #else
+ iterator insert(iterator position, value_type &&x)
+ { return m_tree.insert_unique(position, boost::move(x)); }
+ #endif
+
+ //! <b>Requires</b>: i, j are not iterators into *this.
+ //!
+ //! <b>Effects</b>: inserts each element from the range [i,j) if and only
+ //! if there is no element with key equivalent to the key of that element.
+ //!
+ //! <b>Complexity</b>: N log(size()+N) (N is the distance from i to j)
+ template <class InputIterator>
+ void insert(InputIterator first, InputIterator last)
+ { m_tree.insert_unique(first, last); }
+
+ #ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING
+
+ //! <b>Effects</b>: Inserts an object of type T constructed with
+ //! std::forward<Args>(args)... in the container if and only if there is
+ //! no element in the container with an equivalent key.
+ //! p is a hint pointing to where the insert should start to search.
+ //!
+ //! <b>Returns</b>: An iterator pointing to the element with key equivalent
+ //! to the key of x.
+ //!
+ //! <b>Complexity</b>: Logarithmic in general, but amortized constant if t
+ //! is inserted right before p.
+ template <class... Args>
+ iterator emplace(Args&&... args)
+ { return m_tree.emplace_unique(boost::forward_constructor<Args>(args)...); }
+
+ //! <b>Effects</b>: Inserts an object of type T constructed with
+ //! std::forward<Args>(args)... in the container if and only if there is
+ //! no element in the container with an equivalent key.
+ //! p is a hint pointing to where the insert should start to search.
+ //!
+ //! <b>Returns</b>: An iterator pointing to the element with key equivalent
+ //! to the key of x.
+ //!
+ //! <b>Complexity</b>: Logarithmic in general, but amortized constant if t
+ //! is inserted right before p.
+ template <class... Args>
+ iterator emplace_hint(const_iterator hint, Args&&... args)
+ { return m_tree.emplace_hint_unique(hint, boost::forward_constructor<Args>(args)...); }
+
+ #else //#ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING
+
+ iterator emplace()
+ { return m_tree.emplace_unique(); }
+
+ iterator emplace_hint(const_iterator hint)
+ { return m_tree.emplace_hint_unique(hint); }
+
+ #define BOOST_PP_LOCAL_MACRO(n) \
+ template<BOOST_PP_ENUM_PARAMS(n, class P)> \
+ iterator emplace(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_LIST, _)) \
+ { return m_tree.emplace_unique(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _)); } \
+ \
+ template<BOOST_PP_ENUM_PARAMS(n, class P)> \
+ iterator emplace_hint(const_iterator hint, BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_LIST, _)) \
+ { return m_tree.emplace_hint_unique(hint, BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _));}\
+ //!
+ #define BOOST_PP_LOCAL_LIMITS (1, BOOST_INTERPROCESS_MAX_CONSTRUCTOR_PARAMETERS)
+ #include BOOST_PP_LOCAL_ITERATE()
+
+ #endif //#ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING
+
+ //! <b>Effects</b>: Erases the element pointed to by position.
+ //!
+ //! <b>Returns</b>: Returns an iterator pointing to the element immediately
+ //! following q prior to the element being erased. If no such element exists,
+ //! returns end().
+ //!
+ //! <b>Complexity</b>: Amortized constant time
+ iterator erase(const_iterator position)
+ { return m_tree.erase(position); }
+
+ //! <b>Effects</b>: Erases all elements in the container with key equivalent to x.
+ //!
+ //! <b>Returns</b>: Returns the number of erased elements.
+ //!
+ //! <b>Complexity</b>: log(size()) + count(k)
+ size_type erase(const key_type& x)
+ { return m_tree.erase(x); }
+
+ //! <b>Effects</b>: Erases all the elements in the range [first, last).
+ //!
+ //! <b>Returns</b>: Returns last.
+ //!
+ //! <b>Complexity</b>: log(size())+N where N is the distance from first to last.
+ iterator erase(const_iterator first, const_iterator last)
+ { return m_tree.erase(first, last); }
+
+ //! <b>Effects</b>: erase(a.begin(),a.end()).
+ //!
+ //! <b>Postcondition</b>: size() == 0.
+ //!
+ //! <b>Complexity</b>: linear in size().
+ void clear()
+ { m_tree.clear(); }
+
+ //! <b>Returns</b>: An iterator pointing to an element with the key
+ //! equivalent to x, or end() if such an element is not found.
+ //!
+ //! <b>Complexity</b>: Logarithmic.
+ iterator find(const key_type& x)
+ { return m_tree.find(x); }
+
+ //! <b>Returns</b>: A const_iterator pointing to an element with the key
+ //! equivalent to x, or end() if such an element is not found.
+ //!
+ //! <b>Complexity</b>: Logarithmic.
+ const_iterator find(const key_type& x) const
+ { return m_tree.find(x); }
+
+ //! <b>Returns</b>: The number of elements with key equivalent to x.
+ //!
+ //! <b>Complexity</b>: log(size())+count(k)
+ size_type count(const key_type& x) const
+ { return m_tree.find(x) == m_tree.end() ? 0 : 1; }
+
+ //! <b>Returns</b>: An iterator pointing to the first element with key not less
+ //! than k, or a.end() if such an element is not found.
+ //!
+ //! <b>Complexity</b>: Logarithmic
+ iterator lower_bound(const key_type& x)
+ { return m_tree.lower_bound(x); }
+
+ //! <b>Returns</b>: A const iterator pointing to the first element with key not
+ //! less than k, or a.end() if such an element is not found.
+ //!
+ //! <b>Complexity</b>: Logarithmic
+ const_iterator lower_bound(const key_type& x) const
+ { return m_tree.lower_bound(x); }
+
+ //! <b>Returns</b>: An iterator pointing to the first element with key not less
+ //! than x, or end() if such an element is not found.
+ //!
+ //! <b>Complexity</b>: Logarithmic
+ iterator upper_bound(const key_type& x)
+ { return m_tree.upper_bound(x); }
+
+ //! <b>Returns</b>: A const iterator pointing to the first element with key not
+ //! less than x, or end() if such an element is not found.
+ //!
+ //! <b>Complexity</b>: Logarithmic
+ const_iterator upper_bound(const key_type& x) const
+ { return m_tree.upper_bound(x); }
+
+ //! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
+ //!
+ //! <b>Complexity</b>: Logarithmic
+ std::pair<iterator,iterator> equal_range(const key_type& x)
+ { return m_tree.equal_range(x); }
+
+ //! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
+ //!
+ //! <b>Complexity</b>: Logarithmic
+ std::pair<const_iterator,const_iterator> equal_range(const key_type& x) const
+ { return m_tree.equal_range(x); }
+
+ /// @cond
+ template <class K1, class T1, class C1, class A1>
+ friend bool operator== (const map<K1, T1, C1, A1>&,
+ const map<K1, T1, C1, A1>&);
+ template <class K1, class T1, class C1, class A1>
+ friend bool operator< (const map<K1, T1, C1, A1>&,
+ const map<K1, T1, C1, A1>&);
+ /// @endcond
+};
+
+template <class Key, class T, class Pred, class Alloc>
+inline bool operator==(const map<Key,T,Pred,Alloc>& x,
+ const map<Key,T,Pred,Alloc>& y)
+ { return x.m_tree == y.m_tree; }
+
+template <class Key, class T, class Pred, class Alloc>
+inline bool operator<(const map<Key,T,Pred,Alloc>& x,
+ const map<Key,T,Pred,Alloc>& y)
+ { return x.m_tree < y.m_tree; }
+
+template <class Key, class T, class Pred, class Alloc>
+inline bool operator!=(const map<Key,T,Pred,Alloc>& x,
+ const map<Key,T,Pred,Alloc>& y)
+ { return !(x == y); }
+
+template <class Key, class T, class Pred, class Alloc>
+inline bool operator>(const map<Key,T,Pred,Alloc>& x,
+ const map<Key,T,Pred,Alloc>& y)
+ { return y < x; }
+
+template <class Key, class T, class Pred, class Alloc>
+inline bool operator<=(const map<Key,T,Pred,Alloc>& x,
+ const map<Key,T,Pred,Alloc>& y)
+ { return !(y < x); }
+
+template <class Key, class T, class Pred, class Alloc>
+inline bool operator>=(const map<Key,T,Pred,Alloc>& x,
+ const map<Key,T,Pred,Alloc>& y)
+ { return !(x < y); }
+
+#if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+template <class Key, class T, class Pred, class Alloc>
+inline void swap(map<Key,T,Pred,Alloc>& x, map<Key,T,Pred,Alloc>& y)
+ { x.swap(y); }
+
+template <class Key, class T, class Pred, class Alloc>
+inline void swap(boost::rv<map<Key,T,Pred,Alloc> > &x, map<Key,T,Pred,Alloc>& y)
+ { x.get().swap(y); }
+
+template <class Key, class T, class Pred, class Alloc>
+inline void swap(map<Key,T,Pred,Alloc>& x, boost::rv<map<Key,T,Pred,Alloc> > &y)
+ { x.swap(y.get()); }
+#else
+template <class Key, class T, class Pred, class Alloc>
+inline void swap(map<Key,T,Pred,Alloc>&&x, map<Key,T,Pred,Alloc>&&y)
+ { x.swap(y); }
+#endif
+
+
+/// @cond
+
+// Forward declaration of operators < and ==, needed for friend declaration.
+
+template <class Key, class T, class Pred, class Alloc>
+inline bool operator==(const multimap<Key,T,Pred,Alloc>& x,
+ const multimap<Key,T,Pred,Alloc>& y);
+
+template <class Key, class T, class Pred, class Alloc>
+inline bool operator<(const multimap<Key,T,Pred,Alloc>& x,
+ const multimap<Key,T,Pred,Alloc>& y);
+
+//!has_trivial_destructor_after_move<> == true_type
+//!specialization for optimizations
+template <class K, class T, class C, class A>
+struct has_trivial_destructor_after_move<map<K, T, C, A> >
+{
+ enum { value =
+ has_trivial_destructor<A>::value &&
+ has_trivial_destructor<C>::value };
+};
+/// @endcond
+
+//! A multimap is a kind of associative container that supports equivalent keys
+//! (possibly containing multiple copies of the same key value) and provides for
+//! fast retrieval of values of another type T based on the keys. The multimap class
+//! supports bidirectional iterators.
+//!
+//! A multimap satisfies all of the requirements of a container and of a reversible
+//! container and of an associative container. For a
+//! map<Key,T> the key_type is Key and the value_type is std::pair<const Key,T>.
+//!
+//! Pred is the ordering function for Keys (e.g. <i>std::less<Key></i>).
+//!
+//! Alloc is the allocator to allocate the value_types
+//!(e.g. <i>boost::interprocess:allocator< std::pair<<b>const</b> Key, T></i>).
+template <class Key, class T, class Pred, class Alloc>
+class multimap
+{
+ /// @cond
+ private:
+ typedef detail::rbtree<Key,
+ std::pair<const Key, T>,
+ detail::select1st< std::pair<const Key, T> >,
+ Pred,
+ Alloc> tree_t;
+ tree_t m_tree; // red-black tree representing map
+ /// @endcond
+
+ public:
+ BOOST_ENABLE_MOVE_EMULATION(multimap)
+
+ // typedefs:
+ typedef typename tree_t::key_type key_type;
+ typedef typename tree_t::value_type value_type;
+ typedef typename tree_t::pointer pointer;
+ typedef typename tree_t::const_pointer const_pointer;
+ typedef typename tree_t::reference reference;
+ typedef typename tree_t::const_reference const_reference;
+ typedef T mapped_type;
+ typedef Pred key_compare;
+ typedef typename tree_t::iterator iterator;
+ typedef typename tree_t::const_iterator const_iterator;
+ typedef typename tree_t::reverse_iterator reverse_iterator;
+ typedef typename tree_t::const_reverse_iterator const_reverse_iterator;
+ typedef typename tree_t::size_type size_type;
+ typedef typename tree_t::difference_type difference_type;
+ typedef typename tree_t::allocator_type allocator_type;
+ typedef typename tree_t::stored_allocator_type stored_allocator_type;
+
+ /// @cond
+ class value_compare_impl
+ : public Pred,
+ public std::binary_function<value_type, value_type, bool>
+ {
+ friend class multimap<Key,T,Pred,Alloc>;
+ protected :
+ value_compare_impl(const Pred &c) : Pred(c) {}
+ public:
+ bool operator()(const value_type& x, const value_type& y) const {
+ return Pred::operator()(x.first, y.first);
+ }
+ };
+ /// @endcond
+ typedef value_compare_impl value_compare;
+
+ //! <b>Effects</b>: Constructs an empty multimap using the specified comparison
+ //! object and allocator.
+ //!
+ //! <b>Complexity</b>: Constant.
+ explicit multimap(const Pred& comp = Pred(),
+ const allocator_type& a = allocator_type())
+ : m_tree(comp, a)
+ {}
+
+ //! <b>Effects</b>: Constructs an empty multimap using the specified comparison object
+ //! and allocator, and inserts elements from the range [first ,last ).
+ //!
+ //! <b>Complexity</b>: Linear in N if the range [first ,last ) is already sorted using
+ //! comp and otherwise N logN, where N is last - first.
+ template <class InputIterator>
+ multimap(InputIterator first, InputIterator last,
+ const Pred& comp = Pred(),
+ const allocator_type& a = allocator_type())
+ : m_tree(first, last, comp, a, false)
+ {}
+
+ //! <b>Effects</b>: Copy constructs a multimap.
+ //!
+ //! <b>Complexity</b>: Linear in x.size().
+ multimap(const multimap<Key,T,Pred,Alloc>& x)
+ : m_tree(x.m_tree)
+ {}
+
+ //! <b>Effects</b>: Move constructs a multimap. Constructs *this using x's resources.
+ //!
+ //! <b>Complexity</b>: Construct.
+ //!
+ //! <b>Postcondition</b>: x is emptied.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ multimap(boost::rv<multimap<Key,T,Pred,Alloc> > &x)
+ : m_tree(boost::move(x.get().m_tree))
+ {}
+ #else
+ multimap(multimap<Key,T,Pred,Alloc> && x)
+ : m_tree(boost::move(x.m_tree))
+ {}
+ #endif
+
+ //! <b>Effects</b>: Makes *this a copy of x.
+ //!
+ //! <b>Complexity</b>: Linear in x.size().
+ multimap<Key,T,Pred,Alloc>&
+ operator=(const multimap<Key,T,Pred,Alloc>& x)
+ { m_tree = x.m_tree; return *this; }
+
+ //! <b>Effects</b>: this->swap(x.get()).
+ //!
+ //! <b>Complexity</b>: Constant.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ multimap<Key,T,Pred,Alloc>& operator=(boost::rv<multimap<Key,T,Pred,Alloc> > &x)
+ { m_tree = boost::move(x.get().m_tree); return *this; }
+ #else
+ multimap<Key,T,Pred,Alloc>& operator=(multimap<Key,T,Pred,Alloc> && x)
+ { m_tree = boost::move(x.m_tree); return *this; }
+ #endif
+
+ //! <b>Effects</b>: Returns the comparison object out
+ //! of which a was constructed.
+ //!
+ //! <b>Complexity</b>: Constant.
+ key_compare key_comp() const
+ { return m_tree.key_comp(); }
+
+ //! <b>Effects</b>: Returns an object of value_compare constructed out
+ //! of the comparison object.
+ //!
+ //! <b>Complexity</b>: Constant.
+ value_compare value_comp() const
+ { return value_compare(m_tree.key_comp()); }
+
+ //! <b>Effects</b>: Returns a copy of the Allocator that
+ //! was passed to the object's constructor.
+ //!
+ //! <b>Complexity</b>: Constant.
+ allocator_type get_allocator() const
+ { return m_tree.get_allocator(); }
+
+ const stored_allocator_type &get_stored_allocator() const
+ { return m_tree.get_stored_allocator(); }
+
+ stored_allocator_type &get_stored_allocator()
+ { return m_tree.get_stored_allocator(); }
+
+ //! <b>Effects</b>: Returns an iterator to the first element contained in the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ iterator begin()
+ { return m_tree.begin(); }
+
+ //! <b>Effects</b>: Returns a const_iterator to the first element contained in the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_iterator begin() const
+ { return m_tree.begin(); }
+
+ //! <b>Effects</b>: Returns an iterator to the end of the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ iterator end()
+ { return m_tree.end(); }
+
+ //! <b>Effects</b>: Returns a const_iterator to the end of the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_iterator end() const
+ { return m_tree.end(); }
+
+ //! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning
+ //! of the reversed container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ reverse_iterator rbegin()
+ { return m_tree.rbegin(); }
+
+ //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
+ //! of the reversed container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_reverse_iterator rbegin() const
+ { return m_tree.rbegin(); }
+
+ //! <b>Effects</b>: Returns a reverse_iterator pointing to the end
+ //! of the reversed container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ reverse_iterator rend()
+ { return m_tree.rend(); }
+
+ //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
+ //! of the reversed container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_reverse_iterator rend() const
+ { return m_tree.rend(); }
+
+ //! <b>Effects</b>: Returns true if the container contains no elements.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ bool empty() const
+ { return m_tree.empty(); }
+
+ //! <b>Effects</b>: Returns the number of the elements contained in the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ size_type size() const
+ { return m_tree.size(); }
+
+ //! <b>Effects</b>: Returns the largest possible size of the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ size_type max_size() const
+ { return m_tree.max_size(); }
+
+ //! <b>Effects</b>: Swaps the contents of *this and x.
+ //! If this->allocator_type() != x.allocator_type() allocators are also swapped.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ void swap(boost::rv<multimap> &x)
+ { this->swap(x.get()); }
+ void swap(multimap& x)
+ #else
+ void swap(multimap &&x)
+ #endif
+ { m_tree.swap(x.m_tree); }
+
+ //! <b>Effects</b>: Inserts x and returns the iterator pointing to the
+ //! newly inserted element.
+ //!
+ //! <b>Complexity</b>: Logarithmic.
+ iterator insert(const value_type& x)
+ { return m_tree.insert_equal(x); }
+
+ //! <b>Effects</b>: Inserts a new value constructed from x and returns
+ //! the iterator pointing to the newly inserted element.
+ //!
+ //! <b>Complexity</b>: Logarithmic.
+ iterator insert(const std::pair<key_type, mapped_type>& x)
+ { return m_tree.insert_equal(x); }
+
+ //! <b>Effects</b>: Inserts a new value move-constructed from x and returns
+ //! the iterator pointing to the newly inserted element.
+ //!
+ //! <b>Complexity</b>: Logarithmic.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ iterator insert(boost::rv<std::pair<key_type, mapped_type> > &x)
+ { return m_tree.insert_equal(x); }
+ #else
+ iterator insert(std::pair<key_type, mapped_type> && x)
+ { return m_tree.insert_equal(boost::move(x)); }
+ #endif
+
+ //! <b>Effects</b>: Inserts a new value move-constructed from x and returns
+ //! the iterator pointing to the newly inserted element.
+ //!
+ //! <b>Complexity</b>: Logarithmic.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ iterator insert(boost::rv<pair<key_type, mapped_type> > &x)
+ { return m_tree.insert_equal(x); }
+ #else
+ iterator insert(pair<key_type, mapped_type> && x)
+ { return m_tree.insert_equal(boost::move(x)); }
+ #endif
+
+ //! <b>Effects</b>: Inserts a copy of x in the container.
+ //! p is a hint pointing to where the insert should start to search.
+ //!
+ //! <b>Returns</b>: An iterator pointing to the element with key equivalent
+ //! to the key of x.
+ //!
+ //! <b>Complexity</b>: Logarithmic in general, but amortized constant if t
+ //! is inserted right before p.
+ iterator insert(iterator position, const value_type& x)
+ { return m_tree.insert_equal(position, x); }
+
+ //! <b>Effects</b>: Inserts a new value constructed from x in the container.
+ //! p is a hint pointing to where the insert should start to search.
+ //!
+ //! <b>Returns</b>: An iterator pointing to the element with key equivalent
+ //! to the key of x.
+ //!
+ //! <b>Complexity</b>: Logarithmic in general, but amortized constant if t
+ //! is inserted right before p.
+ iterator insert(iterator position, const std::pair<key_type, mapped_type>& x)
+ { return m_tree.insert_equal(position, x); }
+
+ //! <b>Effects</b>: Inserts a new value move constructed from x in the container.
+ //! p is a hint pointing to where the insert should start to search.
+ //!
+ //! <b>Returns</b>: An iterator pointing to the element with key equivalent
+ //! to the key of x.
+ //!
+ //! <b>Complexity</b>: Logarithmic in general, but amortized constant if t
+ //! is inserted right before p.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ iterator insert(iterator position, boost::rv<std::pair<key_type, mapped_type> > &x)
+ { return m_tree.insert_equal(position, x); }
+ #else
+ iterator insert(iterator position, std::pair<key_type, mapped_type> && x)
+ { return m_tree.insert_equal(position, boost::move(x)); }
+ #endif
+
+ //! <b>Effects</b>: Inserts a new value move constructed from x in the container.
+ //! p is a hint pointing to where the insert should start to search.
+ //!
+ //! <b>Returns</b>: An iterator pointing to the element with key equivalent
+ //! to the key of x.
+ //!
+ //! <b>Complexity</b>: Logarithmic in general, but amortized constant if t
+ //! is inserted right before p.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ iterator insert(iterator position, boost::rv<pair<key_type, mapped_type> > &x)
+ { return m_tree.insert_equal(position, x); }
+ #else
+ iterator insert(iterator position, pair<key_type, mapped_type> && x)
+ { return m_tree.insert_equal(position, boost::move(x)); }
+ #endif
+
+ //! <b>Requires</b>: i, j are not iterators into *this.
+ //!
+ //! <b>Effects</b>: inserts each element from the range [i,j) .
+ //!
+ //! <b>Complexity</b>: N log(size()+N) (N is the distance from i to j)
+ template <class InputIterator>
+ void insert(InputIterator first, InputIterator last)
+ { m_tree.insert_equal(first, last); }
+
+ #ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING
+
+ //! <b>Effects</b>: Inserts an object of type T constructed with
+ //! std::forward<Args>(args)... in the container.
+ //! p is a hint pointing to where the insert should start to search.
+ //!
+ //! <b>Returns</b>: An iterator pointing to the element with key equivalent
+ //! to the key of x.
+ //!
+ //! <b>Complexity</b>: Logarithmic in general, but amortized constant if t
+ //! is inserted right before p.
+ template <class... Args>
+ iterator emplace(Args&&... args)
+ { return m_tree.emplace_equal(boost::forward_constructor<Args>(args)...); }
+
+ //! <b>Effects</b>: Inserts an object of type T constructed with
+ //! std::forward<Args>(args)... in the container.
+ //! p is a hint pointing to where the insert should start to search.
+ //!
+ //! <b>Returns</b>: An iterator pointing to the element with key equivalent
+ //! to the key of x.
+ //!
+ //! <b>Complexity</b>: Logarithmic in general, but amortized constant if t
+ //! is inserted right before p.
+ template <class... Args>
+ iterator emplace_hint(const_iterator hint, Args&&... args)
+ { return m_tree.emplace_hint_equal(hint, boost::forward_constructor<Args>(args)...); }
+
+ #else //#ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING
+
+ iterator emplace()
+ { return m_tree.emplace_equal(); }
+
+ iterator emplace_hint(const_iterator hint)
+ { return m_tree.emplace_hint_equal(hint); }
+
+ #define BOOST_PP_LOCAL_MACRO(n) \
+ template<BOOST_PP_ENUM_PARAMS(n, class P)> \
+ iterator emplace(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_LIST, _)) \
+ { return m_tree.emplace_equal(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _)); } \
+ \
+ template<BOOST_PP_ENUM_PARAMS(n, class P)> \
+ iterator emplace_hint(const_iterator hint, BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_LIST, _)) \
+ { return m_tree.emplace_hint_equal(hint, BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _)); }\
+ //!
+ #define BOOST_PP_LOCAL_LIMITS (1, BOOST_INTERPROCESS_MAX_CONSTRUCTOR_PARAMETERS)
+ #include BOOST_PP_LOCAL_ITERATE()
+
+ #endif //#ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING
+
+ //! <b>Effects</b>: Erases the element pointed to by position.
+ //!
+ //! <b>Returns</b>: Returns an iterator pointing to the element immediately
+ //! following q prior to the element being erased. If no such element exists,
+ //! returns end().
+ //!
+ //! <b>Complexity</b>: Amortized constant time
+ iterator erase(const_iterator position)
+ { return m_tree.erase(position); }
+
+ //! <b>Effects</b>: Erases all elements in the container with key equivalent to x.
+ //!
+ //! <b>Returns</b>: Returns the number of erased elements.
+ //!
+ //! <b>Complexity</b>: log(size()) + count(k)
+ size_type erase(const key_type& x)
+ { return m_tree.erase(x); }
+
+ //! <b>Effects</b>: Erases all the elements in the range [first, last).
+ //!
+ //! <b>Returns</b>: Returns last.
+ //!
+ //! <b>Complexity</b>: log(size())+N where N is the distance from first to last.
+ iterator erase(const_iterator first, const_iterator last)
+ { return m_tree.erase(first, last); }
+
+ //! <b>Effects</b>: erase(a.begin(),a.end()).
+ //!
+ //! <b>Postcondition</b>: size() == 0.
+ //!
+ //! <b>Complexity</b>: linear in size().
+ void clear()
+ { m_tree.clear(); }
+
+ //! <b>Returns</b>: An iterator pointing to an element with the key
+ //! equivalent to x, or end() if such an element is not found.
+ //!
+ //! <b>Complexity</b>: Logarithmic.
+ iterator find(const key_type& x)
+ { return m_tree.find(x); }
+
+ //! <b>Returns</b>: A const iterator pointing to an element with the key
+ //! equivalent to x, or end() if such an element is not found.
+ //!
+ //! <b>Complexity</b>: Logarithmic.
+ const_iterator find(const key_type& x) const
+ { return m_tree.find(x); }
+
+ //! <b>Returns</b>: The number of elements with key equivalent to x.
+ //!
+ //! <b>Complexity</b>: log(size())+count(k)
+ size_type count(const key_type& x) const
+ { return m_tree.count(x); }
+
+ //! <b>Returns</b>: An iterator pointing to the first element with key not less
+ //! than k, or a.end() if such an element is not found.
+ //!
+ //! <b>Complexity</b>: Logarithmic
+ iterator lower_bound(const key_type& x)
+ {return m_tree.lower_bound(x); }
+
+ //! <b>Returns</b>: A const iterator pointing to the first element with key not
+ //! less than k, or a.end() if such an element is not found.
+ //!
+ //! <b>Complexity</b>: Logarithmic
+ const_iterator lower_bound(const key_type& x) const
+ { return m_tree.lower_bound(x); }
+
+ //! <b>Returns</b>: An iterator pointing to the first element with key not less
+ //! than x, or end() if such an element is not found.
+ //!
+ //! <b>Complexity</b>: Logarithmic
+ iterator upper_bound(const key_type& x)
+ { return m_tree.upper_bound(x); }
+
+ //! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
+ //!
+ //! <b>Complexity</b>: Logarithmic
+ std::pair<iterator,iterator> equal_range(const key_type& x)
+ { return m_tree.equal_range(x); }
+
+ //! <b>Returns</b>: A const iterator pointing to the first element with key not
+ //! less than x, or end() if such an element is not found.
+ //!
+ //! <b>Complexity</b>: Logarithmic
+ const_iterator upper_bound(const key_type& x) const
+ { return m_tree.upper_bound(x); }
+
+ //! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
+ //!
+ //! <b>Complexity</b>: Logarithmic
+ std::pair<const_iterator,const_iterator>
+ equal_range(const key_type& x) const
+ { return m_tree.equal_range(x); }
+
+ /// @cond
+ template <class K1, class T1, class C1, class A1>
+ friend bool operator== (const multimap<K1, T1, C1, A1>& x,
+ const multimap<K1, T1, C1, A1>& y);
+
+ template <class K1, class T1, class C1, class A1>
+ friend bool operator< (const multimap<K1, T1, C1, A1>& x,
+ const multimap<K1, T1, C1, A1>& y);
+ /// @endcond
+};
+
+template <class Key, class T, class Pred, class Alloc>
+inline bool operator==(const multimap<Key,T,Pred,Alloc>& x,
+ const multimap<Key,T,Pred,Alloc>& y)
+{ return x.m_tree == y.m_tree; }
+
+template <class Key, class T, class Pred, class Alloc>
+inline bool operator<(const multimap<Key,T,Pred,Alloc>& x,
+ const multimap<Key,T,Pred,Alloc>& y)
+{ return x.m_tree < y.m_tree; }
+
+template <class Key, class T, class Pred, class Alloc>
+inline bool operator!=(const multimap<Key,T,Pred,Alloc>& x,
+ const multimap<Key,T,Pred,Alloc>& y)
+{ return !(x == y); }
+
+template <class Key, class T, class Pred, class Alloc>
+inline bool operator>(const multimap<Key,T,Pred,Alloc>& x,
+ const multimap<Key,T,Pred,Alloc>& y)
+{ return y < x; }
+
+template <class Key, class T, class Pred, class Alloc>
+inline bool operator<=(const multimap<Key,T,Pred,Alloc>& x,
+ const multimap<Key,T,Pred,Alloc>& y)
+{ return !(y < x); }
+
+template <class Key, class T, class Pred, class Alloc>
+inline bool operator>=(const multimap<Key,T,Pred,Alloc>& x,
+ const multimap<Key,T,Pred,Alloc>& y)
+{ return !(x < y); }
+
+
+#if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+template <class Key, class T, class Pred, class Alloc>
+inline void swap(multimap<Key,T,Pred,Alloc>& x, multimap<Key,T,Pred,Alloc>& y)
+{ x.swap(y); }
+
+template <class Key, class T, class Pred, class Alloc>
+inline void swap(boost::rv<multimap<Key,T,Pred,Alloc> > &x, multimap<Key,T,Pred,Alloc>& y)
+{ x.get().swap(y); }
+
+template <class Key, class T, class Pred, class Alloc>
+inline void swap(multimap<Key,T,Pred,Alloc>& x, boost::rv<multimap<Key,T,Pred,Alloc> > &y)
+{ x.swap(y.get()); }
+#else
+template <class Key, class T, class Pred, class Alloc>
+inline void swap(multimap<Key,T,Pred,Alloc>&&x, multimap<Key,T,Pred,Alloc>&&y)
+{ x.swap(y); }
+#endif
+
+/// @cond
+
+//!has_trivial_destructor_after_move<> == true_type
+//!specialization for optimizations
+template <class K, class T, class C, class A>
+struct has_trivial_destructor_after_move<multimap<K, T, C, A> >
+{
+ enum { value =
+ has_trivial_destructor<A>::value &&
+ has_trivial_destructor<C>::value };
+};
+/// @endcond
+
+}} //namespace boost { namespace interprocess {
+
+#include <boost/interprocess/detail/config_end.hpp>
+
+#endif /* BOOST_INTERPROCESS_MAP_HPP */
+

Added: sandbox/boost/interprocess/containers/set.hpp
==============================================================================
--- (empty file)
+++ sandbox/boost/interprocess/containers/set.hpp 2009-02-17 13:04:56 EST (Tue, 17 Feb 2009)
@@ -0,0 +1,1176 @@
+//////////////////////////////////////////////////////////////////////////////
+//
+// (C) Copyright Ion Gaztanaga 2005-2008. Distributed under the Boost
+// Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+//
+// See http://www.boost.org/libs/interprocess for documentation.
+//
+//////////////////////////////////////////////////////////////////////////////
+//
+// This file comes from SGI's stl_set/stl_multiset files. Modified by Ion Gaztanaga 2004.
+// Renaming, isolating and porting to generic algorithms. Pointer typedef
+// set to allocator::pointer to allow placing it in shared memory.
+//
+///////////////////////////////////////////////////////////////////////////////
+/*
+ *
+ * Copyright (c) 1994
+ * Hewlett-Packard Company
+ *
+ * Permission to use, copy, modify, distribute and sell this software
+ * and its documentation for any purpose is hereby granted without fee,
+ * provided that the above copyright notice appear in all copies and
+ * that both that copyright notice and this permission notice appear
+ * in supporting documentation. Hewlett-Packard Company makes no
+ * representations about the suitability of this software for any
+ * purpose. It is provided "as is" without express or implied warranty.
+ *
+ *
+ * Copyright (c) 1996
+ * Silicon Graphics Computer Systems, Inc.
+ *
+ * Permission to use, copy, modify, distribute and sell this software
+ * and its documentation for any purpose is hereby granted without fee,
+ * provided that the above copyright notice appear in all copies and
+ * that both that copyright notice and this permission notice appear
+ * in supporting documentation. Silicon Graphics makes no
+ * representations about the suitability of this software for any
+ * purpose. It is provided "as is" without express or implied warranty.
+ *
+ */
+
+#ifndef BOOST_INTERPROCESS_SET_HPP
+#define BOOST_INTERPROCESS_SET_HPP
+
+#if (defined _MSC_VER) && (_MSC_VER >= 1200)
+# pragma once
+#endif
+
+#include <boost/interprocess/detail/config_begin.hpp>
+#include <boost/interprocess/detail/workaround.hpp>
+#include <boost/interprocess/interprocess_fwd.hpp>
+
+#include <utility>
+#include <functional>
+#include <memory>
+
+#include <boost/move_semantics/move.hpp>
+#include <boost/interprocess/detail/mpl.hpp>
+#include <boost/interprocess/containers/detail/tree.hpp>
+#include <boost/move_semantics/move.hpp>
+#ifndef BOOST_INTERPROCESS_PERFECT_FORWARDING
+#include <boost/interprocess/detail/preprocessor.hpp>
+#endif
+
+namespace boost { namespace interprocess {
+
+/// @cond
+// Forward declarations of operators < and ==, needed for friend declaration.
+template <class T, class Pred, class Alloc>
+inline bool operator==(const set<T,Pred,Alloc>& x,
+ const set<T,Pred,Alloc>& y);
+
+template <class T, class Pred, class Alloc>
+inline bool operator<(const set<T,Pred,Alloc>& x,
+ const set<T,Pred,Alloc>& y);
+/// @endcond
+
+//! A set is a kind of associative container that supports unique keys (contains at
+//! most one of each key value) and provides for fast retrieval of the keys themselves.
+//! Class set supports bidirectional iterators.
+//!
+//! A set satisfies all of the requirements of a container and of a reversible container
+//! , and of an associative container. A set also provides most operations described in
+//! for unique keys.
+template <class T, class Pred, class Alloc>
+class set
+{
+ /// @cond
+ private:
+ typedef detail::rbtree<T, T,
+ detail::identity<T>, Pred, Alloc> tree_t;
+ tree_t m_tree; // red-black tree representing set
+ /// @endcond
+
+ public:
+ BOOST_ENABLE_MOVE_EMULATION(set)
+
+ // typedefs:
+ typedef typename tree_t::key_type key_type;
+ typedef typename tree_t::value_type value_type;
+ typedef typename tree_t::pointer pointer;
+ typedef typename tree_t::const_pointer const_pointer;
+ typedef typename tree_t::reference reference;
+ typedef typename tree_t::const_reference const_reference;
+ typedef Pred key_compare;
+ typedef Pred value_compare;
+ typedef typename tree_t::iterator iterator;
+ typedef typename tree_t::const_iterator const_iterator;
+ typedef typename tree_t::reverse_iterator reverse_iterator;
+ typedef typename tree_t::const_reverse_iterator const_reverse_iterator;
+ typedef typename tree_t::size_type size_type;
+ typedef typename tree_t::difference_type difference_type;
+ typedef typename tree_t::allocator_type allocator_type;
+ typedef typename tree_t::stored_allocator_type stored_allocator_type;
+
+ //! <b>Effects</b>: Constructs an empty set using the specified comparison object
+ //! and allocator.
+ //!
+ //! <b>Complexity</b>: Constant.
+ explicit set(const Pred& comp = Pred(),
+ const allocator_type& a = allocator_type())
+ : m_tree(comp, a)
+ {}
+
+ //! <b>Effects</b>: Constructs an empty set using the specified comparison object and
+ //! allocator, and inserts elements from the range [first ,last ).
+ //!
+ //! <b>Complexity</b>: Linear in N if the range [first ,last ) is already sorted using
+ //! comp and otherwise N logN, where N is last - first.
+ template <class InputIterator>
+ set(InputIterator first, InputIterator last, const Pred& comp = Pred(),
+ const allocator_type& a = allocator_type())
+ : m_tree(first, last, comp, a, true)
+ {}
+
+ //! <b>Effects</b>: Copy constructs a set.
+ //!
+ //! <b>Complexity</b>: Linear in x.size().
+ set(const set<T,Pred,Alloc>& x)
+ : m_tree(x.m_tree)
+ {}
+
+ //! <b>Effects</b>: Move constructs a set. Constructs *this using x's resources.
+ //!
+ //! <b>Complexity</b>: Construct.
+ //!
+ //! <b>Postcondition</b>: x is emptied.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ set(boost::rv<set<T,Pred,Alloc> > &x)
+ : m_tree(boost::move(x.get().m_tree))
+ {}
+ #else
+ set(set<T,Pred,Alloc> &&x)
+ : m_tree(boost::move(x.m_tree))
+ {}
+ #endif
+
+ //! <b>Effects</b>: Makes *this a copy of x.
+ //!
+ //! <b>Complexity</b>: Linear in x.size().
+ set<T,Pred,Alloc>& operator=(const set<T, Pred, Alloc>& x)
+ { m_tree = x.m_tree; return *this; }
+
+ //! <b>Effects</b>: this->swap(x.get()).
+ //!
+ //! <b>Complexity</b>: Constant.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ set<T,Pred,Alloc>& operator=(boost::rv<set<T, Pred, Alloc> > &x)
+ { m_tree = boost::move(x.get().m_tree); return *this; }
+ #else
+ set<T,Pred,Alloc>& operator=(set<T, Pred, Alloc> &&x)
+ { m_tree = boost::move(x.m_tree); return *this; }
+ #endif
+
+ //! <b>Effects</b>: Returns the comparison object out
+ //! of which a was constructed.
+ //!
+ //! <b>Complexity</b>: Constant.
+ key_compare key_comp() const
+ { return m_tree.key_comp(); }
+
+ //! <b>Effects</b>: Returns an object of value_compare constructed out
+ //! of the comparison object.
+ //!
+ //! <b>Complexity</b>: Constant.
+ value_compare value_comp() const
+ { return m_tree.key_comp(); }
+
+ //! <b>Effects</b>: Returns a copy of the Allocator that
+ //! was passed to the object's constructor.
+ //!
+ //! <b>Complexity</b>: Constant.
+ allocator_type get_allocator() const
+ { return m_tree.get_allocator(); }
+
+ const stored_allocator_type &get_stored_allocator() const
+ { return m_tree.get_stored_allocator(); }
+
+ stored_allocator_type &get_stored_allocator()
+ { return m_tree.get_stored_allocator(); }
+
+ //! <b>Effects</b>: Returns an iterator to the first element contained in the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant
+ iterator begin()
+ { return m_tree.begin(); }
+
+ //! <b>Effects</b>: Returns a const_iterator to the first element contained in the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_iterator begin() const
+ { return m_tree.begin(); }
+
+ //! <b>Effects</b>: Returns an iterator to the end of the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ iterator end()
+ { return m_tree.end(); }
+
+ //! <b>Effects</b>: Returns a const_iterator to the end of the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_iterator end() const
+ { return m_tree.end(); }
+
+ //! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning
+ //! of the reversed container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ reverse_iterator rbegin()
+ { return m_tree.rbegin(); }
+
+ //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
+ //! of the reversed container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_reverse_iterator rbegin() const
+ { return m_tree.rbegin(); }
+
+ //! <b>Effects</b>: Returns a reverse_iterator pointing to the end
+ //! of the reversed container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ reverse_iterator rend()
+ { return m_tree.rend(); }
+
+ //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
+ //! of the reversed container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_reverse_iterator rend() const
+ { return m_tree.rend(); }
+
+ //! <b>Effects</b>: Returns a const_iterator to the first element contained in the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_iterator cbegin() const
+ { return m_tree.cbegin(); }
+
+ //! <b>Effects</b>: Returns a const_iterator to the end of the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_iterator cend() const
+ { return m_tree.cend(); }
+
+ //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
+ //! of the reversed container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_reverse_iterator crbegin() const
+ { return m_tree.crbegin(); }
+
+ //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
+ //! of the reversed container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_reverse_iterator crend() const
+ { return m_tree.crend(); }
+
+ //! <b>Effects</b>: Returns true if the container contains no elements.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ bool empty() const
+ { return m_tree.empty(); }
+
+ //! <b>Effects</b>: Returns the number of the elements contained in the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ size_type size() const
+ { return m_tree.size(); }
+
+ //! <b>Effects</b>: Returns the largest possible size of the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ size_type max_size() const
+ { return m_tree.max_size(); }
+
+ //! <b>Effects</b>: Swaps the contents of *this and x.
+ //! If this->allocator_type() != x.allocator_type() allocators are also swapped.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ void swap(boost::rv<set> &x)
+ { this->swap(x.get()); }
+ void swap(set& x)
+ #else
+ void swap(set &&x)
+ #endif
+ { m_tree.swap(x.m_tree); }
+
+ //! <b>Effects</b>: Inserts x if and only if there is no element in the container
+ //! with key equivalent to the key of x.
+ //!
+ //! <b>Returns</b>: The bool component of the returned pair is true if and only
+ //! if the insertion takes place, and the iterator component of the pair
+ //! points to the element with key equivalent to the key of x.
+ //!
+ //! <b>Complexity</b>: Logarithmic.
+ std::pair<iterator,bool> insert(const value_type& x)
+ { return m_tree.insert_unique(x); }
+
+ //! <b>Effects</b>: Move constructs a new value from x if and only if there is
+ //! no element in the container with key equivalent to the key of x.
+ //!
+ //! <b>Returns</b>: The bool component of the returned pair is true if and only
+ //! if the insertion takes place, and the iterator component of the pair
+ //! points to the element with key equivalent to the key of x.
+ //!
+ //! <b>Complexity</b>: Logarithmic.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ std::pair<iterator,bool> insert(boost::rv<value_type> &x)
+ { return m_tree.insert_unique(x); }
+ #else
+ std::pair<iterator,bool> insert(value_type &&x)
+ { return m_tree.insert_unique(boost::move(x)); }
+ #endif
+
+ //! <b>Effects</b>: Inserts a copy of x in the container if and only if there is
+ //! no element in the container with key equivalent to the key of x.
+ //! p is a hint pointing to where the insert should start to search.
+ //!
+ //! <b>Returns</b>: An iterator pointing to the element with key equivalent
+ //! to the key of x.
+ //!
+ //! <b>Complexity</b>: Logarithmic in general, but amortized constant if t
+ //! is inserted right before p.
+ iterator insert(const_iterator p, const value_type& x)
+ { return m_tree.insert_unique(p, x); }
+
+ //! <b>Effects</b>: Inserts an element move constructed from x in the container.
+ //! p is a hint pointing to where the insert should start to search.
+ //!
+ //! <b>Returns</b>: An iterator pointing to the element with key equivalent to the key of x.
+ //!
+ //! <b>Complexity</b>: Logarithmic.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ iterator insert(const_iterator p, boost::rv<value_type> &x)
+ { return m_tree.insert_unique(p, x); }
+ #else
+ iterator insert(const_iterator p, value_type &&x)
+ { return m_tree.insert_unique(p, boost::move(x)); }
+ #endif
+
+ //! <b>Requires</b>: i, j are not iterators into *this.
+ //!
+ //! <b>Effects</b>: inserts each element from the range [i,j) if and only
+ //! if there is no element with key equivalent to the key of that element.
+ //!
+ //! <b>Complexity</b>: N log(size()+N) (N is the distance from i to j)
+ template <class InputIterator>
+ void insert(InputIterator first, InputIterator last)
+ { m_tree.insert_unique(first, last); }
+
+ #ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING
+
+ //! <b>Effects</b>: Inserts an object of type T constructed with
+ //! std::forward<Args>(args)... if and only if there is
+ //! no element in the container with equivalent value.
+ //! and returns the iterator pointing to the
+ //! newly inserted element.
+ //!
+ //! <b>Throws</b>: If memory allocation throws or
+ //! T's in-place constructor throws.
+ //!
+ //! <b>Complexity</b>: Logarithmic.
+ template <class... Args>
+ iterator emplace(Args&&... args)
+ { return m_tree.emplace_unique(boost::forward_constructor<Args>(args)...); }
+
+ //! <b>Effects</b>: Inserts an object of type T constructed with
+ //! std::forward<Args>(args)... if and only if there is
+ //! no element in the container with equivalent value.
+ //! p is a hint pointing to where the insert
+ //! should start to search.
+ //!
+ //! <b>Returns</b>: An iterator pointing to the element with key equivalent to the key of x.
+ //!
+ //! <b>Complexity</b>: Logarithmic.
+ template <class... Args>
+ iterator emplace_hint(const_iterator hint, Args&&... args)
+ { return m_tree.emplace_hint_unique(hint, boost::forward_constructor<Args>(args)...); }
+
+ #else //#ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING
+
+ iterator emplace()
+ { return m_tree.emplace_unique(); }
+
+ iterator emplace_hint(const_iterator hint)
+ { return m_tree.emplace_hint_unique(hint); }
+
+ #define BOOST_PP_LOCAL_MACRO(n) \
+ template<BOOST_PP_ENUM_PARAMS(n, class P)> \
+ iterator emplace(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_LIST, _)) \
+ { return m_tree.emplace_unique(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _)); } \
+ \
+ template<BOOST_PP_ENUM_PARAMS(n, class P)> \
+ iterator emplace_hint(const_iterator hint, BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_LIST, _)) \
+ { return m_tree.emplace_hint_unique(hint, BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _));}\
+ //!
+ #define BOOST_PP_LOCAL_LIMITS (1, BOOST_INTERPROCESS_MAX_CONSTRUCTOR_PARAMETERS)
+ #include BOOST_PP_LOCAL_ITERATE()
+
+ #endif //#ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING
+
+ //! <b>Effects</b>: Erases the element pointed to by p.
+ //!
+ //! <b>Returns</b>: Returns an iterator pointing to the element immediately
+ //! following q prior to the element being erased. If no such element exists,
+ //! returns end().
+ //!
+ //! <b>Complexity</b>: Amortized constant time
+ iterator erase(const_iterator p)
+ { return m_tree.erase(p); }
+
+ //! <b>Effects</b>: Erases all elements in the container with key equivalent to x.
+ //!
+ //! <b>Returns</b>: Returns the number of erased elements.
+ //!
+ //! <b>Complexity</b>: log(size()) + count(k)
+ size_type erase(const key_type& x)
+ { return m_tree.erase(x); }
+
+ //! <b>Effects</b>: Erases all the elements in the range [first, last).
+ //!
+ //! <b>Returns</b>: Returns last.
+ //!
+ //! <b>Complexity</b>: log(size())+N where N is the distance from first to last.
+ iterator erase(const_iterator first, const_iterator last)
+ { return m_tree.erase(first, last); }
+
+ //! <b>Effects</b>: erase(a.begin(),a.end()).
+ //!
+ //! <b>Postcondition</b>: size() == 0.
+ //!
+ //! <b>Complexity</b>: linear in size().
+ void clear()
+ { m_tree.clear(); }
+
+ //! <b>Returns</b>: An iterator pointing to an element with the key
+ //! equivalent to x, or end() if such an element is not found.
+ //!
+ //! <b>Complexity</b>: Logarithmic.
+ iterator find(const key_type& x)
+ { return m_tree.find(x); }
+
+ //! <b>Returns</b>: A const_iterator pointing to an element with the key
+ //! equivalent to x, or end() if such an element is not found.
+ //!
+ //! <b>Complexity</b>: Logarithmic.
+ const_iterator find(const key_type& x) const
+ { return m_tree.find(x); }
+
+ //! <b>Returns</b>: The number of elements with key equivalent to x.
+ //!
+ //! <b>Complexity</b>: log(size())+count(k)
+ size_type count(const key_type& x) const
+ { return m_tree.find(x) == m_tree.end() ? 0 : 1; }
+
+ //! <b>Returns</b>: An iterator pointing to the first element with key not less
+ //! than k, or a.end() if such an element is not found.
+ //!
+ //! <b>Complexity</b>: Logarithmic
+ iterator lower_bound(const key_type& x)
+ { return m_tree.lower_bound(x); }
+
+ //! <b>Returns</b>: A const iterator pointing to the first element with key not
+ //! less than k, or a.end() if such an element is not found.
+ //!
+ //! <b>Complexity</b>: Logarithmic
+ const_iterator lower_bound(const key_type& x) const
+ { return m_tree.lower_bound(x); }
+
+ //! <b>Returns</b>: An iterator pointing to the first element with key not less
+ //! than x, or end() if such an element is not found.
+ //!
+ //! <b>Complexity</b>: Logarithmic
+ iterator upper_bound(const key_type& x)
+ { return m_tree.upper_bound(x); }
+
+ //! <b>Returns</b>: A const iterator pointing to the first element with key not
+ //! less than x, or end() if such an element is not found.
+ //!
+ //! <b>Complexity</b>: Logarithmic
+ const_iterator upper_bound(const key_type& x) const
+ { return m_tree.upper_bound(x); }
+
+ //! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
+ //!
+ //! <b>Complexity</b>: Logarithmic
+ std::pair<iterator,iterator>
+ equal_range(const key_type& x)
+ { return m_tree.equal_range(x); }
+
+ //! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
+ //!
+ //! <b>Complexity</b>: Logarithmic
+ std::pair<const_iterator, const_iterator>
+ equal_range(const key_type& x) const
+ { return m_tree.equal_range(x); }
+
+ /// @cond
+ template <class K1, class C1, class A1>
+ friend bool operator== (const set<K1,C1,A1>&, const set<K1,C1,A1>&);
+
+ template <class K1, class C1, class A1>
+ friend bool operator< (const set<K1,C1,A1>&, const set<K1,C1,A1>&);
+ /// @endcond
+};
+
+template <class T, class Pred, class Alloc>
+inline bool operator==(const set<T,Pred,Alloc>& x,
+ const set<T,Pred,Alloc>& y)
+{ return x.m_tree == y.m_tree; }
+
+template <class T, class Pred, class Alloc>
+inline bool operator<(const set<T,Pred,Alloc>& x,
+ const set<T,Pred,Alloc>& y)
+{ return x.m_tree < y.m_tree; }
+
+template <class T, class Pred, class Alloc>
+inline bool operator!=(const set<T,Pred,Alloc>& x,
+ const set<T,Pred,Alloc>& y)
+{ return !(x == y); }
+
+template <class T, class Pred, class Alloc>
+inline bool operator>(const set<T,Pred,Alloc>& x,
+ const set<T,Pred,Alloc>& y)
+{ return y < x; }
+
+template <class T, class Pred, class Alloc>
+inline bool operator<=(const set<T,Pred,Alloc>& x,
+ const set<T,Pred,Alloc>& y)
+{ return !(y < x); }
+
+template <class T, class Pred, class Alloc>
+inline bool operator>=(const set<T,Pred,Alloc>& x,
+ const set<T,Pred,Alloc>& y)
+{ return !(x < y); }
+
+#if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+template <class T, class Pred, class Alloc>
+inline void swap(set<T,Pred,Alloc>& x, set<T,Pred,Alloc>& y)
+{ x.swap(y); }
+
+template <class T, class Pred, class Alloc>
+inline void swap(set<T,Pred,Alloc>& x, boost::rv<set<T,Pred,Alloc> >& y)
+{ x.swap(y.get()); }
+
+template <class T, class Pred, class Alloc>
+inline void swap(boost::rv<set<T,Pred,Alloc> >& y, set<T,Pred,Alloc>& x)
+{ y.swap(x.get()); }
+
+#else
+template <class T, class Pred, class Alloc>
+inline void swap(set<T,Pred,Alloc>&&x, set<T,Pred,Alloc>&&y)
+{ x.swap(y); }
+#endif
+
+/// @cond
+
+//!has_trivial_destructor_after_move<> == true_type
+//!specialization for optimizations
+template <class T, class C, class A>
+struct has_trivial_destructor_after_move<set<T, C, A> >
+{
+ enum { value =
+ has_trivial_destructor<A>::value &&
+ has_trivial_destructor<C>::value };
+};
+
+// Forward declaration of operators < and ==, needed for friend declaration.
+
+template <class T, class Pred, class Alloc>
+inline bool operator==(const multiset<T,Pred,Alloc>& x,
+ const multiset<T,Pred,Alloc>& y);
+
+template <class T, class Pred, class Alloc>
+inline bool operator<(const multiset<T,Pred,Alloc>& x,
+ const multiset<T,Pred,Alloc>& y);
+/// @endcond
+
+//! A multiset is a kind of associative container that supports equivalent keys
+//! (possibly contains multiple copies of the same key value) and provides for
+//! fast retrieval of the keys themselves. Class multiset supports bidirectional iterators.
+//!
+//! A multiset satisfies all of the requirements of a container and of a reversible
+//! container, and of an associative container). multiset also provides most operations
+//! described for duplicate keys.
+template <class T, class Pred, class Alloc>
+class multiset
+{
+ /// @cond
+ private:
+ typedef detail::rbtree<T, T,
+ detail::identity<T>, Pred, Alloc> tree_t;
+ tree_t m_tree; // red-black tree representing multiset
+ /// @endcond
+
+ public:
+ BOOST_ENABLE_MOVE_EMULATION(multiset)
+
+ // typedefs:
+ typedef typename tree_t::key_type key_type;
+ typedef typename tree_t::value_type value_type;
+ typedef typename tree_t::pointer pointer;
+ typedef typename tree_t::const_pointer const_pointer;
+ typedef typename tree_t::reference reference;
+ typedef typename tree_t::const_reference const_reference;
+ typedef Pred key_compare;
+ typedef Pred value_compare;
+ typedef typename tree_t::iterator iterator;
+ typedef typename tree_t::const_iterator const_iterator;
+ typedef typename tree_t::reverse_iterator reverse_iterator;
+ typedef typename tree_t::const_reverse_iterator const_reverse_iterator;
+ typedef typename tree_t::size_type size_type;
+ typedef typename tree_t::difference_type difference_type;
+ typedef typename tree_t::allocator_type allocator_type;
+ typedef typename tree_t::stored_allocator_type stored_allocator_type;
+
+ //! <b>Effects</b>: Constructs an empty multiset using the specified comparison
+ //! object and allocator.
+ //!
+ //! <b>Complexity</b>: Constant.
+ explicit multiset(const Pred& comp = Pred(),
+ const allocator_type& a = allocator_type())
+ : m_tree(comp, a)
+ {}
+
+ //! <b>Effects</b>: Constructs an empty multiset using the specified comparison object
+ //! and allocator, and inserts elements from the range [first ,last ).
+ //!
+ //! <b>Complexity</b>: Linear in N if the range [first ,last ) is already sorted using
+ //! comp and otherwise N logN, where N is last - first.
+ template <class InputIterator>
+ multiset(InputIterator first, InputIterator last,
+ const Pred& comp = Pred(),
+ const allocator_type& a = allocator_type())
+ : m_tree(first, last, comp, a, false)
+ {}
+
+ //! <b>Effects</b>: Copy constructs a multiset.
+ //!
+ //! <b>Complexity</b>: Linear in x.size().
+ multiset(const multiset<T,Pred,Alloc>& x)
+ : m_tree(x.m_tree)
+ {}
+
+ //! <b>Effects</b>: Move constructs a multiset. Constructs *this using x's resources.
+ //!
+ //! <b>Complexity</b>: Construct.
+ //!
+ //! <b>Postcondition</b>: x is emptied.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ multiset(boost::rv<multiset<T,Pred,Alloc> > &x)
+ : m_tree(boost::move(x.get().m_tree))
+ {}
+ #else
+ multiset(multiset<T,Pred,Alloc> &&x)
+ : m_tree(boost::move(x.m_tree))
+ {}
+ #endif
+
+ //! <b>Effects</b>: Makes *this a copy of x.
+ //!
+ //! <b>Complexity</b>: Linear in x.size().
+ multiset<T,Pred,Alloc>& operator=(const multiset<T,Pred,Alloc>& x)
+ { m_tree = x.m_tree; return *this; }
+
+ //! <b>Effects</b>: this->swap(x.get()).
+ //!
+ //! <b>Complexity</b>: Constant.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ multiset<T,Pred,Alloc>& operator=(boost::rv<multiset<T,Pred,Alloc> > &x)
+ { m_tree = boost::move(x.get().m_tree); return *this; }
+ #else
+ multiset<T,Pred,Alloc>& operator=(multiset<T,Pred,Alloc> &&x)
+ { m_tree = boost::move(x.m_tree); return *this; }
+ #endif
+
+ //! <b>Effects</b>: Returns the comparison object out
+ //! of which a was constructed.
+ //!
+ //! <b>Complexity</b>: Constant.
+ key_compare key_comp() const
+ { return m_tree.key_comp(); }
+
+ //! <b>Effects</b>: Returns an object of value_compare constructed out
+ //! of the comparison object.
+ //!
+ //! <b>Complexity</b>: Constant.
+ value_compare value_comp() const
+ { return m_tree.key_comp(); }
+
+ //! <b>Effects</b>: Returns a copy of the Allocator that
+ //! was passed to the object's constructor.
+ //!
+ //! <b>Complexity</b>: Constant.
+ allocator_type get_allocator() const
+ { return m_tree.get_allocator(); }
+
+ const stored_allocator_type &get_stored_allocator() const
+ { return m_tree.get_stored_allocator(); }
+
+ stored_allocator_type &get_stored_allocator()
+ { return m_tree.get_stored_allocator(); }
+
+ //! <b>Effects</b>: Returns an iterator to the first element contained in the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ iterator begin()
+ { return m_tree.begin(); }
+
+ //! <b>Effects</b>: Returns a const_iterator to the first element contained in the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_iterator begin() const
+ { return m_tree.begin(); }
+
+ //! <b>Effects</b>: Returns an iterator to the end of the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ iterator end()
+ { return m_tree.end(); }
+
+ //! <b>Effects</b>: Returns a const_iterator to the end of the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_iterator end() const
+ { return m_tree.end(); }
+
+ //! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning
+ //! of the reversed container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ reverse_iterator rbegin()
+ { return m_tree.rbegin(); }
+
+ //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
+ //! of the reversed container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_reverse_iterator rbegin() const
+ { return m_tree.rbegin(); }
+
+ //! <b>Effects</b>: Returns a reverse_iterator pointing to the end
+ //! of the reversed container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ reverse_iterator rend()
+ { return m_tree.rend(); }
+
+ //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
+ //! of the reversed container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_reverse_iterator rend() const
+ { return m_tree.rend(); }
+
+ //! <b>Effects</b>: Returns a const_iterator to the first element contained in the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_iterator cbegin() const
+ { return m_tree.cbegin(); }
+
+ //! <b>Effects</b>: Returns a const_iterator to the end of the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_iterator cend() const
+ { return m_tree.cend(); }
+
+ //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
+ //! of the reversed container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_reverse_iterator crbegin() const
+ { return m_tree.crbegin(); }
+
+ //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
+ //! of the reversed container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_reverse_iterator crend() const
+ { return m_tree.crend(); }
+
+ //! <b>Effects</b>: Returns true if the container contains no elements.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ bool empty() const
+ { return m_tree.empty(); }
+
+ //! <b>Effects</b>: Returns the number of the elements contained in the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ size_type size() const
+ { return m_tree.size(); }
+
+ //! <b>Effects</b>: Returns the largest possible size of the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ size_type max_size() const
+ { return m_tree.max_size(); }
+
+ //! <b>Effects</b>: Swaps the contents of *this and x.
+ //! If this->allocator_type() != x.allocator_type() allocators are also swapped.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ void swap(boost::rv<multiset> &x)
+ { this->swap(x.get()); }
+ void swap(multiset& x)
+ #else
+ void swap(multiset &&x)
+ #endif
+ { m_tree.swap(x.m_tree); }
+
+ //! <b>Effects</b>: Inserts x and returns the iterator pointing to the
+ //! newly inserted element.
+ //!
+ //! <b>Complexity</b>: Logarithmic.
+ iterator insert(const value_type& x)
+ { return m_tree.insert_equal(x); }
+
+ //! <b>Effects</b>: Inserts a copy of x in the container.
+ //!
+ //! <b>Returns</b>: An iterator pointing to the element with key equivalent
+ //! to the key of x.
+ //!
+ //! <b>Complexity</b>: Logarithmic in general, but amortized constant if t
+ //! is inserted right before p.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ iterator insert(boost::rv<value_type> &x)
+ { return m_tree.insert_equal(x); }
+ #else
+ iterator insert(value_type && x)
+ { return m_tree.insert_equal(boost::move(x)); }
+ #endif
+
+ //! <b>Effects</b>: Inserts a copy of x in the container.
+ //! p is a hint pointing to where the insert should start to search.
+ //!
+ //! <b>Returns</b>: An iterator pointing to the element with key equivalent
+ //! to the key of x.
+ //!
+ //! <b>Complexity</b>: Logarithmic in general, but amortized constant if t
+ //! is inserted right before p.
+ iterator insert(const_iterator p, const value_type& x)
+ { return m_tree.insert_equal(p, x); }
+
+ //! <b>Effects</b>: Inserts a value move constructed from x in the container.
+ //! p is a hint pointing to where the insert should start to search.
+ //!
+ //! <b>Returns</b>: An iterator pointing to the element with key equivalent
+ //! to the key of x.
+ //!
+ //! <b>Complexity</b>: Logarithmic in general, but amortized constant if t
+ //! is inserted right before p.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ iterator insert(const_iterator p, boost::rv<value_type> &x)
+ { return m_tree.insert_equal(p, x); }
+ #else
+ iterator insert(const_iterator p, value_type && x)
+ { return m_tree.insert_equal(p, boost::move(x)); }
+ #endif
+
+ //! <b>Requires</b>: i, j are not iterators into *this.
+ //!
+ //! <b>Effects</b>: inserts each element from the range [i,j) .
+ //!
+ //! <b>Complexity</b>: N log(size()+N) (N is the distance from i to j)
+ template <class InputIterator>
+ void insert(InputIterator first, InputIterator last)
+ { m_tree.insert_equal(first, last); }
+
+ #ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING
+
+ //! <b>Effects</b>: Inserts an object of type T constructed with
+ //! std::forward<Args>(args)... and returns the iterator pointing to the
+ //! newly inserted element.
+ //!
+ //! <b>Complexity</b>: Logarithmic.
+ template <class... Args>
+ iterator emplace(Args&&... args)
+ { return m_tree.emplace_equal(boost::forward_constructor<Args>(args)...); }
+
+ //! <b>Effects</b>: Inserts an object of type T constructed with
+ //! std::forward<Args>(args)...
+ //!
+ //! <b>Returns</b>: An iterator pointing to the element with key equivalent
+ //! to the key of x.
+ //!
+ //! <b>Complexity</b>: Logarithmic in general, but amortized constant if t
+ //! is inserted right before p.
+ template <class... Args>
+ iterator emplace_hint(const_iterator hint, Args&&... args)
+ { return m_tree.emplace_hint_equal(hint, boost::forward_constructor<Args>(args)...); }
+
+ #else //#ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING
+
+ iterator emplace()
+ { return m_tree.emplace_equal(); }
+
+ iterator emplace_hint(const_iterator hint)
+ { return m_tree.emplace_hint_equal(hint); }
+
+ #define BOOST_PP_LOCAL_MACRO(n) \
+ template<BOOST_PP_ENUM_PARAMS(n, class P)> \
+ iterator emplace(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_LIST, _)) \
+ { return m_tree.emplace_equal(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _)); } \
+ \
+ template<BOOST_PP_ENUM_PARAMS(n, class P)> \
+ iterator emplace_hint(const_iterator hint, BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_LIST, _)) \
+ { return m_tree.emplace_hint_equal(hint, BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _)); }\
+ //!
+ #define BOOST_PP_LOCAL_LIMITS (1, BOOST_INTERPROCESS_MAX_CONSTRUCTOR_PARAMETERS)
+ #include BOOST_PP_LOCAL_ITERATE()
+
+ #endif //#ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING
+
+ //! <b>Effects</b>: Erases the element pointed to by p.
+ //!
+ //! <b>Returns</b>: Returns an iterator pointing to the element immediately
+ //! following q prior to the element being erased. If no such element exists,
+ //! returns end().
+ //!
+ //! <b>Complexity</b>: Amortized constant time
+ iterator erase(const_iterator p)
+ { return m_tree.erase(p); }
+
+ //! <b>Effects</b>: Erases all elements in the container with key equivalent to x.
+ //!
+ //! <b>Returns</b>: Returns the number of erased elements.
+ //!
+ //! <b>Complexity</b>: log(size()) + count(k)
+ size_type erase(const key_type& x)
+ { return m_tree.erase(x); }
+
+ //! <b>Effects</b>: Erases all the elements in the range [first, last).
+ //!
+ //! <b>Returns</b>: Returns last.
+ //!
+ //! <b>Complexity</b>: log(size())+N where N is the distance from first to last.
+ iterator erase(const_iterator first, const_iterator last)
+ { return m_tree.erase(first, last); }
+
+ //! <b>Effects</b>: erase(a.begin(),a.end()).
+ //!
+ //! <b>Postcondition</b>: size() == 0.
+ //!
+ //! <b>Complexity</b>: linear in size().
+ void clear()
+ { m_tree.clear(); }
+
+ //! <b>Returns</b>: An iterator pointing to an element with the key
+ //! equivalent to x, or end() if such an element is not found.
+ //!
+ //! <b>Complexity</b>: Logarithmic.
+ iterator find(const key_type& x)
+ { return m_tree.find(x); }
+
+ //! <b>Returns</b>: A const iterator pointing to an element with the key
+ //! equivalent to x, or end() if such an element is not found.
+ //!
+ //! <b>Complexity</b>: Logarithmic.
+ const_iterator find(const key_type& x) const
+ { return m_tree.find(x); }
+
+ //! <b>Returns</b>: The number of elements with key equivalent to x.
+ //!
+ //! <b>Complexity</b>: log(size())+count(k)
+ size_type count(const key_type& x) const
+ { return m_tree.count(x); }
+
+ //! <b>Returns</b>: An iterator pointing to the first element with key not less
+ //! than k, or a.end() if such an element is not found.
+ //!
+ //! <b>Complexity</b>: Logarithmic
+ iterator lower_bound(const key_type& x)
+ { return m_tree.lower_bound(x); }
+
+ //! <b>Returns</b>: A const iterator pointing to the first element with key not
+ //! less than k, or a.end() if such an element is not found.
+ //!
+ //! <b>Complexity</b>: Logarithmic
+ const_iterator lower_bound(const key_type& x) const
+ { return m_tree.lower_bound(x); }
+
+ //! <b>Returns</b>: An iterator pointing to the first element with key not less
+ //! than x, or end() if such an element is not found.
+ //!
+ //! <b>Complexity</b>: Logarithmic
+ iterator upper_bound(const key_type& x)
+ { return m_tree.upper_bound(x); }
+
+ //! <b>Returns</b>: A const iterator pointing to the first element with key not
+ //! less than x, or end() if such an element is not found.
+ //!
+ //! <b>Complexity</b>: Logarithmic
+ const_iterator upper_bound(const key_type& x) const
+ { return m_tree.upper_bound(x); }
+
+ //! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
+ //!
+ //! <b>Complexity</b>: Logarithmic
+ std::pair<iterator,iterator>
+ equal_range(const key_type& x)
+ { return m_tree.equal_range(x); }
+
+ //! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
+ //!
+ //! <b>Complexity</b>: Logarithmic
+ std::pair<const_iterator, const_iterator>
+ equal_range(const key_type& x) const
+ { return m_tree.equal_range(x); }
+
+ /// @cond
+ template <class K1, class C1, class A1>
+ friend bool operator== (const multiset<K1,C1,A1>&,
+ const multiset<K1,C1,A1>&);
+ template <class K1, class C1, class A1>
+ friend bool operator< (const multiset<K1,C1,A1>&,
+ const multiset<K1,C1,A1>&);
+ /// @endcond
+};
+
+template <class T, class Pred, class Alloc>
+inline bool operator==(const multiset<T,Pred,Alloc>& x,
+ const multiset<T,Pred,Alloc>& y)
+{ return x.m_tree == y.m_tree; }
+
+template <class T, class Pred, class Alloc>
+inline bool operator<(const multiset<T,Pred,Alloc>& x,
+ const multiset<T,Pred,Alloc>& y)
+{ return x.m_tree < y.m_tree; }
+
+template <class T, class Pred, class Alloc>
+inline bool operator!=(const multiset<T,Pred,Alloc>& x,
+ const multiset<T,Pred,Alloc>& y)
+{ return !(x == y); }
+
+template <class T, class Pred, class Alloc>
+inline bool operator>(const multiset<T,Pred,Alloc>& x,
+ const multiset<T,Pred,Alloc>& y)
+{ return y < x; }
+
+template <class T, class Pred, class Alloc>
+inline bool operator<=(const multiset<T,Pred,Alloc>& x,
+ const multiset<T,Pred,Alloc>& y)
+{ return !(y < x); }
+
+template <class T, class Pred, class Alloc>
+inline bool operator>=(const multiset<T,Pred,Alloc>& x,
+ const multiset<T,Pred,Alloc>& y)
+{ return !(x < y); }
+
+#if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+template <class T, class Pred, class Alloc>
+inline void swap(multiset<T,Pred,Alloc>& x, multiset<T,Pred,Alloc>& y)
+{ x.swap(y); }
+
+template <class T, class Pred, class Alloc>
+inline void swap(multiset<T,Pred,Alloc>& x, boost::rv<multiset<T,Pred,Alloc> >& y)
+{ x.swap(y.get()); }
+
+template <class T, class Pred, class Alloc>
+inline void swap(boost::rv<multiset<T,Pred,Alloc> >& y, multiset<T,Pred,Alloc>& x)
+{ y.swap(x.get()); }
+#else
+template <class T, class Pred, class Alloc>
+inline void swap(multiset<T,Pred,Alloc>&&x, multiset<T,Pred,Alloc>&&y)
+{ x.swap(y); }
+#endif
+
+/// @cond
+
+//!has_trivial_destructor_after_move<> == true_type
+//!specialization for optimizations
+template <class T, class C, class A>
+struct has_trivial_destructor_after_move<multiset<T, C, A> >
+{
+ enum { value =
+ has_trivial_destructor<A>::value &&
+ has_trivial_destructor<C>::value };
+};
+/// @endcond
+
+}} //namespace boost { namespace interprocess {
+
+#include <boost/interprocess/detail/config_end.hpp>
+
+#endif /* BOOST_INTERPROCESS_SET_HPP */
+

Added: sandbox/boost/interprocess/containers/slist.hpp
==============================================================================
--- (empty file)
+++ sandbox/boost/interprocess/containers/slist.hpp 2009-02-17 13:04:56 EST (Tue, 17 Feb 2009)
@@ -0,0 +1,1621 @@
+//////////////////////////////////////////////////////////////////////////////
+//
+// (C) Copyright Ion Gaztanaga 2004-2008. Distributed under the Boost
+// Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+//
+// See http://www.boost.org/libs/interprocess for documentation.
+//
+//////////////////////////////////////////////////////////////////////////////
+//
+// This file comes from SGI's stl_slist.h file. Modified by Ion Gaztanaga 2004-2008
+// Renaming, isolating and porting to generic algorithms. Pointer typedef
+// set to allocator::pointer to allow placing it in shared memory.
+//
+///////////////////////////////////////////////////////////////////////////////
+/*
+ *
+ * Copyright (c) 1994
+ * Hewlett-Packard Company
+ *
+ * Permission to use, copy, modify, distribute and sell this software
+ * and its documentation for any purpose is hereby granted without fee,
+ * provided that the above copyright notice appear in all copies and
+ * that both that copyright notice and this permission notice appear
+ * in supporting documentation. Hewlett-Packard Company makes no
+ * representations about the suitability of this software for any
+ * purpose. It is provided "as is" without express or implied warranty.
+ *
+ *
+ * Copyright (c) 1996
+ * Silicon Graphics Computer Systems, Inc.
+ *
+ * Permission to use, copy, modify, distribute and sell this software
+ * and its documentation for any purpose is hereby granted without fee,
+ * provided that the above copyright notice appear in all copies and
+ * that both that copyright notice and this permission notice appear
+ * in supporting documentation. Silicon Graphics makes no
+ * representations about the suitability of this software for any
+ * purpose. It is provided "as is" without express or implied warranty.
+ *
+ */
+
+#ifndef BOOST_INTERPROCESS_SLIST_HPP
+#define BOOST_INTERPROCESS_SLIST_HPP
+
+#if (defined _MSC_VER) && (_MSC_VER >= 1200)
+# pragma once
+#endif
+
+#include <boost/interprocess/detail/config_begin.hpp>
+#include <boost/interprocess/detail/workaround.hpp>
+
+#include <boost/interprocess/interprocess_fwd.hpp>
+#include <boost/move_semantics/move.hpp>
+#include <boost/interprocess/detail/utilities.hpp>
+#include <boost/interprocess/detail/mpl.hpp>
+#include <boost/type_traits/has_trivial_destructor.hpp>
+#include <boost/detail/no_exceptions_support.hpp>
+#include <boost/interprocess/containers/detail/node_alloc_holder.hpp>
+#include <boost/intrusive/slist.hpp>
+
+
+#ifndef BOOST_INTERPROCESS_PERFECT_FORWARDING
+//Preprocessor library to emulate perfect forwarding
+#include <boost/interprocess/detail/preprocessor.hpp>
+#endif
+
+#include <iterator>
+#include <utility>
+#include <memory>
+#include <functional>
+#include <algorithm>
+
+namespace boost{ namespace interprocess{
+
+/// @cond
+
+namespace detail {
+
+template<class VoidPointer>
+struct slist_hook
+{
+ typedef typename bi::make_slist_base_hook
+ <bi::void_pointer<VoidPointer>, bi::link_mode<bi::normal_link> >::type type;
+};
+
+template <class T, class VoidPointer>
+struct slist_node
+ : public slist_hook<VoidPointer>::type
+{
+ #ifndef BOOST_INTERPROCESS_PERFECT_FORWARDING
+
+ slist_node()
+ : m_data()
+ {}
+
+ #define BOOST_PP_LOCAL_MACRO(n) \
+ template<BOOST_PP_ENUM_PARAMS(n, class P)> \
+ slist_node(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_LIST, _)) \
+ : m_data(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _)) \
+ {} \
+ //!
+ #define BOOST_PP_LOCAL_LIMITS (1, BOOST_INTERPROCESS_MAX_CONSTRUCTOR_PARAMETERS)
+ #include BOOST_PP_LOCAL_ITERATE()
+
+ #else //#ifndef BOOST_INTERPROCESS_PERFECT_FORWARDING
+
+ template<class ...Args>
+ slist_node(Args &&...args)
+ : m_data(boost::forward_constructor<Args>(args)...)
+ {}
+ #endif//#ifndef BOOST_INTERPROCESS_PERFECT_FORWARDING
+
+ T m_data;
+};
+
+template<class A>
+struct intrusive_slist_type
+{
+ typedef typename A::value_type value_type;
+ typedef typename detail::pointer_to_other
+ <typename A::pointer, void>::type void_pointer;
+ typedef typename detail::slist_node
+ <value_type, void_pointer> node_type;
+
+ typedef typename bi::make_slist
+ <node_type
+ ,bi::base_hook<typename slist_hook<void_pointer>::type>
+ ,bi::constant_time_size<true>
+ ,bi::size_type<typename A::size_type>
+ >::type container_type;
+ typedef container_type type ;
+};
+
+} //namespace detail {
+
+/// @endcond
+
+//! An slist is a singly linked list: a list where each element is linked to the next
+//! element, but not to the previous element. That is, it is a Sequence that
+//! supports forward but not backward traversal, and (amortized) constant time
+//! insertion and removal of elements. Slists, like lists, have the important
+//! property that insertion and splicing do not invalidate iterators to list elements,
+//! and that even removal invalidates only the iterators that point to the elements
+//! that are removed. The ordering of iterators may be changed (that is,
+//! slist<T>::iterator might have a different predecessor or successor after a list
+//! operation than it did before), but the iterators themselves will not be invalidated
+//! or made to point to different elements unless that invalidation or mutation is explicit.
+//!
+//! The main difference between slist and list is that list's iterators are bidirectional
+//! iterators, while slist's iterators are forward iterators. This means that slist is
+//! less versatile than list; frequently, however, bidirectional iterators are
+//! unnecessary. You should usually use slist unless you actually need the extra
+//! functionality of list, because singly linked lists are smaller and faster than double
+//! linked lists.
+//!
+//! Important performance note: like every other Sequence, slist defines the member
+//! functions insert and erase. Using these member functions carelessly, however, can
+//! result in disastrously slow programs. The problem is that insert's first argument is
+//! an iterator p, and that it inserts the new element(s) before p. This means that
+//! insert must find the iterator just before p; this is a constant-time operation
+//! for list, since list has bidirectional iterators, but for slist it must find that
+//! iterator by traversing the list from the beginning up to p. In other words:
+//! insert and erase are slow operations anywhere but near the beginning of the slist.
+//!
+//! Slist provides the member functions insert_after and erase_after, which are constant
+//! time operations: you should always use insert_after and erase_after whenever
+//! possible. If you find that insert_after and erase_after aren't adequate for your
+//! needs, and that you often need to use insert and erase in the middle of the list,
+//! then you should probably use list instead of slist.
+template <class T, class A>
+class slist
+ : protected detail::node_alloc_holder
+ <A, typename detail::intrusive_slist_type<A>::type>
+{
+ /// @cond
+ typedef typename
+ detail::intrusive_slist_type<A>::type Icont;
+ typedef detail::node_alloc_holder<A, Icont> AllocHolder;
+ typedef typename AllocHolder::NodePtr NodePtr;
+ typedef slist <T, A> ThisType;
+ typedef typename AllocHolder::NodeAlloc NodeAlloc;
+ typedef typename AllocHolder::ValAlloc ValAlloc;
+ typedef typename AllocHolder::Node Node;
+ typedef detail::allocator_destroyer<NodeAlloc> Destroyer;
+ typedef typename AllocHolder::allocator_v1 allocator_v1;
+ typedef typename AllocHolder::allocator_v2 allocator_v2;
+ typedef typename AllocHolder::alloc_version alloc_version;
+
+ class equal_to_value
+ {
+ typedef typename AllocHolder::value_type value_type;
+ const value_type &t_;
+
+ public:
+ equal_to_value(const value_type &t)
+ : t_(t)
+ {}
+
+ bool operator()(const value_type &t)const
+ { return t_ == t; }
+ };
+
+ template<class Pred>
+ struct ValueCompareToNodeCompare
+ : Pred
+ {
+ ValueCompareToNodeCompare(Pred pred)
+ : Pred(pred)
+ {}
+
+ bool operator()(const Node &a, const Node &b) const
+ { return static_cast<const Pred&>(*this)(a.m_data, b.m_data); }
+
+ bool operator()(const Node &a) const
+ { return static_cast<const Pred&>(*this)(a.m_data); }
+ };
+ /// @endcond
+ public:
+ //! The type of object, T, stored in the list
+ typedef T value_type;
+ //! Pointer to T
+ typedef typename A::pointer pointer;
+ //! Const pointer to T
+ typedef typename A::const_pointer const_pointer;
+ //! Reference to T
+ typedef typename A::reference reference;
+ //! Const reference to T
+ typedef typename A::const_reference const_reference;
+ //! An unsigned integral type
+ typedef typename A::size_type size_type;
+ //! A signed integral type
+ typedef typename A::difference_type difference_type;
+ //! The allocator type
+ typedef A allocator_type;
+ //! The stored allocator type
+ typedef NodeAlloc stored_allocator_type;
+
+ /// @cond
+ private:
+ typedef difference_type list_difference_type;
+ typedef pointer list_pointer;
+ typedef const_pointer list_const_pointer;
+ typedef reference list_reference;
+ typedef const_reference list_const_reference;
+ /// @endcond
+
+ public:
+ BOOST_ENABLE_MOVE_EMULATION(slist)
+
+ //! Const iterator used to iterate through a list.
+ class const_iterator
+ /// @cond
+ : public std::iterator<std::forward_iterator_tag,
+ value_type, list_difference_type,
+ list_const_pointer, list_const_reference>
+ {
+
+ protected:
+ typename Icont::iterator m_it;
+ explicit const_iterator(typename Icont::iterator it) : m_it(it){}
+ void prot_incr(){ ++m_it; }
+
+ private:
+ typename Icont::iterator get()
+ { return this->m_it; }
+
+ public:
+ friend class slist<T, A>;
+ typedef list_difference_type difference_type;
+
+ //Constructors
+ const_iterator()
+ : m_it()
+ {}
+
+ //Pointer like operators
+ const_reference operator*() const
+ { return m_it->m_data; }
+
+ const_pointer operator->() const
+ { return const_pointer(&m_it->m_data); }
+
+ //Increment / Decrement
+ const_iterator& operator++()
+ { prot_incr(); return *this; }
+
+ const_iterator operator++(int)
+ { typename Icont::iterator tmp = m_it; ++*this; return const_iterator(tmp); }
+
+ //Comparison operators
+ bool operator== (const const_iterator& r) const
+ { return m_it == r.m_it; }
+
+ bool operator!= (const const_iterator& r) const
+ { return m_it != r.m_it; }
+ }
+ /// @endcond
+ ;
+
+ //! Iterator used to iterate through a list
+ class iterator
+ /// @cond
+ : public const_iterator
+ {
+
+ private:
+ explicit iterator(typename Icont::iterator it)
+ : const_iterator(it)
+ {}
+
+ typename Icont::iterator get()
+ { return this->m_it; }
+
+ public:
+ friend class slist<T, A>;
+ typedef list_pointer pointer;
+ typedef list_reference reference;
+
+ //Constructors
+ iterator(){}
+
+ //Pointer like operators
+ reference operator*() const { return this->m_it->m_data; }
+ pointer operator->() const { return pointer(&this->m_it->m_data); }
+
+ //Increment / Decrement
+ iterator& operator++()
+ { this->prot_incr(); return *this; }
+
+ iterator operator++(int)
+ { typename Icont::iterator tmp = this->m_it; ++*this; return iterator(tmp); }
+ }
+ /// @endcond
+ ;
+
+ public:
+ //! <b>Effects</b>: Constructs a list taking the allocator as parameter.
+ //!
+ //! <b>Throws</b>: If allocator_type's copy constructor throws.
+ //!
+ //! <b>Complexity</b>: Constant.
+ explicit slist(const allocator_type& a = allocator_type())
+ : AllocHolder(a)
+ {}
+
+ explicit slist(size_type n)
+ : AllocHolder(allocator_type())
+ { this->resize(n); }
+
+ //! <b>Effects</b>: Constructs a list that will use a copy of allocator a
+ //! and inserts n copies of value.
+ //!
+ //! <b>Throws</b>: If allocator_type's default constructor or copy constructor
+ //! throws or T's default or copy constructor throws.
+ //!
+ //! <b>Complexity</b>: Linear to n.
+ explicit slist(size_type n, const value_type& x, const allocator_type& a = allocator_type())
+ : AllocHolder(a)
+ { this->priv_create_and_insert_nodes(this->before_begin(), n, x); }
+
+ //! <b>Effects</b>: Constructs a list that will use a copy of allocator a
+ //! and inserts a copy of the range [first, last) in the list.
+ //!
+ //! <b>Throws</b>: If allocator_type's default constructor or copy constructor
+ //! throws or T's constructor taking an dereferenced InIt throws.
+ //!
+ //! <b>Complexity</b>: Linear to the range [first, last).
+ template <class InpIt>
+ slist(InpIt first, InpIt last,
+ const allocator_type& a = allocator_type())
+ : AllocHolder(a)
+ { this->insert_after(this->before_begin(), first, last); }
+
+ //! <b>Effects</b>: Copy constructs a list.
+ //!
+ //! <b>Postcondition</b>: x == *this.
+ //!
+ //! <b>Throws</b>: If allocator_type's default constructor or copy constructor throws.
+ //!
+ //! <b>Complexity</b>: Linear to the elements x contains.
+ slist(const slist& x)
+ : AllocHolder(x)
+ { this->insert_after(this->before_begin(), x.begin(), x.end()); }
+
+ //! <b>Effects</b>: Move constructor. Moves mx's resources to *this.
+ //!
+ //! <b>Throws</b>: If allocator_type's copy constructor throws.
+ //!
+ //! <b>Complexity</b>: Constant.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ slist(boost::rv<slist> &x)
+ : AllocHolder(boost::move((AllocHolder&)x.get()))
+ {}
+ #else
+ slist(slist &&x)
+ : AllocHolder(boost::move((AllocHolder&)x))
+ {}
+ #endif
+
+ //! <b>Effects</b>: Makes *this contain the same elements as x.
+ //!
+ //! <b>Postcondition</b>: this->size() == x.size(). *this contains a copy
+ //! of each of x's elements.
+ //!
+ //! <b>Throws</b>: If memory allocation throws or T's copy constructor throws.
+ //!
+ //! <b>Complexity</b>: Linear to the number of elements in x.
+ slist& operator= (const slist& x)
+ {
+ if (&x != this){
+ this->assign(x.begin(), x.end());
+ }
+ return *this;
+ }
+
+ //! <b>Effects</b>: Makes *this contain the same elements as x.
+ //!
+ //! <b>Postcondition</b>: this->size() == x.size(). *this contains a copy
+ //! of each of x's elements.
+ //!
+ //! <b>Throws</b>: If memory allocation throws or T's copy constructor throws.
+ //!
+ //! <b>Complexity</b>: Linear to the number of elements in x.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ slist& operator= (boost::rv<slist> &mx)
+ {
+ if (&mx.get() != this){
+ this->clear();
+ this->swap(mx.get());
+ }
+ return *this;
+ }
+ #else
+ slist& operator= (slist && mx)
+ {
+ if (&mx != this){
+ this->clear();
+ this->swap(mx);
+ }
+ return *this;
+ }
+ #endif
+
+ //! <b>Effects</b>: Destroys the list. All stored values are destroyed
+ //! and used memory is deallocated.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Linear to the number of elements.
+ ~slist()
+ {} //AllocHolder clears the slist
+
+ //! <b>Effects</b>: Returns a copy of the internal allocator.
+ //!
+ //! <b>Throws</b>: If allocator's copy constructor throws.
+ //!
+ //! <b>Complexity</b>: Constant.
+ allocator_type get_allocator() const
+ { return allocator_type(this->node_alloc()); }
+
+ const stored_allocator_type &get_stored_allocator() const
+ { return this->node_alloc(); }
+
+ stored_allocator_type &get_stored_allocator()
+ { return this->node_alloc(); }
+
+ public:
+
+ //! <b>Effects</b>: Assigns the n copies of val to *this.
+ //!
+ //! <b>Throws</b>: If memory allocation throws or T's copy constructor throws.
+ //!
+ //! <b>Complexity</b>: Linear to n.
+ void assign(size_type n, const T& val)
+ { this->priv_fill_assign(n, val); }
+
+ //! <b>Effects</b>: Assigns the range [first, last) to *this.
+ //!
+ //! <b>Throws</b>: If memory allocation throws or
+ //! T's constructor from dereferencing InpIt throws.
+ //!
+ //! <b>Complexity</b>: Linear to n.
+ template <class InpIt>
+ void assign(InpIt first, InpIt last)
+ {
+ const bool aux_boolean = detail::is_convertible<InpIt, std::size_t>::value;
+ typedef detail::bool_<aux_boolean> Result;
+ this->priv_assign_dispatch(first, last, Result());
+ }
+
+ //! <b>Effects</b>: Returns an iterator to the first element contained in the list.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ iterator begin()
+ { return iterator(this->icont().begin()); }
+
+ //! <b>Effects</b>: Returns a const_iterator to the first element contained in the list.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_iterator begin() const
+ { return this->cbegin(); }
+
+ //! <b>Effects</b>: Returns an iterator to the end of the list.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ iterator end()
+ { return iterator(this->icont().end()); }
+
+ //! <b>Effects</b>: Returns a const_iterator to the end of the list.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_iterator end() const
+ { return this->cend(); }
+
+ //! <b>Effects</b>: Returns a non-dereferenceable iterator that,
+ //! when incremented, yields begin(). This iterator may be used
+ //! as the argument toinsert_after, erase_after, etc.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ iterator before_begin()
+ { return iterator(end()); }
+
+ //! <b>Effects</b>: Returns a non-dereferenceable const_iterator
+ //! that, when incremented, yields begin(). This iterator may be used
+ //! as the argument toinsert_after, erase_after, etc.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_iterator before_begin() const
+ { return this->cbefore_begin(); }
+
+ //! <b>Effects</b>: Returns a const_iterator to the first element contained in the list.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_iterator cbegin() const
+ { return const_iterator(this->non_const_icont().begin()); }
+
+ //! <b>Effects</b>: Returns a const_iterator to the end of the list.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_iterator cend() const
+ { return const_iterator(this->non_const_icont().end()); }
+
+ //! <b>Effects</b>: Returns a non-dereferenceable const_iterator
+ //! that, when incremented, yields begin(). This iterator may be used
+ //! as the argument toinsert_after, erase_after, etc.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_iterator cbefore_begin() const
+ { return const_iterator(end()); }
+
+ //! <b>Effects</b>: Returns the number of the elements contained in the list.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ size_type size() const
+ { return this->icont().size(); }
+
+ //! <b>Effects</b>: Returns the largest possible size of the list.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ size_type max_size() const
+ { return AllocHolder::max_size(); }
+
+ //! <b>Effects</b>: Returns true if the list contains no elements.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ bool empty() const
+ { return !this->size(); }
+
+ //! <b>Effects</b>: Swaps the contents of *this and x.
+ //! If this->allocator_type() != x.allocator_type()
+ //! allocators are also swapped.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Linear to the number of elements on *this and x.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ void swap(boost::rv<slist> &x)
+ { this->swap(x.get()); }
+ void swap(slist& x)
+ #else
+ void swap(slist &&x)
+ #endif
+ { AllocHolder::swap(x); }
+
+ //! <b>Requires</b>: !empty()
+ //!
+ //! <b>Effects</b>: Returns a reference to the first element
+ //! from the beginning of the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ reference front()
+ { return *this->begin(); }
+
+ //! <b>Requires</b>: !empty()
+ //!
+ //! <b>Effects</b>: Returns a const reference to the first element
+ //! from the beginning of the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_reference front() const
+ { return *this->begin(); }
+
+ //! <b>Effects</b>: Inserts a copy of t in the beginning of the list.
+ //!
+ //! <b>Throws</b>: If memory allocation throws or
+ //! T's copy constructor throws.
+ //!
+ //! <b>Complexity</b>: Amortized constant time.
+ void push_front(const value_type& x)
+ { this->icont().push_front(*this->create_node(x)); }
+
+ //! <b>Effects</b>: Constructs a new element in the beginning of the list
+ //! and moves the resources of t to this new element.
+ //!
+ //! <b>Throws</b>: If memory allocation throws.
+ //!
+ //! <b>Complexity</b>: Amortized constant time.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ void push_front(boost::rv<T> &x)
+ { this->icont().push_front(*this->create_node(x)); }
+ #else
+ void push_front(T && x)
+ { this->icont().push_front(*this->create_node(boost::move(x))); }
+ #endif
+
+ //! <b>Effects</b>: Removes the first element from the list.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Amortized constant time.
+ void pop_front()
+ { this->icont().pop_front_and_dispose(Destroyer(this->node_alloc())); }
+
+ //! <b>Returns</b>: The iterator to the element before i in the sequence.
+ //! Returns the end-iterator, if either i is the begin-iterator or the
+ //! sequence is empty.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Linear to the number of elements before i.
+ iterator previous(iterator p)
+ { return iterator(this->icont().previous(p.get())); }
+
+ //! <b>Returns</b>: The const_iterator to the element before i in the sequence.
+ //! Returns the end-const_iterator, if either i is the begin-const_iterator or
+ //! the sequence is empty.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Linear to the number of elements before i.
+ const_iterator previous(const_iterator p)
+ { return const_iterator(this->icont().previous(p.get())); }
+
+ //! <b>Requires</b>: p must be a valid iterator of *this.
+ //!
+ //! <b>Effects</b>: Inserts a copy of the value after the p pointed
+ //! by prev_p.
+ //!
+ //! <b>Returns</b>: An iterator to the inserted element.
+ //!
+ //! <b>Throws</b>: If memory allocation throws or T's copy constructor throws.
+ //!
+ //! <b>Complexity</b>: Amortized constant time.
+ //!
+ //! <b>Note</b>: Does not affect the validity of iterators and references of
+ //! previous values.
+ iterator insert_after(const_iterator prev_pos, const value_type& x)
+ { return iterator(this->icont().insert_after(prev_pos.get(), *this->create_node(x))); }
+
+ //! <b>Requires</b>: prev_pos must be a valid iterator of *this.
+ //!
+ //! <b>Effects</b>: Inserts a move constructed copy object from the value after the
+ //! p pointed by prev_pos.
+ //!
+ //! <b>Returns</b>: An iterator to the inserted element.
+ //!
+ //! <b>Throws</b>: If memory allocation throws.
+ //!
+ //! <b>Complexity</b>: Amortized constant time.
+ //!
+ //! <b>Note</b>: Does not affect the validity of iterators and references of
+ //! previous values.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ iterator insert_after(const_iterator prev_pos, boost::rv<value_type> &x)
+ { return iterator(this->icont().insert_after(prev_pos.get(), *this->create_node(x))); }
+ #else
+ iterator insert_after(const_iterator prev_pos, value_type && x)
+ { return iterator(this->icont().insert_after(prev_pos.get(), *this->create_node(boost::move(x)))); }
+ #endif
+
+ //! <b>Requires</b>: prev_pos must be a valid iterator of *this.
+ //!
+ //! <b>Effects</b>: Inserts n copies of x after prev_pos.
+ //!
+ //! <b>Throws</b>: If memory allocation throws or T's copy constructor throws.
+ //!
+ //! <b>Complexity</b>: Linear to n.
+ //!
+ //! <b>Note</b>: Does not affect the validity of iterators and references of
+ //! previous values.
+ void insert_after(const_iterator prev_pos, size_type n, const value_type& x)
+ { this->priv_create_and_insert_nodes(prev_pos, n, x); }
+
+ //! <b>Requires</b>: prev_pos must be a valid iterator of *this.
+ //!
+ //! <b>Effects</b>: Inserts the range pointed by [first, last)
+ //! after the p prev_pos.
+ //!
+ //! <b>Throws</b>: If memory allocation throws, T's constructor from a
+ //! dereferenced InpIt throws.
+ //!
+ //! <b>Complexity</b>: Linear to the number of elements inserted.
+ //!
+ //! <b>Note</b>: Does not affect the validity of iterators and references of
+ //! previous values.
+ template <class InIter>
+ void insert_after(const_iterator prev_pos, InIter first, InIter last)
+ {
+ const bool aux_boolean = detail::is_convertible<InIter, std::size_t>::value;
+ typedef detail::bool_<aux_boolean> Result;
+ this->priv_insert_after_range_dispatch(prev_pos, first, last, Result());
+ }
+
+ //! <b>Requires</b>: p must be a valid iterator of *this.
+ //!
+ //! <b>Effects</b>: Insert a copy of x before p.
+ //!
+ //! <b>Throws</b>: If memory allocation throws or x's copy constructor throws.
+ //!
+ //! <b>Complexity</b>: Linear to the elements before p.
+ iterator insert(const_iterator p, const value_type& x)
+ { return this->insert_after(previous(p), x); }
+
+ //! <b>Requires</b>: p must be a valid iterator of *this.
+ //!
+ //! <b>Effects</b>: Insert a new element before p with mx's resources.
+ //!
+ //! <b>Throws</b>: If memory allocation throws.
+ //!
+ //! <b>Complexity</b>: Linear to the elements before p.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ iterator insert(const_iterator p, boost::rv<value_type> &x)
+ { return this->insert_after(previous(p), x); }
+ #else
+ iterator insert(const_iterator p, value_type && x)
+ { return this->insert_after(previous(p), boost::move(x)); }
+ #endif
+
+ //! <b>Requires</b>: p must be a valid iterator of *this.
+ //!
+ //! <b>Effects</b>: Inserts n copies of x before p.
+ //!
+ //! <b>Throws</b>: If memory allocation throws or T's copy constructor throws.
+ //!
+ //! <b>Complexity</b>: Linear to n plus linear to the elements before p.
+ void insert(const_iterator p, size_type n, const value_type& x)
+ { return this->insert_after(previous(p), n, x); }
+
+ //! <b>Requires</b>: p must be a valid iterator of *this.
+ //!
+ //! <b>Effects</b>: Insert a copy of the [first, last) range before p.
+ //!
+ //! <b>Throws</b>: If memory allocation throws, T's constructor from a
+ //! dereferenced InpIt throws.
+ //!
+ //! <b>Complexity</b>: Linear to std::distance [first, last) plus
+ //! linear to the elements before p.
+ template <class InIter>
+ void insert(const_iterator p, InIter first, InIter last)
+ { return this->insert_after(previous(p), first, last); }
+
+ #ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING
+
+ //! <b>Effects</b>: Inserts an object of type T constructed with
+ //! std::forward<Args>(args)... in the front of the list
+ //!
+ //! <b>Throws</b>: If memory allocation throws or
+ //! T's copy constructor throws.
+ //!
+ //! <b>Complexity</b>: Amortized constant time.
+ template <class... Args>
+ void emplace_front(Args&&... args)
+ { this->emplace_after(this->cbefore_begin(), boost::forward_constructor<Args>(args)...); }
+
+ //! <b>Effects</b>: Inserts an object of type T constructed with
+ //! std::forward<Args>(args)... before p
+ //!
+ //! <b>Throws</b>: If memory allocation throws or
+ //! T's in-place constructor throws.
+ //!
+ //! <b>Complexity</b>: Linear to the elements before p
+ template <class... Args>
+ iterator emplace(const_iterator p, Args&&... args)
+ { return this->emplace_after(this->previous(p), boost::forward_constructor<Args>(args)...); }
+
+ //! <b>Effects</b>: Inserts an object of type T constructed with
+ //! std::forward<Args>(args)... after prev
+ //!
+ //! <b>Throws</b>: If memory allocation throws or
+ //! T's in-place constructor throws.
+ //!
+ //! <b>Complexity</b>: Constant
+ template <class... Args>
+ iterator emplace_after(const_iterator prev, Args&&... args)
+ {
+ typename AllocHolder::Deallocator d(AllocHolder::create_node_and_deallocator());
+ new ((void*)detail::get_pointer(d.get())) Node(boost::forward_constructor<Args>(args)...);
+ NodePtr node = d.get();
+ d.release();
+ return iterator(this->icont().insert_after(prev.get(), *node));
+ }
+
+ #else //#ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING
+
+ //0 args
+ void emplace_front()
+ { this->emplace_after(this->cbefore_begin()); }
+
+ iterator emplace(const_iterator p)
+ { return this->emplace_after(this->previous(p)); }
+
+ iterator emplace_after(const_iterator prev)
+ {
+ typename AllocHolder::Deallocator d(AllocHolder::create_node_and_deallocator());
+ new ((void*)detail::get_pointer(d.get())) Node();
+ NodePtr node = d.get();
+ d.release();
+ return iterator(this->icont().insert_after(prev.get(), *node));
+ }
+
+ #define BOOST_PP_LOCAL_MACRO(n) \
+ template<BOOST_PP_ENUM_PARAMS(n, class P)> \
+ void emplace_front(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_LIST, _)) \
+ { \
+ this->emplace \
+ (this->cbegin(), BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _)); \
+ } \
+ \
+ template<BOOST_PP_ENUM_PARAMS(n, class P)> \
+ iterator emplace \
+ (const_iterator p, BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_LIST, _)) \
+ { \
+ return this->emplace_after \
+ (this->previous(p), BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _)); \
+ } \
+ \
+ template<BOOST_PP_ENUM_PARAMS(n, class P)> \
+ iterator emplace_after \
+ (const_iterator prev, BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_LIST, _)) \
+ { \
+ typename AllocHolder::Deallocator d(AllocHolder::create_node_and_deallocator()); \
+ new ((void*)detail::get_pointer(d.get())) \
+ Node(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _)); \
+ NodePtr node = d.get(); \
+ d.release(); \
+ return iterator(this->icont().insert_after(prev.get(), *node)); \
+ } \
+ //!
+ #define BOOST_PP_LOCAL_LIMITS (1, BOOST_INTERPROCESS_MAX_CONSTRUCTOR_PARAMETERS)
+ #include BOOST_PP_LOCAL_ITERATE()
+
+ #endif //#ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING
+
+ //! <b>Effects</b>: Erases the element after the element pointed by prev_pos
+ //! of the list.
+ //!
+ //! <b>Returns</b>: the first element remaining beyond the removed elements,
+ //! or end() if no such element exists.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ //!
+ //! <b>Note</b>: Does not invalidate iterators or references to non erased elements.
+ iterator erase_after(const_iterator prev_pos)
+ {
+ return iterator(this->icont().erase_after_and_dispose(prev_pos.get(), Destroyer(this->node_alloc())));
+ }
+
+ //! <b>Effects</b>: Erases the range (before_first, last) from
+ //! the list.
+ //!
+ //! <b>Returns</b>: the first element remaining beyond the removed elements,
+ //! or end() if no such element exists.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Linear to the number of erased elements.
+ //!
+ //! <b>Note</b>: Does not invalidate iterators or references to non erased elements.
+ iterator erase_after(const_iterator before_first, const_iterator last)
+ {
+ return iterator(this->icont().erase_after_and_dispose(before_first.get(), last.get(), Destroyer(this->node_alloc())));
+ }
+
+ //! <b>Requires</b>: p must be a valid iterator of *this.
+ //!
+ //! <b>Effects</b>: Erases the element at p p.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Linear to the number of elements before p.
+ iterator erase(const_iterator p)
+ { return iterator(this->erase_after(previous(p))); }
+
+ //! <b>Requires</b>: first and last must be valid iterator to elements in *this.
+ //!
+ //! <b>Effects</b>: Erases the elements pointed by [first, last).
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Linear to the distance between first and last plus
+ //! linear to the elements before first.
+ iterator erase(const_iterator first, const_iterator last)
+ { return iterator(this->erase_after(previous(first), last)); }
+
+ //! <b>Effects</b>: Inserts or erases elements at the end such that
+ //! the size becomes n. New elements are copy constructed from x.
+ //!
+ //! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws.
+ //!
+ //! <b>Complexity</b>: Linear to the difference between size() and new_size.
+ void resize(size_type new_size, const T& x)
+ {
+ typename Icont::iterator end_n(this->icont().end()), cur(this->icont().before_begin()), cur_next;
+ while (++(cur_next = cur) != end_n && new_size > 0){
+ --new_size;
+ cur = cur_next;
+ }
+ if (cur_next != end_n)
+ this->erase_after(const_iterator(cur), const_iterator(end_n));
+ else
+ this->insert_after(const_iterator(cur), new_size, x);
+ }
+
+ //! <b>Effects</b>: Inserts or erases elements at the end such that
+ //! the size becomes n. New elements are default constructed.
+ //!
+ //! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws.
+ //!
+ //! <b>Complexity</b>: Linear to the difference between size() and new_size.
+ void resize(size_type new_size)
+ {
+ typename Icont::iterator end_n(this->icont().end()), cur(this->icont().before_begin()), cur_next;
+ size_type len = this->size();
+ size_type left = new_size;
+
+ while (++(cur_next = cur) != end_n && left > 0){
+ --left;
+ cur = cur_next;
+ }
+ if (cur_next != end_n){
+ this->erase_after(const_iterator(cur), const_iterator(end_n));
+ }
+ else{
+ this->priv_create_and_insert_nodes(const_iterator(cur), new_size - len);
+ }
+ }
+
+ //! <b>Effects</b>: Erases all the elements of the list.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Linear to the number of elements in the list.
+ void clear()
+ { this->icont().clear_and_dispose(Destroyer(this->node_alloc())); }
+
+ //! <b>Requires</b>: p must point to an element contained
+ //! by the list. x != *this
+ //!
+ //! <b>Effects</b>: Transfers all the elements of list x to this list, after the
+ //! the element pointed by p. No destructors or copy constructors are called.
+ //!
+ //! <b>Throws</b>: std::runtime_error if this' allocator and x's allocator
+ //! are not equal.
+ //!
+ //! <b>Complexity</b>: Linear to the elements in x.
+ //!
+ //! <b>Note</b>: Iterators of values obtained from list x now point to elements of
+ //! this list. Iterators of this list and all the references are not invalidated.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ void splice_after(const_iterator prev_pos, boost::rv<slist> &x)
+ { this->splice_after(prev_pos, x.get()); }
+ void splice_after(const_iterator prev_pos, slist& x)
+ #else
+ void splice_after(const_iterator prev_pos, slist&& x)
+ #endif
+ {
+ if((NodeAlloc&)*this == (NodeAlloc&)x){
+ this->icont().splice_after(prev_pos.get(), x.icont());
+ }
+ else{
+ throw std::runtime_error("slist::splice called with unequal allocators");
+ }
+ }
+
+ //! <b>Requires</b>: prev_pos must be a valid iterator of this.
+ //! i must point to an element contained in list x.
+ //!
+ //! <b>Effects</b>: Transfers the value pointed by i, from list x to this list,
+ //! after the element pointed by prev_pos.
+ //! If prev_pos == prev or prev_pos == ++prev, this function is a null operation.
+ //!
+ //! <b>Throws</b>: std::runtime_error if this' allocator and x's allocator
+ //! are not equal.
+ //!
+ //! <b>Complexity</b>: Constant.
+ //!
+ //! <b>Note</b>: Iterators of values obtained from list x now point to elements of this
+ //! list. Iterators of this list and all the references are not invalidated.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ void splice_after(const_iterator prev_pos, boost::rv<slist> &x, const_iterator prev)
+ { this->splice_after(prev_pos, x.get(), prev); }
+ void splice_after(const_iterator prev_pos, slist& x, const_iterator prev)
+ #else
+ void splice_after(const_iterator prev_pos, slist&& x, const_iterator prev)
+ #endif
+ {
+ if((NodeAlloc&)*this == (NodeAlloc&)x){
+ this->icont().splice_after(prev_pos.get(), x.icont(), prev.get());
+ }
+ else{
+ throw std::runtime_error("slist::splice called with unequal allocators");
+ }
+ }
+
+ //! <b>Requires</b>: prev_pos must be a valid iterator of this.
+ //! before_first and before_last must be valid iterators of x.
+ //! prev_pos must not be contained in [before_first, before_last) range.
+ //!
+ //! <b>Effects</b>: Transfers the range [before_first + 1, before_last + 1)
+ //! from list x to this list, after the element pointed by prev_pos.
+ //!
+ //! <b>Throws</b>: std::runtime_error if this' allocator and x's allocator
+ //! are not equal.
+ //!
+ //! <b>Complexity</b>: Linear to the number of transferred elements.
+ //!
+ //! <b>Note</b>: Iterators of values obtained from list x now point to elements of this
+ //! list. Iterators of this list and all the references are not invalidated.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ void splice_after(const_iterator prev_pos, boost::rv<slist> &x,
+ const_iterator before_first, const_iterator before_last)
+ { this->splice_after(prev_pos, x.get(), before_first, before_last); }
+ void splice_after(const_iterator prev_pos, slist& x,
+ const_iterator before_first, const_iterator before_last)
+ #else
+ void splice_after(const_iterator prev_pos, slist&& x,
+ const_iterator before_first, const_iterator before_last)
+ #endif
+ {
+ if((NodeAlloc&)*this == (NodeAlloc&)x){
+ this->icont().splice_after
+ (prev_pos.get(), x.icont(), before_first.get(), before_last.get());
+ }
+ else{
+ throw std::runtime_error("slist::splice called with unequal allocators");
+ }
+ }
+
+ //! <b>Requires</b>: prev_pos must be a valid iterator of this.
+ //! before_first and before_last must be valid iterators of x.
+ //! prev_pos must not be contained in [before_first, before_last) range.
+ //! n == std::distance(before_first, before_last)
+ //!
+ //! <b>Effects</b>: Transfers the range [before_first + 1, before_last + 1)
+ //! from list x to this list, after the element pointed by prev_pos.
+ //!
+ //! <b>Throws</b>: std::runtime_error if this' allocator and x's allocator
+ //! are not equal.
+ //!
+ //! <b>Complexity</b>: Constant.
+ //!
+ //! <b>Note</b>: Iterators of values obtained from list x now point to elements of this
+ //! list. Iterators of this list and all the references are not invalidated.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ void splice_after(const_iterator prev_pos, boost::rv<slist> &x,
+ const_iterator before_first, const_iterator before_last,
+ size_type n)
+ { this->splice_after(prev_pos, x.get(), before_first, before_last, n); }
+ void splice_after(const_iterator prev_pos, slist& x,
+ const_iterator before_first, const_iterator before_last,
+ size_type n)
+ #else
+ void splice_after(const_iterator prev_pos, slist&& x,
+ const_iterator before_first, const_iterator before_last,
+ size_type n)
+ #endif
+ {
+ if((NodeAlloc&)*this == (NodeAlloc&)x){
+ this->icont().splice_after
+ (prev_pos.get(), x.icont(), before_first.get(), before_last.get(), n);
+ }
+ else{
+ throw std::runtime_error("slist::splice called with unequal allocators");
+ }
+ }
+
+ //! <b>Requires</b>: p must point to an element contained
+ //! by the list. x != *this
+ //!
+ //! <b>Effects</b>: Transfers all the elements of list x to this list, before the
+ //! the element pointed by p. No destructors or copy constructors are called.
+ //!
+ //! <b>Throws</b>: std::runtime_error if this' allocator and x's allocator
+ //! are not equal.
+ //!
+ //! <b>Complexity</b>: Linear in distance(begin(), p), and linear in x.size().
+ //!
+ //! <b>Note</b>: Iterators of values obtained from list x now point to elements of
+ //! this list. Iterators of this list and all the references are not invalidated.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ void splice(const_iterator p, boost::rv<ThisType> &x)
+ { this->splice(p, x.get()); }
+ void splice(const_iterator p, ThisType& x)
+ #else
+ void splice(const_iterator p, ThisType&& x)
+ #endif
+ { this->splice_after(this->previous(p), x); }
+
+ //! <b>Requires</b>: p must point to an element contained
+ //! by this list. i must point to an element contained in list x.
+ //!
+ //! <b>Effects</b>: Transfers the value pointed by i, from list x to this list,
+ //! before the the element pointed by p. No destructors or copy constructors are called.
+ //! If p == i or p == ++i, this function is a null operation.
+ //!
+ //! <b>Throws</b>: std::runtime_error if this' allocator and x's allocator
+ //! are not equal.
+ //!
+ //! <b>Complexity</b>: Linear in distance(begin(), p), and in distance(x.begin(), i).
+ //!
+ //! <b>Note</b>: Iterators of values obtained from list x now point to elements of this
+ //! list. Iterators of this list and all the references are not invalidated.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ void splice(const_iterator p, boost::rv<ThisType> &x, const_iterator i)
+ { this->splice(p, x.get(), i); }
+ void splice(const_iterator p, slist& x, const_iterator i)
+ #else
+ void splice(const_iterator p, slist&& x, const_iterator i)
+ #endif
+ { this->splice_after(previous(p), x, i); }
+
+ //! <b>Requires</b>: p must point to an element contained
+ //! by this list. first and last must point to elements contained in list x.
+ //!
+ //! <b>Effects</b>: Transfers the range pointed by first and last from list x to this list,
+ //! before the the element pointed by p. No destructors or copy constructors are called.
+ //!
+ //! <b>Throws</b>: std::runtime_error if this' allocator and x's allocator
+ //! are not equal.
+ //!
+ //! <b>Complexity</b>: Linear in distance(begin(), p), in distance(x.begin(), first),
+ //! and in distance(first, last).
+ //!
+ //! <b>Note</b>: Iterators of values obtained from list x now point to elements of this
+ //! list. Iterators of this list and all the references are not invalidated.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ void splice(const_iterator p, boost::rv<ThisType> &x, const_iterator first, const_iterator last)
+ { this->splice(p, x.get(), first, last); }
+ void splice(const_iterator p, slist& x, const_iterator first, const_iterator last)
+ #else
+ void splice(const_iterator p, slist&& x, const_iterator first, const_iterator last)
+ #endif
+ { this->splice_after(previous(p), x, previous(first), previous(last)); }
+
+ //! <b>Effects</b>: Reverses the order of elements in the list.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: This function is linear time.
+ //!
+ //! <b>Note</b>: Iterators and references are not invalidated
+ void reverse()
+ { this->icont().reverse(); }
+
+ //! <b>Effects</b>: Removes all the elements that compare equal to value.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Linear time. It performs exactly size() comparisons for equality.
+ //!
+ //! <b>Note</b>: The relative order of elements that are not removed is unchanged,
+ //! and iterators to elements that are not removed remain valid.
+ void remove(const T& value)
+ { remove_if(equal_to_value(value)); }
+
+ //! <b>Effects</b>: Removes all the elements for which a specified
+ //! predicate is satisfied.
+ //!
+ //! <b>Throws</b>: If pred throws.
+ //!
+ //! <b>Complexity</b>: Linear time. It performs exactly size() calls to the predicate.
+ //!
+ //! <b>Note</b>: The relative order of elements that are not removed is unchanged,
+ //! and iterators to elements that are not removed remain valid.
+ template <class Pred>
+ void remove_if(Pred pred)
+ {
+ typedef ValueCompareToNodeCompare<Pred> Predicate;
+ this->icont().remove_and_dispose_if(Predicate(pred), Destroyer(this->node_alloc()));
+ }
+
+ //! <b>Effects</b>: Removes adjacent duplicate elements or adjacent
+ //! elements that are equal from the list.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Linear time (size()-1 comparisons calls to pred()).
+ //!
+ //! <b>Note</b>: The relative order of elements that are not removed is unchanged,
+ //! and iterators to elements that are not removed remain valid.
+ void unique()
+ { this->unique(value_equal()); }
+
+ //! <b>Effects</b>: Removes adjacent duplicate elements or adjacent
+ //! elements that satisfy some binary predicate from the list.
+ //!
+ //! <b>Throws</b>: If pred throws.
+ //!
+ //! <b>Complexity</b>: Linear time (size()-1 comparisons equality comparisons).
+ //!
+ //! <b>Note</b>: The relative order of elements that are not removed is unchanged,
+ //! and iterators to elements that are not removed remain valid.
+ template <class Pred>
+ void unique(Pred pred)
+ {
+ typedef ValueCompareToNodeCompare<Pred> Predicate;
+ this->icont().unique_and_dispose(Predicate(pred), Destroyer(this->node_alloc()));
+ }
+
+ //! <b>Requires</b>: The lists x and *this must be distinct.
+ //!
+ //! <b>Effects</b>: This function removes all of x's elements and inserts them
+ //! in order into *this according to std::less<value_type>. The merge is stable;
+ //! that is, if an element from *this is equivalent to one from x, then the element
+ //! from *this will precede the one from x.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: This function is linear time: it performs at most
+ //! size() + x.size() - 1 comparisons.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ void merge(boost::rv<slist<T, A> > &x)
+ { this->merge(x.get()); }
+ void merge(slist<T, A>& x)
+ #else
+ void merge(slist<T, A>&& x)
+ #endif
+ { this->merge(x, value_less()); }
+
+ //! <b>Requires</b>: p must be a comparison function that induces a strict weak
+ //! ordering and both *this and x must be sorted according to that ordering
+ //! The lists x and *this must be distinct.
+ //!
+ //! <b>Effects</b>: This function removes all of x's elements and inserts them
+ //! in order into *this. The merge is stable; that is, if an element from *this is
+ //! equivalent to one from x, then the element from *this will precede the one from x.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: This function is linear time: it performs at most
+ //! size() + x.size() - 1 comparisons.
+ //!
+ //! <b>Note</b>: Iterators and references to *this are not invalidated.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ template <class StrictWeakOrdering>
+ void merge(boost::rv<slist<T, A> > &x, StrictWeakOrdering comp)
+ { this->merge(x.get(), comp); }
+ template <class StrictWeakOrdering>
+ void merge(slist<T, A>& x, StrictWeakOrdering comp)
+ #else
+ template <class StrictWeakOrdering>
+ void merge(slist<T, A>&& x, StrictWeakOrdering comp)
+ #endif
+ {
+ if((NodeAlloc&)*this == (NodeAlloc&)x){
+ this->icont().merge(x.icont(),
+ ValueCompareToNodeCompare<StrictWeakOrdering>(comp));
+ }
+ else{
+ throw std::runtime_error("list::merge called with unequal allocators");
+ }
+ }
+
+ //! <b>Effects</b>: This function sorts the list *this according to std::less<value_type>.
+ //! The sort is stable, that is, the relative order of equivalent elements is preserved.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Notes</b>: Iterators and references are not invalidated.
+ //!
+ //! <b>Complexity</b>: The number of comparisons is approximately N log N, where N
+ //! is the list's size.
+ void sort()
+ { this->sort(value_less()); }
+
+ //! <b>Effects</b>: This function sorts the list *this according to std::less<value_type>.
+ //! The sort is stable, that is, the relative order of equivalent elements is preserved.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Notes</b>: Iterators and references are not invalidated.
+ //!
+ //! <b>Complexity</b>: The number of comparisons is approximately N log N, where N
+ //! is the list's size.
+ template <class StrictWeakOrdering>
+ void sort(StrictWeakOrdering comp)
+ {
+ // nothing if the slist has length 0 or 1.
+ if (this->size() < 2)
+ return;
+ this->icont().sort(ValueCompareToNodeCompare<StrictWeakOrdering>(comp));
+ }
+
+ /// @cond
+ private:
+
+ //Iterator range version
+ template<class InpIterator>
+ void priv_create_and_insert_nodes
+ (const_iterator prev, InpIterator beg, InpIterator end)
+ {
+ typedef typename std::iterator_traits<InpIterator>::iterator_category ItCat;
+ priv_create_and_insert_nodes(prev, beg, end, alloc_version(), ItCat());
+ }
+
+ template<class InpIterator>
+ void priv_create_and_insert_nodes
+ (const_iterator prev, InpIterator beg, InpIterator end, allocator_v1, std::input_iterator_tag)
+ {
+ for (; beg != end; ++beg){
+ this->icont().insert_after(prev.get(), *this->create_node_from_it(beg));
+ ++prev;
+ }
+ }
+
+ template<class InpIterator>
+ void priv_create_and_insert_nodes
+ (const_iterator prev, InpIterator beg, InpIterator end, allocator_v2, std::input_iterator_tag)
+ { //Just forward to the default one
+ priv_create_and_insert_nodes(prev, beg, end, allocator_v1(), std::input_iterator_tag());
+ }
+
+ class insertion_functor;
+ friend class insertion_functor;
+
+ class insertion_functor
+ {
+ Icont &icont_;
+ typename Icont::const_iterator prev_;
+
+ public:
+ insertion_functor(Icont &icont, typename Icont::const_iterator prev)
+ : icont_(icont), prev_(prev)
+ {}
+
+ void operator()(Node &n)
+ { prev_ = this->icont_.insert_after(prev_, n); }
+ };
+
+ template<class FwdIterator>
+ void priv_create_and_insert_nodes
+ (const_iterator prev, FwdIterator beg, FwdIterator end, allocator_v2, std::forward_iterator_tag)
+ {
+ //Optimized allocation and construction
+ this->allocate_many_and_construct
+ (beg, std::distance(beg, end), insertion_functor(this->icont(), prev.get()));
+ }
+
+ //Default constructed version
+ void priv_create_and_insert_nodes(const_iterator prev, size_type n)
+ {
+ typedef default_construct_iterator<value_type, difference_type> default_iterator;
+ this->priv_create_and_insert_nodes(prev, default_iterator(n), default_iterator());
+ }
+
+ //Copy constructed version
+ void priv_create_and_insert_nodes(const_iterator prev, size_type n, const T& x)
+ {
+ typedef constant_iterator<value_type, difference_type> cvalue_iterator;
+ this->priv_create_and_insert_nodes(prev, cvalue_iterator(x, n), cvalue_iterator());
+ }
+
+ //Dispatch to detect iterator range or integer overloads
+ template <class InputIter>
+ void priv_insert_dispatch(const_iterator prev,
+ InputIter first, InputIter last,
+ detail::false_)
+ { this->priv_create_and_insert_nodes(prev, first, last); }
+
+ template<class Integer>
+ void priv_insert_dispatch(const_iterator prev, Integer n, Integer x, detail::true_)
+ { this->priv_create_and_insert_nodes(prev, n, x); }
+
+ void priv_fill_assign(size_type n, const T& val)
+ {
+ iterator end_n(this->end());
+ iterator prev(this->before_begin());
+ iterator node(this->begin());
+ for ( ; node != end_n && n > 0 ; --n){
+ *node = val;
+ prev = node;
+ ++node;
+ }
+ if (n > 0)
+ this->priv_create_and_insert_nodes(prev, n, val);
+ else
+ this->erase_after(prev, end_n);
+ }
+
+ template <class Int>
+ void priv_assign_dispatch(Int n, Int val, detail::true_)
+ { this->priv_fill_assign((size_type) n, (T)val); }
+
+ template <class InpIt>
+ void priv_assign_dispatch(InpIt first, InpIt last, detail::false_)
+ {
+ iterator end_n(this->end());
+ iterator prev(this->before_begin());
+ iterator node(this->begin());
+ while (node != end_n && first != last){
+ *node = *first;
+ prev = node;
+ ++node;
+ ++first;
+ }
+ if (first != last)
+ this->priv_create_and_insert_nodes(prev, first, last);
+ else
+ this->erase_after(prev, end_n);
+ }
+
+ template <class Int>
+ void priv_insert_after_range_dispatch(const_iterator prev_pos, Int n, Int x, detail::true_)
+ { this->priv_create_and_insert_nodes(prev_pos, n, x); }
+
+ template <class InIter>
+ void priv_insert_after_range_dispatch(const_iterator prev_pos, InIter first, InIter last, detail::false_)
+ { this->priv_create_and_insert_nodes(prev_pos, first, last); }
+
+ //Functors for member algorithm defaults
+ struct value_less
+ {
+ bool operator()(const value_type &a, const value_type &b) const
+ { return a < b; }
+ };
+
+ struct value_equal
+ {
+ bool operator()(const value_type &a, const value_type &b) const
+ { return a == b; }
+ };
+
+ struct value_equal_to_this
+ {
+ explicit value_equal_to_this(const value_type &ref)
+ : m_ref(ref){}
+
+ bool operator()(const value_type &val) const
+ { return m_ref == val; }
+
+ const value_type &m_ref;
+ };
+ /// @endcond
+};
+
+template <class T, class A>
+inline bool
+operator==(const slist<T,A>& x, const slist<T,A>& y)
+{
+ if(x.size() != y.size()){
+ return false;
+ }
+ typedef typename slist<T,A>::const_iterator const_iterator;
+ const_iterator end1 = x.end();
+
+ const_iterator i1 = x.begin();
+ const_iterator i2 = y.begin();
+ while (i1 != end1 && *i1 == *i2){
+ ++i1;
+ ++i2;
+ }
+ return i1 == end1;
+}
+
+template <class T, class A>
+inline bool
+operator<(const slist<T,A>& sL1, const slist<T,A>& sL2)
+{
+ return std::lexicographical_compare
+ (sL1.begin(), sL1.end(), sL2.begin(), sL2.end());
+}
+
+template <class T, class A>
+inline bool
+operator!=(const slist<T,A>& sL1, const slist<T,A>& sL2)
+ { return !(sL1 == sL2); }
+
+template <class T, class A>
+inline bool
+operator>(const slist<T,A>& sL1, const slist<T,A>& sL2)
+ { return sL2 < sL1; }
+
+template <class T, class A>
+inline bool
+operator<=(const slist<T,A>& sL1, const slist<T,A>& sL2)
+ { return !(sL2 < sL1); }
+
+template <class T, class A>
+inline bool
+operator>=(const slist<T,A>& sL1, const slist<T,A>& sL2)
+ { return !(sL1 < sL2); }
+
+#if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+template <class T, class A>
+inline void swap(slist<T,A>& x, slist<T,A>& y)
+ { x.swap(y); }
+
+template <class T, class A>
+inline void swap(boost::rv<slist<T,A> > &x, slist<T,A>& y)
+ { x.get().swap(y); }
+
+template <class T, class A>
+inline void swap(slist<T,A>& x, boost::rv<slist<T,A> > &y)
+ { x.swap(y.get()); }
+#else
+template <class T, class A>
+inline void swap(slist<T,A>&&x, slist<T,A>&&y)
+ { x.swap(y); }
+#endif
+
+/// @cond
+
+//!has_trivial_destructor_after_move<> == true_type
+//!specialization for optimizations
+template <class T, class A>
+struct has_trivial_destructor_after_move<slist<T, A> >
+{
+ enum { value = has_trivial_destructor<A>::value };
+};
+/// @endcond
+
+}} //namespace boost{ namespace interprocess{
+
+// Specialization of insert_iterator so that insertions will be constant
+// time rather than linear time.
+
+///@cond
+
+//Ummm, I don't like to define things in namespace std, but
+//there is no other way
+namespace std {
+
+template <class T, class A>
+class insert_iterator<boost::interprocess::slist<T, A> >
+{
+ protected:
+ typedef boost::interprocess::slist<T, A> Container;
+ Container* container;
+ typename Container::iterator iter;
+ public:
+ typedef Container container_type;
+ typedef output_iterator_tag iterator_category;
+ typedef void value_type;
+ typedef void difference_type;
+ typedef void pointer;
+ typedef void reference;
+
+ insert_iterator(Container& x,
+ typename Container::iterator i,
+ bool is_previous = false)
+ : container(&x), iter(is_previous ? i : x.previous(i)){ }
+
+ insert_iterator<Container>&
+ operator=(const typename Container::value_type& value)
+ {
+ iter = container->insert_after(iter, value);
+ return *this;
+ }
+ insert_iterator<Container>& operator*(){ return *this; }
+ insert_iterator<Container>& operator++(){ return *this; }
+ insert_iterator<Container>& operator++(int){ return *this; }
+};
+
+} //namespace std;
+
+///@endcond
+
+#include <boost/interprocess/detail/config_end.hpp>
+
+#endif /* BOOST_INTERPROCESS_SLIST_HPP */

Added: sandbox/boost/interprocess/containers/stable_vector.hpp
==============================================================================
--- (empty file)
+++ sandbox/boost/interprocess/containers/stable_vector.hpp 2009-02-17 13:04:56 EST (Tue, 17 Feb 2009)
@@ -0,0 +1,1179 @@
+/* Stable vector.
+ *
+ * Copyright 2008 Joaquin M Lopez Munoz.
+ * Distributed under the Boost Software License, Version 1.0.
+ * (See accompanying file LICENSE_1_0.txt or copy at
+ * http://www.boost.org/LICENSE_1_0.txt)
+ */
+
+#ifndef STABLE_VECTOR_HPP_3A7EB5C0_55BF_11DD_AE16_0800200C9A66
+#define STABLE_VECTOR_HPP_3A7EB5C0_55BF_11DD_AE16_0800200C9A66
+
+#define STABLE_VECTOR_VERSION 200
+
+#include <algorithm>
+#include <stdexcept>
+#include <boost/mpl/bool.hpp>
+#include <boost/mpl/not.hpp>
+#include <boost/noncopyable.hpp>
+#include <boost/type_traits/is_integral.hpp>
+#include <boost/interprocess/detail/version_type.hpp>
+#include <boost/interprocess/mem_algo/detail/mem_algo_common.hpp>
+#include <boost/interprocess/detail/utilities.hpp>
+#include <boost/pointer_to_other.hpp>
+#include <boost/get_pointer.hpp>
+
+#define STABLE_VECTOR_USE_INTERPROCESS_VECTOR
+
+#if defined (STABLE_VECTOR_USE_INTERPROCESS_VECTOR)
+#include <boost/interprocess/containers/vector.hpp>
+#else
+#include <vector>
+#endif //STABLE_VECTOR_USE_INTERPROCESS_VECTOR
+
+//#define STABLE_VECTOR_ENABLE_INVARIANT_CHECKING
+
+#if defined(STABLE_VECTOR_ENABLE_INVARIANT_CHECKING)
+#include <boost/assert.hpp>
+#endif
+
+namespace boost{
+namespace interprocess{
+namespace stable_vector_detail{
+
+template<class SmartPtr>
+struct smart_ptr_type
+{
+ typedef typename SmartPtr::value_type value_type;
+ typedef value_type *pointer;
+ static pointer get (const SmartPtr &smartptr)
+ { return smartptr.get();}
+};
+
+template<class T>
+struct smart_ptr_type<T*>
+{
+ typedef T value_type;
+ typedef value_type *pointer;
+ static pointer get (pointer ptr)
+ { return ptr;}
+};
+
+template<class Ptr>
+inline typename smart_ptr_type<Ptr>::pointer get_pointer(const Ptr &ptr)
+{ return smart_ptr_type<Ptr>::get(ptr); }
+
+template <class C>
+class clear_on_destroy
+{
+ public:
+ clear_on_destroy(C &c)
+ : c_(c), do_clear_(true)
+ {}
+
+ void release()
+ { do_clear_ = false; }
+
+ ~clear_on_destroy()
+ {
+ if(do_clear_){
+ c_.clear();
+ c_.clear_pool();
+ }
+ }
+
+ private:
+ C &c_;
+ bool do_clear_;
+};
+
+template <class T, class Difference = std::ptrdiff_t>
+class constant_iterator
+ : public std::iterator
+ <std::random_access_iterator_tag, T, Difference, const T*, const T &>
+{
+ typedef constant_iterator<T, Difference> this_type;
+
+ public:
+ explicit constant_iterator(const T &ref, Difference range_size)
+ : m_ptr(&ref), m_num(range_size){}
+
+ //Constructors
+ constant_iterator()
+ : m_ptr(0), m_num(0){}
+
+ constant_iterator& operator++()
+ { increment(); return *this; }
+
+ constant_iterator operator++(int)
+ {
+ constant_iterator result (*this);
+ increment();
+ return result;
+ }
+
+ friend bool operator== (const constant_iterator& i, const constant_iterator& i2)
+ { return i.equal(i2); }
+
+ friend bool operator!= (const constant_iterator& i, const constant_iterator& i2)
+ { return !(i == i2); }
+
+ friend bool operator< (const constant_iterator& i, const constant_iterator& i2)
+ { return i.less(i2); }
+
+ friend bool operator> (const constant_iterator& i, const constant_iterator& i2)
+ { return i2 < i; }
+
+ friend bool operator<= (const constant_iterator& i, const constant_iterator& i2)
+ { return !(i > i2); }
+
+ friend bool operator>= (const constant_iterator& i, const constant_iterator& i2)
+ { return !(i < i2); }
+
+ friend Difference operator- (const constant_iterator& i, const constant_iterator& i2)
+ { return i2.distance_to(i); }
+
+ //Arithmetic
+ constant_iterator& operator+=(Difference off)
+ { this->advance(off); return *this; }
+
+ constant_iterator operator+(Difference off) const
+ {
+ constant_iterator other(*this);
+ other.advance(off);
+ return other;
+ }
+
+ friend constant_iterator operator+(Difference off, const constant_iterator& right)
+ { return right + off; }
+
+ constant_iterator& operator-=(Difference off)
+ { this->advance(-off); return *this; }
+
+ constant_iterator operator-(Difference off) const
+ { return *this + (-off); }
+
+ const T& operator*() const
+ { return dereference(); }
+
+ const T* operator->() const
+ { return &(dereference()); }
+
+ private:
+ const T * m_ptr;
+ Difference m_num;
+
+ void increment()
+ { --m_num; }
+
+ void decrement()
+ { ++m_num; }
+
+ bool equal(const this_type &other) const
+ { return m_num == other.m_num; }
+
+ bool less(const this_type &other) const
+ { return other.m_num < m_num; }
+
+ const T & dereference() const
+ { return *m_ptr; }
+
+ void advance(Difference n)
+ { m_num -= n; }
+
+ Difference distance_to(const this_type &other)const
+ { return m_num - other.m_num; }
+};
+
+template<class VoidPtr>
+struct node_type_base
+{
+ node_type_base(VoidPtr p)
+ : up(p)
+ {}
+ VoidPtr up;
+};
+
+template<typename VoidPointer, typename T>
+struct node_type
+ : public node_type_base<VoidPointer>
+{
+ node_type(VoidPointer p, const T &v)
+ : node_type_base<VoidPointer>(p), value(v)
+ {}
+ T value;
+};
+
+template<typename T, typename Value, typename Pointer>
+class iterator
+ : public std::iterator< std::random_access_iterator_tag
+ , const typename std::iterator_traits<Pointer>::value_type
+ , typename std::iterator_traits<Pointer>::difference_type
+ , Pointer
+ , Value &>
+{
+
+ typedef typename boost::pointer_to_other
+ <Pointer, void>::type void_ptr;
+ typedef node_type<void_ptr, T> node_type_t;
+ typedef typename boost::pointer_to_other
+ <void_ptr, node_type_t>::type node_type_ptr_t;
+ typedef typename boost::pointer_to_other
+ <void_ptr, void_ptr>::type void_ptr_ptr;
+
+ friend class iterator<T, const T, typename boost::pointer_to_other<Pointer, T>::type>;
+
+ public:
+ typedef std::random_access_iterator_tag iterator_category;
+ typedef Value value_type;
+ typedef typename std::iterator_traits
+ <Pointer>::difference_type difference_type;
+ typedef Pointer pointer;
+ typedef Value & reference;
+
+ iterator()
+ {}
+
+ explicit iterator(node_type_ptr_t pn)
+ : pn(pn)
+ {}
+
+ iterator(const iterator<T, T, typename boost::pointer_to_other<Pointer, T>::type >& x)
+ : pn(x.pn)
+ {}
+
+ private:
+ static node_type_ptr_t node_ptr_cast(void_ptr p)
+ {
+ using boost::get_pointer;
+ return node_type_ptr_t(static_cast<node_type_t*>(stable_vector_detail::get_pointer(p)));
+ }
+
+ static void_ptr_ptr void_ptr_ptr_cast(void_ptr p)
+ {
+ using boost::get_pointer;
+ return void_ptr_ptr(static_cast<void_ptr*>(stable_vector_detail::get_pointer(p)));
+ }
+
+ Value& dereference() const
+ { return pn->value; }
+ bool equal(const iterator& x) const
+ { return pn==x.pn; }
+ void increment()
+ { pn = node_ptr_cast(*(void_ptr_ptr_cast(pn->up)+1)); }
+ void decrement()
+ { pn = node_ptr_cast(*(void_ptr_ptr_cast(pn->up)-1)); }
+ void advance(std::ptrdiff_t n)
+ { pn = node_ptr_cast(*(void_ptr_ptr_cast(pn->up)+n)); }
+ std::ptrdiff_t distance_to(const iterator& x)const
+ { return void_ptr_ptr_cast(x.pn->up) - void_ptr_ptr_cast(pn->up); }
+
+ public:
+ //Pointer like operators
+ reference operator*() const { return this->dereference(); }
+ pointer operator->() const { return pointer(&this->dereference()); }
+
+ //Increment / Decrement
+ iterator& operator++()
+ { this->increment(); return *this; }
+
+ iterator operator++(int)
+ { iterator tmp(*this); ++*this; return iterator(tmp); }
+
+ iterator& operator--()
+ { this->decrement(); return *this; }
+
+ iterator operator--(int)
+ { iterator tmp(*this); --*this; return iterator(tmp); }
+
+ reference operator[](difference_type off) const
+ {
+ iterator tmp(*this);
+ tmp += off;
+ return *tmp;
+ }
+
+ iterator& operator+=(difference_type off)
+ {
+ pn = node_ptr_cast(*(void_ptr_ptr_cast(pn->up)+off));
+ return *this;
+ }
+
+ iterator operator+(difference_type off) const
+ {
+ iterator tmp(*this);
+ tmp += off;
+ return tmp;
+ }
+
+ friend iterator operator+(difference_type off, const iterator& right)
+ {
+ iterator tmp(right);
+ tmp += off;
+ return tmp;
+ }
+
+ iterator& operator-=(difference_type off)
+ { *this += -off; return *this; }
+
+ iterator operator-(difference_type off) const
+ {
+ iterator tmp(*this);
+ tmp -= off;
+ return tmp;
+ }
+
+ difference_type operator-(const iterator& right) const
+ {
+ void_ptr_ptr p1 = void_ptr_ptr_cast(this->pn->up);
+ void_ptr_ptr p2 = void_ptr_ptr_cast(right.pn->up);
+ return p1 - p2;
+ }
+
+ //Comparison operators
+ bool operator== (const iterator& r) const
+ { return pn == r.pn; }
+
+ bool operator!= (const iterator& r) const
+ { return pn != r.pn; }
+
+ bool operator< (const iterator& r) const
+ { return void_ptr_ptr_cast(pn->up) < void_ptr_ptr_cast(r.pn->up); }
+
+ bool operator<= (const iterator& r) const
+ { return void_ptr_ptr_cast(pn->up) <= void_ptr_ptr_cast(r.pn->up); }
+
+ bool operator> (const iterator& r) const
+ { return void_ptr_ptr_cast(pn->up) > void_ptr_ptr_cast(r.pn->up); }
+
+ bool operator>= (const iterator& r) const
+ { return void_ptr_ptr_cast(pn->up) >= void_ptr_ptr_cast(r.pn->up); }
+
+ node_type_ptr_t pn;
+};
+/*
+class node_access
+{
+ public:
+ template<typename T, typename Value, typename VoidPointer>
+ static typename iterator<T, Value, VoidPointer>::node_type_t* get(const iterator<T,Value,VoidPointer>& it)
+ {
+ return stable_vector_detail::get_pointer(it.pn);
+ }
+};
+*/
+template<class Allocator, unsigned int Version>
+struct select_multiallocation_chain
+{
+ typedef typename Allocator::multiallocation_chain type;
+};
+
+template<class Allocator>
+struct select_multiallocation_chain<Allocator, 1>
+{
+ typedef typename Allocator::template
+ rebind<void>::other::pointer void_ptr;
+ typedef detail::basic_multiallocation_cached_slist<void_ptr> multialloc_cached;
+ typedef detail::basic_multiallocation_cached_counted_slist
+ <multialloc_cached> multialloc_cached_counted;
+ typedef boost::interprocess::detail::transform_multiallocation_chain
+ <multialloc_cached_counted, typename Allocator::value_type> type;
+};
+
+} //namespace stable_vector_detail
+
+#if defined(STABLE_VECTOR_ENABLE_INVARIANT_CHECKING)
+
+#define STABLE_VECTOR_CHECK_INVARIANT \
+invariant_checker BOOST_JOIN(check_invariant_,__LINE__)(*this); \
+BOOST_JOIN(check_invariant_,__LINE__).touch();
+#else
+
+#define STABLE_VECTOR_CHECK_INVARIANT
+
+#endif //#if defined(STABLE_VECTOR_ENABLE_INVARIANT_CHECKING)
+
+template<typename T,typename Allocator=std::allocator<T> >
+class stable_vector
+{
+ typedef typename Allocator::template
+ rebind<void>::other::pointer void_ptr;
+ typedef typename Allocator::template
+ rebind<void_ptr>::other::pointer void_ptr_ptr;
+ typedef stable_vector_detail::node_type
+ <void_ptr, T> node_type_t;
+ typedef typename Allocator::template
+ rebind<node_type_t>::other::pointer node_type_ptr_t;
+ typedef stable_vector_detail::node_type_base
+ <void_ptr> node_type_base_t;
+ typedef typename Allocator::template
+ rebind<node_type_base_t>::other::pointer node_type_base_ptr_t;
+ typedef
+ #if defined (STABLE_VECTOR_USE_INTERPROCESS_VECTOR)
+ ::boost::interprocess::
+ #else
+ ::std::
+ #endif //STABLE_VECTOR_USE_INTERPROCESS_VECTOR
+ vector<void_ptr,
+ typename Allocator::
+ template rebind<void_ptr>::other
+ > impl_type;
+ typedef typename impl_type::iterator impl_iterator;
+ typedef typename impl_type::const_iterator const_impl_iterator;
+
+ typedef ::boost::interprocess::detail::
+ integral_constant<unsigned, 1> allocator_v1;
+ typedef ::boost::interprocess::detail::
+ integral_constant<unsigned, 2> allocator_v2;
+ typedef ::boost::interprocess::detail::integral_constant
+ <unsigned, boost::interprocess::detail::
+ version<Allocator>::value> alloc_version;
+ typedef typename Allocator::
+ template rebind<node_type_t>::other node_allocator_type;
+
+ node_type_ptr_t allocate_one()
+ { return this->allocate_one(alloc_version()); }
+
+ node_type_ptr_t allocate_one(allocator_v1)
+ { return get_al().allocate(1); }
+
+ node_type_ptr_t allocate_one(allocator_v2)
+ { return get_al().allocate_one(); }
+
+ void deallocate_one(node_type_ptr_t p)
+ { return this->deallocate_one(p, alloc_version()); }
+
+ void deallocate_one(node_type_ptr_t p, allocator_v1)
+ { get_al().deallocate(p, 1); }
+
+ void deallocate_one(node_type_ptr_t p, allocator_v2)
+ { get_al().deallocate_one(p); }
+
+ friend class stable_vector_detail::clear_on_destroy<stable_vector>;
+
+ public:
+ // types:
+
+ typedef typename Allocator::reference reference;
+ typedef typename Allocator::const_reference const_reference;
+ typedef typename Allocator::pointer pointer;
+ typedef typename Allocator::const_pointer const_pointer;
+ typedef stable_vector_detail::iterator
+ <T,T, pointer> iterator;
+ typedef stable_vector_detail::iterator
+ <T,const T, const_pointer> const_iterator;
+ typedef typename impl_type::size_type size_type;
+ typedef typename iterator::difference_type difference_type;
+ typedef T value_type;
+ typedef Allocator allocator_type;
+ typedef std::reverse_iterator<iterator> reverse_iterator;
+ typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
+
+ private:
+ static const size_type ExtraPointers = 3;
+ typedef typename stable_vector_detail::
+ select_multiallocation_chain
+ < node_allocator_type
+ , alloc_version::value
+ >::type multiallocation_chain;
+
+ public:
+
+ // construct/copy/destroy:
+ explicit stable_vector(const Allocator& al=Allocator())
+ : internal_data(al),impl(al)
+ {
+ STABLE_VECTOR_CHECK_INVARIANT;
+ }
+
+ stable_vector(size_type n,const T& t=T(),const Allocator& al=Allocator())
+ : internal_data(al),impl(al)
+ {
+ stable_vector_detail::clear_on_destroy<stable_vector> cod(*this);
+ this->insert(this->cbegin(), n, t);
+ STABLE_VECTOR_CHECK_INVARIANT;
+ cod.release();
+ }
+
+ template <class InputIterator>
+ stable_vector(InputIterator first,InputIterator last,const Allocator& al=Allocator())
+ : internal_data(al),impl(al)
+ {
+ stable_vector_detail::clear_on_destroy<stable_vector> cod(*this);
+ this->insert(this->cbegin(), first, last);
+ STABLE_VECTOR_CHECK_INVARIANT;
+ cod.release();
+ }
+
+ stable_vector(const stable_vector& x)
+ : internal_data(x.get_al()),impl(x.get_al())
+ {
+ stable_vector_detail::clear_on_destroy<stable_vector> cod(*this);
+ this->insert(this->cbegin(), x.begin(), x.end());
+ STABLE_VECTOR_CHECK_INVARIANT;
+ cod.release();
+ }
+
+ ~stable_vector()
+ {
+ this->clear();
+ clear_pool();
+ }
+
+ stable_vector& operator=(stable_vector x)
+ {
+ STABLE_VECTOR_CHECK_INVARIANT;
+ this->swap(x);
+ return *this;
+ }
+
+ template<typename InputIterator>
+ void assign(InputIterator first,InputIterator last)
+ {
+ assign_dispatch(first, last, boost::is_integral<InputIterator>());
+ }
+
+ void assign(size_type n,const T& t)
+ {
+ typedef stable_vector_detail::constant_iterator<value_type, difference_type> cvalue_iterator;
+ return assign_dispatch(cvalue_iterator(t, n), cvalue_iterator(), boost::mpl::false_());
+ }
+
+ allocator_type get_allocator()const {return get_al();}
+
+ // iterators:
+
+ iterator begin()
+ { return (impl.empty()) ? end(): iterator(node_ptr_cast(impl.front())) ; }
+
+ const_iterator begin()const
+ { return (impl.empty()) ? cend() : const_iterator(node_ptr_cast(impl.front())) ; }
+
+ iterator end() {return iterator(get_end_node());}
+ const_iterator end()const {return const_iterator(get_end_node());}
+
+ reverse_iterator rbegin() {return reverse_iterator(this->end());}
+ const_reverse_iterator rbegin()const {return const_reverse_iterator(this->end());}
+ reverse_iterator rend() {return reverse_iterator(this->begin());}
+ const_reverse_iterator rend()const {return const_reverse_iterator(this->begin());}
+
+ const_iterator cbegin()const {return this->begin();}
+ const_iterator cend()const {return this->end();}
+ const_reverse_iterator crbegin()const{return this->rbegin();}
+ const_reverse_iterator crend()const {return this->rend();}
+
+ // capacity:
+ size_type size() const
+ { return impl.empty() ? 0 : (impl.size() - ExtraPointers); }
+
+ size_type max_size() const
+ { return impl.max_size() - ExtraPointers; }
+
+ size_type capacity() const
+ {
+ if(!impl.capacity()){
+ return 0;
+ }
+ else{
+ const size_type num_nodes = this->impl.size() + this->internal_data.pool_size;
+ const size_type num_buck = this->impl.capacity();
+ return (num_nodes < num_buck) ? num_nodes : num_buck;
+ }
+ }
+
+ bool empty() const
+ { return impl.empty() || impl.size() == ExtraPointers; }
+
+ void resize(size_type n,const T& t=T())
+ {
+ STABLE_VECTOR_CHECK_INVARIANT;
+ if(n > size())
+ this->insert(this->cend(), n - this->size(), t);
+ else if(n < this->size())
+ this->erase(this->cbegin() + n, this->cend());
+ }
+
+ void reserve(size_type n)
+ {
+ STABLE_VECTOR_CHECK_INVARIANT;
+ if(n > this->max_size())
+ throw std::bad_alloc();
+
+ size_type size = this->size();
+ size_type old_capacity = this->capacity();
+ if(n > old_capacity){
+ this->initialize_end_node(n);
+ const void * old_ptr = &impl[0];
+ impl.reserve(n + ExtraPointers);
+ bool realloced = &impl[0] != old_ptr;
+ //Fix the pointers for the newly allocated buffer
+ if(realloced){
+ this->align_nodes(impl.begin(), impl.begin()+size+1);
+ }
+ //Now fill pool if data is not enough
+ if((n - size) > this->internal_data.pool_size){
+ this->add_to_pool((n - size) - this->internal_data.pool_size, alloc_version());
+ }
+ }
+ }
+
+ template<class AllocatorVersion>
+ void clear_pool(AllocatorVersion,
+ typename boost::interprocess::detail::enable_if_c
+ <boost::interprocess::detail::is_same<AllocatorVersion, allocator_v1>
+ ::value>::type * = 0)
+ {
+ if(!impl.empty() && impl.back()){
+ void_ptr &p1 = *(impl.end()-2);
+ void_ptr &p2 = impl.back();
+
+ multiallocation_chain holder(p1, p2, this->internal_data.pool_size);
+ while(!holder.empty()){
+ node_type_ptr_t n = holder.front();
+ holder.pop_front();
+ this->deallocate_one(n);
+ }
+ p1 = p2 = 0;
+ this->internal_data.pool_size = 0;
+ }
+ }
+
+ template<class AllocatorVersion>
+ void clear_pool(AllocatorVersion,
+ typename boost::interprocess::detail::enable_if_c
+ <boost::interprocess::detail::is_same<AllocatorVersion, allocator_v2>
+ ::value>::type * = 0)
+ {
+
+ if(!impl.empty() && impl.back()){
+ void_ptr &p1 = *(impl.end()-2);
+ void_ptr &p2 = impl.back();
+ multiallocation_chain holder(p1, p2, this->internal_data.pool_size);
+ get_al().deallocate_individual(boost::move(holder));
+ p1 = p2 = 0;
+ this->internal_data.pool_size = 0;
+ }
+ }
+
+ void clear_pool()
+ {
+ this->clear_pool(alloc_version());
+ }
+
+ template<class AllocatorVersion>
+ void add_to_pool(size_type n, AllocatorVersion,
+ typename boost::interprocess::detail::enable_if_c
+ <boost::interprocess::detail::is_same<AllocatorVersion, allocator_v1>
+ ::value>::type * = 0)
+ {
+ size_type remaining = n;
+ while(remaining--){
+ this->put_in_pool(this->allocate_one());
+ }
+ }
+
+ template<class AllocatorVersion>
+ void add_to_pool(size_type n, AllocatorVersion,
+ typename boost::interprocess::detail::enable_if_c
+ <boost::interprocess::detail::is_same<AllocatorVersion, allocator_v2>
+ ::value>::type * = 0)
+ {
+ void_ptr &p1 = *(impl.end()-2);
+ void_ptr &p2 = impl.back();
+ multiallocation_chain holder(p1, p2, this->internal_data.pool_size);
+ BOOST_STATIC_ASSERT((boost::is_movable<multiallocation_chain>::value == true));
+ multiallocation_chain m (get_al().allocate_individual(n));
+ holder.splice_after(holder.before_begin(), m, m.before_begin(), m.last(), n);
+ this->internal_data.pool_size += n;
+ std::pair<void_ptr, void_ptr> data(holder.extract_data());
+ p1 = data.first;
+ p2 = data.second;
+ }
+
+ void put_in_pool(node_type_ptr_t p)
+ {
+ void_ptr &p1 = *(impl.end()-2);
+ void_ptr &p2 = impl.back();
+ multiallocation_chain holder(p1, p2, internal_data.pool_size);
+ holder.push_front(p);
+ ++this->internal_data.pool_size;
+ std::pair<void_ptr, void_ptr> ret(holder.extract_data());
+ p1 = ret.first;
+ p2 = ret.second;
+ }
+
+ node_type_ptr_t get_from_pool()
+ {
+ if(!impl.back()){
+ return node_type_ptr_t(0);
+ }
+ else{
+ void_ptr &p1 = *(impl.end()-2);
+ void_ptr &p2 = impl.back();
+ multiallocation_chain holder(p1, p2, internal_data.pool_size);
+ node_type_ptr_t ret = holder.front();
+ holder.pop_front();
+ std::pair<void_ptr, void_ptr> data(holder.extract_data());
+ p1 = data.first;
+ p2 = data.second;
+ --this->internal_data.pool_size;
+ return ret;
+ }
+ }
+
+ // element access:
+
+ reference operator[](size_type n){return value(impl[n]);}
+ const_reference operator[](size_type n)const{return value(impl[n]);}
+
+ const_reference at(size_type n)const
+ {
+ if(n>=size())
+ throw std::out_of_range("invalid subscript at stable_vector::at");
+ return operator[](n);
+ }
+
+ reference at(size_type n)
+ {
+ if(n>=size())
+ throw std::out_of_range("invalid subscript at stable_vector::at");
+ return operator[](n);
+ }
+
+ reference front()
+ { return value(impl.front()); }
+
+ const_reference front()const
+ { return value(impl.front()); }
+
+ reference back()
+ { return value(*(&impl.back() - ExtraPointers)); }
+
+ const_reference back()const
+ { return value(*(&impl.back() - ExtraPointers)); }
+
+ // modifiers:
+
+ void push_back(const T& t)
+ { this->insert(end(),t); }
+
+ void pop_back()
+ { this->erase(this->end()-1); }
+
+ iterator insert(const_iterator position,const T& t)
+ {
+ typedef stable_vector_detail::constant_iterator<value_type, difference_type> cvalue_iterator;
+ return this->insert_iter(position, cvalue_iterator(t, 1), cvalue_iterator(), std::forward_iterator_tag());
+ }
+
+ void insert(const_iterator position,size_type n,const T& t)
+ {
+ STABLE_VECTOR_CHECK_INVARIANT;
+ this->insert_not_iter(position, n, t);
+ }
+
+ template <class InputIterator>
+ void insert(const_iterator position,InputIterator first,InputIterator last)
+ {
+ STABLE_VECTOR_CHECK_INVARIANT;
+ this->insert_iter(position,first,last,
+ boost::mpl::not_<boost::is_integral<InputIterator> >());
+ }
+
+ iterator erase(const_iterator position)
+ {
+ STABLE_VECTOR_CHECK_INVARIANT;
+ difference_type d=position-this->cbegin();
+ impl_iterator it=impl.begin()+d;
+ this->delete_node(*it);
+ impl.erase(it);
+ this->align_nodes(impl.begin()+d,get_last_align());
+ return this->begin()+d;
+ }
+
+ iterator erase(const_iterator first, const_iterator last)
+ { return priv_erase(first, last, alloc_version()); }
+
+ #ifndef BOOST_HAS_RVALUE_REFS
+ void swap(stable_vector & x)
+ {
+ STABLE_VECTOR_CHECK_INVARIANT;
+ this->swap_impl(*this,x);
+ }
+ void swap(boost::rv<stable_vector> & x)
+ #else
+ void swap(stable_vector&& x)
+ #endif
+ {
+ STABLE_VECTOR_CHECK_INVARIANT;
+ this->swap_impl(*this,x);
+ }
+
+
+
+ void clear()
+ { this->erase(this->cbegin(),this->cend()); }
+
+ private:
+
+ template<typename InputIterator>
+ void assign_dispatch(InputIterator first, InputIterator last, boost::mpl::false_)
+ {
+ STABLE_VECTOR_CHECK_INVARIANT;
+ iterator first1 = this->begin();
+ iterator last1 = this->end();
+ for ( ; first1 != last1 && first != last; ++first1, ++first)
+ *first1 = *first;
+ if (first == last){
+ this->erase(first1, last1);
+ }
+ else{
+ this->insert(last1, first, last);
+ }
+ }
+
+ template<typename Integer>
+ void assign_dispatch(Integer n, Integer t, boost::mpl::true_)
+ {
+ typedef stable_vector_detail::constant_iterator<value_type, difference_type> cvalue_iterator;
+ this->assign_dispatch(cvalue_iterator(t, n), cvalue_iterator(), boost::mpl::false_());
+ }
+
+ iterator priv_erase(const_iterator first, const_iterator last, allocator_v1)
+ {
+ STABLE_VECTOR_CHECK_INVARIANT;
+ difference_type d1 = first - this->cbegin(), d2 = last - this->cbegin();
+ if(d1 != d2){
+ impl_iterator it1(impl.begin() + d1), it2(impl.begin() + d2);
+ for(impl_iterator it = it1; it != it2; ++it)
+ this->delete_node(*it);
+ impl.erase(it1, it2);
+ this->align_nodes(impl.begin() + d1, get_last_align());
+ }
+ return iterator(this->begin() + d1);
+ }
+
+ impl_iterator get_last_align()
+ {
+ return impl.end() - (ExtraPointers - 1);
+ }
+
+ const_impl_iterator get_last_align() const
+ {
+ return impl.cend() - (ExtraPointers - 1);
+ }
+
+ template<class AllocatorVersion>
+ iterator priv_erase(const_iterator first, const_iterator last, AllocatorVersion,
+ typename boost::interprocess::detail::enable_if_c
+ <boost::interprocess::detail::is_same<AllocatorVersion, allocator_v2>
+ ::value>::type * = 0)
+ {
+ STABLE_VECTOR_CHECK_INVARIANT;
+ return priv_erase(first, last, allocator_v1());
+ }
+
+ static node_type_ptr_t node_ptr_cast(void_ptr p)
+ {
+ using boost::get_pointer;
+ return node_type_ptr_t(static_cast<node_type_t*>(stable_vector_detail::get_pointer(p)));
+ }
+
+ static node_type_base_ptr_t node_base_ptr_cast(void_ptr p)
+ {
+ using boost::get_pointer;
+ return node_type_base_ptr_t(static_cast<node_type_base_t*>(stable_vector_detail::get_pointer(p)));
+ }
+
+ static value_type& value(void_ptr p)
+ {
+ return node_ptr_cast(p)->value;
+ }
+
+ void initialize_end_node(size_type impl_capacity = 0)
+ {
+ if(impl.empty()){
+ impl.reserve(impl_capacity + ExtraPointers);
+ impl.resize (ExtraPointers, void_ptr(0));
+ impl[0] = &this->internal_data.end_node;
+ this->internal_data.end_node.up = &impl[0];
+ }
+ }
+
+ void readjust_end_node()
+ {
+ if(!this->impl.empty()){
+ void_ptr &end_node_ref = *(this->get_last_align()-1);
+ end_node_ref = this->get_end_node();
+ this->internal_data.end_node.up = &end_node_ref;
+ }
+ else{
+ this->internal_data.end_node.up = void_ptr(&this->internal_data.end_node.up);
+ }
+ }
+
+ node_type_ptr_t get_end_node() const
+ {
+ const node_type_base_t* cp = &this->internal_data.end_node;
+ node_type_base_t* p = const_cast<node_type_base_t*>(cp);
+ return node_ptr_cast(p);
+ }
+
+ void_ptr new_node(void_ptr up, const T& t)
+ {
+ node_type_ptr_t p = this->allocate_one();
+ try{
+ new(&*p) node_type_t(up, t);
+ }
+ catch(...){
+ this->deallocate_one(p);
+ throw;
+ }
+ return p;
+ }
+
+ void delete_node(void_ptr p)
+ {
+ node_type_ptr_t n(node_ptr_cast(p));
+ n->~node_type_t();
+ this->put_in_pool(n);
+ }
+
+ static void align_nodes(impl_iterator first,impl_iterator last)
+ {
+ while(first!=last){
+ node_ptr_cast(*first)->up = void_ptr(&*first);
+ ++first;
+ }
+ }
+
+ void insert_not_iter(const_iterator position,size_type n,const T& t)
+ {
+ typedef stable_vector_detail::constant_iterator<value_type, difference_type> cvalue_iterator;
+ this->insert_iter(position, cvalue_iterator(t, n), cvalue_iterator(), std::forward_iterator_tag());
+ }
+
+ template <class InputIterator>
+ void insert_iter(const_iterator position,InputIterator first,InputIterator last, boost::mpl::true_)
+ {
+ typedef typename std::iterator_traits<InputIterator>::iterator_category category;
+ this->insert_iter(position,first,last,category());
+ }
+
+ template <class InputIterator>
+ void insert_iter(const_iterator position,InputIterator first,InputIterator last,std::input_iterator_tag)
+ {
+ for(; first!=last; ++first){
+ this->insert(position, *first);
+ }
+ }
+
+ template <class InputIterator>
+ iterator insert_iter(const_iterator position,InputIterator first,InputIterator last,std::forward_iterator_tag)
+ {
+ size_type n = (size_type)std::distance(first,last);
+ difference_type d = position-this->cbegin();
+ if(n){
+ initialize_end_node(n);
+ const void* old_ptr = &impl[0];
+ //size_type old_capacity = capacity();
+ //size_type old_size = size();
+ impl.insert(impl.begin()+d, n, 0);
+ bool realloced = &impl[0] != old_ptr;
+ //Fix the pointers for the newly allocated buffer
+ if(realloced){
+ align_nodes(impl.begin(), impl.begin()+d);
+ }
+ const impl_iterator it(impl.begin() + d);
+ this->insert_iter_fwd(it, first, last, n);
+
+ //Fix the pointers for the newly allocated buffer
+ this->align_nodes(it + n, get_last_align());
+ }
+ return this->begin() + d;
+ }
+
+ template <class FwdIterator>
+ void insert_iter_fwd_alloc(const impl_iterator it,FwdIterator first,FwdIterator last, difference_type n, allocator_v1)
+ {
+ size_type i=0;
+ try{
+ while(first!=last){
+ *(it + i) = this->new_node(void_ptr((void*)(&*(it + i))), *first++);
+ ++i;
+ }
+ }
+ catch(...){
+ impl.erase(it + i, it + n);
+ this->align_nodes(it + i, get_last_align());
+ throw;
+ }
+ }
+
+ template <class FwdIterator>
+ void insert_iter_fwd_alloc(const impl_iterator it, FwdIterator first, FwdIterator last, difference_type n, allocator_v2)
+ {
+ multiallocation_chain mem(get_al().allocate_individual(n));
+
+ size_type i = 0;
+ node_type_ptr_t p = 0;
+ try{
+ while(first != last){
+ p = mem.front();
+ mem.pop_front();
+ //This can throw
+ new(&*p) node_type_t(void_ptr((void*)(&*(it + i))), *first++);
+ *(it + i) = p;
+ ++i;
+ }
+ }
+ catch(...){
+ get_al().deallocate_one(p);
+ get_al().deallocate_many(boost::move(mem));
+ impl.erase(it+i, it+n);
+ this->align_nodes(it+i,get_last_align());
+ throw;
+ }
+ }
+
+ template <class FwdIterator>
+ void insert_iter_fwd(const impl_iterator it, FwdIterator first, FwdIterator last, difference_type n)
+ {
+ size_type i = 0;
+ node_type_ptr_t p = 0;
+ try{
+ while(first != last){
+ p = get_from_pool();
+ if(!p){
+ insert_iter_fwd_alloc(it+i, first, last, n-i, alloc_version());
+ break;
+ }
+ //This can throw
+ new(&*p) node_type_t(void_ptr(&*(it+i)), *first++);
+ *(it+i)=p;
+ ++i;
+ }
+ }
+ catch(...){
+ put_in_pool(p);
+ impl.erase(it+i,it+n);
+ this->align_nodes(it+i,get_last_align());
+ throw;
+ }
+ }
+
+ template <class InputIterator>
+ void insert_iter(const_iterator position,InputIterator first,InputIterator last, boost::mpl::false_)
+ {
+ this->insert_not_iter(position,first,last);
+ }
+
+ static void swap_impl(stable_vector& x,stable_vector& y)
+ {
+ using std::swap;
+ swap(x.get_al(),y.get_al());
+ swap(x.impl,y.impl);
+ swap(x.internal_data.pool_size, y.internal_data.pool_size);
+ x.readjust_end_node();
+ y.readjust_end_node();
+ }
+
+ #if defined(STABLE_VECTOR_ENABLE_INVARIANT_CHECKING)
+ bool invariant()const
+ {
+ if(impl.empty())
+ return !capacity() && !size();
+ if(get_end_node() != *(impl.end() - ExtraPointers)){
+ return false;
+ }
+ for(const_impl_iterator it=impl.begin(),it_end=get_last_align();it!=it_end;++it){
+ if(node_ptr_cast(*it)->up != &*it)
+ return false;
+ }
+ size_type n = capacity()-size();
+ const void_ptr &pool_head = impl.back();
+ size_type num_pool = 0;
+ node_type_ptr_t p = node_ptr_cast(pool_head);
+ while(p){
+ ++num_pool;
+ p = p->up;
+ }
+ return n >= num_pool;
+ }
+
+ class invariant_checker:private boost::noncopyable
+ {
+ const stable_vector* p;
+ public:
+ invariant_checker(const stable_vector& v):p(&v){}
+ ~invariant_checker(){BOOST_ASSERT(p->invariant());}
+ void touch(){}
+ };
+ #endif
+
+ struct ebo_holder
+ : node_allocator_type
+ {
+ ebo_holder(const allocator_type &a)
+ : node_allocator_type(a), pool_size(0), end_node(void_ptr(&end_node.up))
+ {}
+ size_type pool_size;
+ node_type_base_t end_node;
+ } internal_data;
+
+ node_allocator_type &get_al() { return internal_data; }
+ const node_allocator_type &get_al() const { return internal_data; }
+
+ impl_type impl;
+};
+
+template <typename T,typename Allocator>
+bool operator==(const stable_vector<T,Allocator>& x,const stable_vector<T,Allocator>& y)
+{
+ return x.size()==y.size()&&std::equal(x.begin(),x.end(),y.begin());
+}
+
+template <typename T,typename Allocator>
+bool operator< (const stable_vector<T,Allocator>& x,const stable_vector<T,Allocator>& y)
+{
+ return std::lexicographical_compare(x.begin(),x.end(),y.begin(),y.end());
+}
+
+template <typename T,typename Allocator>
+bool operator!=(const stable_vector<T,Allocator>& x,const stable_vector<T,Allocator>& y)
+{
+ return !(x==y);
+}
+
+template <typename T,typename Allocator>
+bool operator> (const stable_vector<T,Allocator>& x,const stable_vector<T,Allocator>& y)
+{
+ return y<x;
+}
+
+template <typename T,typename Allocator>
+bool operator>=(const stable_vector<T,Allocator>& x,const stable_vector<T,Allocator>& y)
+{
+ return !(x<y);
+}
+
+template <typename T,typename Allocator>
+bool operator<=(const stable_vector<T,Allocator>& x,const stable_vector<T,Allocator>& y)
+{
+ return !(x>y);
+}
+
+// specialized algorithms:
+
+template <typename T, typename Allocator>
+void swap(stable_vector<T,Allocator>& x,stable_vector<T,Allocator>& y)
+{
+ x.swap(y);
+}
+
+#undef STABLE_VECTOR_CHECK_INVARIANT
+
+} //namespace interprocess{
+} //namespace boost{
+
+#endif

Added: sandbox/boost/interprocess/containers/string.hpp
==============================================================================
--- (empty file)
+++ sandbox/boost/interprocess/containers/string.hpp 2009-02-17 13:04:56 EST (Tue, 17 Feb 2009)
@@ -0,0 +1,2478 @@
+//////////////////////////////////////////////////////////////////////////////
+//
+// (C) Copyright Ion Gaztanaga 2005-2008. Distributed under the Boost
+// Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+//
+// See http://www.boost.org/libs/interprocess for documentation.
+//
+//////////////////////////////////////////////////////////////////////////////
+//
+// This file comes from SGI's string file. Modified by Ion Gaztanaga 2004-2008
+// Renaming, isolating and porting to generic algorithms. Pointer typedef
+// set to allocator::pointer to allow placing it in shared memory.
+//
+///////////////////////////////////////////////////////////////////////////////
+// Copyright (c) 1994
+// Hewlett-Packard Company
+//
+// Permission to use, copy, modify, distribute and sell this software
+// and its documentation for any purpose is hereby granted without fee,
+// provided that the above copyright notice appear in all copies and
+// that both that copyright notice and this permission notice appear
+// in supporting documentation. Hewlett-Packard Company makes no
+// representations about the suitability of this software for any
+// purpose. It is provided "as is" without express or implied warranty.
+
+#ifndef BOOST_INTERPROCESS_STRING_HPP
+#define BOOST_INTERPROCESS_STRING_HPP
+
+#include <boost/interprocess/detail/config_begin.hpp>
+#include <boost/interprocess/detail/workaround.hpp>
+
+#include <boost/interprocess/detail/workaround.hpp>
+#include <boost/interprocess/interprocess_fwd.hpp>
+#include <boost/interprocess/detail/utilities.hpp>
+#include <boost/interprocess/detail/algorithms.hpp>
+#include <boost/interprocess/detail/min_max.hpp>
+#include <boost/interprocess/detail/iterators.hpp>
+#include <boost/interprocess/detail/version_type.hpp>
+#include <boost/interprocess/allocators/allocation_type.hpp>
+#include <boost/interprocess/detail/mpl.hpp>
+#include <boost/move_semantics/move.hpp>
+#include <boost/static_assert.hpp>
+
+#include <functional>
+#include <string>
+#include <stdexcept>
+#include <utility>
+#include <iterator>
+#include <memory>
+#include <algorithm>
+#include <iosfwd>
+#include <istream>
+#include <ostream>
+#include <ios>
+#include <locale>
+#include <cstddef>
+#include <climits>
+#include <boost/interprocess/detail/type_traits.hpp>
+#include <boost/detail/no_exceptions_support.hpp>
+#include <boost/type_traits/has_trivial_destructor.hpp>
+
+namespace boost {
+namespace interprocess {
+namespace detail {
+
+/// @cond
+// ------------------------------------------------------------
+// Class basic_string_base.
+
+// basic_string_base is a helper class that makes it it easier to write
+// an exception-safe version of basic_string. The constructor allocates,
+// but does not initialize, a block of memory. The destructor
+// deallocates, but does not destroy elements within, a block of
+// memory. The destructor assumes that the memory either is the internal buffer,
+// or else points to a block of memory that was allocated using _String_base's
+// allocator and whose size is this->m_storage.
+template <class A>
+class basic_string_base
+{
+ basic_string_base();
+ basic_string_base(basic_string_base&);
+ basic_string_base & operator=(basic_string_base&);
+
+ public:
+ BOOST_ENABLE_MOVE_EMULATION(basic_string_base)
+
+ typedef A allocator_type;
+ //! The stored allocator type
+ typedef allocator_type stored_allocator_type;
+ typedef typename A::pointer pointer;
+ typedef typename A::value_type value_type;
+ typedef typename A::size_type size_type;
+
+ basic_string_base(const allocator_type& a)
+ : members_(a)
+ { init(); }
+
+ basic_string_base(const allocator_type& a, std::size_t n)
+ : members_(a)
+ {
+ this->init();
+ this->allocate_initial_block(n);
+ }
+
+ #if !defined(BOOST_HAS_RVALUE_REFS)
+ basic_string_base(boost::rv<basic_string_base<A> > &b)
+ : members_(b.get().members_)
+ {
+ init();
+ this->swap(b.get());
+ }
+ #else
+ basic_string_base(basic_string_base<A> && b)
+ : members_(b.members_)
+ {
+ init();
+ this->swap(b);
+ }
+ #endif
+
+ ~basic_string_base()
+ {
+ this->deallocate_block();
+ if(!this->is_short()){
+ static_cast<long_t*>(static_cast<void*>(&this->members_.m_repr.r))->~long_t();
+ }
+ }
+
+ private:
+
+ //This is the structure controlling a long string
+ struct long_t
+ {
+ size_type is_short : 1;
+ size_type length : (sizeof(size_type)*CHAR_BIT - 1);
+ size_type storage;
+ pointer start;
+
+ long_t()
+ {}
+
+ long_t(const long_t &other)
+ {
+ this->is_short = other.is_short;
+ length = other.length;
+ storage = other.storage;
+ start = other.start;
+ }
+
+ long_t &operator =(const long_t &other)
+ {
+ this->is_short = other.is_short;
+ length = other.length;
+ storage = other.storage;
+ start = other.start;
+ return *this;
+ }
+ };
+
+ //This basic type should have the same alignment as long_t
+//iG typedef typename type_with_alignment<detail::alignment_of<long_t>::value>::type
+// long_alignment_type;
+ typedef void *long_alignment_type;
+ BOOST_STATIC_ASSERT((detail::alignment_of<long_alignment_type>::value %
+ detail::alignment_of<long_t>::value) == 0);
+
+
+ //This type is the first part of the structure controlling a short string
+ //The "data" member stores
+ struct short_header
+ {
+ unsigned char is_short : 1;
+ unsigned char length : (CHAR_BIT - 1);
+ };
+
+ //This type has the same alignment and size as long_t but it's POD
+ //so, unlike long_t, it can be placed in a union
+ struct long_raw_t
+ {
+ long_alignment_type a;
+ unsigned char b[sizeof(long_t) - sizeof(long_alignment_type)];
+ };
+
+ protected:
+ static const size_type MinInternalBufferChars = 8;
+ static const size_type AlignmentOfValueType =
+ alignment_of<value_type>::value;
+ static const size_type ShortDataOffset =
+ detail::ct_rounded_size<sizeof(short_header), AlignmentOfValueType>::value;
+ static const size_type ZeroCostInternalBufferChars =
+ (sizeof(long_t) - ShortDataOffset)/sizeof(value_type);
+ static const size_type UnalignedFinalInternalBufferChars =
+ (ZeroCostInternalBufferChars > MinInternalBufferChars) ?
+ ZeroCostInternalBufferChars : MinInternalBufferChars;
+
+ struct short_t
+ {
+ short_header h;
+ value_type data[UnalignedFinalInternalBufferChars];
+ };
+
+ union repr_t
+ {
+ long_raw_t r;
+ short_t s;
+
+ short_t &short_repr() const
+ { return *const_cast<short_t *>(&s); }
+
+ long_t &long_repr() const
+ { return *static_cast<long_t*>(const_cast<void*>(static_cast<const void*>(&r))); }
+ };
+
+ struct members_holder
+ : public A
+ {
+ members_holder(const A &a)
+ : A(a)
+ {}
+
+ repr_t m_repr;
+ } members_;
+
+ const A &alloc() const
+ { return members_; }
+
+ A &alloc()
+ { return members_; }
+
+ static const size_type InternalBufferChars = (sizeof(repr_t) - ShortDataOffset)/sizeof(value_type);
+
+ private:
+
+ static const size_type MinAllocation = InternalBufferChars*2;
+
+ protected:
+ bool is_short() const
+ { return static_cast<bool>(this->members_.m_repr.s.h.is_short != 0); }
+
+ void is_short(bool yes)
+ {
+ if(yes && !this->is_short()){
+ static_cast<long_t*>(static_cast<void*>(&this->members_.m_repr.r))->~long_t();
+ }
+ else{
+ new(static_cast<void*>(&this->members_.m_repr.r))long_t();
+ }
+ this->members_.m_repr.s.h.is_short = yes;
+ }
+
+ private:
+ void init()
+ {
+ this->members_.m_repr.s.h.is_short = 1;
+ this->members_.m_repr.s.h.length = 0;
+ }
+
+ protected:
+
+ typedef detail::integral_constant<unsigned, 1> allocator_v1;
+ typedef detail::integral_constant<unsigned, 2> allocator_v2;
+ typedef detail::integral_constant<unsigned,
+ boost::interprocess::detail::version<A>::value> alloc_version;
+
+ std::pair<pointer, bool>
+ allocation_command(allocation_type command,
+ size_type limit_size,
+ size_type preferred_size,
+ size_type &received_size, pointer reuse = 0)
+ {
+ if(this->is_short() && (command & (expand_fwd | expand_bwd)) ){
+ reuse = pointer(0);
+ command &= ~(expand_fwd | expand_bwd);
+ }
+ return this->allocation_command
+ (command, limit_size, preferred_size, received_size, reuse, alloc_version());
+ }
+
+ std::pair<pointer, bool>
+ allocation_command(allocation_type command,
+ size_type limit_size,
+ size_type preferred_size,
+ size_type &received_size,
+ const pointer &reuse,
+ allocator_v1)
+ {
+ (void)limit_size;
+ (void)reuse;
+ if(!(command & allocate_new))
+ return std::pair<pointer, bool>(pointer(0), 0);
+ received_size = preferred_size;
+ return std::make_pair(this->alloc().allocate(received_size), false);
+ }
+
+ std::pair<pointer, bool>
+ allocation_command(allocation_type command,
+ size_type limit_size,
+ size_type preferred_size,
+ size_type &received_size,
+ pointer reuse,
+ allocator_v2)
+ {
+ return this->alloc().allocation_command(command, limit_size, preferred_size,
+ received_size, reuse);
+ }
+
+ size_type next_capacity(size_type additional_objects) const
+ { return get_next_capacity(this->alloc().max_size(), this->priv_storage(), additional_objects); }
+
+ void deallocate(pointer p, std::size_t n)
+ {
+ if (p && (n > InternalBufferChars))
+ this->alloc().deallocate(p, n);
+ }
+
+ void construct(pointer p, const value_type &value = value_type())
+ { new((void*)detail::get_pointer(p)) value_type(value); }
+
+ void destroy(pointer p, size_type n)
+ {
+ for(; n--; ++p)
+ detail::get_pointer(p)->~value_type();
+ }
+
+ void destroy(pointer p)
+ { detail::get_pointer(p)->~value_type(); }
+
+ void allocate_initial_block(std::size_t n)
+ {
+ if (n <= this->max_size()) {
+ if(n > InternalBufferChars){
+ size_type new_cap = this->next_capacity(n);
+ pointer p = this->allocation_command(allocate_new, n, new_cap, new_cap).first;
+ this->is_short(false);
+ this->priv_addr(p);
+ this->priv_size(0);
+ this->priv_storage(new_cap);
+ }
+ }
+ else
+ throw_length_error();
+ }
+
+ void deallocate_block()
+ { this->deallocate(this->priv_addr(), this->priv_storage()); }
+
+ std::size_t max_size() const
+ { return this->alloc().max_size() - 1; }
+
+ // Helper functions for exception handling.
+ void throw_length_error() const
+ { throw(std::length_error("basic_string")); }
+
+ void throw_out_of_range() const
+ { throw(std::out_of_range("basic_string")); }
+
+ protected:
+ size_type priv_capacity() const
+ { return this->priv_storage() - 1; }
+
+ pointer priv_addr() const
+ { return this->is_short() ? pointer(&this->members_.m_repr.short_repr().data[0]) : this->members_.m_repr.long_repr().start; }
+
+ void priv_addr(pointer addr)
+ { this->members_.m_repr.long_repr().start = addr; }
+
+ size_type priv_storage() const
+ { return this->is_short() ? InternalBufferChars : this->members_.m_repr.long_repr().storage; }
+
+ void priv_storage(size_type storage)
+ {
+ if(!this->is_short())
+ this->members_.m_repr.long_repr().storage = storage;
+ }
+
+ size_type priv_size() const
+ { return this->is_short() ? this->members_.m_repr.short_repr().h.length : this->members_.m_repr.long_repr().length; }
+
+ void priv_size(size_type sz)
+ {
+ if(this->is_short())
+ this->members_.m_repr.s.h.length = (unsigned char)sz;
+ else
+ this->members_.m_repr.long_repr().length = static_cast<typename A::size_type>(sz);
+ }
+
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ void swap(boost::rv<basic_string_base> &x)
+ { this->swap(x.get()); }
+ void swap(basic_string_base& other)
+ #else
+ void swap(basic_string_base &&other)
+ #endif
+ {
+ if(this->is_short()){
+ if(other.is_short()){
+ std::swap(this->members_.m_repr, other.members_.m_repr);
+ }
+ else{
+ repr_t copied(this->members_.m_repr);
+ this->members_.m_repr.long_repr() = other.members_.m_repr.long_repr();
+ other.members_.m_repr = copied;
+ }
+ }
+ else{
+ if(other.is_short()){
+ repr_t copied(other.members_.m_repr);
+ other.members_.m_repr.long_repr() = this->members_.m_repr.long_repr();
+ this->members_.m_repr = copied;
+ }
+ else{
+ std::swap(this->members_.m_repr.long_repr(), other.members_.m_repr.long_repr());
+ }
+ }
+
+ allocator_type & this_al = this->alloc(), &other_al = other.alloc();
+ if(this_al != other_al){
+ detail::do_swap(this_al, other_al);
+ }
+ }
+};
+/// @endcond
+
+} //namespace detail {
+
+
+//! The basic_string class represents a Sequence of characters. It contains all the
+//! usual operations of a Sequence, and, additionally, it contains standard string
+//! operations such as search and concatenation.
+//!
+//! The basic_string class is parameterized by character type, and by that type's
+//! Character Traits.
+//!
+//! This class has performance characteristics very much like vector<>, meaning,
+//! for example, that it does not perform reference-count or copy-on-write, and that
+//! concatenation of two strings is an O(N) operation.
+//!
+//! Some of basic_string's member functions use an unusual method of specifying positions
+//! and ranges. In addition to the conventional method using iterators, many of
+//! basic_string's member functions use a single value pos of type size_type to represent a
+//! position (in which case the position is begin() + pos, and many of basic_string's
+//! member functions use two values, pos and n, to represent a range. In that case pos is
+//! the beginning of the range and n is its size. That is, the range is
+//! [begin() + pos, begin() + pos + n).
+//!
+//! Note that the C++ standard does not specify the complexity of basic_string operations.
+//! In this implementation, basic_string has performance characteristics very similar to
+//! those of vector: access to a single character is O(1), while copy and concatenation
+//! are O(N).
+//!
+//! In this implementation, begin(),
+//! end(), rbegin(), rend(), operator[], c_str(), and data() do not invalidate iterators.
+//! In this implementation, iterators are only invalidated by member functions that
+//! explicitly change the string's contents.
+template <class CharT, class Traits, class A>
+class basic_string
+ : private detail::basic_string_base<A>
+{
+ /// @cond
+ private:
+ typedef detail::basic_string_base<A> base_t;
+ static const typename base_t::size_type InternalBufferChars = base_t::InternalBufferChars;
+
+ protected:
+ // A helper class to use a char_traits as a function object.
+
+ template <class Tr>
+ struct Eq_traits
+ : public std::binary_function<typename Tr::char_type,
+ typename Tr::char_type,
+ bool>
+ {
+ bool operator()(const typename Tr::char_type& x,
+ const typename Tr::char_type& y) const
+ { return Tr::eq(x, y); }
+ };
+
+ template <class Tr>
+ struct Not_within_traits
+ : public std::unary_function<typename Tr::char_type, bool>
+ {
+ typedef const typename Tr::char_type* Pointer;
+ const Pointer m_first;
+ const Pointer m_last;
+
+ Not_within_traits(Pointer f, Pointer l)
+ : m_first(f), m_last(l) {}
+
+ bool operator()(const typename Tr::char_type& x) const
+ {
+ return std::find_if(m_first, m_last,
+ std::bind1st(Eq_traits<Tr>(), x)) == m_last;
+ }
+ };
+ /// @endcond
+
+ public:
+ BOOST_ENABLE_MOVE_EMULATION(basic_string)
+
+ //! The allocator type
+ typedef A allocator_type;
+ //! The stored allocator type
+ typedef allocator_type stored_allocator_type;
+ //! The type of object, CharT, stored in the string
+ typedef CharT value_type;
+ //! The second template parameter Traits
+ typedef Traits traits_type;
+ //! Pointer to CharT
+ typedef typename A::pointer pointer;
+ //! Const pointer to CharT
+ typedef typename A::const_pointer const_pointer;
+ //! Reference to CharT
+ typedef typename A::reference reference;
+ //! Const reference to CharT
+ typedef typename A::const_reference const_reference;
+ //! An unsigned integral type
+ typedef typename A::size_type size_type;
+ //! A signed integral type
+ typedef typename A::difference_type difference_type;
+ //! Iterator used to iterate through a string. It's a Random Access Iterator
+ typedef pointer iterator;
+ //! Const iterator used to iterate through a string. It's a Random Access Iterator
+ typedef const_pointer const_iterator;
+ //! Iterator used to iterate backwards through a string
+ typedef std::reverse_iterator<iterator> reverse_iterator;
+ //! Const iterator used to iterate backwards through a string
+ typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
+ //! The largest possible value of type size_type. That is, size_type(-1).
+ static const size_type npos;
+
+ /// @cond
+ private:
+ typedef constant_iterator<CharT, difference_type> cvalue_iterator;
+ /// @endcond
+
+ public: // Constructor, destructor, assignment.
+ /// @cond
+ struct reserve_t {};
+ /// @endcond
+
+ basic_string(reserve_t, std::size_t n,
+ const allocator_type& a = allocator_type())
+ : base_t(a, n + 1)
+ { this->priv_terminate_string(); }
+
+ //! <b>Effects</b>: Constructs a basic_string taking the allocator as parameter.
+ //!
+ //! <b>Throws</b>: If allocator_type's copy constructor throws.
+ explicit basic_string(const allocator_type& a = allocator_type())
+ : base_t(a, InternalBufferChars)
+ { this->priv_terminate_string(); }
+
+ //! <b>Effects</b>: Copy constructs a basic_string.
+ //!
+ //! <b>Postcondition</b>: x == *this.
+ //!
+ //! <b>Throws</b>: If allocator_type's default constructor or copy constructor throws.
+ basic_string(const basic_string& s)
+ : base_t(s.alloc())
+ { this->priv_range_initialize(s.begin(), s.end()); }
+
+ //! <b>Effects</b>: Move constructor. Moves mx's resources to *this.
+ //!
+ //! <b>Throws</b>: If allocator_type's copy constructor throws.
+ //!
+ //! <b>Complexity</b>: Constant.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ basic_string(boost::rv<basic_string> &s)
+ : base_t(boost::move((base_t&)s.get()))
+ {}
+ #else
+ basic_string(basic_string && s)
+ : base_t(boost::move((base_t&)s))
+ {}
+ #endif
+
+ //! <b>Effects</b>: Constructs a basic_string taking the allocator as parameter,
+ //! and is initialized by a specific number of characters of the s string.
+ basic_string(const basic_string& s, size_type pos, size_type n = npos,
+ const allocator_type& a = allocator_type())
+ : base_t(a)
+ {
+ if (pos > s.size())
+ this->throw_out_of_range();
+ else
+ this->priv_range_initialize
+ (s.begin() + pos, s.begin() + pos + min_value(n, s.size() - pos));
+ }
+
+ //! <b>Effects</b>: Constructs a basic_string taking the allocator as parameter,
+ //! and is initialized by a specific number of characters of the s c-string.
+ basic_string(const CharT* s, size_type n,
+ const allocator_type& a = allocator_type())
+ : base_t(a)
+ { this->priv_range_initialize(s, s + n); }
+
+ //! <b>Effects</b>: Constructs a basic_string taking the allocator as parameter,
+ //! and is initialized by the null-terminated s c-string.
+ basic_string(const CharT* s,
+ const allocator_type& a = allocator_type())
+ : base_t(a)
+ { this->priv_range_initialize(s, s + Traits::length(s)); }
+
+ //! <b>Effects</b>: Constructs a basic_string taking the allocator as parameter,
+ //! and is initialized by n copies of c.
+ basic_string(size_type n, CharT c,
+ const allocator_type& a = allocator_type())
+ : base_t(a)
+ {
+ this->priv_range_initialize(cvalue_iterator(c, n),
+ cvalue_iterator());
+ }
+
+ //! <b>Effects</b>: Constructs a basic_string taking the allocator as parameter,
+ //! and a range of iterators.
+ template <class InputIterator>
+ basic_string(InputIterator f, InputIterator l,
+ const allocator_type& a = allocator_type())
+ : base_t(a)
+ {
+ //Dispatch depending on integer/iterator
+ const bool aux_boolean = detail::is_convertible<InputIterator, std::size_t>::value;
+ typedef detail::bool_<aux_boolean> Result;
+ this->priv_initialize_dispatch(f, l, Result());
+ }
+
+ //! <b>Effects</b>: Destroys the basic_string. All used memory is deallocated.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ ~basic_string()
+ {}
+
+ //! <b>Effects</b>: Copy constructs a string.
+ //!
+ //! <b>Postcondition</b>: x == *this.
+ //!
+ //! <b>Complexity</b>: Linear to the elements x contains.
+ basic_string& operator=(const basic_string& s)
+ {
+ if (&s != this)
+ this->assign(s.begin(), s.end());
+ return *this;
+ }
+
+ //! <b>Effects</b>: Move constructor. Moves mx's resources to *this.
+ //!
+ //! <b>Throws</b>: If allocator_type's copy constructor throws.
+ //!
+ //! <b>Complexity</b>: Constant.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ basic_string& operator=(boost::rv<basic_string> &ms)
+ {
+ basic_string &s = ms.get();
+ if (&s != this){
+ this->swap(s);
+ }
+ return *this;
+ }
+ #else
+ basic_string& operator=(basic_string && ms)
+ {
+ basic_string &s = ms;
+ if (&s != this){
+ this->swap(s);
+ }
+ return *this;
+ }
+ #endif
+
+ //! <b>Effects</b>: Assignment from a null-terminated c-string.
+ basic_string& operator=(const CharT* s)
+ { return this->assign(s, s + Traits::length(s)); }
+
+ //! <b>Effects</b>: Assignment from character.
+ basic_string& operator=(CharT c)
+ { return this->assign(static_cast<size_type>(1), c); }
+
+ //! <b>Effects</b>: Returns an iterator to the first element contained in the vector.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ iterator begin()
+ { return this->priv_addr(); }
+
+ //! <b>Effects</b>: Returns a const_iterator to the first element contained in the vector.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_iterator begin() const
+ { return this->priv_addr(); }
+
+ //! <b>Effects</b>: Returns an iterator to the end of the vector.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ iterator end()
+ { return this->priv_addr() + this->priv_size(); }
+
+ //! <b>Effects</b>: Returns a const_iterator to the end of the vector.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_iterator end() const
+ { return this->priv_addr() + this->priv_size(); }
+
+ //! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning
+ //! of the reversed vector.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ reverse_iterator rbegin()
+ { return reverse_iterator(this->priv_addr() + this->priv_size()); }
+
+ //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
+ //! of the reversed vector.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_reverse_iterator rbegin() const
+ { return const_reverse_iterator(this->priv_addr() + this->priv_size()); }
+
+ //! <b>Effects</b>: Returns a reverse_iterator pointing to the end
+ //! of the reversed vector.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ reverse_iterator rend()
+ { return reverse_iterator(this->priv_addr()); }
+
+ //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
+ //! of the reversed vector.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_reverse_iterator rend() const
+ { return const_reverse_iterator(this->priv_addr()); }
+
+ //! <b>Effects</b>: Returns a copy of the internal allocator.
+ //!
+ //! <b>Throws</b>: If allocator's copy constructor throws.
+ //!
+ //! <b>Complexity</b>: Constant.
+ allocator_type get_allocator() const
+ { return this->alloc(); }
+
+ //! <b>Effects</b>: Returns the number of the elements contained in the vector.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ size_type size() const
+ { return this->priv_size(); }
+
+ //! <b>Effects</b>: Returns the number of the elements contained in the vector.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ size_type length() const
+ { return this->size(); }
+
+ //! <b>Effects</b>: Returns the largest possible size of the vector.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ size_type max_size() const
+ { return base_t::max_size(); }
+
+ //! <b>Effects</b>: Inserts or erases elements at the end such that
+ //! the size becomes n. New elements are copy constructed from x.
+ //!
+ //! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws.
+ //!
+ //! <b>Complexity</b>: Linear to the difference between size() and new_size.
+ void resize(size_type n, CharT c)
+ {
+ if (n <= size())
+ this->erase(this->begin() + n, this->end());
+ else
+ this->append(n - this->size(), c);
+ }
+
+ //! <b>Effects</b>: Inserts or erases elements at the end such that
+ //! the size becomes n. New elements are default constructed.
+ //!
+ //! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws.
+ //!
+ //! <b>Complexity</b>: Linear to the difference between size() and new_size.
+ void resize(size_type n)
+ { resize(n, this->priv_null()); }
+
+ //! <b>Effects</b>: If n is less than or equal to capacity(), this call has no
+ //! effect. Otherwise, it is a request for allocation of additional memory.
+ //! If the request is successful, then capacity() is greater than or equal to
+ //! n; otherwise, capacity() is unchanged. In either case, size() is unchanged.
+ //!
+ //! <b>Throws</b>: If memory allocation allocation throws or T's copy constructor throws.
+ void reserve(size_type res_arg)
+ {
+ if (res_arg > this->max_size())
+ this->throw_length_error();
+
+ if (this->capacity() < res_arg){
+ size_type n = max_value(res_arg, this->size()) + 1;
+ size_type new_cap = this->next_capacity(n);
+ pointer new_start = this->allocation_command
+ (allocate_new, n, new_cap, new_cap).first;
+ size_type new_length = 0;
+
+ new_length += priv_uninitialized_copy
+ (this->priv_addr(), this->priv_addr() + this->priv_size(), new_start);
+ this->priv_construct_null(new_start + new_length);
+ this->deallocate_block();
+ this->is_short(false);
+ this->priv_addr(new_start);
+ this->priv_size(new_length);
+ this->priv_storage(new_cap);
+ }
+ }
+
+ //! <b>Effects</b>: Number of elements for which memory has been allocated.
+ //! capacity() is always greater than or equal to size().
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ size_type capacity() const
+ { return this->priv_capacity(); }
+
+ //! <b>Effects</b>: Erases all the elements of the vector.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Linear to the number of elements in the vector.
+ void clear()
+ {
+ if (!empty()) {
+ Traits::assign(*this->priv_addr(), this->priv_null());
+ this->priv_size(0);
+ }
+ }
+
+ //! <b>Effects</b>: Returns true if the vector contains no elements.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ bool empty() const
+ { return !this->priv_size(); }
+
+ //! <b>Requires</b>: size() < n.
+ //!
+ //! <b>Effects</b>: Returns a reference to the nth element
+ //! from the beginning of the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ reference operator[](size_type n)
+ { return *(this->priv_addr() + n); }
+
+ //! <b>Requires</b>: size() < n.
+ //!
+ //! <b>Effects</b>: Returns a const reference to the nth element
+ //! from the beginning of the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_reference operator[](size_type n) const
+ { return *(this->priv_addr() + n); }
+
+ //! <b>Requires</b>: size() < n.
+ //!
+ //! <b>Effects</b>: Returns a reference to the nth element
+ //! from the beginning of the container.
+ //!
+ //! <b>Throws</b>: std::range_error if n >= size()
+ //!
+ //! <b>Complexity</b>: Constant.
+ reference at(size_type n) {
+ if (n >= size())
+ this->throw_out_of_range();
+ return *(this->priv_addr() + n);
+ }
+
+ //! <b>Requires</b>: size() < n.
+ //!
+ //! <b>Effects</b>: Returns a const reference to the nth element
+ //! from the beginning of the container.
+ //!
+ //! <b>Throws</b>: std::range_error if n >= size()
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_reference at(size_type n) const {
+ if (n >= size())
+ this->throw_out_of_range();
+ return *(this->priv_addr() + n);
+ }
+
+ //! <b>Effects</b>: Appends string s to *this.
+ basic_string& operator+=(const basic_string& s)
+ { return this->append(s); }
+
+ //! <b>Effects</b>: Appends c-string s to *this.
+ basic_string& operator+=(const CharT* s)
+ { return this->append(s); }
+
+ //! <b>Effects</b>: Appends character c to *this.
+ basic_string& operator+=(CharT c)
+ { this->push_back(c); return *this; }
+
+ //! <b>Effects</b>: Appends string s to *this.
+ basic_string& append(const basic_string& s)
+ { return this->append(s.begin(), s.end()); }
+
+ //! <b>Effects</b>: Appends the range [pos, pos + n) from string s to *this.
+ basic_string& append(const basic_string& s, size_type pos, size_type n)
+ {
+ if (pos > s.size())
+ this->throw_out_of_range();
+ return this->append(s.begin() + pos,
+ s.begin() + pos + min_value(n, s.size() - pos));
+ }
+
+ //! <b>Effects</b>: Appends the range [s, s + n) from c-string s to *this.
+ basic_string& append(const CharT* s, size_type n)
+ { return this->append(s, s + n); }
+
+ //! <b>Effects</b>: Appends the c-string s to *this.
+ basic_string& append(const CharT* s)
+ { return this->append(s, s + Traits::length(s)); }
+
+ //! <b>Effects</b>: Appends the n times the character c to *this.
+ basic_string& append(size_type n, CharT c)
+ { return this->append(cvalue_iterator(c, n), cvalue_iterator()); }
+
+ //! <b>Effects</b>: Appends the range [first, last) *this.
+ template <class InputIter>
+ basic_string& append(InputIter first, InputIter last)
+ { this->insert(this->end(), first, last); return *this; }
+
+ //! <b>Effects</b>: Inserts a copy of c at the end of the vector.
+ void push_back(CharT c)
+ {
+ if (this->priv_size() < this->capacity()){
+ this->priv_construct_null(this->priv_addr() + (this->priv_size() + 1));
+ Traits::assign(this->priv_addr()[this->priv_size()], c);
+ this->priv_size(this->priv_size()+1);
+ }
+ else{
+ //No enough memory, insert a new object at the end
+ this->append((size_type)1, c);
+ }
+ }
+
+ //! <b>Effects</b>: Removes the last element from the vector.
+ void pop_back()
+ {
+ Traits::assign(this->priv_addr()[this->priv_size()-1], this->priv_null());
+ this->priv_size(this->priv_size()-1);;
+ }
+
+ //! <b>Effects</b>: Assigns the value s to *this.
+ basic_string& assign(const basic_string& s)
+ { return this->operator=(s); }
+
+ //! <b>Effects</b>: Moves the resources from ms *this.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ basic_string& assign(boost::rv<basic_string> &ms)
+ { return this->operator=(ms);}
+ #else
+ basic_string& assign(basic_string && ms)
+ { return this->operator=(ms);}
+ #endif
+
+ //! <b>Effects</b>: Assigns the range [pos, pos + n) from s to *this.
+ basic_string& assign(const basic_string& s,
+ size_type pos, size_type n) {
+ if (pos > s.size())
+ this->throw_out_of_range();
+ return this->assign(s.begin() + pos,
+ s.begin() + pos + min_value(n, s.size() - pos));
+ }
+
+ //! <b>Effects</b>: Assigns the range [s, s + n) from s to *this.
+ basic_string& assign(const CharT* s, size_type n)
+ { return this->assign(s, s + n); }
+
+ //! <b>Effects</b>: Assigns the c-string s to *this.
+ basic_string& assign(const CharT* s)
+ { return this->assign(s, s + Traits::length(s)); }
+
+ //! <b>Effects</b>: Assigns the character c n-times to *this.
+ basic_string& assign(size_type n, CharT c)
+ { return this->assign(cvalue_iterator(c, n), cvalue_iterator()); }
+
+ //! <b>Effects</b>: Assigns the range [first, last) to *this.
+ template <class InputIter>
+ basic_string& assign(InputIter first, InputIter last)
+ {
+ //Dispatch depending on integer/iterator
+ const bool aux_boolean = detail::is_convertible<InputIter, std::size_t>::value;
+ typedef detail::bool_<aux_boolean> Result;
+ return this->priv_assign_dispatch(first, last, Result());
+ }
+
+ //! <b>Effects</b>: Assigns the range [f, l) to *this.
+ basic_string& assign(const CharT* f, const CharT* l)
+ {
+ const std::ptrdiff_t n = l - f;
+ if (static_cast<size_type>(n) <= size()) {
+ Traits::copy(detail::get_pointer(this->priv_addr()), f, n);
+ this->erase(this->priv_addr() + n, this->priv_addr() + this->priv_size());
+ }
+ else {
+ Traits::copy(detail::get_pointer(this->priv_addr()), f, this->priv_size());
+ this->append(f + this->priv_size(), l);
+ }
+ return *this;
+ }
+
+ //! <b>Effects</b>: Inserts the string s before pos.
+ basic_string& insert(size_type pos, const basic_string& s)
+ {
+ if (pos > size())
+ this->throw_out_of_range();
+ if (this->size() > this->max_size() - s.size())
+ this->throw_length_error();
+ this->insert(this->priv_addr() + pos, s.begin(), s.end());
+ return *this;
+ }
+
+ //! <b>Effects</b>: Inserts the range [pos, pos + n) from string s before pos.
+ basic_string& insert(size_type pos, const basic_string& s,
+ size_type beg, size_type n)
+ {
+ if (pos > this->size() || beg > s.size())
+ this->throw_out_of_range();
+ size_type len = min_value(n, s.size() - beg);
+ if (this->size() > this->max_size() - len)
+ this->throw_length_error();
+ const CharT *beg_ptr = detail::get_pointer(s.begin()) + beg;
+ const CharT *end_ptr = beg_ptr + len;
+ this->insert(this->priv_addr() + pos, beg_ptr, end_ptr);
+ return *this;
+ }
+
+ //! <b>Effects</b>: Inserts the range [s, s + n) before pos.
+ basic_string& insert(size_type pos, const CharT* s, size_type n)
+ {
+ if (pos > this->size())
+ this->throw_out_of_range();
+ if (this->size() > this->max_size() - n)
+ this->throw_length_error();
+ this->insert(this->priv_addr() + pos, s, s + n);
+ return *this;
+ }
+
+ //! <b>Effects</b>: Inserts the c-string s before pos.
+ basic_string& insert(size_type pos, const CharT* s)
+ {
+ if (pos > size())
+ this->throw_out_of_range();
+ size_type len = Traits::length(s);
+ if (this->size() > this->max_size() - len)
+ this->throw_length_error();
+ this->insert(this->priv_addr() + pos, s, s + len);
+ return *this;
+ }
+
+ //! <b>Effects</b>: Inserts the character c n-times before pos.
+ basic_string& insert(size_type pos, size_type n, CharT c)
+ {
+ if (pos > this->size())
+ this->throw_out_of_range();
+ if (this->size() > this->max_size() - n)
+ this->throw_length_error();
+ this->insert(this->priv_addr() + pos, n, c);
+ return *this;
+ }
+
+ //! <b>Effects</b>: Inserts the character c before position.
+ iterator insert(iterator position, CharT c)
+ {
+ size_type new_offset = position - this->priv_addr() + 1;
+ this->insert(position, cvalue_iterator(c, 1),
+ cvalue_iterator());
+ return this->priv_addr() + new_offset;
+ }
+
+ //! <b>Effects</b>: Inserts the character c n-times before position.
+ void insert(iterator position, std::size_t n, CharT c)
+ {
+ this->insert(position, cvalue_iterator(c, n),
+ cvalue_iterator());
+ }
+
+ //! <b>Effects</b>: Inserts the range [first, last) before position.
+ template <class InputIter>
+ void insert(iterator p, InputIter first, InputIter last)
+ {
+ //Dispatch depending on integer/iterator
+ const bool aux_boolean = detail::is_convertible<InputIter, std::size_t>::value;
+ typedef detail::bool_<aux_boolean> Result;
+ this->priv_insert_dispatch(p, first, last, Result());
+ }
+
+ //! <b>Effects</b>: Inserts the range [pos, pos + n).
+ basic_string& erase(size_type pos = 0, size_type n = npos)
+ {
+ if (pos > size())
+ this->throw_out_of_range();
+ erase(this->priv_addr() + pos, this->priv_addr() + pos + min_value(n, size() - pos));
+ return *this;
+ }
+
+ //! <b>Effects</b>: Erases the character pointed by position.
+ iterator erase(iterator position)
+ {
+ // The move includes the terminating null.
+ Traits::move(detail::get_pointer(position),
+ detail::get_pointer(position + 1),
+ this->priv_size() - (position - this->priv_addr()));
+ this->priv_size(this->priv_size()-1);
+ return position;
+ }
+
+ //! <b>Effects</b>: Erases the range [first, last).
+ iterator erase(iterator first, iterator last)
+ {
+ if (first != last) { // The move includes the terminating null.
+ size_type num_erased = last - first;
+ Traits::move(detail::get_pointer(first),
+ detail::get_pointer(last),
+ (this->priv_size() + 1)-(last - this->priv_addr()));
+ size_type new_length = this->priv_size() - num_erased;
+ this->priv_size(new_length);
+ }
+ return first;
+ }
+
+ //! <b>Effects</b>: Replaces a substring of *this with the string s.
+ basic_string& replace(size_type pos, size_type n,
+ const basic_string& s)
+ {
+ if (pos > size())
+ this->throw_out_of_range();
+ const size_type len = min_value(n, size() - pos);
+ if (this->size() - len >= this->max_size() - s.size())
+ this->throw_length_error();
+ return this->replace(this->priv_addr() + pos, this->priv_addr() + pos + len,
+ s.begin(), s.end());
+ }
+
+ //! <b>Effects</b>: Replaces a substring of *this with a substring of s.
+ basic_string& replace(size_type pos1, size_type n1,
+ const basic_string& s,
+ size_type pos2, size_type n2)
+ {
+ if (pos1 > size() || pos2 > s.size())
+ this->throw_out_of_range();
+ const size_type len1 = min_value(n1, size() - pos1);
+ const size_type len2 = min_value(n2, s.size() - pos2);
+ if (this->size() - len1 >= this->max_size() - len2)
+ this->throw_length_error();
+ return this->replace(this->priv_addr() + pos1, this->priv_addr() + pos1 + len1,
+ s.priv_addr() + pos2, s.priv_addr() + pos2 + len2);
+ }
+
+ //! <b>Effects</b>: Replaces a substring of *this with the first n1 characters of s.
+ basic_string& replace(size_type pos, size_type n1,
+ const CharT* s, size_type n2)
+ {
+ if (pos > size())
+ this->throw_out_of_range();
+ const size_type len = min_value(n1, size() - pos);
+ if (n2 > this->max_size() || size() - len >= this->max_size() - n2)
+ this->throw_length_error();
+ return this->replace(this->priv_addr() + pos, this->priv_addr() + pos + len,
+ s, s + n2);
+ }
+
+ //! <b>Effects</b>: Replaces a substring of *this with a null-terminated character array.
+ basic_string& replace(size_type pos, size_type n1,
+ const CharT* s)
+ {
+ if (pos > size())
+ this->throw_out_of_range();
+ const size_type len = min_value(n1, size() - pos);
+ const size_type n2 = Traits::length(s);
+ if (n2 > this->max_size() || size() - len >= this->max_size() - n2)
+ this->throw_length_error();
+ return this->replace(this->priv_addr() + pos, this->priv_addr() + pos + len,
+ s, s + Traits::length(s));
+ }
+
+ //! <b>Effects</b>: Replaces a substring of *this with n1 copies of c.
+ basic_string& replace(size_type pos, size_type n1,
+ size_type n2, CharT c)
+ {
+ if (pos > size())
+ this->throw_out_of_range();
+ const size_type len = min_value(n1, size() - pos);
+ if (n2 > this->max_size() || size() - len >= this->max_size() - n2)
+ this->throw_length_error();
+ return this->replace(this->priv_addr() + pos, this->priv_addr() + pos + len, n2, c);
+ }
+
+ //! <b>Effects</b>: Replaces a substring of *this with the string s.
+ basic_string& replace(iterator first, iterator last,
+ const basic_string& s)
+ { return this->replace(first, last, s.begin(), s.end()); }
+
+ //! <b>Effects</b>: Replaces a substring of *this with the first n characters of s.
+ basic_string& replace(iterator first, iterator last,
+ const CharT* s, size_type n)
+ { return this->replace(first, last, s, s + n); }
+
+ //! <b>Effects</b>: Replaces a substring of *this with a null-terminated character array.
+ basic_string& replace(iterator first, iterator last,
+ const CharT* s)
+ { return this->replace(first, last, s, s + Traits::length(s)); }
+
+ //! <b>Effects</b>: Replaces a substring of *this with n copies of c.
+ basic_string& replace(iterator first, iterator last,
+ size_type n, CharT c)
+ {
+ const size_type len = static_cast<size_type>(last - first);
+ if (len >= n) {
+ Traits::assign(detail::get_pointer(first), n, c);
+ erase(first + n, last);
+ }
+ else {
+ Traits::assign(detail::get_pointer(first), len, c);
+ insert(last, n - len, c);
+ }
+ return *this;
+ }
+
+ //! <b>Effects</b>: Replaces a substring of *this with the range [f, l)
+ template <class InputIter>
+ basic_string& replace(iterator first, iterator last,
+ InputIter f, InputIter l)
+ {
+ //Dispatch depending on integer/iterator
+ const bool aux_boolean = detail::is_convertible<InputIter, std::size_t>::value;
+ typedef detail::bool_<aux_boolean> Result;
+ return this->priv_replace_dispatch(first, last, f, l, Result());
+ }
+
+ //! <b>Effects</b>: Copies a substring of *this to a buffer.
+ size_type copy(CharT* s, size_type n, size_type pos = 0) const
+ {
+ if (pos > size())
+ this->throw_out_of_range();
+ const size_type len = min_value(n, size() - pos);
+ Traits::copy(s, detail::get_pointer(this->priv_addr() + pos), len);
+ return len;
+ }
+
+ //! <b>Effects</b>: Swaps the contents of two strings.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ void swap(boost::rv<basic_string> &x)
+ { this->swap(x.get()); }
+ void swap(basic_string& x)
+ #else
+ void swap(basic_string &&x)
+ #endif
+ { base_t::swap(x); }
+
+ //! <b>Returns</b>: Returns a pointer to a null-terminated array of characters
+ //! representing the string's contents. For any string s it is guaranteed
+ //! that the first s.size() characters in the array pointed to by s.c_str()
+ //! are equal to the character in s, and that s.c_str()[s.size()] is a null
+ //! character. Note, however, that it not necessarily the first null character.
+ //! Characters within a string are permitted to be null.
+ const CharT* c_str() const
+ { return detail::get_pointer(this->priv_addr()); }
+
+ //! <b>Returns</b>: Returns a pointer to an array of characters, not necessarily
+ //! null-terminated, representing the string's contents. data() is permitted,
+ //! but not required, to be identical to c_str(). The first size() characters
+ //! of that array are guaranteed to be identical to the characters in *this.
+ //! The return value of data() is never a null pointer, even if size() is zero.
+ const CharT* data() const
+ { return detail::get_pointer(this->priv_addr()); }
+
+ //! <b>Effects</b>: Searches for s as a substring of *this, beginning at
+ //! character pos of *this.
+ size_type find(const basic_string& s, size_type pos = 0) const
+ { return find(s.c_str(), pos, s.size()); }
+
+ //! <b>Effects</b>: Searches for a null-terminated character array as a
+ //! substring of *this, beginning at character pos of *this.
+ size_type find(const CharT* s, size_type pos = 0) const
+ { return find(s, pos, Traits::length(s)); }
+
+ //! <b>Effects</b>: Searches for the first n characters of s as a substring
+ //! of *this, beginning at character pos of *this.
+ size_type find(const CharT* s, size_type pos, size_type n) const
+ {
+ if (pos + n > size())
+ return npos;
+ else {
+ pointer finish = this->priv_addr() + this->priv_size();
+ const const_iterator result =
+ std::search(detail::get_pointer(this->priv_addr() + pos),
+ detail::get_pointer(finish),
+ s, s + n, Eq_traits<Traits>());
+ return result != finish ? result - begin() : npos;
+ }
+ }
+
+ //! <b>Effects</b>: Searches for the character c, beginning at character
+ //! position pos.
+ size_type find(CharT c, size_type pos = 0) const
+ {
+ if (pos >= size())
+ return npos;
+ else {
+ pointer finish = this->priv_addr() + this->priv_size();
+ const const_iterator result =
+ std::find_if(this->priv_addr() + pos, finish,
+ std::bind2nd(Eq_traits<Traits>(), c));
+ return result != finish ? result - begin() : npos;
+ }
+ }
+
+ //! <b>Effects</b>: Searches backward for s as a substring of *this,
+ //! beginning at character position min(pos, size())
+ size_type rfind(const basic_string& s, size_type pos = npos) const
+ { return rfind(s.c_str(), pos, s.size()); }
+
+ //! <b>Effects</b>: Searches backward for a null-terminated character array
+ //! as a substring of *this, beginning at character min(pos, size())
+ size_type rfind(const CharT* s, size_type pos = npos) const
+ { return rfind(s, pos, Traits::length(s)); }
+
+ //! <b>Effects</b>: Searches backward for the first n characters of s as a
+ //! substring of *this, beginning at character position min(pos, size()).
+ size_type rfind(const CharT* s, size_type pos, size_type n) const
+ {
+ const std::size_t len = size();
+
+ if (n > len)
+ return npos;
+ else if (n == 0)
+ return min_value(len, pos);
+ else {
+ const const_iterator last = begin() + min_value(len - n, pos) + n;
+ const const_iterator result = find_end(begin(), last,
+ s, s + n,
+ Eq_traits<Traits>());
+ return result != last ? result - begin() : npos;
+ }
+ }
+
+ //! <b>Effects</b>: Searches backward for a null-terminated character array
+ //! as a substring of *this, beginning at character min(pos, size()).
+ size_type rfind(CharT c, size_type pos = npos) const
+ {
+ const size_type len = size();
+
+ if (len < 1)
+ return npos;
+ else {
+ const const_iterator last = begin() + min_value(len - 1, pos) + 1;
+ const_reverse_iterator rresult =
+ std::find_if(const_reverse_iterator(last), rend(),
+ std::bind2nd(Eq_traits<Traits>(), c));
+ return rresult != rend() ? (rresult.base() - 1) - begin() : npos;
+ }
+ }
+
+ //! <b>Effects</b>: Searches within *this, beginning at pos, for the first
+ //! character that is equal to any character within s.
+ size_type find_first_of(const basic_string& s, size_type pos = 0) const
+ { return find_first_of(s.c_str(), pos, s.size()); }
+
+ //! <b>Effects</b>: Searches within *this, beginning at pos, for the first
+ //! character that is equal to any character within s.
+ size_type find_first_of(const CharT* s, size_type pos = 0) const
+ { return find_first_of(s, pos, Traits::length(s)); }
+
+ //! <b>Effects</b>: Searches within *this, beginning at pos, for the first
+ //! character that is equal to any character within the first n characters of s.
+ size_type find_first_of(const CharT* s, size_type pos,
+ size_type n) const
+ {
+ if (pos >= size())
+ return npos;
+ else {
+ pointer finish = this->priv_addr() + this->priv_size();
+ const_iterator result = std::find_first_of(this->priv_addr() + pos, finish,
+ s, s + n,
+ Eq_traits<Traits>());
+ return result != finish ? result - begin() : npos;
+ }
+ }
+
+ //! <b>Effects</b>: Searches within *this, beginning at pos, for the first
+ //! character that is equal to c.
+ size_type find_first_of(CharT c, size_type pos = 0) const
+ { return find(c, pos); }
+
+ //! <b>Effects</b>: Searches backward within *this, beginning at min(pos, size()),
+ //! for the first character that is equal to any character within s.
+ size_type find_last_of(const basic_string& s,
+ size_type pos = npos) const
+ { return find_last_of(s.c_str(), pos, s.size()); }
+
+ //! <b>Effects</b>: Searches backward *this, beginning at min(pos, size()), for
+ //! the first character that is equal to any character within s.
+ size_type find_last_of(const CharT* s, size_type pos = npos) const
+ { return find_last_of(s, pos, Traits::length(s)); }
+
+ //! <b>Effects</b>: Searches backward within *this, beginning at min(pos, size()),
+ //! for the first character that is equal to any character within the first n
+ //! characters of s.
+ size_type find_last_of(const CharT* s, size_type pos, size_type n) const
+ {
+ const size_type len = size();
+
+ if (len < 1)
+ return npos;
+ else {
+ const const_iterator last = this->priv_addr() + min_value(len - 1, pos) + 1;
+ const const_reverse_iterator rresult =
+ std::find_first_of(const_reverse_iterator(last), rend(),
+ s, s + n,
+ Eq_traits<Traits>());
+ return rresult != rend() ? (rresult.base() - 1) - this->priv_addr() : npos;
+ }
+ }
+
+ //! <b>Effects</b>: Searches backward *this, beginning at min(pos, size()), for
+ //! the first character that is equal to c.
+ size_type find_last_of(CharT c, size_type pos = npos) const
+ { return rfind(c, pos); }
+
+ //! <b>Effects</b>: Searches within *this, beginning at pos, for the first
+ //! character that is not equal to any character within s.
+ size_type find_first_not_of(const basic_string& s,
+ size_type pos = 0) const
+ { return find_first_not_of(s.c_str(), pos, s.size()); }
+
+ //! <b>Effects</b>: Searches within *this, beginning at pos, for the first
+ //! character that is not equal to any character within s.
+ size_type find_first_not_of(const CharT* s, size_type pos = 0) const
+ { return find_first_not_of(s, pos, Traits::length(s)); }
+
+ //! <b>Effects</b>: Searches within *this, beginning at pos, for the first
+ //! character that is not equal to any character within the first n
+ //! characters of s.
+ size_type find_first_not_of(const CharT* s, size_type pos,
+ size_type n) const
+ {
+ if (pos > size())
+ return npos;
+ else {
+ pointer finish = this->priv_addr() + this->priv_size();
+ const_iterator result = std::find_if(this->priv_addr() + pos, finish,
+ Not_within_traits<Traits>(s, s + n));
+ return result != finish ? result - this->priv_addr() : npos;
+ }
+ }
+
+ //! <b>Effects</b>: Searches within *this, beginning at pos, for the first
+ //! character that is not equal to c.
+ size_type find_first_not_of(CharT c, size_type pos = 0) const
+ {
+ if (pos > size())
+ return npos;
+ else {
+ pointer finish = this->priv_addr() + this->priv_size();
+ const_iterator result
+ = std::find_if(this->priv_addr() + pos, finish,
+ std::not1(std::bind2nd(Eq_traits<Traits>(), c)));
+ return result != finish ? result - begin() : npos;
+ }
+ }
+
+ //! <b>Effects</b>: Searches backward within *this, beginning at min(pos, size()),
+ //! for the first character that is not equal to any character within s.
+ size_type find_last_not_of(const basic_string& s,
+ size_type pos = npos) const
+ { return find_last_not_of(s.c_str(), pos, s.size()); }
+
+ //! <b>Effects</b>: Searches backward *this, beginning at min(pos, size()),
+ //! for the first character that is not equal to any character within s.
+ size_type find_last_not_of(const CharT* s, size_type pos = npos) const
+ { return find_last_not_of(s, pos, Traits::length(s)); }
+
+ //! <b>Effects</b>: Searches backward within *this, beginning at min(pos, size()),
+ //! for the first character that is not equal to any character within the first
+ //! n characters of s.
+ size_type find_last_not_of(const CharT* s, size_type pos, size_type n) const
+ {
+ const size_type len = size();
+
+ if (len < 1)
+ return npos;
+ else {
+ const const_iterator last = begin() + min_value(len - 1, pos) + 1;
+ const const_reverse_iterator rresult =
+ std::find_if(const_reverse_iterator(last), rend(),
+ Not_within_traits<Traits>(s, s + n));
+ return rresult != rend() ? (rresult.base() - 1) - begin() : npos;
+ }
+ }
+
+ //! <b>Effects</b>: Searches backward *this, beginning at min(pos, size()),
+ //! for the first character that is not equal to c.
+ size_type find_last_not_of(CharT c, size_type pos = npos) const
+ {
+ const size_type len = size();
+
+ if (len < 1)
+ return npos;
+ else {
+ const const_iterator last = begin() + min_value(len - 1, pos) + 1;
+ const_reverse_iterator rresult =
+ std::find_if(const_reverse_iterator(last), rend(),
+ std::not1(std::bind2nd(Eq_traits<Traits>(), c)));
+ return rresult != rend() ? (rresult.base() - 1) - begin() : npos;
+ }
+ }
+
+ //! <b>Effects</b>: Returns a substring of *this.
+ basic_string substr(size_type pos = 0, size_type n = npos) const
+ {
+ if (pos > size())
+ this->throw_out_of_range();
+ return basic_string(this->priv_addr() + pos,
+ this->priv_addr() + pos + min_value(n, size() - pos), this->alloc());
+ }
+
+ //! <b>Effects</b>: Three-way lexicographical comparison of s and *this.
+ int compare(const basic_string& s) const
+ { return s_compare(this->priv_addr(), this->priv_addr() + this->priv_size(), s.priv_addr(), s.priv_addr() + s.priv_size()); }
+
+ //! <b>Effects</b>: Three-way lexicographical comparison of s and a substring
+ //! of *this.
+ int compare(size_type pos1, size_type n1, const basic_string& s) const
+ {
+ if (pos1 > size())
+ this->throw_out_of_range();
+ return s_compare(this->priv_addr() + pos1,
+ this->priv_addr() + pos1 + min_value(n1, size() - pos1),
+ s.priv_addr(), s.priv_addr() + s.priv_size());
+ }
+
+ //! <b>Effects</b>: Three-way lexicographical comparison of a substring of s
+ //! and a substring of *this.
+ int compare(size_type pos1, size_type n1,
+ const basic_string& s,
+ size_type pos2, size_type n2) const {
+ if (pos1 > size() || pos2 > s.size())
+ this->throw_out_of_range();
+ return s_compare(this->priv_addr() + pos1,
+ this->priv_addr() + pos1 + min_value(n1, size() - pos1),
+ s.priv_addr() + pos2,
+ s.priv_addr() + pos2 + min_value(n2, size() - pos2));
+ }
+
+ //! <b>Effects</b>: Three-way lexicographical comparison of s and *this.
+ int compare(const CharT* s) const
+ { return s_compare(this->priv_addr(), this->priv_addr() + this->priv_size(), s, s + Traits::length(s)); }
+
+
+ //! <b>Effects</b>: Three-way lexicographical comparison of the first
+ //! min(len, traits::length(s) characters of s and a substring of *this.
+ int compare(size_type pos1, size_type n1, const CharT* s,
+ size_type n2 = npos) const
+ {
+ if (pos1 > size())
+ this->throw_out_of_range();
+ return s_compare(this->priv_addr() + pos1,
+ this->priv_addr() + pos1 + min_value(n1, size() - pos1),
+ s, s + n2);
+ }
+
+ /// @cond
+ private:
+ static int s_compare(const_pointer f1, const_pointer l1,
+ const_pointer f2, const_pointer l2)
+ {
+ const std::ptrdiff_t n1 = l1 - f1;
+ const std::ptrdiff_t n2 = l2 - f2;
+ const int cmp = Traits::compare(detail::get_pointer(f1),
+ detail::get_pointer(f2),
+ min_value(n1, n2));
+ return cmp != 0 ? cmp : (n1 < n2 ? -1 : (n1 > n2 ? 1 : 0));
+ }
+
+ void priv_construct_null(pointer p)
+ { this->construct(p, 0); }
+
+ static CharT priv_null()
+ { return (CharT) 0; }
+
+ // Helper functions used by constructors. It is a severe error for
+ // any of them to be called anywhere except from within constructors.
+ void priv_terminate_string()
+ { this->priv_construct_null(this->priv_addr() + this->priv_size()); }
+
+ template <class InputIter>
+ void priv_range_initialize(InputIter f, InputIter l,
+ std::input_iterator_tag)
+ {
+ this->allocate_initial_block(InternalBufferChars);
+ this->priv_construct_null(this->priv_addr() + this->priv_size());
+ this->append(f, l);
+ }
+
+ template <class ForwardIter>
+ void priv_range_initialize(ForwardIter f, ForwardIter l,
+ std::forward_iterator_tag)
+ {
+ difference_type n = std::distance(f, l);
+ this->allocate_initial_block(max_value<difference_type>(n+1, InternalBufferChars));
+ priv_uninitialized_copy(f, l, this->priv_addr());
+ this->priv_size(n);
+ this->priv_terminate_string();
+ }
+
+ template <class InputIter>
+ void priv_range_initialize(InputIter f, InputIter l)
+ {
+ typedef typename std::iterator_traits<InputIter>::iterator_category Category;
+ this->priv_range_initialize(f, l, Category());
+ }
+
+ template <class Integer>
+ void priv_initialize_dispatch(Integer n, Integer x, detail::true_)
+ {
+ this->allocate_initial_block(max_value<difference_type>(n+1, InternalBufferChars));
+ priv_uninitialized_fill_n(this->priv_addr(), n, x);
+ this->priv_size(n);
+ this->priv_terminate_string();
+ }
+
+ template <class InputIter>
+ void priv_initialize_dispatch(InputIter f, InputIter l, detail::false_)
+ { this->priv_range_initialize(f, l); }
+
+ template<class FwdIt, class Count> inline
+ void priv_uninitialized_fill_n(FwdIt first, Count count, const CharT val)
+ {
+ //Save initial position
+ FwdIt init = first;
+
+ BOOST_TRY{
+ //Construct objects
+ for (; count--; ++first){
+ this->construct(first, val);
+ }
+ }
+ BOOST_CATCH(...){
+ //Call destructors
+ for (; init != first; ++init){
+ this->destroy(init);
+ }
+ BOOST_RETHROW
+ }
+ BOOST_CATCH_END
+ }
+
+ template<class InpIt, class FwdIt> inline
+ size_type priv_uninitialized_copy(InpIt first, InpIt last, FwdIt dest)
+ {
+ //Save initial destination position
+ FwdIt dest_init = dest;
+ size_type constructed = 0;
+
+ BOOST_TRY{
+ //Try to build objects
+ for (; first != last; ++dest, ++first, ++constructed){
+ this->construct(dest, *first);
+ }
+ }
+ BOOST_CATCH(...){
+ //Call destructors
+ for (; constructed--; ++dest_init){
+ this->destroy(dest_init);
+ }
+ BOOST_RETHROW
+ }
+ BOOST_CATCH_END
+ return (constructed);
+ }
+
+ template <class Integer>
+ basic_string& priv_assign_dispatch(Integer n, Integer x, detail::true_)
+ { return this->assign((size_type) n, (CharT) x); }
+
+ template <class InputIter>
+ basic_string& priv_assign_dispatch(InputIter f, InputIter l,
+ detail::false_)
+ {
+ size_type cur = 0;
+ CharT *ptr = detail::get_pointer(this->priv_addr());
+ while (f != l && cur != this->priv_size()) {
+ Traits::assign(*ptr, *f);
+ ++f;
+ ++cur;
+ ++ptr;
+ }
+ if (f == l)
+ this->erase(this->priv_addr() + cur, this->priv_addr() + this->priv_size());
+ else
+ this->append(f, l);
+ return *this;
+ }
+
+ template <class InputIter>
+ void priv_insert(iterator p, InputIter first, InputIter last, std::input_iterator_tag)
+ {
+ for ( ; first != last; ++first, ++p) {
+ p = this->insert(p, *first);
+ }
+ }
+
+ template <class ForwardIter>
+ void priv_insert(iterator position, ForwardIter first,
+ ForwardIter last, std::forward_iterator_tag)
+ {
+ if (first != last) {
+ size_type n = std::distance(first, last);
+ size_type remaining = this->capacity() - this->priv_size();
+ const size_type old_size = this->size();
+ pointer old_start = this->priv_addr();
+ bool enough_capacity = false;
+ std::pair<pointer, bool> allocation_ret;
+ size_type new_cap = 0;
+
+ //Check if we have enough capacity
+ if (remaining >= n){
+ enough_capacity = true;
+ }
+ else {
+ //Otherwise expand current buffer or allocate new storage
+ new_cap = this->next_capacity(n);
+ allocation_ret = this->allocation_command
+ (allocate_new | expand_fwd | expand_bwd, old_size + n + 1,
+ new_cap, new_cap, old_start);
+
+ //Check forward expansion
+ if(old_start == allocation_ret.first){
+ enough_capacity = true;
+ this->priv_storage(new_cap);
+ }
+ }
+
+ //Reuse same buffer
+ if(enough_capacity){
+ const size_type elems_after =
+ this->priv_size() - (position - this->priv_addr());
+ size_type old_length = this->priv_size();
+ if (elems_after >= n) {
+ pointer pointer_past_last = this->priv_addr() + this->priv_size() + 1;
+ priv_uninitialized_copy(this->priv_addr() + (this->priv_size() - n + 1),
+ pointer_past_last, pointer_past_last);
+
+ this->priv_size(this->priv_size()+n);
+ Traits::move(detail::get_pointer(position + n),
+ detail::get_pointer(position),
+ (elems_after - n) + 1);
+ this->priv_copy(first, last, position);
+ }
+ else {
+ ForwardIter mid = first;
+ std::advance(mid, elems_after + 1);
+
+ priv_uninitialized_copy(mid, last, this->priv_addr() + this->priv_size() + 1);
+ this->priv_size(this->priv_size() + (n - elems_after));
+ priv_uninitialized_copy
+ (position, this->priv_addr() + old_length + 1,
+ this->priv_addr() + this->priv_size());
+ this->priv_size(this->priv_size() + elems_after);
+ this->priv_copy(first, mid, position);
+ }
+ }
+ else{
+ pointer new_start = allocation_ret.first;
+ if(!allocation_ret.second){
+ //Copy data to new buffer
+ size_type new_length = 0;
+ //This can't throw, since characters are POD
+ new_length += priv_uninitialized_copy
+ (this->priv_addr(), position, new_start);
+ new_length += priv_uninitialized_copy
+ (first, last, new_start + new_length);
+ new_length += priv_uninitialized_copy
+ (position, this->priv_addr() + this->priv_size(),
+ new_start + new_length);
+ this->priv_construct_null(new_start + new_length);
+
+ this->deallocate_block();
+ this->is_short(false);
+ this->priv_addr(new_start);
+ this->priv_size(new_length);
+ this->priv_storage(new_cap);
+ }
+ else{
+ //value_type is POD, so backwards expansion is much easier
+ //than with vector<T>
+ value_type *oldbuf = detail::get_pointer(old_start);
+ value_type *newbuf = detail::get_pointer(new_start);
+ value_type *pos = detail::get_pointer(position);
+ size_type before = pos - oldbuf;
+
+ //First move old data
+ Traits::move(newbuf, oldbuf, before);
+ Traits::move(newbuf + before + n, pos, old_size - before);
+ //Now initialize the new data
+ priv_uninitialized_copy(first, last, new_start + before);
+ this->priv_construct_null(new_start + (old_size + n));
+ this->is_short(false);
+ this->priv_addr(new_start);
+ this->priv_size(old_size + n);
+ this->priv_storage(new_cap);
+ }
+ }
+ }
+ }
+
+ template <class Integer>
+ void priv_insert_dispatch(iterator p, Integer n, Integer x,
+ detail::true_)
+ { insert(p, (size_type) n, (CharT) x); }
+
+ template <class InputIter>
+ void priv_insert_dispatch(iterator p, InputIter first, InputIter last,
+ detail::false_)
+ {
+ typedef typename std::iterator_traits<InputIter>::iterator_category Category;
+ priv_insert(p, first, last, Category());
+ }
+
+ template <class InputIterator>
+ void priv_copy(InputIterator first, InputIterator last, iterator result)
+ {
+ for ( ; first != last; ++first, ++result)
+ Traits::assign(*result, *first);
+ }
+
+ void priv_copy(const CharT* first, const CharT* last, CharT* result)
+ { Traits::copy(result, first, last - first); }
+
+ template <class Integer>
+ basic_string& priv_replace_dispatch(iterator first, iterator last,
+ Integer n, Integer x,
+ detail::true_)
+ { return this->replace(first, last, (size_type) n, (CharT) x); }
+
+ template <class InputIter>
+ basic_string& priv_replace_dispatch(iterator first, iterator last,
+ InputIter f, InputIter l,
+ detail::false_)
+ {
+ typedef typename std::iterator_traits<InputIter>::iterator_category Category;
+ return this->priv_replace(first, last, f, l, Category());
+ }
+
+
+ template <class InputIter>
+ basic_string& priv_replace(iterator first, iterator last,
+ InputIter f, InputIter l, std::input_iterator_tag)
+ {
+ for ( ; first != last && f != l; ++first, ++f)
+ Traits::assign(*first, *f);
+
+ if (f == l)
+ this->erase(first, last);
+ else
+ this->insert(last, f, l);
+ return *this;
+ }
+
+ template <class ForwardIter>
+ basic_string& priv_replace(iterator first, iterator last,
+ ForwardIter f, ForwardIter l,
+ std::forward_iterator_tag)
+ {
+ difference_type n = std::distance(f, l);
+ const difference_type len = last - first;
+ if (len >= n) {
+ this->priv_copy(f, l, first);
+ this->erase(first + n, last);
+ }
+ else {
+ ForwardIter m = f;
+ std::advance(m, len);
+ this->priv_copy(f, m, first);
+ this->insert(last, m, l);
+ }
+ return *this;
+ }
+ /// @endcond
+};
+
+template <class CharT, class Traits, class A>
+const typename basic_string<CharT,Traits,A>::size_type
+basic_string<CharT,Traits,A>::npos
+ = (typename basic_string<CharT,Traits,A>::size_type) -1;
+
+// ------------------------------------------------------------
+// Non-member functions.
+
+// Operator+
+
+template <class CharT, class Traits, class A>
+inline basic_string<CharT,Traits,A>
+operator+(const basic_string<CharT,Traits,A>& x,
+ const basic_string<CharT,Traits,A>& y)
+{
+ typedef basic_string<CharT,Traits,A> str_t;
+ typedef typename str_t::reserve_t reserve_t;
+ reserve_t reserve;
+ str_t result(reserve, x.size() + y.size(), x.alloc());
+ result.append(x);
+ result.append(y);
+ return result;
+}
+
+#ifndef BOOST_HAS_RVALUE_REFS
+template <class CharT, class Traits, class A>
+inline boost::rv<basic_string<CharT,Traits,A> >&
+operator+(boost::rv<basic_string<CharT,Traits,A> > &mx,
+ const basic_string<CharT,Traits,A>& y)
+{
+ mx.get() += y;
+ return mx;
+}
+#else
+template <class CharT, class Traits, class A>
+basic_string<CharT,Traits,A> &&
+operator+(basic_string<CharT,Traits,A> && mx,
+ const basic_string<CharT,Traits,A>& y)
+{
+ mx += y;
+ return boost::move(mx);
+}
+#endif
+
+#ifndef BOOST_HAS_RVALUE_REFS
+template <class CharT, class Traits, class A>
+inline boost::rv<basic_string<CharT,Traits,A> >&
+operator+(const basic_string<CharT,Traits,A>& x,
+ boost::rv<basic_string<CharT,Traits,A> > &my)
+{
+ typedef typename basic_string<CharT,Traits,A>::size_type size_type;
+ return my.get().replace(size_type(0), size_type(0), x);
+}
+#else
+template <class CharT, class Traits, class A>
+inline basic_string<CharT,Traits,A> &&
+operator+(const basic_string<CharT,Traits,A>& x,
+ basic_string<CharT,Traits,A> && my)
+{
+ typedef typename basic_string<CharT,Traits,A>::size_type size_type;
+ return my.replace(size_type(0), size_type(0), x);
+}
+#endif
+
+template <class CharT, class Traits, class A>
+inline basic_string<CharT,Traits,A>
+operator+(const CharT* s, const basic_string<CharT,Traits,A>& y)
+{
+ typedef basic_string<CharT,Traits,A> str_t;
+ typedef typename str_t::reserve_t reserve_t;
+ reserve_t reserve;
+ const std::size_t n = Traits::length(s);
+ str_t result(reserve, n + y.size());
+ result.append(s, s + n);
+ result.append(y);
+ return result;
+}
+
+#ifndef BOOST_HAS_RVALUE_REFS
+template <class CharT, class Traits, class A>
+inline boost::rv<basic_string<CharT,Traits,A> >&
+operator+(const CharT* s,
+ boost::rv<basic_string<CharT,Traits,A> > &my)
+{
+ typedef typename basic_string<CharT,Traits,A>::size_type size_type;
+ return my.get().replace(size_type(0), size_type(0), s);
+}
+#else
+template <class CharT, class Traits, class A>
+inline basic_string<CharT,Traits,A> &&
+operator+(const CharT* s,
+ basic_string<CharT,Traits,A> && my)
+{
+ typedef typename basic_string<CharT,Traits,A>::size_type size_type;
+ return boost::move(my.get().replace(size_type(0), size_type(0), s));
+}
+#endif
+
+template <class CharT, class Traits, class A>
+inline basic_string<CharT,Traits,A>
+operator+(CharT c, const basic_string<CharT,Traits,A>& y)
+{
+ typedef basic_string<CharT,Traits,A> str_t;
+ typedef typename str_t::reserve_t reserve_t;
+ reserve_t reserve;
+ str_t result(reserve, 1 + y.size());
+ result.push_back(c);
+ result.append(y);
+ return result;
+}
+
+#ifndef BOOST_HAS_RVALUE_REFS
+template <class CharT, class Traits, class A>
+inline boost::rv<basic_string<CharT,Traits,A> >&
+operator+(CharT c, boost::rv<basic_string<CharT,Traits,A> > &my)
+{
+ typedef typename basic_string<CharT,Traits,A>::size_type size_type;
+ return my.get().replace(size_type(0), size_type(0), &c, &c + 1);
+}
+#else
+template <class CharT, class Traits, class A>
+inline basic_string<CharT,Traits,A> &&
+operator+(CharT c,
+ basic_string<CharT,Traits,A> && my)
+{
+ typedef typename basic_string<CharT,Traits,A>::size_type size_type;
+ return my.replace(size_type(0), size_type(0), &c, &c + 1);
+}
+#endif
+
+template <class CharT, class Traits, class A>
+inline basic_string<CharT,Traits,A>
+operator+(const basic_string<CharT,Traits,A>& x, const CharT* s)
+{
+ typedef basic_string<CharT,Traits,A> str_t;
+ typedef typename str_t::reserve_t reserve_t;
+ reserve_t reserve;
+ const std::size_t n = Traits::length(s);
+ str_t result(reserve, x.size() + n, x.alloc());
+ result.append(x);
+ result.append(s, s + n);
+ return result;
+}
+
+#ifndef BOOST_HAS_RVALUE_REFS
+template <class CharT, class Traits, class A>
+inline boost::rv<basic_string<CharT,Traits,A> >&
+operator+(boost::rv<basic_string<CharT,Traits,A> > &mx, const CharT* s)
+{
+ mx.get() += s;
+ return mx;
+}
+#else
+template <class CharT, class Traits, class A>
+basic_string<CharT,Traits,A> &&
+operator+(basic_string<CharT,Traits,A> && mx, const CharT* s)
+{
+ mx += s;
+ return boost::move(mx);
+}
+#endif
+
+template <class CharT, class Traits, class A>
+inline basic_string<CharT,Traits,A>
+operator+(const basic_string<CharT,Traits,A>& x, const CharT c)
+{
+ typedef basic_string<CharT,Traits,A> str_t;
+ typedef typename str_t::reserve_t reserve_t;
+ reserve_t reserve;
+ str_t result(reserve, x.size() + 1, x.alloc());
+ result.append(x);
+ result.push_back(c);
+ return result;
+}
+
+#ifndef BOOST_HAS_RVALUE_REFS
+template <class CharT, class Traits, class A>
+inline boost::rv<basic_string<CharT,Traits,A> >&
+operator+(boost::rv<basic_string<CharT,Traits,A> > &mx, const CharT c)
+{
+ mx.get() += c;
+ return mx;
+}
+#else
+template <class CharT, class Traits, class A>
+basic_string<CharT,Traits,A> &&
+operator+(basic_string<CharT,Traits,A> && mx, const CharT c)
+{
+ mx += c;
+ return boost::move(mx);
+}
+#endif
+
+// Operator== and operator!=
+
+template <class CharT, class Traits, class A>
+inline bool
+operator==(const basic_string<CharT,Traits,A>& x,
+ const basic_string<CharT,Traits,A>& y)
+{
+ return x.size() == y.size() &&
+ Traits::compare(x.data(), y.data(), x.size()) == 0;
+}
+
+template <class CharT, class Traits, class A>
+inline bool
+operator==(const CharT* s, const basic_string<CharT,Traits,A>& y)
+{
+ std::size_t n = Traits::length(s);
+ return n == y.size() && Traits::compare(s, y.data(), n) == 0;
+}
+
+template <class CharT, class Traits, class A>
+inline bool
+operator==(const basic_string<CharT,Traits,A>& x, const CharT* s)
+{
+ std::size_t n = Traits::length(s);
+ return x.size() == n && Traits::compare(x.data(), s, n) == 0;
+}
+
+template <class CharT, class Traits, class A>
+inline bool
+operator!=(const basic_string<CharT,Traits,A>& x,
+ const basic_string<CharT,Traits,A>& y)
+ { return !(x == y); }
+
+template <class CharT, class Traits, class A>
+inline bool
+operator!=(const CharT* s, const basic_string<CharT,Traits,A>& y)
+ { return !(s == y); }
+
+template <class CharT, class Traits, class A>
+inline bool
+operator!=(const basic_string<CharT,Traits,A>& x, const CharT* s)
+ { return !(x == s); }
+
+
+// Operator< (and also >, <=, and >=).
+
+template <class CharT, class Traits, class A>
+inline bool
+operator<(const basic_string<CharT,Traits,A>& x,
+ const basic_string<CharT,Traits,A>& y)
+{
+ return x.compare(y) < 0;
+// return basic_string<CharT,Traits,A>
+// ::s_compare(x.begin(), x.end(), y.begin(), y.end()) < 0;
+}
+
+template <class CharT, class Traits, class A>
+inline bool
+operator<(const CharT* s, const basic_string<CharT,Traits,A>& y)
+{
+ return y.compare(s) > 0;
+// std::size_t n = Traits::length(s);
+// return basic_string<CharT,Traits,A>
+// ::s_compare(s, s + n, y.begin(), y.end()) < 0;
+}
+
+template <class CharT, class Traits, class A>
+inline bool
+operator<(const basic_string<CharT,Traits,A>& x,
+ const CharT* s)
+{
+ return x.compare(s) < 0;
+// std::size_t n = Traits::length(s);
+// return basic_string<CharT,Traits,A>
+// ::s_compare(x.begin(), x.end(), s, s + n) < 0;
+}
+
+template <class CharT, class Traits, class A>
+inline bool
+operator>(const basic_string<CharT,Traits,A>& x,
+ const basic_string<CharT,Traits,A>& y) {
+ return y < x;
+}
+
+template <class CharT, class Traits, class A>
+inline bool
+operator>(const CharT* s, const basic_string<CharT,Traits,A>& y) {
+ return y < s;
+}
+
+template <class CharT, class Traits, class A>
+inline bool
+operator>(const basic_string<CharT,Traits,A>& x, const CharT* s)
+{
+ return s < x;
+}
+
+template <class CharT, class Traits, class A>
+inline bool
+operator<=(const basic_string<CharT,Traits,A>& x,
+ const basic_string<CharT,Traits,A>& y)
+{
+ return !(y < x);
+}
+
+template <class CharT, class Traits, class A>
+inline bool
+operator<=(const CharT* s, const basic_string<CharT,Traits,A>& y)
+ { return !(y < s); }
+
+template <class CharT, class Traits, class A>
+inline bool
+operator<=(const basic_string<CharT,Traits,A>& x, const CharT* s)
+ { return !(s < x); }
+
+template <class CharT, class Traits, class A>
+inline bool
+operator>=(const basic_string<CharT,Traits,A>& x,
+ const basic_string<CharT,Traits,A>& y)
+ { return !(x < y); }
+
+template <class CharT, class Traits, class A>
+inline bool
+operator>=(const CharT* s, const basic_string<CharT,Traits,A>& y)
+ { return !(s < y); }
+
+template <class CharT, class Traits, class A>
+inline bool
+operator>=(const basic_string<CharT,Traits,A>& x, const CharT* s)
+ { return !(x < s); }
+
+// Swap.
+#ifndef BOOST_HAS_RVALUE_REFS
+template <class CharT, class Traits, class A>
+inline void swap(basic_string<CharT,Traits,A>& x, basic_string<CharT,Traits,A>& y)
+{ x.swap(y); }
+
+template <class CharT, class Traits, class A>
+inline void swap(boost::rv<basic_string<CharT,Traits,A> > &mx, basic_string<CharT,Traits,A>& y)
+{ mx.get().swap(y); }
+
+template <class CharT, class Traits, class A>
+inline void swap(basic_string<CharT,Traits,A>& x, boost::rv<basic_string<CharT,Traits,A> > &my)
+{ x.swap(my.get()); }
+#else
+template <class CharT, class Traits, class A>
+inline void swap(basic_string<CharT,Traits,A> && x, basic_string<CharT,Traits,A> &&y)
+{ x.swap(y); }
+#endif
+
+/// @cond
+// I/O.
+namespace detail {
+
+template <class CharT, class Traits>
+inline bool
+interprocess_string_fill(std::basic_ostream<CharT, Traits>& os,
+ std::basic_streambuf<CharT, Traits>* buf,
+ std::size_t n)
+{
+ CharT f = os.fill();
+ std::size_t i;
+ bool ok = true;
+
+ for (i = 0; i < n; i++)
+ ok = ok && !Traits::eq_int_type(buf->sputc(f), Traits::eof());
+ return ok;
+}
+
+} //namespace detail {
+/// @endcond
+
+template <class CharT, class Traits, class A>
+std::basic_ostream<CharT, Traits>&
+operator<<(std::basic_ostream<CharT, Traits>& os,
+ #ifndef BOOST_HAS_RVALUE_REFS
+ const basic_string<CharT,Traits,A>& s)
+ #else
+ const basic_string<CharT,Traits,A>&&s)
+ #endif
+{
+ typename std::basic_ostream<CharT, Traits>::sentry sentry(os);
+ bool ok = false;
+
+ if (sentry) {
+ ok = true;
+ std::size_t n = s.size();
+ std::size_t pad_len = 0;
+ const bool left = (os.flags() & std::ios::left) != 0;
+ const std::size_t w = os.width(0);
+ std::basic_streambuf<CharT, Traits>* buf = os.rdbuf();
+
+ if (w != 0 && n < w)
+ pad_len = w - n;
+
+ if (!left)
+ ok = detail::interprocess_string_fill(os, buf, pad_len);
+
+ ok = ok &&
+ buf->sputn(s.data(), std::streamsize(n)) == std::streamsize(n);
+
+ if (left)
+ ok = ok && detail::interprocess_string_fill(os, buf, pad_len);
+ }
+
+ if (!ok)
+ os.setstate(std::ios_base::failbit);
+
+ return os;
+}
+
+#ifndef BOOST_HAS_RVALUE_REFS
+template <class CharT, class Traits, class A>
+std::basic_ostream<CharT, Traits>&
+operator<<(std::basic_ostream<CharT, Traits>& os,
+ boost::rv<basic_string<CharT,Traits,A> > &ms)
+{ return os << ms.get(); }
+#endif
+
+
+template <class CharT, class Traits, class A>
+std::basic_istream<CharT, Traits>&
+operator>>(std::basic_istream<CharT, Traits>& is,
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ basic_string<CharT,Traits,A>& s)
+ #else
+ basic_string<CharT,Traits,A>&&s)
+ #endif
+{
+ typename std::basic_istream<CharT, Traits>::sentry sentry(is);
+
+ if (sentry) {
+ std::basic_streambuf<CharT, Traits>* buf = is.rdbuf();
+ const std::ctype<CharT>& ctype = std::use_facet<std::ctype<CharT> >(is.getloc());
+
+ s.clear();
+ std::size_t n = is.width(0);
+ if (n == 0)
+ n = static_cast<std::size_t>(-1);
+ else
+ s.reserve(n);
+
+ while (n-- > 0) {
+ typename Traits::int_type c1 = buf->sbumpc();
+
+ if (Traits::eq_int_type(c1, Traits::eof())) {
+ is.setstate(std::ios_base::eofbit);
+ break;
+ }
+ else {
+ CharT c = Traits::to_char_type(c1);
+
+ if (ctype.is(std::ctype<CharT>::space, c)) {
+ if (Traits::eq_int_type(buf->sputbackc(c), Traits::eof()))
+ is.setstate(std::ios_base::failbit);
+ break;
+ }
+ else
+ s.push_back(c);
+ }
+ }
+
+ // If we have read no characters, then set failbit.
+ if (s.size() == 0)
+ is.setstate(std::ios_base::failbit);
+ }
+ else
+ is.setstate(std::ios_base::failbit);
+
+ return is;
+}
+
+#if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+template <class CharT, class Traits, class A>
+std::basic_istream<CharT, Traits>&
+operator>>(std::basic_istream<CharT, Traits>& is,
+ boost::rv<basic_string<CharT,Traits,A> > &ms)
+{ return is >> ms.get(); }
+#endif
+
+template <class CharT, class Traits, class A>
+std::basic_istream<CharT, Traits>&
+getline(std::istream& is,
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ basic_string<CharT,Traits,A>& s,
+ #else
+ basic_string<CharT,Traits,A>&&s,
+ #endif
+ CharT delim)
+{
+ std::size_t nread = 0;
+ typename std::basic_istream<CharT, Traits>::sentry sentry(is, true);
+ if (sentry) {
+ std::basic_streambuf<CharT, Traits>* buf = is.rdbuf();
+ s.clear();
+
+ int c1;
+ while (nread < s.max_size()) {
+ int c1 = buf->sbumpc();
+ if (Traits::eq_int_type(c1, Traits::eof())) {
+ is.setstate(std::ios_base::eofbit);
+ break;
+ }
+ else {
+ ++nread;
+ CharT c = Traits::to_char_type(c1);
+ if (!Traits::eq(c, delim))
+ s.push_back(c);
+ else
+ break; // Character is extracted but not appended.
+ }
+ }
+ }
+ if (nread == 0 || nread >= s.max_size())
+ is.setstate(std::ios_base::failbit);
+
+ return is;
+}
+
+#ifndef BOOST_HAS_RVALUE_REFS
+template <class CharT, class Traits, class A>
+std::basic_istream<CharT, Traits>&
+getline(std::istream& is, boost::rv<basic_string<CharT,Traits,A> > &ms,
+ CharT delim)
+{ return getline(is, ms.get(), delim); }
+#endif
+
+#if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+template <class CharT, class Traits, class A>
+inline std::basic_istream<CharT, Traits>&
+getline(std::basic_istream<CharT, Traits>& is,
+ basic_string<CharT,Traits,A>& s)
+{
+ return getline(is, s, '\n');
+}
+
+template <class CharT, class Traits, class A>
+std::basic_istream<CharT, Traits>&
+getline(std::istream& is, boost::rv<basic_string<CharT,Traits,A> > &ms)
+{ return getline(is, ms.get()); }
+#else
+template <class CharT, class Traits, class A>
+std::basic_istream<CharT, Traits>&
+getline(std::istream& is,
+ basic_string<CharT,Traits,A> && ms)
+{ return getline(is, ms); }
+#endif
+
+template <class Ch, class A>
+inline std::size_t hash_value(basic_string<Ch, std::char_traits<Ch>, A> const& v)
+{
+ return hash_range(v.begin(), v.end());
+}
+
+/// @cond
+
+//!has_trivial_destructor_after_move<> == true_type
+//!specialization for optimizations
+template <class C, class T, class A>
+struct has_trivial_destructor_after_move<basic_string<C, T, A> >
+{
+ enum { value = has_trivial_destructor<A>::value };
+};
+/// @endcond
+
+}} //namespace boost { namespace interprocess
+
+#include <boost/interprocess/detail/config_end.hpp>
+
+#endif // BOOST_INTERPROCESS_STRING_HPP

Added: sandbox/boost/interprocess/containers/vector.hpp
==============================================================================
--- (empty file)
+++ sandbox/boost/interprocess/containers/vector.hpp 2009-02-17 13:04:56 EST (Tue, 17 Feb 2009)
@@ -0,0 +1,1964 @@
+//////////////////////////////////////////////////////////////////////////////
+//
+// (C) Copyright Ion Gaztanaga 2005-2008. Distributed under the Boost
+// Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+//
+// See http://www.boost.org/libs/interprocess for documentation.
+//
+//////////////////////////////////////////////////////////////////////////////
+//
+// This file comes from SGI's stl_vector.h file. Modified by Ion Gaztanaga.
+// Renaming, isolating and porting to generic algorithms. Pointer typedef
+// set to allocator::pointer to allow placing it in shared memory.
+//
+///////////////////////////////////////////////////////////////////////////////
+// Copyright (c) 1994
+// Hewlett-Packard Company
+//
+// Permission to use, copy, modify, distribute and sell this software
+// and its documentation for any purpose is hereby granted without fee,
+// provided that the above copyright notice appear in all copies and
+// that both that copyright notice and this permission notice appear
+// in supporting documentation. Hewlett-Packard Company makes no
+// representations about the suitability of this software for any
+// purpose. It is provided "as is" without express or implied warranty.
+//
+//
+// Copyright (c) 1996
+// Silicon Graphics Computer Systems, Inc.
+//
+// Permission to use, copy, modify, distribute and sell this software
+// and its documentation for any purpose is hereby granted without fee,
+// provided that the above copyright notice appear in all copies and
+// that both that copyright notice and this permission notice appear
+// in supporting documentation. Silicon Graphics makes no
+// representations about the suitability of this software for any
+// purpose. It is provided "as is" without express or implied warranty.
+
+#ifndef BOOST_INTERPROCESS_VECTOR_HPP
+#define BOOST_INTERPROCESS_VECTOR_HPP
+
+#if (defined _MSC_VER) && (_MSC_VER >= 1200)
+# pragma once
+#endif
+
+#include <boost/interprocess/detail/config_begin.hpp>
+#include <boost/interprocess/detail/workaround.hpp>
+
+#include <cstddef>
+#include <memory>
+#include <algorithm>
+#include <stdexcept>
+#include <iterator>
+#include <utility>
+#include <boost/detail/no_exceptions_support.hpp>
+#include <boost/type_traits/has_trivial_destructor.hpp>
+#include <boost/type_traits/has_trivial_copy.hpp>
+#include <boost/type_traits/has_trivial_assign.hpp>
+#include <boost/type_traits/has_nothrow_copy.hpp>
+#include <boost/type_traits/has_nothrow_assign.hpp>
+#include <boost/interprocess/detail/version_type.hpp>
+#include <boost/interprocess/allocators/allocation_type.hpp>
+#include <boost/interprocess/detail/utilities.hpp>
+#include <boost/interprocess/detail/iterators.hpp>
+#include <boost/interprocess/detail/algorithms.hpp>
+#include <boost/interprocess/detail/min_max.hpp>
+#include <boost/interprocess/interprocess_fwd.hpp>
+#include <boost/move_semantics/move.hpp>
+#include <boost/interprocess/detail/mpl.hpp>
+#include <boost/interprocess/detail/advanced_insert_int.hpp>
+
+namespace boost {
+namespace interprocess {
+
+/// @cond
+
+namespace detail {
+
+//! Const vector_iterator used to iterate through a vector.
+template <class Pointer>
+class vector_const_iterator
+ : public std::iterator<std::random_access_iterator_tag
+ ,const typename std::iterator_traits<Pointer>::value_type
+ ,typename std::iterator_traits<Pointer>::difference_type
+ ,typename pointer_to_other
+ <Pointer
+ ,const typename std::iterator_traits<Pointer>::value_type
+ >::type
+ ,const typename std::iterator_traits<Pointer>::value_type &>
+{
+ public:
+ typedef const typename std::iterator_traits<Pointer>::value_type value_type;
+ typedef typename std::iterator_traits<Pointer>::difference_type difference_type;
+ typedef typename pointer_to_other<Pointer, value_type>::type pointer;
+ typedef value_type& reference;
+
+ /// @cond
+ protected:
+ Pointer m_ptr;
+
+ public:
+ Pointer get_ptr() const { return m_ptr; }
+ explicit vector_const_iterator(Pointer ptr) : m_ptr(ptr){}
+ /// @endcond
+
+ public:
+
+ //Constructors
+ vector_const_iterator() : m_ptr(0){}
+
+ //Pointer like operators
+ reference operator*() const
+ { return *m_ptr; }
+
+ const value_type * operator->() const
+ { return detail::get_pointer(m_ptr); }
+
+ reference operator[](difference_type off) const
+ { return m_ptr[off]; }
+
+ //Increment / Decrement
+ vector_const_iterator& operator++()
+ { ++m_ptr; return *this; }
+
+ vector_const_iterator operator++(int)
+ { Pointer tmp = m_ptr; ++*this; return vector_const_iterator(tmp); }
+
+ vector_const_iterator& operator--()
+ { --m_ptr; return *this; }
+
+ vector_const_iterator operator--(int)
+ { Pointer tmp = m_ptr; --*this; return vector_const_iterator(tmp); }
+
+ //Arithmetic
+ vector_const_iterator& operator+=(difference_type off)
+ { m_ptr += off; return *this; }
+
+ vector_const_iterator operator+(difference_type off) const
+ { return vector_const_iterator(m_ptr+off); }
+
+ friend vector_const_iterator operator+(difference_type off, const vector_const_iterator& right)
+ { return vector_const_iterator(off + right.m_ptr); }
+
+ vector_const_iterator& operator-=(difference_type off)
+ { m_ptr -= off; return *this; }
+
+ vector_const_iterator operator-(difference_type off) const
+ { return vector_const_iterator(m_ptr-off); }
+
+ difference_type operator-(const vector_const_iterator& right) const
+ { return m_ptr - right.m_ptr; }
+
+ //Comparison operators
+ bool operator== (const vector_const_iterator& r) const
+ { return m_ptr == r.m_ptr; }
+
+ bool operator!= (const vector_const_iterator& r) const
+ { return m_ptr != r.m_ptr; }
+
+ bool operator< (const vector_const_iterator& r) const
+ { return m_ptr < r.m_ptr; }
+
+ bool operator<= (const vector_const_iterator& r) const
+ { return m_ptr <= r.m_ptr; }
+
+ bool operator> (const vector_const_iterator& r) const
+ { return m_ptr > r.m_ptr; }
+
+ bool operator>= (const vector_const_iterator& r) const
+ { return m_ptr >= r.m_ptr; }
+};
+
+//! Iterator used to iterate through a vector
+template <class Pointer>
+class vector_iterator
+ : public vector_const_iterator<Pointer>
+{
+ public:
+ explicit vector_iterator(Pointer ptr)
+ : vector_const_iterator<Pointer>(ptr)
+ {}
+
+ public:
+ typedef typename std::iterator_traits<Pointer>::value_type value_type;
+ typedef typename vector_const_iterator<Pointer>::difference_type difference_type;
+ typedef Pointer pointer;
+ typedef value_type& reference;
+
+ //Constructors
+ vector_iterator()
+ {}
+
+ //Pointer like operators
+ reference operator*() const
+ { return *this->m_ptr; }
+
+ value_type* operator->() const
+ { return detail::get_pointer(this->m_ptr); }
+
+ reference operator[](difference_type off) const
+ { return this->m_ptr[off]; }
+
+ //Increment / Decrement
+ vector_iterator& operator++()
+ { ++this->m_ptr; return *this; }
+
+ vector_iterator operator++(int)
+ { pointer tmp = this->m_ptr; ++*this; return vector_iterator(tmp); }
+
+ vector_iterator& operator--()
+ { --this->m_ptr; return *this; }
+
+ vector_iterator operator--(int)
+ { vector_iterator tmp = *this; --*this; return vector_iterator(tmp); }
+
+ // Arithmetic
+ vector_iterator& operator+=(difference_type off)
+ { this->m_ptr += off; return *this; }
+
+ vector_iterator operator+(difference_type off) const
+ { return vector_iterator(this->m_ptr+off); }
+
+ friend vector_iterator operator+(difference_type off, const vector_iterator& right)
+ { return vector_iterator(off + right.m_ptr); }
+
+ vector_iterator& operator-=(difference_type off)
+ { this->m_ptr -= off; return *this; }
+
+ vector_iterator operator-(difference_type off) const
+ { return vector_iterator(this->m_ptr-off); }
+
+ difference_type operator-(const vector_const_iterator<Pointer>& right) const
+ { return static_cast<const vector_const_iterator<Pointer>&>(*this) - right; }
+};
+
+template <class T, class A>
+struct vector_value_traits
+{
+ typedef T value_type;
+ typedef A allocator_type;
+ static const bool trivial_dctr = boost::has_trivial_destructor<value_type>::value;
+ static const bool trivial_dctr_after_move =
+ has_trivial_destructor_after_move<value_type>::value || trivial_dctr;
+ static const bool trivial_copy = has_trivial_copy<value_type>::value;
+ static const bool nothrow_copy = has_nothrow_copy<value_type>::value;
+ static const bool trivial_assign = has_trivial_assign<value_type>::value;
+ static const bool nothrow_assign = has_nothrow_assign<value_type>::value;
+
+ //This is the anti-exception array destructor
+ //to deallocate values already constructed
+ typedef typename detail::if_c
+ <trivial_dctr
+ ,detail::null_scoped_destructor_n<allocator_type>
+ ,detail::scoped_destructor_n<allocator_type>
+ >::type OldArrayDestructor;
+ //This is the anti-exception array destructor
+ //to destroy objects created with copy construction
+ typedef typename detail::if_c
+ <nothrow_copy
+ ,detail::null_scoped_destructor_n<allocator_type>
+ ,detail::scoped_destructor_n<allocator_type>
+ >::type UCopiedArrayDestructor;
+ //This is the anti-exception array deallocator
+ typedef typename detail::if_c
+ <nothrow_copy
+ ,detail::null_scoped_array_deallocator<allocator_type>
+ ,detail::scoped_array_deallocator<allocator_type>
+ >::type UCopiedArrayDeallocator;
+};
+
+//!This struct deallocates and allocated memory
+template <class A>
+struct vector_alloc_holder
+{
+ typedef typename A::pointer pointer;
+ typedef typename A::size_type size_type;
+ typedef typename A::value_type value_type;
+ typedef vector_value_traits<value_type, A> value_traits;
+
+ //Constructor, does not throw
+ vector_alloc_holder(const A &a)
+ : members_(a)
+ {}
+
+ //Constructor, does not throw
+ vector_alloc_holder(const vector_alloc_holder<A> &h)
+ : members_(h.alloc())
+ {}
+
+ //Destructor
+ ~vector_alloc_holder()
+ {
+ this->prot_destroy_all();
+ this->prot_deallocate();
+ }
+
+ typedef detail::integral_constant<unsigned, 1> allocator_v1;
+ typedef detail::integral_constant<unsigned, 2> allocator_v2;
+ typedef detail::integral_constant<unsigned,
+ boost::interprocess::detail::version<A>::value> alloc_version;
+ std::pair<pointer, bool>
+ allocation_command(allocation_type command,
+ size_type limit_size,
+ size_type preferred_size,
+ size_type &received_size, const pointer &reuse = 0)
+ {
+ return allocation_command(command, limit_size, preferred_size,
+ received_size, reuse, alloc_version());
+ }
+
+ std::pair<pointer, bool>
+ allocation_command(allocation_type command,
+ size_type limit_size,
+ size_type preferred_size,
+ size_type &received_size,
+ const pointer &reuse,
+ allocator_v1)
+ {
+ (void)limit_size;
+ (void)reuse;
+ if(!(command & allocate_new))
+ return std::pair<pointer, bool>(pointer(0), 0);
+ received_size = preferred_size;
+ return std::make_pair(this->alloc().allocate(received_size), false);
+ }
+
+ std::pair<pointer, bool>
+ allocation_command(allocation_type command,
+ size_type limit_size,
+ size_type preferred_size,
+ size_type &received_size,
+ const pointer &reuse,
+ allocator_v2)
+ {
+ return this->alloc().allocation_command
+ (command, limit_size, preferred_size, received_size, reuse);
+ }
+
+ size_type next_capacity(size_type additional_objects) const
+ { return get_next_capacity(this->alloc().max_size(), this->members_.m_capacity, additional_objects); }
+
+ struct members_holder
+ : public A
+ {
+ private:
+ members_holder(const members_holder&);
+
+ public:
+ members_holder(const A &alloc)
+ : A(alloc), m_start(0), m_size(0), m_capacity(0)
+ {}
+
+ pointer m_start;
+ size_type m_size;
+ size_type m_capacity;
+ } members_;
+
+ protected:
+ void prot_deallocate()
+ {
+ if(!this->members_.m_capacity) return;
+ this->alloc().deallocate(this->members_.m_start, this->members_.m_capacity);
+ this->members_.m_start = 0;
+ this->members_.m_size = 0;
+ this->members_.m_capacity = 0;
+ }
+
+ void destroy(value_type* p)
+ {
+ if(!value_traits::trivial_dctr)
+ detail::get_pointer(p)->~value_type();
+ }
+
+ void destroy_n(value_type* p, size_type n)
+ {
+ if(!value_traits::trivial_dctr)
+ for(; n--; ++p) p->~value_type();
+ }
+
+ void prot_destroy_all()
+ {
+ this->destroy_n(detail::get_pointer(this->members_.m_start), this->members_.m_size);
+ this->members_.m_size = 0;
+ }
+
+ A &alloc()
+ { return members_; }
+
+ const A &alloc() const
+ { return members_; }
+};
+
+} //namespace detail {
+/// @endcond
+
+//! A vector is a sequence that supports random access to elements, constant
+//! time insertion and removal of elements at the end, and linear time insertion
+//! and removal of elements at the beginning or in the middle. The number of
+//! elements in a vector may vary dynamically; memory management is automatic.
+//! boost::interprocess::vector is similar to std::vector but it's compatible
+//! with shared memory and memory mapped files.
+template <class T, class A>
+class vector : private detail::vector_alloc_holder<A>
+{
+ /// @cond
+ typedef vector<T, A> self_t;
+ typedef detail::vector_alloc_holder<A> base_t;
+ /// @endcond
+ public:
+ //! The type of object, T, stored in the vector
+ typedef T value_type;
+ //! Pointer to T
+ typedef typename A::pointer pointer;
+ //! Const pointer to T
+ typedef typename A::const_pointer const_pointer;
+ //! Reference to T
+ typedef typename A::reference reference;
+ //! Const reference to T
+ typedef typename A::const_reference const_reference;
+ //! An unsigned integral type
+ typedef typename A::size_type size_type;
+ //! A signed integral type
+ typedef typename A::difference_type difference_type;
+ //! The allocator type
+ typedef A allocator_type;
+ //! The random access iterator
+ typedef detail::vector_iterator<pointer> iterator;
+ //! The random access const_iterator
+ typedef detail::vector_const_iterator<pointer> const_iterator;
+
+ //! Iterator used to iterate backwards through a vector.
+ typedef std::reverse_iterator<iterator>
+ reverse_iterator;
+ //! Const iterator used to iterate backwards through a vector.
+ typedef std::reverse_iterator<const_iterator>
+ const_reverse_iterator;
+ //! The stored allocator type
+ typedef allocator_type stored_allocator_type;
+
+ /// @cond
+ private:
+ typedef detail::advanced_insert_aux_int<T, T*> advanced_insert_aux_int_t;
+ typedef detail::vector_value_traits<value_type, A> value_traits;
+
+ typedef typename base_t::allocator_v1 allocator_v1;
+ typedef typename base_t::allocator_v2 allocator_v2;
+ typedef typename base_t::alloc_version alloc_version;
+
+ typedef constant_iterator<T, difference_type> cvalue_iterator;
+ typedef repeat_iterator<T, difference_type> repeat_it;
+ typedef boost::move_iterator<repeat_it> repeat_move_it;
+ /// @endcond
+
+ public:
+ BOOST_ENABLE_MOVE_EMULATION(vector)
+
+ //! <b>Effects</b>: Constructs a vector taking the allocator as parameter.
+ //!
+ //! <b>Throws</b>: If allocator_type's copy constructor throws.
+ //!
+ //! <b>Complexity</b>: Constant.
+ explicit vector(const A& a = A())
+ : base_t(a)
+ {}
+
+ //! <b>Effects</b>: Constructs a vector that will use a copy of allocator a
+ //! and inserts n default contructed values.
+ //!
+ //! <b>Throws</b>: If allocator_type's default constructor or copy constructor
+ //! throws or T's default or copy constructor throws.
+ //!
+ //! <b>Complexity</b>: Linear to n.
+ vector(size_type n)
+ : base_t(allocator_type())
+ { this->resize(n); }
+
+ //! <b>Effects</b>: Constructs a vector that will use a copy of allocator a
+ //! and inserts n copies of value.
+ //!
+ //! <b>Throws</b>: If allocator_type's default constructor or copy constructor
+ //! throws or T's default or copy constructor throws.
+ //!
+ //! <b>Complexity</b>: Linear to n.
+ vector(size_type n, const T& value, const allocator_type& a = allocator_type())
+ : base_t(a)
+ { this->insert(this->cend(), n, value); }
+
+ //! <b>Effects</b>: Copy constructs a vector.
+ //!
+ //! <b>Postcondition</b>: x == *this.
+ //!
+ //! <b>Complexity</b>: Linear to the elements x contains.
+ vector(const vector<T, A>& x)
+ : base_t((base_t&)x)
+ { *this = x; }
+
+ //! <b>Effects</b>: Move constructor. Moves mx's resources to *this.
+ //!
+ //! <b>Throws</b>: If allocator_type's copy constructor throws.
+ //!
+ //! <b>Complexity</b>: Constant.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ vector(boost::rv<vector<T, A> > &mx)
+ : base_t(mx.get())
+ { this->swap(mx.get()); }
+ #else
+ vector(vector<T, A> && mx)
+ : base_t(boost::move(mx))
+ { this->swap(mx); }
+ #endif
+
+ //! <b>Effects</b>: Constructs a vector that will use a copy of allocator a
+ //! and inserts a copy of the range [first, last) in the vector.
+ //!
+ //! <b>Throws</b>: If allocator_type's default constructor or copy constructor
+ //! throws or T's constructor taking an dereferenced InIt throws.
+ //!
+ //! <b>Complexity</b>: Linear to the range [first, last).
+ template <class InIt>
+ vector(InIt first, InIt last, const allocator_type& a = allocator_type())
+ : base_t(a)
+ { this->assign(first, last); }
+
+ //! <b>Effects</b>: Destroys the vector. All stored values are destroyed
+ //! and used memory is deallocated.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Linear to the number of elements.
+ ~vector()
+ {} //vector_alloc_holder clears the data
+
+ //! <b>Effects</b>: Returns an iterator to the first element contained in the vector.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ iterator begin()
+ { return iterator(this->members_.m_start); }
+
+ //! <b>Effects</b>: Returns a const_iterator to the first element contained in the vector.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_iterator begin() const
+ { return const_iterator(this->members_.m_start); }
+
+ //! <b>Effects</b>: Returns an iterator to the end of the vector.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ iterator end()
+ { return iterator(this->members_.m_start + this->members_.m_size); }
+
+ //! <b>Effects</b>: Returns a const_iterator to the end of the vector.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_iterator end() const
+ { return this->cend(); }
+
+ //! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning
+ //! of the reversed vector.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ reverse_iterator rbegin()
+ { return reverse_iterator(this->end()); }
+
+ //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
+ //! of the reversed vector.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_reverse_iterator rbegin()const
+ { return this->crbegin(); }
+
+ //! <b>Effects</b>: Returns a reverse_iterator pointing to the end
+ //! of the reversed vector.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ reverse_iterator rend()
+ { return reverse_iterator(this->begin()); }
+
+ //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
+ //! of the reversed vector.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_reverse_iterator rend() const
+ { return this->crend(); }
+
+ //! <b>Effects</b>: Returns a const_iterator to the first element contained in the vector.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_iterator cbegin() const
+ { return const_iterator(this->members_.m_start); }
+
+ //! <b>Effects</b>: Returns a const_iterator to the end of the vector.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_iterator cend() const
+ { return const_iterator(this->members_.m_start + this->members_.m_size); }
+
+ //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
+ //! of the reversed vector.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_reverse_iterator crbegin()const
+ { return const_reverse_iterator(this->end());}
+
+ //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
+ //! of the reversed vector.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_reverse_iterator crend() const
+ { return const_reverse_iterator(this->begin()); }
+
+ //! <b>Requires</b>: !empty()
+ //!
+ //! <b>Effects</b>: Returns a reference to the first element
+ //! from the beginning of the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ reference front()
+ { return *this->members_.m_start; }
+
+ //! <b>Requires</b>: !empty()
+ //!
+ //! <b>Effects</b>: Returns a const reference to the first element
+ //! from the beginning of the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_reference front() const
+ { return *this->members_.m_start; }
+
+ //! <b>Requires</b>: !empty()
+ //!
+ //! <b>Effects</b>: Returns a reference to the first element
+ //! from the beginning of the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ reference back()
+ { return this->members_.m_start[this->members_.m_size - 1]; }
+
+ //! <b>Effects</b>: Returns a const reference to the first element
+ //! from the beginning of the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_reference back() const
+ { return this->members_.m_start[this->members_.m_size - 1]; }
+
+ //! <b>Returns</b>: A pointer such that [data(),data() + size()) is a valid range.
+ //! For a non-empty vector, data() == &front().
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ pointer data()
+ { return this->members_.m_start; }
+
+ //! <b>Returns</b>: A pointer such that [data(),data() + size()) is a valid range.
+ //! For a non-empty vector, data() == &front().
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_pointer data() const
+ { return this->members_.m_start; }
+
+ //! <b>Effects</b>: Returns the number of the elements contained in the vector.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ size_type size() const
+ { return this->members_.m_size; }
+
+ //! <b>Effects</b>: Returns the largest possible size of the vector.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ size_type max_size() const
+ { return this->alloc().max_size(); }
+
+ //! <b>Effects</b>: Number of elements for which memory has been allocated.
+ //! capacity() is always greater than or equal to size().
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ size_type capacity() const
+ { return this->members_.m_capacity; }
+
+ //! <b>Effects</b>: Returns true if the vector contains no elements.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ bool empty() const
+ { return !this->members_.m_size; }
+
+ //! <b>Requires</b>: size() < n.
+ //!
+ //! <b>Effects</b>: Returns a reference to the nth element
+ //! from the beginning of the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ reference operator[](size_type n)
+ { return this->members_.m_start[n]; }
+
+ //! <b>Requires</b>: size() < n.
+ //!
+ //! <b>Effects</b>: Returns a const reference to the nth element
+ //! from the beginning of the container.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_reference operator[](size_type n) const
+ { return this->members_.m_start[n]; }
+
+ //! <b>Requires</b>: size() < n.
+ //!
+ //! <b>Effects</b>: Returns a reference to the nth element
+ //! from the beginning of the container.
+ //!
+ //! <b>Throws</b>: std::range_error if n >= size()
+ //!
+ //! <b>Complexity</b>: Constant.
+ reference at(size_type n)
+ { this->priv_check_range(n); return this->members_.m_start[n]; }
+
+ //! <b>Requires</b>: size() < n.
+ //!
+ //! <b>Effects</b>: Returns a const reference to the nth element
+ //! from the beginning of the container.
+ //!
+ //! <b>Throws</b>: std::range_error if n >= size()
+ //!
+ //! <b>Complexity</b>: Constant.
+ const_reference at(size_type n) const
+ { this->priv_check_range(n); return this->members_.m_start[n]; }
+
+ //! <b>Effects</b>: Returns a copy of the internal allocator.
+ //!
+ //! <b>Throws</b>: If allocator's copy constructor throws.
+ //!
+ //! <b>Complexity</b>: Constant.
+ allocator_type get_allocator() const
+ { return this->alloc(); }
+
+ const stored_allocator_type &get_stored_allocator() const
+ { return this->alloc(); }
+
+ stored_allocator_type &get_stored_allocator()
+ { return this->alloc(); }
+
+ //! <b>Effects</b>: If n is less than or equal to capacity(), this call has no
+ //! effect. Otherwise, it is a request for allocation of additional memory.
+ //! If the request is successful, then capacity() is greater than or equal to
+ //! n; otherwise, capacity() is unchanged. In either case, size() is unchanged.
+ //!
+ //! <b>Throws</b>: If memory allocation allocation throws or T's copy constructor throws.
+ void reserve(size_type new_cap)
+ {
+ if (this->capacity() < new_cap){
+ //There is not enough memory, allocate a new
+ //buffer or expand the old one.
+ bool same_buffer_start;
+ size_type real_cap = 0;
+ std::pair<pointer, bool> ret =
+ this->allocation_command
+ (allocate_new | expand_fwd | expand_bwd,
+ new_cap, new_cap, real_cap, this->members_.m_start);
+
+ //Check for forward expansion
+ same_buffer_start = ret.second && this->members_.m_start == ret.first;
+ if(same_buffer_start){
+ #ifdef BOOST_INTERPROCESS_VECTOR_ALLOC_STATS
+ ++this->num_expand_fwd;
+ #endif
+ this->members_.m_capacity = real_cap;
+ }
+ //If there is no forward expansion, move objects
+ else{
+ //We will reuse insert code, so create a dummy input iterator
+ T *dummy_it(detail::get_pointer(this->members_.m_start));
+ detail::advanced_insert_aux_proxy<T, move_iterator<T*>, T*>
+ proxy(boost::make_move_iterator(dummy_it), boost::make_move_iterator(dummy_it));
+ //Backwards (and possibly forward) expansion
+ if(ret.second){
+ #ifdef BOOST_INTERPROCESS_VECTOR_ALLOC_STATS
+ ++this->num_expand_bwd;
+ #endif
+ this->priv_range_insert_expand_backwards
+ ( detail::get_pointer(ret.first)
+ , real_cap
+ , detail::get_pointer(this->members_.m_start)
+ , 0
+ , proxy);
+ }
+ //New buffer
+ else{
+ #ifdef BOOST_INTERPROCESS_VECTOR_ALLOC_STATS
+ ++this->num_alloc;
+ #endif
+ this->priv_range_insert_new_allocation
+ ( detail::get_pointer(ret.first)
+ , real_cap
+ , detail::get_pointer(this->members_.m_start)
+ , 0
+ , proxy);
+ }
+ }
+ }
+ }
+
+ //! <b>Effects</b>: Makes *this contain the same elements as x.
+ //!
+ //! <b>Postcondition</b>: this->size() == x.size(). *this contains a copy
+ //! of each of x's elements.
+ //!
+ //! <b>Throws</b>: If memory allocation throws or T's copy constructor throws.
+ //!
+ //! <b>Complexity</b>: Linear to the number of elements in x.
+ vector<T, A>& operator=(const vector<T, A>& x)
+ {
+ if (&x != this){
+ this->assign(x.members_.m_start, x.members_.m_start + x.members_.m_size);
+ }
+ return *this;
+ }
+
+ //! <b>Effects</b>: Move assignment. All mx's values are transferred to *this.
+ //!
+ //! <b>Postcondition</b>: x.empty(). *this contains a the elements x had
+ //! before the function.
+ //!
+ //! <b>Throws</b>: If allocator_type's copy constructor throws.
+ //!
+ //! <b>Complexity</b>: Constant.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ vector<T, A>& operator=(boost::rv<vector<T, A> > &mx)
+ {
+ vector<T, A> &x = mx.get();
+ #else
+ vector<T, A>& operator=(vector<T, A> && x)
+ {
+ #endif
+ if (&x != this){
+ this->swap(x);
+ x.clear();
+ }
+ return *this;
+ }
+
+ //! <b>Effects</b>: Assigns the n copies of val to *this.
+ //!
+ //! <b>Throws</b>: If memory allocation throws or T's copy constructor throws.
+ //!
+ //! <b>Complexity</b>: Linear to n.
+ void assign(size_type n, const value_type& val)
+ { this->assign(cvalue_iterator(val, n), cvalue_iterator()); }
+
+ //! <b>Effects</b>: Assigns the the range [first, last) to *this.
+ //!
+ //! <b>Throws</b>: If memory allocation throws or
+ //! T's constructor from dereferencing InpIt throws.
+ //!
+ //! <b>Complexity</b>: Linear to n.
+ template <class InIt>
+ void assign(InIt first, InIt last)
+ {
+ //Dispatch depending on integer/iterator
+ const bool aux_boolean = detail::is_convertible<InIt, std::size_t>::value;
+ typedef detail::bool_<aux_boolean> Result;
+ this->priv_assign_dispatch(first, last, Result());
+ }
+
+ //! <b>Effects</b>: Inserts a copy of x at the end of the vector.
+ //!
+ //! <b>Throws</b>: If memory allocation throws or
+ //! T's copy constructor throws.
+ //!
+ //! <b>Complexity</b>: Amortized constant time.
+ void push_back(const T& x)
+ {
+ if (this->members_.m_size < this->members_.m_capacity){
+ //There is more memory, just construct a new object at the end
+ new((void*)(detail::get_pointer(this->members_.m_start) + this->members_.m_size))value_type(x);
+ ++this->members_.m_size;
+ }
+ else{
+ this->insert(this->cend(), x);
+ }
+ }
+
+ //! <b>Effects</b>: Constructs a new element in the end of the vector
+ //! and moves the resources of mx to this new element.
+ //!
+ //! <b>Throws</b>: If memory allocation throws.
+ //!
+ //! <b>Complexity</b>: Amortized constant time.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ void push_back(boost::rv<T> &mx)
+ {
+ value_type &x = mx.get();
+ #else
+ void push_back(T && x)
+ {
+ #endif
+ if (this->members_.m_size < this->members_.m_capacity){
+ //There is more memory, just construct a new object at the end
+ new((void*)detail::get_pointer(this->members_.m_start + this->members_.m_size))value_type(boost::move(x));
+ ++this->members_.m_size;
+ }
+ else{
+ this->insert(this->cend(), boost::move(x));
+ }
+ }
+
+ #ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING
+
+ //! <b>Effects</b>: Inserts an object of type T constructed with
+ //! std::forward<Args>(args)... in the end of the vector.
+ //!
+ //! <b>Throws</b>: If memory allocation throws or the in-place constructor throws.
+ //!
+ //! <b>Complexity</b>: Amortized constant time.
+ template<class ...Args>
+ void emplace_back(Args &&...args)
+ {
+ T* back_pos = detail::get_pointer(this->members_.m_start) + this->members_.m_size;
+ if (this->members_.m_size < this->members_.m_capacity){
+ //There is more memory, just construct a new object at the end
+ new((void*)(back_pos))value_type(boost::forward_constructor<Args>(args)...);
+ ++this->members_.m_size;
+ }
+ else{
+ detail::advanced_insert_aux_emplace<T, T*, Args...> proxy
+ (boost::forward_constructor<Args>(args)...);
+ priv_range_insert(back_pos, 1, proxy);
+ }
+ }
+
+ //! <b>Requires</b>: position must be a valid iterator of *this.
+ //!
+ //! <b>Effects</b>: Inserts an object of type T constructed with
+ //! std::forward<Args>(args)... before position
+ //!
+ //! <b>Throws</b>: If memory allocation throws or the in-place constructor throws.
+ //!
+ //! <b>Complexity</b>: If position is end(), amortized constant time
+ //! Linear time otherwise.
+ template<class ...Args>
+ iterator emplace(const_iterator position, Args && ...args)
+ {
+ //Just call more general insert(pos, size, value) and return iterator
+ size_type pos_n = position - cbegin();
+ detail::advanced_insert_aux_emplace<T, T*, Args...> proxy
+ (boost::forward_constructor<Args>(args)...);
+ priv_range_insert(position.get_ptr(), 1, proxy);
+ return iterator(this->members_.m_start + pos_n);
+ }
+
+ #else
+
+ void emplace_back()
+ {
+ T* back_pos = detail::get_pointer(this->members_.m_start) + this->members_.m_size;
+ if (this->members_.m_size < this->members_.m_capacity){
+ //There is more memory, just construct a new object at the end
+ new((void*)(back_pos))value_type();
+ ++this->members_.m_size;
+ }
+ else{
+ detail::advanced_insert_aux_emplace<value_type, T*> proxy;
+ priv_range_insert(back_pos, 1, proxy);
+ }
+ }
+
+ iterator emplace(const_iterator position)
+ {
+ size_type pos_n = position - cbegin();
+ detail::advanced_insert_aux_emplace<value_type, T*> proxy;
+ priv_range_insert(detail::get_pointer(position.get_ptr()), 1, proxy);
+ return iterator(this->members_.m_start + pos_n);
+ }
+
+ #define BOOST_PP_LOCAL_MACRO(n) \
+ template<BOOST_PP_ENUM_PARAMS(n, class P)> \
+ void emplace_back(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_LIST, _)) \
+ { \
+ T* back_pos = detail::get_pointer(this->members_.m_start) + this->members_.m_size; \
+ if (this->members_.m_size < this->members_.m_capacity){ \
+ new((void*)(back_pos))value_type \
+ (BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _)); \
+ ++this->members_.m_size; \
+ } \
+ else{ \
+ detail::BOOST_PP_CAT(BOOST_PP_CAT(advanced_insert_aux_emplace, n), arg) \
+ <value_type, T*, BOOST_PP_ENUM_PARAMS(n, P)> \
+ proxy(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _)); \
+ priv_range_insert(back_pos, 1, proxy); \
+ } \
+ } \
+ \
+ template<BOOST_PP_ENUM_PARAMS(n, class P)> \
+ iterator emplace(const_iterator pos, BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_LIST, _)) \
+ { \
+ size_type pos_n = pos - cbegin(); \
+ detail::BOOST_PP_CAT(BOOST_PP_CAT(advanced_insert_aux_emplace, n), arg) \
+ <value_type, T*, BOOST_PP_ENUM_PARAMS(n, P)> \
+ proxy(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _)); \
+ priv_range_insert(detail::get_pointer(pos.get_ptr()), 1, proxy); \
+ return iterator(this->members_.m_start + pos_n); \
+ } \
+ //!
+ #define BOOST_PP_LOCAL_LIMITS (1, BOOST_INTERPROCESS_MAX_CONSTRUCTOR_PARAMETERS)
+ #include BOOST_PP_LOCAL_ITERATE()
+
+ #endif //#ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING
+
+ //! <b>Effects</b>: Swaps the contents of *this and x.
+ //! If this->allocator_type() != x.allocator_type()
+ //! allocators are also swapped.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ void swap(boost::rv<vector> &x)
+ { this->swap(x.get()); }
+ void swap(vector& x)
+ #else
+ void swap(vector &&x)
+ #endif
+ {
+ allocator_type &this_al = this->alloc(), &other_al = x.alloc();
+ //Just swap internals
+ detail::do_swap(this->members_.m_start, x.members_.m_start);
+ detail::do_swap(this->members_.m_size, x.members_.m_size);
+ detail::do_swap(this->members_.m_capacity, x.members_.m_capacity);
+
+ if (this_al != other_al){
+ detail::do_swap(this_al, other_al);
+ }
+ }
+
+ //! <b>Requires</b>: position must be a valid iterator of *this.
+ //!
+ //! <b>Effects</b>: Insert a copy of x before position.
+ //!
+ //! <b>Throws</b>: If memory allocation throws or x's copy constructor throws.
+ //!
+ //! <b>Complexity</b>: If position is end(), amortized constant time
+ //! Linear time otherwise.
+ iterator insert(const_iterator position, const T& x)
+ {
+ //Just call more general insert(pos, size, value) and return iterator
+ size_type pos_n = position - cbegin();
+ this->insert(position, (size_type)1, x);
+ return iterator(this->members_.m_start + pos_n);
+ }
+
+ //! <b>Requires</b>: position must be a valid iterator of *this.
+ //!
+ //! <b>Effects</b>: Insert a new element before position with mx's resources.
+ //!
+ //! <b>Throws</b>: If memory allocation throws.
+ //!
+ //! <b>Complexity</b>: If position is end(), amortized constant time
+ //! Linear time otherwise.
+ #if !defined(BOOST_HAS_RVALUE_REFS) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED)
+ iterator insert(const_iterator position, boost::rv<T> &mx)
+ {
+ value_type &x = mx.get();
+ #else
+ iterator insert(const_iterator position, T &&x)
+ {
+ #endif
+ //Just call more general insert(pos, size, value) and return iterator
+ size_type pos_n = position - cbegin();
+ this->insert(position
+ ,repeat_move_it(repeat_it(x, 1))
+ ,repeat_move_it(repeat_it()));
+ return iterator(this->members_.m_start + pos_n);
+ }
+
+ //! <b>Requires</b>: pos must be a valid iterator of *this.
+ //!
+ //! <b>Effects</b>: Insert a copy of the [first, last) range before pos.
+ //!
+ //! <b>Throws</b>: If memory allocation throws, T's constructor from a
+ //! dereferenced InpIt throws or T's copy constructor throws.
+ //!
+ //! <b>Complexity</b>: Linear to std::distance [first, last).
+ template <class InIt>
+ void insert(const_iterator pos, InIt first, InIt last)
+ {
+ //Dispatch depending on integer/iterator
+ const bool aux_boolean = detail::is_convertible<InIt, std::size_t>::value;
+ typedef detail::bool_<aux_boolean> Result;
+ this->priv_insert_dispatch(pos, first, last, Result());
+ }
+
+ //! <b>Requires</b>: pos must be a valid iterator of *this.
+ //!
+ //! <b>Effects</b>: Insert n copies of x before pos.
+ //!
+ //! <b>Throws</b>: If memory allocation throws or T's copy constructor throws.
+ //!
+ //! <b>Complexity</b>: Linear to n.
+ void insert(const_iterator p, size_type n, const T& x)
+ { this->insert(p, cvalue_iterator(x, n), cvalue_iterator()); }
+
+ //! <b>Effects</b>: Removes the last element from the vector.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Constant time.
+ void pop_back()
+ {
+ //Destroy last element
+ --this->members_.m_size;
+ this->destroy(detail::get_pointer(this->members_.m_start) + this->members_.m_size);
+ }
+
+ //! <b>Effects</b>: Erases the element at position pos.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Linear to the elements between pos and the
+ //! last element. Constant if pos is the first or the last element.
+ iterator erase(const_iterator position)
+ {
+ T *pos = detail::get_pointer(position.get_ptr());
+ T *beg = detail::get_pointer(this->members_.m_start);
+ boost::move(pos + 1, beg + this->members_.m_size, pos);
+ --this->members_.m_size;
+ //Destroy last element
+ base_t::destroy(detail::get_pointer(this->members_.m_start) + this->members_.m_size);
+ return iterator(position.get_ptr());
+ }
+
+ //! <b>Effects</b>: Erases the elements pointed by [first, last).
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Linear to the distance between first and last.
+ iterator erase(const_iterator first, const_iterator last)
+ {
+ if (first != last){ // worth doing, copy down over hole
+ T* end_pos = detail::get_pointer(this->members_.m_start) + this->members_.m_size;
+ T* ptr = detail::get_pointer(boost::move
+ (detail::get_pointer(last.get_ptr())
+ ,end_pos
+ ,detail::get_pointer(first.get_ptr())
+ ));
+ size_type destroyed = (end_pos - ptr);
+ this->destroy_n(ptr, destroyed);
+ this->members_.m_size -= destroyed;
+ }
+ return iterator(first.get_ptr());
+ }
+
+ //! <b>Effects</b>: Inserts or erases elements at the end such that
+ //! the size becomes n. New elements are copy constructed from x.
+ //!
+ //! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws.
+ //!
+ //! <b>Complexity</b>: Linear to the difference between size() and new_size.
+ void resize(size_type new_size, const T& x)
+ {
+ pointer finish = this->members_.m_start + this->members_.m_size;
+ if (new_size < size()){
+ //Destroy last elements
+ this->erase(const_iterator(this->members_.m_start + new_size), this->end());
+ }
+ else{
+ //Insert new elements at the end
+ this->insert(const_iterator(finish), new_size - this->size(), x);
+ }
+ }
+
+ //! <b>Effects</b>: Inserts or erases elements at the end such that
+ //! the size becomes n. New elements are default constructed.
+ //!
+ //! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws.
+ //!
+ //! <b>Complexity</b>: Linear to the difference between size() and new_size.
+ void resize(size_type new_size)
+ {
+ if (new_size < this->size()){
+ //Destroy last elements
+ this->erase(const_iterator(this->members_.m_start + new_size), this->end());
+ }
+ else{
+ size_type n = new_size - this->size();
+ this->reserve(new_size);
+ detail::default_construct_aux_proxy<T, T*, size_type> proxy(n);
+ priv_range_insert(this->cend().get_ptr(), n, proxy);
+ }
+ }
+
+ //! <b>Effects</b>: Erases all the elements of the vector.
+ //!
+ //! <b>Throws</b>: Nothing.
+ //!
+ //! <b>Complexity</b>: Linear to the number of elements in the vector.
+ void clear()
+ { this->prot_destroy_all(); }
+
+ /// @cond
+
+ //! <b>Effects</b>: Tries to deallocate the excess of memory created
+ //! with previous allocations. The size of the vector is unchanged
+ //!
+ //! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws.
+ //!
+ //! <b>Complexity</b>: Linear to size().
+ void shrink_to_fit()
+ { priv_shrink_to_fit(alloc_version()); }
+
+ private:
+ void priv_shrink_to_fit(allocator_v1)
+ {
+ if(this->members_.m_capacity){
+ if(!size()){
+ this->prot_deallocate();
+ }
+ else{
+ //This would not work with stateful allocators
+ vector<T, A>(*this).swap(*this);
+ }
+ }
+ }
+
+ void priv_shrink_to_fit(allocator_v2)
+ {
+ if(this->members_.m_capacity){
+ if(!size()){
+ this->prot_deallocate();
+ }
+ else{
+ size_type received_size;
+ if(this->alloc().allocation_command
+ ( shrink_in_place | nothrow_allocation
+ , this->capacity(), this->size()
+ , received_size, this->members_.m_start).first){
+ this->members_.m_capacity = received_size;
+ #ifdef BOOST_INTERPROCESS_VECTOR_ALLOC_STATS
+ ++this->num_shrink;
+ #endif
+ }
+ }
+ }
+ }
+
+ template <class FwdIt>
+ void priv_range_insert(pointer pos, FwdIt first, FwdIt last, std::forward_iterator_tag)
+ {
+ if(first != last){
+ const size_type n = std::distance(first, last);
+ detail::advanced_insert_aux_proxy<T, FwdIt, T*> proxy(first, last);
+ priv_range_insert(pos, n, proxy);
+ }
+ }
+
+ void priv_range_insert(pointer pos, const size_type n, advanced_insert_aux_int_t &interf)
+ {
+ //Check if we have enough memory or try to expand current memory
+ size_type remaining = this->members_.m_capacity - this->members_.m_size;
+ bool same_buffer_start;
+ std::pair<pointer, bool> ret;
+ size_type real_cap = this->members_.m_capacity;
+
+ //Check if we already have room
+ if (n <= remaining){
+ same_buffer_start = true;
+ }
+ else{
+ //There is not enough memory, allocate a new
+ //buffer or expand the old one.
+ size_type new_cap = this->next_capacity(n);
+ ret = this->allocation_command
+ (allocate_new | expand_fwd | expand_bwd,
+ this->members_.m_size + n, new_cap, real_cap, this->members_.m_start);
+
+ //Check for forward expansion
+ same_buffer_start = ret.second && this->members_.m_start == ret.first;
+ if(same_buffer_start){
+ this->members_.m_capacity = real_cap;
+ }
+ }
+
+ //If we had room or we have expanded forward
+ if (same_buffer_start){
+ #ifdef BOOST_INTERPROCESS_VECTOR_ALLOC_STATS
+ ++this->num_expand_fwd;
+ #endif
+ this->priv_range_insert_expand_forward
+ (detail::get_pointer(pos), n, interf);
+ }
+ //Backwards (and possibly forward) expansion
+ else if(ret.second){
+ #ifdef BOOST_INTERPROCESS_VECTOR_ALLOC_STATS
+ ++this->num_expand_bwd;
+ #endif
+ this->priv_range_insert_expand_backwards
+ ( detail::get_pointer(ret.first)
+ , real_cap
+ , detail::get_pointer(pos)
+ , n
+ , interf);
+ }
+ //New buffer
+ else{
+ #ifdef BOOST_INTERPROCESS_VECTOR_ALLOC_STATS
+ ++this->num_alloc;
+ #endif
+ this->priv_range_insert_new_allocation
+ ( detail::get_pointer(ret.first)
+ , real_cap
+ , detail::get_pointer(pos)
+ , n
+ , interf);
+ }
+ }
+
+ void priv_range_insert_expand_forward(T* pos, size_type n, advanced_insert_aux_int_t &interf)
+ {
+ //There is enough memory
+ T* old_finish = detail::get_pointer(this->members_.m_start) + this->members_.m_size;
+ const size_type elems_after = old_finish - pos;
+
+ if (elems_after > n){
+ //New elements can be just copied.
+ //Move to uninitialized memory last objects
+ boost::uninitialized_move(old_finish - n, old_finish, old_finish);
+ this->members_.m_size += n;
+ //Copy previous to last objects to the initialized end
+ boost::move_backward(pos, old_finish - n, old_finish);
+ //Insert new objects in the pos
+ interf.copy_all_to(pos);
+ }
+ else {
+ //The new elements don't fit in the [pos, end()) range. Copy
+ //to the beginning of the unallocated zone the last new elements.
+ interf.uninitialized_copy_some_and_update(old_finish, elems_after, false);
+ this->members_.m_size += n - elems_after;
+ //Copy old [pos, end()) elements to the uninitialized memory
+ boost::uninitialized_move
+ ( pos, old_finish, detail::get_pointer(this->members_.m_start) + this->members_.m_size);
+ this->members_.m_size += elems_after;
+ //Copy first new elements in pos
+ interf.copy_all_to(pos);
+ }
+ }
+
+ void priv_range_insert_new_allocation
+ (T* new_start, size_type new_cap, T* pos, size_type n, advanced_insert_aux_int_t &interf)
+ {
+ T* new_finish = new_start;
+ T *old_finish;
+ //Anti-exception rollbacks
+ typename value_traits::UCopiedArrayDeallocator scoped_alloc(new_start, this->alloc(), new_cap);
+ typename value_traits::UCopiedArrayDestructor constructed_values_destroyer(new_start, 0u);
+
+ //Initialize with [begin(), pos) old buffer
+ //the start of the new buffer
+ new_finish = boost::uninitialized_move
+ (detail::get_pointer(this->members_.m_start), pos, old_finish = new_finish);
+ constructed_values_destroyer.increment_size(new_finish - old_finish);
+ //Initialize new objects, starting from previous point
+ interf.uninitialized_copy_all_to(old_finish = new_finish);
+ new_finish += n;
+ constructed_values_destroyer.increment_size(new_finish - old_finish);
+ //Initialize from the rest of the old buffer,
+ //starting from previous point
+ new_finish = boost::uninitialized_move
+ ( pos, detail::get_pointer(this->members_.m_start) + this->members_.m_size, new_finish);
+ //All construction successful, disable rollbacks
+ constructed_values_destroyer.release();
+ scoped_alloc.release();
+ //Destroy and deallocate old elements
+ //If there is allocated memory, destroy and deallocate
+ if(this->members_.m_start != 0){
+ if(!value_traits::trivial_dctr_after_move)
+ this->destroy_n(detail::get_pointer(this->members_.m_start), this->members_.m_size);
+ this->alloc().deallocate(this->members_.m_start, this->members_.m_capacity);
+ }
+ this->members_.m_start = new_start;
+ this->members_.m_size = new_finish - new_start;
+ this->members_.m_capacity = new_cap;
+ }
+
+ void priv_range_insert_expand_backwards
+ (T* new_start, size_type new_capacity,
+ T* pos, const size_type n, advanced_insert_aux_int_t &interf)
+ {
+ //Backup old data
+ T* old_start = detail::get_pointer(this->members_.m_start);
+ T* old_finish = old_start + this->members_.m_size;
+ size_type old_size = this->members_.m_size;
+
+ //We can have 8 possibilities:
+ const size_type elemsbefore = (size_type)(pos - old_start);
+ const size_type s_before = (size_type)(old_start - new_start);
+
+ //Update the vector buffer information to a safe state
+ this->members_.m_start = new_start;
+ this->members_.m_capacity = new_capacity;
+ this->members_.m_size = 0;
+
+ //If anything goes wrong, this object will destroy
+ //all the old objects to fulfill previous vector state
+ typename value_traits::OldArrayDestructor old_values_destroyer(old_start, old_size);
+ //Check if s_before is big enough to hold the beginning of old data + new data
+ if(difference_type(s_before) >= difference_type(elemsbefore + n)){
+ //Copy first old values before pos, after that the new objects
+ boost::uninitialized_move(old_start, pos, new_start);
+ this->members_.m_size = elemsbefore;
+ interf.uninitialized_copy_all_to(new_start + elemsbefore);
+ this->members_.m_size += n;
+ //Check if s_before is so big that even copying the old data + new data
+ //there is a gap between the new data and the old data
+ if(s_before >= (old_size + n)){
+ //Old situation:
+ // _________________________________________________________
+ //| raw_mem | old_begin | old_end |
+ //| __________________________________|___________|_________|
+ //
+ //New situation:
+ // _________________________________________________________
+ //| old_begin | new | old_end | raw_mem |
+ //|___________|__________|_________|________________________|
+ //
+ //Now initialize the rest of memory with the last old values
+ boost::uninitialized_move
+ (pos, old_finish, new_start + elemsbefore + n);
+ //All new elements correctly constructed, avoid new element destruction
+ this->members_.m_size = old_size + n;
+ //Old values destroyed automatically with "old_values_destroyer"
+ //when "old_values_destroyer" goes out of scope unless the have trivial
+ //destructor after move.
+ if(value_traits::trivial_dctr_after_move)
+ old_values_destroyer.release();
+ }
+ //s_before is so big that divides old_end
+ else{
+ //Old situation:
+ // __________________________________________________
+ //| raw_mem | old_begin | old_end |
+ //| ___________________________|___________|_________|
+ //
+ //New situation:
+ // __________________________________________________
+ //| old_begin | new | old_end | raw_mem |
+ //|___________|__________|_________|_________________|
+ //
+ //Now initialize the rest of memory with the last old values
+ //All new elements correctly constructed, avoid new element destruction
+ size_type raw_gap = s_before - (elemsbefore + n);
+ //Now initialize the rest of s_before memory with the
+ //first of elements after new values
+ boost::uninitialized_move(pos, pos + raw_gap, new_start + elemsbefore + n);
+ //Update size since we have a contiguous buffer
+ this->members_.m_size = old_size + s_before;
+ //All new elements correctly constructed, avoid old element destruction
+ old_values_destroyer.release();
+ //Now copy remaining last objects in the old buffer begin
+ T *to_destroy = boost::move(pos + raw_gap, old_finish, old_start);
+ //Now destroy redundant elements except if they were moved and
+ //they have trivial destructor after move
+ size_type n_destroy = old_finish - to_destroy;
+ if(!value_traits::trivial_dctr_after_move)
+ this->destroy_n(to_destroy, n_destroy);
+ this->members_.m_size -= n_destroy;
+ }
+ }
+ else{
+ //Check if we have to do the insertion in two phases
+ //since maybe s_before is not big enough and
+ //the buffer was expanded both sides
+ //
+ //Old situation:
+ // _________________________________________________
+ //| raw_mem | old_begin + old_end | raw_mem |
+ //|_________|_____________________|_________________|
+ //
+ //New situation with do_after:
+ // _________________________________________________
+ //| old_begin + new + old_end | raw_mem |
+ //|___________________________________|_____________|
+ //
+ //New without do_after:
+ // _________________________________________________
+ //| old_begin + new + old_end | raw_mem |
+ //|____________________________|____________________|
+ //
+ bool do_after = n > s_before;
+
+ //Now we can have two situations: the raw_mem of the
+ //beginning divides the old_begin, or the new elements:
+ if (s_before <= elemsbefore) {
+ //The raw memory divides the old_begin group:
+ //
+ //If we need two phase construction (do_after)
+ //new group is divided in new = new_beg + new_end groups
+ //In this phase only new_beg will be inserted
+ //
+ //Old situation:
+ // _________________________________________________
+ //| raw_mem | old_begin | old_end | raw_mem |
+ //|_________|___________|_________|_________________|
+ //
+ //New situation with do_after(1):
+ //This is not definitive situation, the second phase
+ //will include
+ // _________________________________________________
+ //| old_begin | new_beg | old_end | raw_mem |
+ //|___________|_________|_________|_________________|
+ //
+ //New situation without do_after:
+ // _________________________________________________
+ //| old_begin | new | old_end | raw_mem |
+ //|___________|_____|_________|_____________________|
+ //
+ //Copy the first part of old_begin to raw_mem
+ T *start_n = old_start + difference_type(s_before);
+ boost::uninitialized_move(old_start, start_n, new_start);
+ //The buffer is all constructed until old_end,
+ //release destroyer and update size
+ old_values_destroyer.release();
+ this->members_.m_size = old_size + s_before;
+ //Now copy the second part of old_begin overwriting himself
+ T* next = boost::move(start_n, pos, old_start);
+ if(do_after){
+ //Now copy the new_beg elements
+ interf.copy_some_and_update(next, s_before, true);
+ }
+ else{
+ //Now copy the all the new elements
+ interf.copy_all_to(next);
+ T* move_start = next + n;
+ //Now displace old_end elements
+ T* move_end = boost::move(pos, old_finish, move_start);
+ //Destroy remaining moved elements from old_end except if
+ //they have trivial destructor after being moved
+ difference_type n_destroy = s_before - n;
+ if(!value_traits::trivial_dctr_after_move)
+ this->destroy_n(move_end, n_destroy);
+ this->members_.m_size -= n_destroy;
+ }
+ }
+ else {
+ //If we have to expand both sides,
+ //we will play if the first new values so
+ //calculate the upper bound of new values
+
+ //The raw memory divides the new elements
+ //
+ //If we need two phase construction (do_after)
+ //new group is divided in new = new_beg + new_end groups
+ //In this phase only new_beg will be inserted
+ //
+ //Old situation:
+ // _______________________________________________________
+ //| raw_mem | old_begin | old_end | raw_mem |
+ //|_______________|___________|_________|_________________|
+ //
+ //New situation with do_after():
+ // ____________________________________________________
+ //| old_begin | new_beg | old_end | raw_mem |
+ //|___________|_______________|_________|______________|
+ //
+ //New situation without do_after:
+ // ______________________________________________________
+ //| old_begin | new | old_end | raw_mem |
+ //|___________|_____|_________|__________________________|
+ //
+ //First copy whole old_begin and part of new to raw_mem
+ boost::uninitialized_move(old_start, pos, new_start);
+ this->members_.m_size = elemsbefore;
+
+ const size_type mid_n = difference_type(s_before) - elemsbefore;
+ interf.uninitialized_copy_some_and_update(new_start + elemsbefore, mid_n, true);
+ this->members_.m_size = old_size + s_before;
+ //The buffer is all constructed until old_end,
+ //release destroyer and update size
+ old_values_destroyer.release();
+
+ if(do_after){
+ //Copy new_beg part
+ interf.copy_some_and_update(old_start, s_before - mid_n, true);
+ }
+ else{
+ //Copy all new elements
+ interf.copy_all_to(old_start);
+ T* move_start = old_start + (n-mid_n);
+ //Displace old_end
+ T* move_end = boost::move(pos, old_finish, move_start);
+ //Destroy remaining moved elements from old_end except if they
+ //have trivial destructor after being moved
+ difference_type n_destroy = s_before - n;
+ if(!value_traits::trivial_dctr_after_move)
+ this->destroy_n(move_end, n_destroy);
+ this->members_.m_size -= n_destroy;
+ }
+ }
+
+ //This is only executed if two phase construction is needed
+ //This can be executed without exception handling since we
+ //have to just copy and append in raw memory and
+ //old_values_destroyer has been released in phase 1.
+ if(do_after){
+ //The raw memory divides the new elements
+ //
+ //Old situation:
+ // ______________________________________________________
+ //| raw_mem | old_begin | old_end | raw_mem |
+ //|______________|___________|____________|______________|
+ //
+ //New situation with do_after(1):
+ // _______________________________________________________
+ //| old_begin + new_beg | new_end |old_end | raw_mem |
+ //|__________________________|_________|________|_________|
+ //