|
Boost-Commit : |
Subject: [Boost-commit] svn:boost r60371 - in sandbox/numpy: boost boost/python boost/python/numpy libs libs/python libs/python/numpy libs/python/numpy/src
From: talljimbo_at_[hidden]
Date: 2010-03-08 16:50:15
Author: jbosch
Date: 2010-03-08 16:50:13 EST (Mon, 08 Mar 2010)
New Revision: 60371
URL: http://svn.boost.org/trac/boost/changeset/60371
Log:
initial sandbox import for numpy utilities in boost.python
Added:
sandbox/numpy/boost/
sandbox/numpy/boost/python/
sandbox/numpy/boost/python/numpy/
sandbox/numpy/boost/python/numpy.hpp (contents, props changed)
sandbox/numpy/boost/python/numpy/dtype.hpp (contents, props changed)
sandbox/numpy/boost/python/numpy/internal.hpp (contents, props changed)
sandbox/numpy/boost/python/numpy/matrix.hpp (contents, props changed)
sandbox/numpy/boost/python/numpy/ndarray.hpp (contents, props changed)
sandbox/numpy/boost/python/numpy/numpy_object_mgr_traits.hpp (contents, props changed)
sandbox/numpy/boost/python/numpy/scalars.hpp (contents, props changed)
sandbox/numpy/boost/python/numpy/ufunc.hpp (contents, props changed)
sandbox/numpy/libs/
sandbox/numpy/libs/python/
sandbox/numpy/libs/python/numpy/
sandbox/numpy/libs/python/numpy/src/
sandbox/numpy/libs/python/numpy/src/dtype.cpp (contents, props changed)
sandbox/numpy/libs/python/numpy/src/matrix.cpp (contents, props changed)
sandbox/numpy/libs/python/numpy/src/ndarray.cpp (contents, props changed)
sandbox/numpy/libs/python/numpy/src/numpy.cpp (contents, props changed)
sandbox/numpy/libs/python/numpy/src/scalars.cpp (contents, props changed)
sandbox/numpy/libs/python/numpy/src/ufunc.cpp (contents, props changed)
Added: sandbox/numpy/boost/python/numpy.hpp
==============================================================================
--- (empty file)
+++ sandbox/numpy/boost/python/numpy.hpp 2010-03-08 16:50:13 EST (Mon, 08 Mar 2010)
@@ -0,0 +1,32 @@
+#ifndef BOOST_PYTHON_NUMPY_HPP_INCLUDED
+#define BOOST_PYTHON_NUMPY_HPP_INCLUDED
+
+/**
+ * @file boost/python/numpy.hpp
+ * @brief Main public header file for boost.python.numpy.
+ */
+
+#include <boost/python/numpy/dtype.hpp>
+#include <boost/python/numpy/ndarray.hpp>
+#include <boost/python/numpy/scalars.hpp>
+#include <boost/python/numpy/matrix.hpp>
+#include <boost/python/numpy/ufunc.hpp>
+
+namespace boost { namespace python {
+namespace numpy {
+
+/**
+ * @brief Initialize the Numpy C-API
+ *
+ * This must be called before using anything in boost.python.numpy;
+ * It should probably be the first line inside BOOST_PYTHON_MODULE.
+ *
+ * @internal This just calls the Numpy C-API functions "import_array()"
+ * and "import_ufunc()".
+ */
+void initialize();
+
+} // namespace boost::python::numpy
+}} // namespace boost::python
+
+#endif // !BOOST_PYTHON_NUMPY_HPP_INCLUDED
Added: sandbox/numpy/boost/python/numpy/dtype.hpp
==============================================================================
--- (empty file)
+++ sandbox/numpy/boost/python/numpy/dtype.hpp 2010-03-08 16:50:13 EST (Mon, 08 Mar 2010)
@@ -0,0 +1,56 @@
+#ifndef BOOST_PYTHON_NUMPY_DTYPE_HPP_INCLUDED
+#define BOOST_PYTHON_NUMPY_DTYPE_HPP_INCLUDED
+
+/**
+ * @file boost/python/numpy/dtype.hpp
+ * @brief Object manager for Python's numpy.dtype class.
+ */
+
+#include <boost/python.hpp>
+#include <boost/python/numpy/numpy_object_mgr_traits.hpp>
+
+namespace boost { namespace python {
+namespace numpy {
+
+/**
+ * @brief A boost.python "object manager" (subclass of object) for numpy.dtype.
+ *
+ * @todo This could have a lot more interesting accessors.
+ */
+class dtype : public object {
+ static python::detail::new_reference convert(object_cref arg, bool align);
+public:
+
+ /// @brief Convert an arbitrary Python object to a data-type descriptor object.
+ template <typename T>
+ explicit dtype(T arg, bool align=false) : object(convert(arg, align)) {}
+
+ /**
+ * @brief Get the built-in numpy dtype associated with the given scalar template type.
+ *
+ * This is perhaps the most useful part of the numpy API: it returns the dtype object
+ * corresponding to a built-in C++ type. This should work for any integer or floating point
+ * type supported by numpy, and will also work for std::complex if
+ * sizeof(std::complex<T>) == 2*sizeof(T).
+ *
+ * It can also be useful for users to add explicit specializations for POD structs
+ * that return field-based dtypes.
+ */
+ template <typename T> static dtype get_builtin();
+
+ /// @brief Return the size of the data type in bytes.
+ int get_itemsize() const;
+
+ BOOST_PYTHON_FORWARD_OBJECT_CONSTRUCTORS(dtype, object);
+
+};
+
+} // namespace boost::python::numpy
+
+namespace converter {
+NUMPY_OBJECT_MANAGER_TRAITS(python::numpy::dtype);
+} // namespace boost::python::converter
+
+}} // namespace boost::python
+
+#endif // !BOOST_PYTHON_NUMPY_DTYPE_HPP_INCLUDED
Added: sandbox/numpy/boost/python/numpy/internal.hpp
==============================================================================
--- (empty file)
+++ sandbox/numpy/boost/python/numpy/internal.hpp 2010-03-08 16:50:13 EST (Mon, 08 Mar 2010)
@@ -0,0 +1,29 @@
+#ifndef BOOST_PYTHON_NUMPY_INTERNAL_HPP_INCLUDED
+#define BOOST_PYTHON_NUMPY_INTERNAL_HPP_INCLUDED
+
+/**
+ * @file boost/python/numpy/internal.hpp
+ * @brief Internal header file to include the Numpy C-API headers.
+ *
+ * This should only be included by source files in the boost.python.numpy library itself.
+ */
+
+#include <boost/python.hpp>
+#ifdef BOOST_PYTHON_NUMPY_INTERNAL
+#define NO_IMPORT_ARRAY
+#define NO_IMPORT_UFUNC
+#else
+#ifndef BOOST_PYTHON_NUMPY_INTERNAL_MAIN
+ERROR_internal_hpp_is_for_internal_use_only
+#endif
+#endif
+#define PY_ARRAY_UNIQUE_SYMBOL BOOST_NUMPY_ARRAY_API
+#define PY_UFUNC_UNIQUE_SYMBOL BOOST_UFUNC_ARRAY_API
+#include <numpy/arrayobject.h>
+#include <numpy/ufuncobject.h>
+#include <boost/python/numpy.hpp>
+
+#define NUMPY_OBJECT_MANAGER_TRAITS_IMPL(pytype,manager) \
+ PyTypeObject const * object_manager_traits<manager>::get_pytype() { return &pytype; }
+
+#endif // !BOOST_PYTHON_NUMPY_INTERNAL_HPP_INCLUDED
Added: sandbox/numpy/boost/python/numpy/matrix.hpp
==============================================================================
--- (empty file)
+++ sandbox/numpy/boost/python/numpy/matrix.hpp 2010-03-08 16:50:13 EST (Mon, 08 Mar 2010)
@@ -0,0 +1,62 @@
+#ifndef BOOST_PYTHON_NUMPY_MATRIX_HPP_INCLUDED
+#define BOOST_PYTHON_NUMPY_MATRIX_HPP_INCLUDED
+
+/**
+ * @file boost/python/numpy/matrix.hpp
+ * @brief Object manager for numpy.matrix.
+ */
+
+#include <boost/python.hpp>
+#include <boost/python/numpy/numpy_object_mgr_traits.hpp>
+#include <boost/python/numpy/ndarray.hpp>
+
+namespace boost { namespace python {
+
+namespace numpy {
+
+/**
+ * @brief A boost.python "object manager" (subclass of object) for numpy.matrix.
+ *
+ * @internal numpy.matrix is defined in Python, so object_manager_traits<matrix>::get_pytype()
+ * is implemented by importing numpy and getting the "matrix" attribute of the module.
+ * We then just hope that doesn't get destroyed while we need it, because if we put
+ * a dynamic python object in a static-allocated boost::python::object or handle<>,
+ * bad things happen when Python shuts down. I think this solution is safe, but I'd
+ * love to get that confirmed.
+ */
+class matrix : public ndarray {
+ static object construct(object_cref obj, dtype const & dt, bool copy);
+ static object construct(object_cref obj, bool copy);
+public:
+
+ BOOST_PYTHON_FORWARD_OBJECT_CONSTRUCTORS(matrix, ndarray);
+
+ /// @brief Equivalent to "numpy.matrix(obj,dt,copy)" in Python.
+ explicit matrix(object const & obj, dtype const & dt, bool copy=true) :
+ ndarray(extract<ndarray>(construct(obj, dt, copy))) {}
+
+ /// @brief Equivalent to "numpy.matrix(obj,copy=copy)" in Python.
+ explicit matrix(object const & obj, bool copy=true) :
+ ndarray(extract<ndarray>(construct(obj, copy))) {}
+
+ /// \brief Return a view of the matrix with the given dtype.
+ matrix view(dtype const & dt) const;
+
+ /// \brief Copy the scalar (deep for all non-object fields).
+ matrix copy() const;
+
+ /// \brief Transpose the matrix.
+ matrix transpose() const;
+
+};
+
+} // namespace boost::python::numpy
+
+namespace converter {
+
+NUMPY_OBJECT_MANAGER_TRAITS(python::numpy::matrix);
+
+} // namespace boost::python::converter
+}} // namespace boost::python
+
+#endif // !BOOST_PYTHON_NUMPY_MATRIX_HPP_INCLUDED
Added: sandbox/numpy/boost/python/numpy/ndarray.hpp
==============================================================================
--- (empty file)
+++ sandbox/numpy/boost/python/numpy/ndarray.hpp 2010-03-08 16:50:13 EST (Mon, 08 Mar 2010)
@@ -0,0 +1,285 @@
+#ifndef BOOST_PYTHON_NUMPY_NDARRAY_HPP_INCLUDED
+#define BOOST_PYTHON_NUMPY_NDARRAY_HPP_INCLUDED
+
+/**
+ * @file boost/python/numpy/ndarray.hpp
+ * @brief Object manager and various utilities for numpy.ndarray.
+ */
+
+#include <boost/python.hpp>
+#include <boost/utility/enable_if.hpp>
+#include <boost/type_traits/is_integral.hpp>
+#include <boost/python/numpy/numpy_object_mgr_traits.hpp>
+#include <boost/python/numpy/dtype.hpp>
+
+#include <vector>
+
+namespace boost { namespace python {
+namespace numpy {
+
+/**
+ * @brief A boost.python "object manager" (subclass of object) for numpy.ndarray.
+ *
+ * @todo This could have a lot more functionality (like boost::python::numeric::array).
+ * Right now all that exists is what was needed to move raw data between C++ and Python.
+ */
+class ndarray : public object {
+
+ /**
+ * @brief An internal struct that's byte-compatible with PyArrayObject.
+ *
+ * This is just a hack to allow inline access to this stuff while hiding numpy/arrayobject.h
+ * from the user.
+ */
+ struct array_struct {
+ PyObject_HEAD
+ char * data;
+ int nd;
+ Py_intptr_t * shape;
+ Py_intptr_t * strides;
+ PyObject * base;
+ PyObject * descr;
+ int flags;
+ PyObject * weakreflist;
+ };
+
+ /// @brief Return the held Python object as an array_struct.
+ array_struct * get_struct() const { return reinterpret_cast<array_struct*>(this->ptr()); }
+
+public:
+
+ /**
+ * @brief Enum to represent (some) of Numpy's internal flags.
+ *
+ * These don't match the actual Numpy flag values; we can't get those without including
+ * numpy/arrayobject.h or copying them directly. That's very unfortunate.
+ *
+ * @todo I'm torn about whether this should be an enum. It's very convenient to not
+ * make these simple integer values for overloading purposes, but the need to
+ * define every possible combination and custom bitwise operators is ugly.
+ */
+ enum bitflag {
+ NONE=0x0, C_CONTIGUOUS=0x1, F_CONTIGUOUS=0x2, V_CONTIGUOUS=0x1|0x2,
+ ALIGNED=0x4, WRITEABLE=0x8, BEHAVED=0x4|0x8,
+ CARRAY_RO=0x1|0x4, CARRAY=0x1|0x4|0x8, CARRAY_MIS=0x1|0x8,
+ FARRAY_RO=0x2|0x4, FARRAY=0x2|0x4|0x8, FARRAY_MIS=0x2|0x8,
+ UPDATE_ALL=0x1|0x2|0x4, VARRAY=0x1|0x2|0x8, ALL=0x1|0x2|0x4|0x8
+ };
+
+ BOOST_PYTHON_FORWARD_OBJECT_CONSTRUCTORS(ndarray, object);
+
+ /// @brief Return a view of the scalar with the given dtype.
+ ndarray view(dtype const & dt) const;
+
+ /// @brief Copy the scalar (deep for all non-object fields).
+ ndarray copy() const;
+
+ /// @brief Return the size of the nth dimension.
+ int const shape(int n) const { return get_shape()[n]; }
+
+ /// @brief Return the stride of the nth dimension.
+ int const strides(int n) const { return get_strides()[n]; }
+
+ /**
+ * @brief Return the array's raw data pointer.
+ *
+ * This returns char so stride math works properly on it. It's pretty much
+ * expected that the user will have to reinterpret_cast it.
+ */
+ char * get_data() const { return get_struct()->data; }
+
+ /// @brief Return the array's data-type descriptor object.
+ dtype get_dtype() const;
+
+ /// @brief Return the object that owns the array's data, or None if the array owns its own data.
+ object get_base() const;
+
+ /// @brief Set the object that owns the array's data. Use with care.
+ void set_base(object const & base);
+
+ /// @brief Return the shape of the array as an array of integers (length == get_nd()).
+ Py_intptr_t const * get_shape() const { return get_struct()->shape; }
+
+ /// @brief Return the stride of the array as an array of integers (length == get_nd()).
+ Py_intptr_t const * get_strides() const { return get_struct()->strides; }
+
+ /// @brief Return the number of array dimensions.
+ int const get_nd() const { return get_struct()->nd; }
+
+ /// @brief Return the array flags.
+ bitflag const get_flags() const;
+
+ /// @brief Reverse the dimensions of the array.
+ ndarray transpose() const;
+
+ /// @brief Eliminate any unit-sized dimensions.
+ ndarray squeeze() const;
+
+ /**
+ * @brief If the array contains only a single element, return it as an array scalar; otherwise return
+ * the array.
+ *
+ * @internal This is simply a call to PyArray_Return();
+ */
+ object scalarize() const;
+};
+
+/**
+ * @brief Construct a new array with the given shape and data type, with data initialized to zero.
+ */
+ndarray zeros(tuple const & shape, dtype const & dt);
+ndarray zeros(int nd, Py_intptr_t const * shape, dtype const & dt);
+
+/**
+ * @brief Construct a new array with the given shape and data type, with data left uninitialized.
+ */
+ndarray empty(tuple const & shape, dtype const & dt);
+ndarray empty(int nd, Py_intptr_t const * shape, dtype const & dt);
+
+/**
+ * @brief Construct a new array from an arbitrary Python sequence.
+ *
+ * @todo This does't seem to handle ndarray subtypes the same way that "numpy.array" does in Python.
+ */
+ndarray array(object const & obj);
+ndarray array(object const & obj, dtype const & dt);
+
+namespace detail {
+
+ndarray from_data_impl(
+ void * data,
+ dtype const & dt,
+ std::vector<Py_intptr_t> const & shape,
+ std::vector<Py_intptr_t> const & strides,
+ object const & owner,
+ bool writeable
+);
+
+template <typename Container>
+ndarray from_data_impl(
+ void * data,
+ dtype const & dt,
+ Container shape,
+ Container strides,
+ object const & owner,
+ bool writeable,
+ typename boost::enable_if< boost::is_integral<typename Container::value_type> >::type * enabled = NULL
+) {
+ std::vector<Py_intptr_t> shape_(shape.begin(),shape.end());
+ std::vector<Py_intptr_t> strides_(strides.begin(), strides.end());
+ return from_data_impl(data, dt, shape_, strides_, owner, writeable);
+}
+
+ndarray from_data_impl(
+ void * data,
+ dtype const & dt,
+ object const & shape,
+ object const & strides,
+ object const & owner,
+ bool writeable
+);
+
+} // namespace boost::python::numpy::detail
+
+/**
+ * @brief Construct a new ndarray object from a raw pointer.
+ *
+ * @param[in] data Raw pointer to the first element of the array.
+ * @param[in] dt Data type descriptor. Often retrieved with dtype::get_builtin().
+ * @param[in] shape Shape of the array as STL container of integers; must have begin() and end().
+ * @param[in] strides Shape of the array as STL container of integers; must have begin() and end().
+ * @param[in] owner An arbitray Python object that owns that data pointer. The array object will
+ * keep a reference to the object, and decrement it's reference count when the
+ * array goes out of scope. Pass None at your own peril.
+ *
+ * @todo Should probably take ranges of iterators rather than actual container objects.
+ */
+template <typename Container>
+inline ndarray from_data(
+ void * data,
+ dtype const & dt,
+ Container shape,
+ Container strides,
+ object const & owner
+) {
+ return numpy::detail::from_data_impl(data, dt, shape, strides, owner, true);
+}
+
+/**
+ * @brief Construct a new ndarray object from a raw pointer.
+ *
+ * @param[in] data Raw pointer to the first element of the array.
+ * @param[in] dt Data type descriptor. Often retrieved with dtype::get_builtin().
+ * @param[in] shape Shape of the array as STL container of integers; must have begin() and end().
+ * @param[in] strides Shape of the array as STL container of integers; must have begin() and end().
+ * @param[in] owner An arbitray Python object that owns that data pointer. The array object will
+ * keep a reference to the object, and decrement it's reference count when the
+ * array goes out of scope. Pass None at your own peril.
+ *
+ * This overload takes a const void pointer and sets the "writeable" flag of the array to false.
+ *
+ * @todo Should probably take ranges of iterators rather than actual container objects.
+ */
+template <typename Container>
+inline ndarray from_data(
+ void const * data,
+ dtype const & dt,
+ Container shape,
+ Container strides,
+ object const & owner
+) {
+ return numpy::detail::from_data_impl(const_cast<void*>(data), dt, shape, strides, owner, false);
+}
+
+/**
+ * @brief Transform an arbitrary object into a numpy array with the given requirements.
+ *
+ * @param[in] obj An arbitrary python object to convert. Arrays that meet the requirements
+ * will be passed through directly.
+ * @param[in] dt Data type descriptor. Often retrieved with dtype::get_builtin().
+ * @param[in] nd_min Minimum number of dimensions.
+ * @param[in] nd_max Maximum number of dimensions.
+ * @param[in] flags Bitwise OR of flags specifying additional requirements.
+ */
+ndarray from_object(object const & obj, dtype const & dt,
+ int nd_min, int nd_max, ndarray::bitflag flags=ndarray::NONE);
+
+inline ndarray from_object(object const & obj, dtype const & dt,
+ int nd, ndarray::bitflag flags=ndarray::NONE) {
+ return from_object(obj, dt, nd, nd, flags);
+}
+
+inline ndarray from_object(object const & obj, dtype const & dt, ndarray::bitflag flags=ndarray::NONE) {
+ return from_object(obj, dt, 0, 0, flags);
+}
+
+ndarray from_object(object const & obj, int nd_min, int nd_max,
+ ndarray::bitflag flags=ndarray::NONE);
+
+inline ndarray from_object(object const & obj, int nd, ndarray::bitflag flags=ndarray::NONE) {
+ return from_object(obj, nd, nd, flags);
+}
+
+inline ndarray from_object(object const & obj, ndarray::bitflag flags=ndarray::NONE) {
+ return from_object(obj, 0, 0, flags);
+}
+
+inline ndarray::bitflag operator|(ndarray::bitflag a, ndarray::bitflag b) {
+ return ndarray::bitflag(int(a) | int(b));
+}
+
+inline ndarray::bitflag operator&(ndarray::bitflag a, ndarray::bitflag b) {
+ return ndarray::bitflag(int(a) & int(b));
+}
+
+
+} // namespace boost::python::numpy
+
+namespace converter {
+
+NUMPY_OBJECT_MANAGER_TRAITS(python::numpy::ndarray);
+
+} // namespace boost::python::converter
+}} // namespace boost::python
+
+#endif // !BOOST_PYTHON_NUMPY_NDARRAY_HPP_INCLUDED
Added: sandbox/numpy/boost/python/numpy/numpy_object_mgr_traits.hpp
==============================================================================
--- (empty file)
+++ sandbox/numpy/boost/python/numpy/numpy_object_mgr_traits.hpp 2010-03-08 16:50:13 EST (Mon, 08 Mar 2010)
@@ -0,0 +1,27 @@
+#ifndef BOOST_PYTHON_NUMPY_NUMPY_OBJECT_MGR_TRAITS_HPP_INCLUDED
+#define BOOST_PYTHON_NUMPY_NUMPY_OBJECT_MGR_TRAITS_HPP_INCLUDED
+
+/**
+ * @file boost/python/numpy/numpy_object_mgr_traits.hpp
+ * @brief Macro that specializes object_manager_traits by requiring a
+ * source-file implementation of get_pytype().
+ */
+
+#define NUMPY_OBJECT_MANAGER_TRAITS(manager) \
+ template <> \
+ struct object_manager_traits<manager> { \
+ BOOST_STATIC_CONSTANT(bool, is_specialized = true); \
+ static inline python::detail::new_reference adopt(PyObject* x) { \
+ return python::detail::new_reference(python::pytype_check((PyTypeObject*)get_pytype(), x)); \
+ } \
+ static bool check(PyObject* x) { \
+ return ::PyObject_IsInstance(x, (PyObject*)get_pytype()); \
+ } \
+ static manager* checked_downcast(PyObject* x) { \
+ return python::downcast<manager>((checked_downcast_impl)(x, (PyTypeObject*)get_pytype())); \
+ } \
+ static PyTypeObject const * get_pytype(); \
+ }
+
+#endif // !BOOST_PYTHON_NUMPY_NUMPY_OBJECT_MGR_TRAITS_HPP_INCLUDED
+
Added: sandbox/numpy/boost/python/numpy/scalars.hpp
==============================================================================
--- (empty file)
+++ sandbox/numpy/boost/python/numpy/scalars.hpp 2010-03-08 16:50:13 EST (Mon, 08 Mar 2010)
@@ -0,0 +1,55 @@
+#ifndef BOOST_PYTHON_NUMPY_SCALARS_HPP_INCLUDED
+#define BOOST_PYTHON_NUMPY_SCALARS_HPP_INCLUDED
+
+/**
+ * @file boost/python/numpy/scalars.hpp
+ * @brief Object managers for array scalars (currently only numpy.void is implemented).
+ */
+
+#include <boost/python.hpp>
+#include <boost/python/numpy/numpy_object_mgr_traits.hpp>
+#include <boost/python/numpy/dtype.hpp>
+
+namespace boost { namespace python {
+namespace numpy {
+
+/**
+ * @brief A boost.python "object manager" (subclass of object) for numpy.void.
+ *
+ * @todo This could have a lot more functionality.
+ */
+class void_ : public object {
+ static python::detail::new_reference convert(object_cref arg, bool align);
+public:
+
+ /**
+ * @brief Construct a new array scalar with the given size and void dtype.
+ *
+ * Data is initialized to zero. One can create a standalone scalar object
+ * with a certain dtype "dt" with:
+ * @code
+ * void_ scalar = void_(dt.get_itemsize()).view(dt);
+ * @endcode
+ */
+ explicit void_(Py_ssize_t size);
+
+ BOOST_PYTHON_FORWARD_OBJECT_CONSTRUCTORS(void_, object);
+
+ /// @brief Return a view of the scalar with the given dtype.
+ void_ view(dtype const & dt) const;
+
+ /// @brief Copy the scalar (deep for all non-object fields).
+ void_ copy() const;
+
+};
+
+} // namespace boost::python::numpy
+
+namespace converter {
+
+NUMPY_OBJECT_MANAGER_TRAITS(python::numpy::void_);
+
+} // namespace boost::python::converter
+}} // namespace boost::python
+
+#endif // !BOOST_PYTHON_NUMPY_SCALARS_HPP_INCLUDED
Added: sandbox/numpy/boost/python/numpy/ufunc.hpp
==============================================================================
--- (empty file)
+++ sandbox/numpy/boost/python/numpy/ufunc.hpp 2010-03-08 16:50:13 EST (Mon, 08 Mar 2010)
@@ -0,0 +1,193 @@
+#ifndef BOOST_PYTHON_NUMPY_UFUNC_HPP_INCLUDED
+#define BOOST_PYTHON_NUMPY_UFUNC_HPP_INCLUDED
+
+/**
+ * @file boost/python/numpy/ufunc.hpp
+ * @brief Utilities to create ufunc-like broadcasting functions out of C++ functors.
+ */
+
+#include <boost/python.hpp>
+#include <boost/python/numpy/numpy_object_mgr_traits.hpp>
+#include <boost/python/numpy/dtype.hpp>
+#include <boost/python/numpy/ndarray.hpp>
+
+namespace boost { namespace python {
+namespace numpy {
+
+/**
+ * @brief A boost.python "object manager" (subclass of object) for PyArray_MultiIter.
+ *
+ * multi_iter is a Python object, but a very low-level one. It should generally only be used
+ * in loops of the form:
+ * @code
+ * while (iter.not_done()) {
+ * ...
+ * iter.next();
+ * }
+ * @endcode
+ *
+ * @todo I can't tell if this type is exposed in Python anywhere; if it is, we should use that name.
+ * It's more dangerous than most object managers, however - maybe it actually belongs in
+ * a detail namespace?
+ */
+class multi_iter : public object {
+public:
+
+ BOOST_PYTHON_FORWARD_OBJECT_CONSTRUCTORS(multi_iter, object);
+
+ /// @brief Increment the iterator.
+ void next();
+
+ /// @brief Check if the iterator is at its end.
+ bool not_done() const;
+
+ /// @brief Return a pointer to the element of the nth broadcasted array.
+ char * get_data(int n) const;
+
+ /// @brief Return the number of dimensions of the broadcasted array expression.
+ int const get_nd() const;
+
+ /// @brief Return the shape of the broadcasted array expression as an array of integers.
+ Py_intptr_t const * get_shape() const;
+
+ /// @brief Return the shape of the broadcasted array expression in the nth dimension.
+ Py_intptr_t const shape(int n) const;
+
+};
+
+/// @brief Construct a multi_iter over a single sequence or scalar object.
+multi_iter make_multi_iter(object const & a1);
+
+/// @brief Construct a multi_iter by broadcasting two objects.
+multi_iter make_multi_iter(object const & a1, object const & a2);
+
+/// @brief Construct a multi_iter by broadcasting three objects.
+multi_iter make_multi_iter(object const & a1, object const & a2, object const & a3);
+
+/**
+ * @brief Helps wrap a C++ functor taking a single scalar argument as a broadcasting ufunc-like
+ * Python object.
+ *
+ * Typical usage looks like this:
+ * @code
+ * struct TimesPI {
+ * typedef double argument_type;
+ * typedef double result_type;
+ * double operator()(double input) const { return input * M_PI; }
+ * };
+ *
+ * BOOST_PYTHON_MODULE(example) {
+ * class_< TimesPI >("TimesPI")
+ * .def("__call__", unary_ufunc<TimesPI>::make())
+ * ;
+ * }
+ * @endcode
+ *
+ */
+template <typename TUnaryFunctor,
+ typename TArgument=typename TUnaryFunctor::argument_type,
+ typename TResult=typename TUnaryFunctor::result_type>
+struct unary_ufunc {
+
+ /**
+ * @brief A C++ function with object arguments that broadcasts its arguments before
+ * passing them to the underlying C++ functor.
+ */
+ static object call(TUnaryFunctor & self, object const & input, object const & output) {
+ dtype in_dtype = dtype::get_builtin<TArgument>();
+ dtype out_dtype = dtype::get_builtin<TResult>();
+ ndarray in_array = from_object(input, in_dtype, ndarray::ALIGNED);
+ ndarray out_array = (output != object()) ?
+ from_object(output, out_dtype, ndarray::ALIGNED | ndarray::WRITEABLE)
+ : zeros(in_array.get_nd(), in_array.get_shape(), out_dtype);
+ multi_iter iter = make_multi_iter(in_array, out_array);
+ while (iter.not_done()) {
+ TArgument * argument = reinterpret_cast<TArgument*>(iter.get_data(0));
+ TResult * result = reinterpret_cast<TResult*>(iter.get_data(1));
+ *result = self(*argument);
+ iter.next();
+ }
+ return out_array.scalarize();
+ }
+
+ /**
+ * @brief Construct a boost.python function object from call() with reasonable keyword names.
+ *
+ * Users will often want to specify their own keyword names with the same signature, but this
+ * is a convenient shortcut.
+ */
+ static object make() {
+ return make_function(call, default_call_policies(), (arg("input"), arg("output")=object()));
+ }
+
+};
+
+/**
+ * @brief Helps wrap a C++ functor taking a pair of scalar arguments as a broadcasting ufunc-like
+ * Python object.
+ *
+ * Typical usage looks like this:
+ * @code
+ * struct CosSum {
+ * typedef double first_argument_type;
+ * typedef double second_argument_type;
+ * typedef double result_type;
+ * double operator()(double input1, double input2) const { return std::cos(input1 + input2); }
+ * };
+ *
+ * BOOST_PYTHON_MODULE(example) {
+ * class_< CosSum >("CosSum")
+ * .def("__call__", binary_ufunc<CosSum>::make())
+ * ;
+ * }
+ * @endcode
+ *
+ */
+template <typename TBinaryFunctor,
+ typename TArgument1=typename TBinaryFunctor::first_argument_type,
+ typename TArgument2=typename TBinaryFunctor::second_argument_type,
+ typename TResult=typename TBinaryFunctor::result_type>
+struct binary_ufunc {
+
+ static object call(TBinaryFunctor & self, object const & input1, object const & input2,
+ object const & output)
+ {
+ dtype in1_dtype = dtype::get_builtin<TArgument1>();
+ dtype in2_dtype = dtype::get_builtin<TArgument2>();
+ dtype out_dtype = dtype::get_builtin<TResult>();
+ ndarray in1_array = from_object(input1, in1_dtype, ndarray::ALIGNED);
+ ndarray in2_array = from_object(input2, in2_dtype, ndarray::ALIGNED);
+ multi_iter iter = make_multi_iter(in1_array, in2_array);
+ ndarray out_array = (output != object()) ?
+ from_object(output, out_dtype, ndarray::ALIGNED | ndarray::WRITEABLE)
+ : zeros(iter.get_nd(), iter.get_shape(), out_dtype);
+ iter = make_multi_iter(in1_array, in2_array, out_array);
+ while (iter.not_done()) {
+ TArgument1 * argument1 = reinterpret_cast<TArgument1*>(iter.get_data(0));
+ TArgument2 * argument2 = reinterpret_cast<TArgument2*>(iter.get_data(1));
+ TResult * result = reinterpret_cast<TResult*>(iter.get_data(2));
+ *result = self(*argument1, *argument2);
+ iter.next();
+ }
+ return out_array.scalarize();
+ }
+
+ static object make() {
+ return make_function(
+ call, default_call_policies(),
+ (arg("input1"), arg("input2"), arg("output")=object())
+ );
+ }
+
+};
+
+} // namespace boost::python::numpy
+
+namespace converter {
+
+NUMPY_OBJECT_MANAGER_TRAITS(python::numpy::multi_iter);
+
+} // namespace boost::python::converter
+}} // namespace boost::python
+
+#endif // !BOOST_PYTHON_NUMPY_UFUNC_HPP_INCLUDED
Added: sandbox/numpy/libs/python/numpy/src/dtype.cpp
==============================================================================
--- (empty file)
+++ sandbox/numpy/libs/python/numpy/src/dtype.cpp 2010-03-08 16:50:13 EST (Mon, 08 Mar 2010)
@@ -0,0 +1,84 @@
+#define BOOST_PYTHON_NUMPY_INTERNAL
+#include <boost/python/numpy/internal.hpp>
+
+#define NUMPY_DTYPE_TRAITS_BUILTIN(ctype,code) \
+ template <> struct dtype_traits<ctype> { \
+ static dtype get() { \
+ return dtype( \
+ python::detail::new_reference( \
+ reinterpret_cast<PyObject*>(PyArray_DescrFromType(code)) \
+ ) \
+ ); \
+ } \
+ }; \
+ template dtype dtype::get_builtin<ctype>()
+
+#define NUMPY_DTYPE_TRAITS_COMPLEX(creal, ctype, code) \
+ template <> struct dtype_traits< std::complex<creal> > { \
+ static dtype get() { \
+ if (sizeof(ctype) != sizeof(std::complex<creal>)) { \
+ PyErr_SetString(PyExc_TypeError, "Cannot reinterpret std::complex<T> as T[2]"); \
+ throw_error_already_set(); \
+ } \
+ return dtype( \
+ python::detail::new_reference( \
+ reinterpret_cast<PyObject*>(PyArray_DescrFromType(code)) \
+ ) \
+ ); \
+ } \
+ }; \
+ template dtype dtype::get_builtin< std::complex<creal> >()
+
+namespace boost { namespace python {
+namespace numpy {
+
+template <typename T> struct dtype_traits;
+
+python::detail::new_reference dtype::convert(object const & arg, bool align) {
+ PyArray_Descr* obj=NULL;
+ if (align) {
+ if (PyArray_DescrAlignConverter(arg.ptr(), &obj) < 0)
+ throw_error_already_set();
+ } else {
+ if (PyArray_DescrConverter(arg.ptr(), &obj) < 0)
+ throw_error_already_set();
+ }
+ return python::detail::new_reference(reinterpret_cast<PyObject*>(obj));
+}
+
+int dtype::get_itemsize() const {
+ return reinterpret_cast<PyArray_Descr*>(ptr())->elsize;
+}
+
+template <typename T>
+dtype dtype::get_builtin() { return dtype_traits<T>::get(); }
+
+NUMPY_DTYPE_TRAITS_BUILTIN(npy_ubyte, NPY_UBYTE);
+NUMPY_DTYPE_TRAITS_BUILTIN(npy_byte, NPY_BYTE);
+NUMPY_DTYPE_TRAITS_BUILTIN(npy_ushort, NPY_USHORT);
+NUMPY_DTYPE_TRAITS_BUILTIN(npy_short, NPY_SHORT);
+NUMPY_DTYPE_TRAITS_BUILTIN(npy_uint, NPY_UINT);
+NUMPY_DTYPE_TRAITS_BUILTIN(npy_int, NPY_INT);
+NUMPY_DTYPE_TRAITS_BUILTIN(npy_ulong, NPY_ULONG);
+NUMPY_DTYPE_TRAITS_BUILTIN(npy_long, NPY_LONG);
+NUMPY_DTYPE_TRAITS_BUILTIN(npy_float, NPY_FLOAT);
+NUMPY_DTYPE_TRAITS_BUILTIN(npy_double, NPY_DOUBLE);
+NUMPY_DTYPE_TRAITS_BUILTIN(npy_longdouble, NPY_LONGDOUBLE);
+NUMPY_DTYPE_TRAITS_BUILTIN(npy_cfloat, NPY_CFLOAT);
+NUMPY_DTYPE_TRAITS_BUILTIN(npy_cdouble, NPY_CDOUBLE);
+NUMPY_DTYPE_TRAITS_BUILTIN(npy_clongdouble, NPY_CLONGDOUBLE);
+NUMPY_DTYPE_TRAITS_COMPLEX(float, npy_cfloat, NPY_CFLOAT);
+NUMPY_DTYPE_TRAITS_COMPLEX(double, npy_cdouble, NPY_CDOUBLE);
+NUMPY_DTYPE_TRAITS_COMPLEX(long double, npy_clongdouble, NPY_CLONGDOUBLE);
+
+template <> struct dtype_traits<bool> {
+ static dtype get() {
+ if (sizeof(bool) == sizeof(npy_bool)) return dtype_traits<npy_bool>::get();
+ if (sizeof(bool) == sizeof(npy_ubyte)) return dtype_traits<npy_ubyte>::get();
+ PyErr_SetString(PyExc_TypeError, "Cannot determine numpy dtype corresponding to C++ bool.");
+ throw_error_already_set();
+ }
+};
+template dtype dtype::get_builtin<bool>();
+
+}}} // namespace boost::python::numpy
Added: sandbox/numpy/libs/python/numpy/src/matrix.cpp
==============================================================================
--- (empty file)
+++ sandbox/numpy/libs/python/numpy/src/matrix.cpp 2010-03-08 16:50:13 EST (Mon, 08 Mar 2010)
@@ -0,0 +1,51 @@
+#define BOOST_PYTHON_NUMPY_INTERNAL
+#include <boost/python/numpy/internal.hpp>
+#include <boost/python/numpy/matrix.hpp>
+
+namespace boost { namespace python {
+namespace numpy { namespace detail {
+inline object get_matrix_type() {
+ object module = import("numpy");
+ return module.attr("matrix");
+}
+}} // namespace numpy::detail
+
+namespace converter {
+
+PyTypeObject const * object_manager_traits<numpy::matrix>::get_pytype() {
+ return reinterpret_cast<PyTypeObject*>(numpy::detail::get_matrix_type().ptr());
+}
+
+} // namespace boost::python::converter
+
+namespace numpy {
+
+object matrix::construct(object const & obj, dtype const & dt, bool copy) {
+ return numpy::detail::get_matrix_type()(obj, dt, copy);
+}
+
+object matrix::construct(object const & obj, bool copy) {
+ return numpy::detail::get_matrix_type()(obj, object(), copy);
+}
+
+matrix matrix::view(dtype const & dt) const {
+ return matrix(
+ python::detail::new_reference(
+ PyObject_CallMethod(this->ptr(), const_cast<char*>("view"), const_cast<char*>("O"), dt.ptr())
+ )
+ );
+}
+
+matrix matrix::copy() const {
+ return matrix(
+ python::detail::new_reference(
+ PyObject_CallMethod(this->ptr(), const_cast<char*>("copy"), const_cast<char*>(""))
+ )
+ );
+}
+
+matrix matrix::transpose() const {
+ return matrix(extract<matrix>(ndarray::transpose()));
+}
+
+}}} // namespace boost::python::numpy
Added: sandbox/numpy/libs/python/numpy/src/ndarray.cpp
==============================================================================
--- (empty file)
+++ sandbox/numpy/libs/python/numpy/src/ndarray.cpp 2010-03-08 16:50:13 EST (Mon, 08 Mar 2010)
@@ -0,0 +1,277 @@
+#define BOOST_PYTHON_NUMPY_INTERNAL
+#include <boost/python/numpy/internal.hpp>
+
+namespace boost { namespace python {
+namespace converter {
+NUMPY_OBJECT_MANAGER_TRAITS_IMPL(PyArray_Type, python::numpy::ndarray)
+} // namespace boost::python::converter
+
+namespace numpy {
+
+namespace detail {
+
+ndarray::bitflag numpy_to_bitflag(int const f) {
+ ndarray::bitflag r = ndarray::NONE;
+ if (f & NPY_C_CONTIGUOUS) r = (r | ndarray::C_CONTIGUOUS);
+ if (f & NPY_F_CONTIGUOUS) r = (r | ndarray::F_CONTIGUOUS);
+ if (f & NPY_ALIGNED) r = (r | ndarray::ALIGNED);
+ if (f & NPY_WRITEABLE) r = (r | ndarray::WRITEABLE);
+ return r;
+}
+
+int const bitflag_to_numpy(ndarray::bitflag f) {
+ int r = 0;
+ if (f & ndarray::C_CONTIGUOUS) r |= NPY_C_CONTIGUOUS;
+ if (f & ndarray::F_CONTIGUOUS) r |= NPY_F_CONTIGUOUS;
+ if (f & ndarray::ALIGNED) r |= NPY_ALIGNED;
+ if (f & ndarray::WRITEABLE) r |= NPY_WRITEABLE;
+ return r;
+}
+
+bool is_c_contiguous(
+ std::vector<Py_intptr_t> const & shape,
+ std::vector<Py_intptr_t> const & strides,
+ int itemsize
+) {
+ std::vector<Py_intptr_t>::const_reverse_iterator j = strides.rbegin();
+ int total = itemsize;
+ for (std::vector<Py_intptr_t>::const_reverse_iterator i = shape.rbegin(); i != shape.rend(); ++i, ++j) {
+ if (total != *j) return false;
+ total *= (*i);
+ }
+ return true;
+}
+
+bool is_f_contiguous(
+ std::vector<Py_intptr_t> const & shape,
+ std::vector<Py_intptr_t> const & strides,
+ int itemsize
+) {
+ std::vector<Py_intptr_t>::const_iterator j = strides.begin();
+ int total = itemsize;
+ for (std::vector<Py_intptr_t>::const_iterator i = shape.begin(); i != shape.end(); ++i, ++j) {
+ if (total != *j) return false;
+ total *= (*i);
+ }
+ return true;
+}
+
+bool is_aligned(
+ std::vector<Py_intptr_t> const & strides,
+ int itemsize
+) {
+ for (std::vector<Py_intptr_t>::const_iterator i = strides.begin(); i != strides.end(); ++i) {
+ if (*i % itemsize) return false;
+ }
+ return true;
+}
+
+inline PyArray_Descr * incref_dtype(dtype const & dt) {
+ Py_INCREF(dt.ptr());
+ return reinterpret_cast<PyArray_Descr*>(dt.ptr());
+}
+
+ndarray from_data_impl(
+ void * data,
+ dtype const & dt,
+ object const & shape,
+ object const & strides,
+ object const & owner,
+ bool writeable
+) {
+ std::vector<Py_intptr_t> shape_(len(shape));
+ std::vector<Py_intptr_t> strides_(len(strides));
+ if (shape_.size() != strides_.size()) {
+ PyErr_SetString(PyExc_ValueError, "Length of shape and strides arrays do not match.");
+ throw_error_already_set();
+ }
+ for (std::size_t i = 0; i < shape_.size(); ++i) {
+ shape_[i] = extract<Py_intptr_t>(shape[i]);
+ strides_[i] = extract<Py_intptr_t>(strides[i]);
+ }
+ return from_data_impl(data, dt, shape_, strides_, owner, writeable);
+}
+
+ndarray from_data_impl(
+ void * data,
+ dtype const & dt,
+ std::vector<Py_intptr_t> const & shape,
+ std::vector<Py_intptr_t> const & strides,
+ object const & owner,
+ bool writeable
+) {
+ if (shape.size() != strides.size()) {
+ PyErr_SetString(PyExc_ValueError, "Length of shape and strides arrays do not match.");
+ throw_error_already_set();
+ }
+ int itemsize = dt.get_itemsize();
+ int flags = 0;
+ if (writeable) flags |= NPY_WRITEABLE;
+ if (is_c_contiguous(shape, strides, itemsize)) flags |= NPY_C_CONTIGUOUS;
+ if (is_f_contiguous(shape, strides, itemsize)) flags |= NPY_F_CONTIGUOUS;
+ if (is_aligned(strides, itemsize)) flags |= NPY_ALIGNED;
+ ndarray r(
+ python::detail::new_reference(
+ PyArray_NewFromDescr(
+ &PyArray_Type,
+ incref_dtype(dt),
+ shape.size(),
+ const_cast<Py_intptr_t*>(&shape.front()),
+ const_cast<Py_intptr_t*>(&strides.front()),
+ data,
+ flags,
+ NULL
+ )
+ )
+ );
+ r.set_base(owner);
+ return r;
+}
+
+} // namespace detail
+
+ndarray ndarray::view(dtype const & dt) const {
+ return ndarray(
+ python::detail::new_reference(
+ PyObject_CallMethod(this->ptr(), const_cast<char*>("view"), const_cast<char*>("O"), dt.ptr())
+ )
+ );
+}
+
+ndarray ndarray::copy() const {
+ return ndarray(
+ python::detail::new_reference(
+ PyObject_CallMethod(this->ptr(), const_cast<char*>("copy"), const_cast<char*>(""))
+ )
+ );
+}
+
+dtype ndarray::get_dtype() const {
+ return dtype(python::detail::borrowed_reference(get_struct()->descr));
+}
+
+object ndarray::get_base() const {
+ if (get_struct()->base == NULL) return object();
+ return object(python::detail::borrowed_reference(get_struct()->base));
+}
+
+void ndarray::set_base(object const & base) {
+ Py_XDECREF(get_struct()->base);
+ if (base != object()) {
+ Py_INCREF(base.ptr());
+ get_struct()->base = base.ptr();
+ } else {
+ get_struct()->base = NULL;
+ }
+}
+
+ndarray::bitflag const ndarray::get_flags() const {
+ return numpy::detail::numpy_to_bitflag(get_struct()->flags);
+}
+
+ndarray ndarray::transpose() const {
+ return ndarray(
+ python::detail::new_reference(
+ PyArray_Transpose(reinterpret_cast<PyArrayObject*>(this->ptr()), NULL)
+ )
+ );
+}
+
+ndarray ndarray::squeeze() const {
+ return ndarray(
+ python::detail::new_reference(
+ PyArray_Squeeze(reinterpret_cast<PyArrayObject*>(this->ptr()))
+ )
+ );
+}
+
+object ndarray::scalarize() const {
+ Py_INCREF(ptr());
+ return object(python::detail::new_reference(PyArray_Return(reinterpret_cast<PyArrayObject*>(ptr()))));
+}
+
+ndarray zeros(tuple const & shape, dtype const & dt) {
+ int nd = len(shape);
+ Py_intptr_t dims[nd];
+ for (int n=0; n<nd; ++n) dims[n] = extract<Py_intptr_t>(shape[n]);
+ return ndarray(
+ python::detail::new_reference(
+ PyArray_Zeros(nd, dims, detail::incref_dtype(dt), 0)
+ )
+ );
+}
+
+ndarray zeros(int nd, Py_intptr_t const * shape, dtype const & dt) {
+ return ndarray(
+ python::detail::new_reference(
+ PyArray_Zeros(nd, const_cast<Py_intptr_t*>(shape), detail::incref_dtype(dt), 0)
+ )
+ );
+}
+
+ndarray empty(tuple const & shape, dtype const & dt) {
+ int nd = len(shape);
+ Py_intptr_t dims[nd];
+ for (int n=0; n<nd; ++n) dims[n] = extract<Py_intptr_t>(shape[n]);
+ return ndarray(
+ python::detail::new_reference(
+ PyArray_Empty(nd, dims, detail::incref_dtype(dt), 0)
+ )
+ );
+}
+
+ndarray empty(int nd, Py_intptr_t const * shape, dtype const & dt) {
+ return ndarray(
+ python::detail::new_reference(
+ PyArray_Empty(nd, const_cast<Py_intptr_t*>(shape), detail::incref_dtype(dt), 0)
+ )
+ );
+}
+
+ndarray array(object const & obj) {
+ return ndarray(
+ python::detail::new_reference(
+ PyArray_FromAny(obj.ptr(), NULL, 0, 0, NPY_ENSUREARRAY, NULL)
+ )
+ );
+}
+
+ndarray array(object const & obj, dtype const & dt) {
+ return ndarray(
+ python::detail::new_reference(
+ PyArray_FromAny(obj.ptr(), detail::incref_dtype(dt), 0, 0, NPY_ENSUREARRAY, NULL)
+ )
+ );
+}
+
+ndarray from_object(object const & obj, dtype const & dt, int nd_min, int nd_max, ndarray::bitflag flags) {
+ int requirements = detail::bitflag_to_numpy(flags);
+ return ndarray(
+ python::detail::new_reference(
+ PyArray_FromAny(
+ obj.ptr(),
+ detail::incref_dtype(dt),
+ nd_min, nd_max,
+ requirements,
+ NULL
+ )
+ )
+ );
+}
+
+ndarray from_object(object const & obj, int nd_min, int nd_max, ndarray::bitflag flags) {
+ int requirements = detail::bitflag_to_numpy(flags);
+ return ndarray(
+ python::detail::new_reference(
+ PyArray_FromAny(
+ obj.ptr(),
+ NULL,
+ nd_min, nd_max,
+ requirements,
+ NULL
+ )
+ )
+ );
+}
+
+}}}
Added: sandbox/numpy/libs/python/numpy/src/numpy.cpp
==============================================================================
--- (empty file)
+++ sandbox/numpy/libs/python/numpy/src/numpy.cpp 2010-03-08 16:50:13 EST (Mon, 08 Mar 2010)
@@ -0,0 +1,13 @@
+#define BOOST_PYTHON_NUMPY_INTERNAL_MAIN
+#include <boost/python/numpy/internal.hpp>
+
+namespace boost { namespace python {
+
+namespace numpy {
+
+void initialize() {
+ import_array();
+ import_ufunc();
+}
+
+}}}
Added: sandbox/numpy/libs/python/numpy/src/scalars.cpp
==============================================================================
--- (empty file)
+++ sandbox/numpy/libs/python/numpy/src/scalars.cpp 2010-03-08 16:50:13 EST (Mon, 08 Mar 2010)
@@ -0,0 +1,35 @@
+#define BOOST_PYTHON_NUMPY_INTERNAL
+#include <boost/python/numpy/internal.hpp>
+
+namespace boost { namespace python {
+namespace converter {
+NUMPY_OBJECT_MANAGER_TRAITS_IMPL(PyVoidArrType_Type, python::numpy::void_)
+} // namespace boost::python::converter
+
+namespace numpy {
+
+void_::void_(Py_ssize_t size) :
+ object(
+ python::detail::new_reference(
+ PyObject_CallFunction((PyObject*)&PyVoidArrType_Type, const_cast<char*>("i"), size)
+ )
+ )
+{}
+
+void_ void_::view(dtype const & dt) const {
+ return void_(
+ python::detail::new_reference(
+ PyObject_CallMethod(this->ptr(), const_cast<char*>("view"), const_cast<char*>("O"), dt.ptr())
+ )
+ );
+}
+
+void_ void_::copy() const {
+ return void_(
+ python::detail::new_reference(
+ PyObject_CallMethod(this->ptr(), const_cast<char*>("copy"), const_cast<char*>(""))
+ )
+ );
+}
+
+}}}
Added: sandbox/numpy/libs/python/numpy/src/ufunc.cpp
==============================================================================
--- (empty file)
+++ sandbox/numpy/libs/python/numpy/src/ufunc.cpp 2010-03-08 16:50:13 EST (Mon, 08 Mar 2010)
@@ -0,0 +1,48 @@
+#define BOOST_PYTHON_NUMPY_INTERNAL
+#include <boost/python/numpy/internal.hpp>
+#include <boost/python/numpy/ufunc.hpp>
+
+namespace boost { namespace python {
+namespace converter {
+NUMPY_OBJECT_MANAGER_TRAITS_IMPL(PyArrayMultiIter_Type, python::numpy::multi_iter)
+} // namespace boost::python::converter
+
+namespace numpy {
+
+multi_iter make_multi_iter(object const & a1) {
+ return multi_iter(python::detail::new_reference(PyArray_MultiIterNew(1, a1.ptr())));
+}
+
+multi_iter make_multi_iter(object const & a1, object const & a2) {
+ return multi_iter(python::detail::new_reference(PyArray_MultiIterNew(2, a1.ptr(), a2.ptr())));
+}
+
+multi_iter make_multi_iter(object const & a1, object const & a2, object const & a3) {
+ return multi_iter(python::detail::new_reference(PyArray_MultiIterNew(3, a1.ptr(), a2.ptr(), a3.ptr())));
+}
+
+void multi_iter::next() {
+ PyArray_MultiIter_NEXT(ptr());
+}
+
+bool multi_iter::not_done() const {
+ return PyArray_MultiIter_NOTDONE(ptr());
+}
+
+char * multi_iter::get_data(int i) const {
+ return reinterpret_cast<char*>(PyArray_MultiIter_DATA(ptr(), i));
+}
+
+int const multi_iter::get_nd() const {
+ return reinterpret_cast<PyArrayMultiIterObject*>(ptr())->nd;
+}
+
+Py_intptr_t const * multi_iter::get_shape() const {
+ return reinterpret_cast<PyArrayMultiIterObject*>(ptr())->dimensions;
+}
+
+Py_intptr_t const multi_iter::shape(int n) const {
+ return reinterpret_cast<PyArrayMultiIterObject*>(ptr())->dimensions[n];
+}
+
+}}}
Boost-Commit list run by bdawes at acm.org, david.abrahams at rcn.com, gregod at cs.rpi.edu, cpdaniel at pacbell.net, john at johnmaddock.co.uk