|
Boost-Commit : |
Subject: [Boost-commit] svn:boost r63446 - branches/release/libs/msm/doc/HTML
From: christophe.j.henry_at_[hidden]
Date: 2010-06-30 04:40:11
Author: chenry
Date: 2010-06-30 04:40:08 EDT (Wed, 30 Jun 2010)
New Revision: 63446
URL: http://svn.boost.org/trac/boost/changeset/63446
Log:
removed unneeded files (merge error)
Removed:
branches/release/libs/msm/doc/HTML/ar01s02.html
branches/release/libs/msm/doc/HTML/ar01s03.html
branches/release/libs/msm/doc/HTML/ar01s04.html
branches/release/libs/msm/doc/HTML/ar01s05.html
branches/release/libs/msm/doc/HTML/ar01s06.html
branches/release/libs/msm/doc/HTML/ar01s07.html
branches/release/libs/msm/doc/HTML/ar01s08.html
branches/release/libs/msm/doc/HTML/ar01s09.html
branches/release/libs/msm/doc/HTML/ch08s02.html
branches/release/libs/msm/doc/HTML/ch08s03.html
branches/release/libs/msm/doc/HTML/rn01.html
branches/release/libs/msm/doc/HTML/rn01re01.html
Deleted: branches/release/libs/msm/doc/HTML/ar01s02.html
==============================================================================
--- branches/release/libs/msm/doc/HTML/ar01s02.html 2010-06-30 04:40:08 EDT (Wed, 30 Jun 2010)
+++ (empty file)
@@ -1,20 +0,0 @@
-<html><head>
- <meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
- <title>Founding idea</title><meta name="generator" content="DocBook XSL-NS Stylesheets V1.75.2"><link rel="home" href="index.html" title="Meta State Machine (MSM)"><link rel="up" href="index.html" title="Meta State Machine (MSM)"><link rel="prev" href="index.html" title="Meta State Machine (MSM)"><link rel="next" href="ar01s03.html" title="UML Short Guide"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Founding idea</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="index.html">Prev</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a accesskey="n" href="ar01s03.html">Next</a></td></tr></table><hr></div><div class="sect1" title="Founding idea"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="d0e99"></a>Founding idea</h2></div></div></div><p>Let's start with an example taken
from the C++ Template Metaprogramming book:</p><p>
- <code class="code">class player : public state_machine<player></code></p><p><code class="code">{ </code></p><p><code class="code">// The list of FSM states enum states { Empty, Open, Stopped, Playing, Paused ,
- initial_state = Empty }; </code></p><p><code class="code">// transition actions void start_playback(play const&) { std::cout <<
- "player::start_playback\n"; } </code></p><p><code class="code">void open_drawer(open_close const&) { std::cout <<
- "player::open_drawer\n"; } </code></p><p><code class="code">void close_drawer(open_close const&) { std::cout <<
- "player::close_drawer\n"; } </code></p><p><code class="code">void store_cd_info(cd_detected const&) { std::cout <<
- "player::store_cd_info\n"; } </code></p><p><code class="code">void stop_playback(stop const&) { std::cout <<
- "player::stop_playback\n"; } </code></p><p><code class="code">void pause_playback(pause const&) { std::cout <<
- "player::pause_playback\n"; } </code></p><p><code class="code">void resume_playback(play const&) { std::cout <<
- "player::resume_playback\n"; } </code></p><p><code class="code">void stop_and_open(open_close const&) { std::cout <<
- "player::stop_and_open\n"; } </code></p><p><code class="code">friend class state_machine<player>; </code></p><p><code class="code">typedef player p; // makes transition table cleaner </code></p><p><code class="code">// Transition table </code></p><p><code class="code">struct transition_table : mpl::vector11< </code></p><p><code class="code">row < Stopped , play , Playing , &p::start_playback >, </code></p><p><code class="code">row < Stopped , open_close , Open , &p::open_drawer >, </code></p><p><code class="code">row < Open , open_close , Empty , &p::close_drawer >, </code></p><p><code class="code">row < Empty , open_close , Open , &p::open_drawer >, </code></p><p><code class="code">row < Empty , cd_detected , Stopped , &p::store_cd_info >, </code></p><p><code class="code">row < Playing , stop , Stopped , &p::stop_playback >, </code></p><p><code class="code">row < Playing , pause , Paused , &p::pause_playback >, <
/code></p><p><code class="code">row < Playing , open_close , Open , &p::stop_and_open >, </code></p><p><code class="code">row < Paused , play , Playing , &p::resume_playback >, </code></p><p><code class="code">row < Paused , stop , Stopped , &p::stop_playback >, </code></p><p><code class="code">row < Paused , open_close , Open , &p::stop_and_open > </code></p><p><code class="code">> {}; </code></p><p><code class="code">// Replaces the default no-transition response. </code></p><p><code class="code">template <class Event> int no_transition(int state, Event const& e) {
- std::cout << "no transition from state " << state << " on event "
- << typeid(e).name() << std::endl; return state; } };</code>
- </p><p><code class="code">void test() { player p; p.process_event(open_close());...}</code></p><p>This example is the foundation for the idea driving MSM: a descriptive and expressive
- language based on a transition table with as little syntactic noise as possible, all
- this while offering as many features from the UML 2.0 standard as possible. MSM also
- offers several expressive state machine definition syntaxes with different
- trade-offs.</p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="index.html">Prev</a> </td><td width="20%" align="center"> </td><td width="40%" align="right"> <a accesskey="n" href="ar01s03.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Meta State Machine (MSM) </td><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%" align="right" valign="top"> UML Short Guide</td></tr></table></div></body></html>
\ No newline at end of file
Deleted: branches/release/libs/msm/doc/HTML/ar01s03.html
==============================================================================
--- branches/release/libs/msm/doc/HTML/ar01s03.html 2010-06-30 04:40:08 EDT (Wed, 30 Jun 2010)
+++ (empty file)
@@ -1,122 +0,0 @@
-<html><head>
- <meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
- <title>UML Short Guide</title><meta name="generator" content="DocBook XSL-NS Stylesheets V1.75.2"><link rel="home" href="index.html" title="Meta State Machine (MSM)"><link rel="up" href="index.html" title="Meta State Machine (MSM)"><link rel="prev" href="ar01s02.html" title="Founding idea"><link rel="next" href="ar01s04.html" title="User's Guide"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">UML Short Guide</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="ar01s02.html">Prev</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a accesskey="n" href="ar01s04.html">Next</a></td></tr></table><hr></div><div class="sect1" title="UML Short Guide"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="d0e198"></a>UML Short Guide</h2></div></div></div><div class="sect2" title="What are st
ate machines?"><div class="titlepage"><div><div><h3 class="title"><a name="d0e201"></a>What are state machines?</h3></div></div></div><p>State machines are the description of the lifeline of a thing. They describe the
- different stages of the lifeline, the events influencing it, and what it does when a
- particular event is detected at a particular stage. They offer the complete
- specification of the dynamic behavior of the thing.</p></div><div class="sect2" title="Concepts"><div class="titlepage"><div><div><h3 class="title"><a name="d0e206"></a>Concepts</h3></div></div></div><div class="sect3" title="State machine, state, transition, event"><div class="titlepage"><div><div><h4 class="title"><a name="d0e209"></a>State machine, state, transition, event </h4></div></div></div><p>Thinking in terms of state machines is a bit surprising at first, so let us
- have a quick glance at the concepts.</p><p>A state machine is a concrete model describing the behavior of a system. It is
- composed of a finite number of states and transitions.</p><p>
- <span class="inlinemediaobject"><img src="../images/sm.gif"></span></p><p>A simple state has no sub states. It can have data, entry and exit behaviors
- and deferrable events. One can add entry and exit conditions to states (or state
- machines), which are executed whenever a state is entered or left, no matter
- how. A state can also have internal transitions which cause no entry or exit
- action to be called. A state can mark events as deferred. This means the event
- cannot be processed if this state is active, but it must be retained. Next time
- a state not deferring this event is active, the event will be processed, as if
- it had just been detected. </p><p><span class="inlinemediaobject"><img src="../images/state.gif"></span></p><p>A transition is the switching between active states, triggered by an event.
- Actions and guard conditions can be attached to the transition. The action is
- executes when the transition fires, the guard is a Boolean operation executed
- first and which can prevent the transition from firing if returning
- false.</p><p>
- <span class="inlinemediaobject"><img src="../images/transition.jpg"></span></p><p>An initial state marks the first active state of a state machine. It has no
- real existence and neither has the transition originating from it.</p><p>
- <span class="inlinemediaobject"><img src="../images/init_state.gif"></span></p></div><div class="sect3" title="Submachines, orthogonal regions, pseudostates"><div class="titlepage"><div><div><h4 class="title"><a name="d0e241"></a>Submachines, orthogonal regions, pseudostates </h4></div></div></div><p>A composite state is a state containing a region or decomposed in two or more
- regions. A composite state contains its own set of states and regions. </p><p>A submachine is a state machine inserted as a state in another state machine.
- The same state machine can be inserted more than once. </p><p>Orthogonal regions are parts of a composite state or submachine, each having
- its own set of mutually exclusive set of states and transitions. </p><p><span class="inlinemediaobject"><img src="../images/regions.gif"></span></p><p>UML also defines a number of pseudo states, which are considered important
- concepts to model, but not enough to make them first-class citizens. The
- terminate pseudo state terminates the execution of a state machine (MSM handles
- this slightly differently. The state machine is not destroyed but no further
- event processing occurs.). </p><p><span class="inlinemediaobject"><img src="../images/terminate.gif"></span></p><p>An exit point pseudo state exits a composite state or a submachine and forces
- termination of execution in all contained regions.</p><p><span class="inlinemediaobject"><img src="../images/exit.gif"></span></p><p>An entry point pseudo state allows a kind of controlled entry inside a
- composite. Precisely, it connects a transition outside the composite to a
- transition inside the composite. An important point is that this mechanism only
- allows a single region to be entered. In the above diagram, in region1, the
- initial state would become active. </p><p><span class="inlinemediaobject"><img src="../images/entry_point.gif"></span></p><p>There are also two more ways to enter a composite state (apart the obvious and
- more common case of a transition terminating on the composite as shown in the
- region case). An explicit entry means that an inside state is the target of a
- transition. Unlike with direct entry, no tentative encapsulation is made, and
- only one transition is executed. Needless to say, I would not recommend using
- this. </p><p><span class="inlinemediaobject"><img src="../images/explicit.gif"></span></p><p>The last entry possibility is using fork. A fork is an explicit entry into one
- or more regions. Other regions are again activated using their initial state. </p><p><span class="inlinemediaobject"><img src="../images/fork.gif"></span></p></div><div class="sect3" title="History"><div class="titlepage"><div><div><h4 class="title"><a name="d0e284"></a>
- <span class="command"><strong><a name="uml-history"></a></strong></span>History </h4></div></div></div><p>UML defines two sorts of history, shallow history and deep history. Shallow
- history is a pseudo state representing the most recent substate of a composite
- or submachine. A composite can have at most one shallow history. A transition
- with a history pseudo state as target is equivalent to a transition with the
- most recent substate as target. And very importantly, only one transition may
- originate from the history. Deep history is a shallow history recursively
- reactivating the substates of the most recent substate. It is represented like
- the shallow history with a star (H* inside a circle).</p><p>
- <span class="inlinemediaobject"><img src="../images/history.gif"></span></p><p>History is not a completely satisfying concept. First of all, there can be
- just one history pseudo state and only one transition may originate from it. So
- they do not mix well with orthogonal regions as only one region can be
- “remembered”. Deep history is even worse and looks like a last-minute addition.
- History has to be activated by a transition and only one transition originates
- from it, so how to model the transition originating from the deep history pseudo
- state and pointing to the most recent substate of the substate? As a bonus, it
- is also inflexible and does not accept new types of histories. Let's face it,
- history sounds great and is useful in theory, but the UML version is not quite
- making the cut. And therefore, MSM provides a different version of it. </p></div><div class="sect3" title="Completion events / anonymous transitions"><div class="titlepage"><div><div><h4 class="title"><a name="d0e298"></a><span class="command"><strong><a name="uml-anonymous"></a></strong></span>Completion events / anonymous
- transitions</h4></div></div></div><p>Completion events, also called anonymous transitions, are defined as
- transitions having no defined event triggering them. This means that such
- transitions will immediately fire when a state being the source of an anonymous
- transition becomes active, provided that a guard allows it. They are useful in
- modeling algorithms as an activity diagram would normally do. In the real-time
- world, they have the advantage of being able to estimate how long a periodically
- executed action will last. For example, consider the following diagram. </p><p><span class="inlinemediaobject"><img src="../images/completion.gif"></span></p><p>The designer now knows at any time that he will need a maximum of 4
- transitions. Being able to estimate how long a transition takes, he can estimate
- how much of a time frame he will need to require (real-time applications are
- often executed at regular intervals). If he can also estimate the duration of
- actions, he can even use graph algorithms to better estimate his timing
- requirements. </p></div><div class="sect3" title="Internal transitions"><div class="titlepage"><div><div><h4 class="title"><a name="d0e310"></a><span class="command"><strong><a name="UML-internal-transition"></a></strong></span> Internal transitions </h4></div></div></div><p>Internal transitions are transitions executing in the scope of the active
- state, being a simple state or a submachine. One can see them as a
- self-transition of this state, without an entry or exit action called.</p></div><div class="sect3" title="Conflicting transitions"><div class="titlepage"><div><div><h4 class="title"><a name="d0e316"></a>
- <span class="command"><strong><a name="transition-conflict"></a></strong></span>Conflicting transitions </h4></div></div></div><p>If, for a given event, several transitions are enabled, they are said to be in
- conflict. There are two kinds of conflicts: </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>For a given source state, several transitions are defined,
- triggered by the same event. Normally, the guard condition in each
- transition defines which one is fired.</p></li><li class="listitem"><p>The source state is a submachine or simple state and the conflict
- is between a transition internal to this state and a transition
- triggered by the same event and having as target another
- state.</p></li></ul></div><p>The first one is simple; one only needs to define two or more
- rows in the transition table, with the same source and trigger, with a different
- guard condition. Beware, however, that the UML standard wants these conditions
- to be not overlapping. If they do, the standard says nothing except that this is
- incorrect, so the implementer is free to implement it the way he sees fit. In
- the case of MSM, the transition appearing last in the transition table gets
- selected first, if it returns false (meaning disabled), the library tries with
- the previous one, and so on.</p><p>
- <span class="inlinemediaobject"><img src="../images/conflict1.gif"></span></p><p>In the second case, UML defines that the most inner transition gets selected
- first, which makes sense, otherwise no exit point pseudo state would be possible
- (the inner transition brings us to the exit point, from where the containing
- state machine can take over). </p><p><span class="inlinemediaobject"><img src="../images/conflict2.gif"></span></p><p>Msm handles all these cases itself, so the designer needs only concentrate on
- its state machine and the UML subtleties (not overlapping conditions), not on
- implementing this behavior himself. </p></div></div><div class="sect2" title="State machine glossary"><div class="titlepage"><div><div><h3 class="title"><a name="d0e344"></a>State machine glossary</h3></div></div></div><p>
- </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>state machine: the lifecycle of a thing. It is made of states,
- regions, transitions and processes incoming events.</p></li><li class="listitem"><p>state: a stage in the lifecycle of a state machine. A state (like a
- submachine) can have an entry and exit action.</p></li><li class="listitem"><p>event: an incident provoking (or not) a reaction of the state
- machine</p></li><li class="listitem"><p>transition: a specification of how a state machine reacts to an event.
- It specifies a source state, the event triggering the transition, the
- target state (which will become the newly active state if the transition
- is triggered), guard and actions.</p></li><li class="listitem"><p>action: an operation executed during the triggering of the
- transition.</p></li><li class="listitem"><p>guard: a boolean operation being able to prevent the triggering of a
- transition which would otherwise fire.</p></li><li class="listitem"><p>transition table: representation of a state machine. A state machine
- diagram is another but incomplete representation of the same
- model.</p></li><li class="listitem"><p>initial state: The state in which the state machine starts. Having
- several orthogonal regions means having as many initial states.</p></li><li class="listitem"><p>composite / submachine: A composite state is a state which is itself a
- state machine. A submachine is an instance of a composite state and can
- be found several times in a same state machine.</p></li><li class="listitem"><p>orthogonal regions: (logically) parallel flow of execution of a state
- machine. Every region of a state machine gets a chance to process an
- incoming event.</p></li><li class="listitem"><p>terminate pseudo-state: when this state becomes active, it terminates
- the execution of the whole state machine.</p></li><li class="listitem"><p>entry/exit pseudo state: defined for composites / submachines and are
- defined as a connection between a transition outside of the composite
- and a transition inside the composite. It is a way to enter or leave a
- submachine through a predefined point.</p></li><li class="listitem"><p>fork: a fork allows explicit entry into several orthogonal regions of
- a submachine.</p></li><li class="listitem"><p>history: a history is a way to remember the active state of a
- submachine so that the submachine can proceed in its last state next
- time it becomes active.</p></li><li class="listitem"><p>completion events (also called completion transitions): when a
- transition has no named event triggering it, it automatically fires when
- the source state is active, unless a guard forbids it.</p></li><li class="listitem"><p>transition conflict: a conflict is present if for a given source state
- and incoming event, several transitions are possible. UML specifies that
- guard conditions have to solve the conflict.</p></li><li class="listitem"><p>internal transitions: transition from a state to itself without having
- exit and entry actions being called.</p></li></ul></div><p>
- </p></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="ar01s02.html">Prev</a> </td><td width="20%" align="center"> </td><td width="40%" align="right"> <a accesskey="n" href="ar01s04.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Founding idea </td><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%" align="right" valign="top"> User's Guide</td></tr></table></div></body></html>
\ No newline at end of file
Deleted: branches/release/libs/msm/doc/HTML/ar01s04.html
==============================================================================
--- branches/release/libs/msm/doc/HTML/ar01s04.html 2010-06-30 04:40:08 EDT (Wed, 30 Jun 2010)
+++ (empty file)
@@ -1,1302 +0,0 @@
-<html><head>
- <meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
- <title>User's Guide</title><meta name="generator" content="DocBook XSL-NS Stylesheets V1.75.2"><link rel="home" href="index.html" title="Meta State Machine (MSM)"><link rel="up" href="index.html" title="Meta State Machine (MSM)"><link rel="prev" href="ar01s03.html" title="UML Short Guide"><link rel="next" href="ar01s05.html" title="Performance / Compilers"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">User's Guide</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="ar01s03.html">Prev</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a accesskey="n" href="ar01s05.html">Next</a></td></tr></table><hr></div><div class="sect1" title="User's Guide"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="d0e402"></a>User's Guide</h2></div></div></div><div class="sect2" title="Design"><d
iv class="titlepage"><div><div><h3 class="title"><a name="d0e405"></a>Design</h3></div></div></div><p>Msm is divided between front–ends and back-ends. At the moment, there is just one
- back-end. On the front-end side, there is more to see. Msm offers several state
- machine description languages with many more possible. Now, everybody can build his
- own description language (in case one gets bored with the ones provided) without
- changes to the library. For who feels like being a language writer this document
- adds a description of the interface between front-end and back-end.TODO.</p><p>There are, at the moment, three main front-ends. The basic one is an adaptation of
- the example provided in the MPL book (TODO add link) with actions defined as
- pointers to state or state machine methods. The second one is based on functors. The
- third, eUML (embedded UML) is an experimental language based on Boost.Proto and
- Boost.Typeof and hiding most of the metaprogramming to increase readability. Both
- eUML and the functor front-end also offer a functional library (a bit like
- Boost.Phoenix) for use as action language (UML defining none).</p></div><div class="sect2" title="Basic front-end"><div class="titlepage"><div><div><h3 class="title"><a name="d0e412"></a>Basic front-end</h3></div></div></div><p>This is the historical front-end, inherited from the MPL book. It provides a
- transition table made of rows of different names and functionality. Actions and
- guards are defined as methods and referenced through a pointer in the transition.
- This front-end provides a simple interface making easy state machines easier to
- define, but more complex state machines a bit harder. It also is slightly slower
- than the functor and eUML front-ends (about 20%). Not that it does more, it simply
- seems that the compiler better optimizes the functor actions.</p><div class="sect3" title="A simple example"><div class="titlepage"><div><div><h4 class="title"><a name="d0e417"></a>A simple example</h4></div></div></div><p>Let us have a look at a state machine diagram of the founding example:</p><p><span class="inlinemediaobject"><img src="../images/SimpleTutorial.jpg"></span></p><p>We are now going to build it with MSM's basic front-end. An <a class="link" href="examples/SimpleTutorial.cpp" target="_top">example</a> is also
- provided.</p></div><div class="sect3" title="Transition table"><div class="titlepage"><div><div><h4 class="title"><a name="d0e431"></a>Transition table</h4></div></div></div><p>As previously stated, MSM is based on the transition table, so let us define
- one:</p><p>struct transition_table : mpl::vector<</p><p>
- </p><table frame="void" id="d0e440"><tbody><tr>
- <td>//</td>
- <td>Start</td>
- <td>Event</td>
- <td>Next</td>
- <td>Action</td>
- <td>Guard</td>
- <td> </td>
- </tr><tr>
- <td>//</td>
- <td>+---------+</td>
- <td>-------------+</td>
- <td>---------+</td>
- <td>---------------------+</td>
- <td>----------------------+</td>
- <td> </td>
- </tr><tr>
- <td>a_row <</td>
- <td>Stopped ,</td>
- <td>play,</td>
- <td>Playing,</td>
- <td>&player_::start_playback</td>
- <td> </td>
- <td>>,</td>
- </tr><tr>
- <td>a_row <</td>
- <td>Stopped ,</td>
- <td>open_close,</td>
- <td>Open,</td>
- <td>&player_::open_drawer</td>
- <td> </td>
- <td>>,</td>
- </tr><tr>
- <td>_row <</td>
- <td>Stopped ,</td>
- <td>stop,</td>
- <td>Stopped</td>
- <td> </td>
- <td> </td>
- <td>>,</td>
- </tr><tr>
- <td>//</td>
- <td>+---------</td>
- <td>-------------+</td>
- <td>---------+</td>
- <td>---------------------+</td>
- <td>----------------------+</td>
- <td> </td>
- </tr><tr>
- <td>a_row <</td>
- <td>Open ,</td>
- <td>open_close ,</td>
- <td>Empty ,</td>
- <td>&player_::close_drawer</td>
- <td> </td>
- <td>>,</td>
- </tr><tr>
- <td>//</td>
- <td>+---------+</td>
- <td>-------------+</td>
- <td>---------+</td>
- <td>---------------------+</td>
- <td>----------------------+</td>
- <td> </td>
- </tr><tr>
- <td>a_row <</td>
- <td>Empty ,</td>
- <td>open_close ,</td>
- <td>Open ,</td>
- <td>&player_::open_drawer</td>
- <td> </td>
- <td>>,</td>
- </tr><tr>
- <td>row <</td>
- <td>Empty ,</td>
- <td>cd_detected ,</td>
- <td>Stopped ,</td>
- <td>&player_::store_cd_info ,</td>
- <td>&player_::good_disk_format</td>
- <td>>,</td>
- </tr><tr>
- <td>row <</td>
- <td>Empty ,</td>
- <td>cd_detected ,</td>
- <td>Playing ,</td>
- <td>&player_::store_cd_info ,</td>
- <td>&player_::auto_start</td>
- <td>>,</td>
- </tr><tr>
- <td>//</td>
- <td>+---------+</td>
- <td>-------------+</td>
- <td>---------+</td>
- <td>---------------------+</td>
- <td>----------------------+</td>
- <td> </td>
- </tr><tr>
- <td>a_row <</td>
- <td>Playing ,</td>
- <td>stop ,</td>
- <td>Stopped ,</td>
- <td>&player_::stop_playback</td>
- <td> </td>
- <td>>,</td>
- </tr><tr>
- <td>a_row <</td>
- <td>Playing ,</td>
- <td>pause ,</td>
- <td>Paused ,</td>
- <td>&player_::pause_playback</td>
- <td> </td>
- <td>>,</td>
- </tr><tr>
- <td>a_row <</td>
- <td>Playing ,</td>
- <td>open_close ,</td>
- <td>Open ,</td>
- <td>&player_::stop_and_open</td>
- <td> </td>
- <td>>,</td>
- </tr><tr>
- <td>//</td>
- <td>+---------+</td>
- <td>-------------+</td>
- <td>---------+</td>
- <td>---------------------+</td>
- <td>----------------------+</td>
- <td> </td>
- </tr><tr>
- <td>a_row <</td>
- <td> Paused ,</td>
- <td>end_pause ,</td>
- <td>Playing ,</td>
- <td>&player_::resume_playback</td>
- <td> </td>
- <td>>,</td>
- </tr><tr>
- <td>a_row <</td>
- <td> Paused ,</td>
- <td>stop ,</td>
- <td>Stopped ,</td>
- <td>&player_::stop_playback</td>
- <td> </td>
- <td>>,</td>
- </tr><tr>
- <td>a_row <</td>
- <td> Paused ,</td>
- <td>open_close ,</td>
- <td>Open ,</td>
- <td>&player_::stop_and_open</td>
- <td> </td>
- <td>></td>
- </tr><tr>
- <td>//</td>
- <td>+---------+</td>
- <td>-------------+</td>
- <td>---------+</td>
- <td>---------------------+</td>
- <td>----------------------+</td>
- <td> </td>
- </tr><tr>
- <td>> {};</td>
- <td> </td>
- <td> </td>
- <td> </td>
- <td> </td>
- <td> </td>
- <td> </td>
- </tr></tbody></table><p>
- </p><p>You will notice that this is almost exactly our founding example. The only
- change in the transition table is the different types of transitions (rows). The
- founding example forces one to define an action method and offers no guards. You
- have 4 basic row types:</p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p><code class="code">row</code> takes 5 arguments: start state, event, next
- state, action and guard.</p></li><li class="listitem"><p><code class="code">a_row</code> (“a” for action) allows defining only the
- action and omit the guard condition.</p></li><li class="listitem"><p><code class="code">g_row</code> (“g” for guard) allows omitting the action
- method and defining only the guard.</p></li><li class="listitem"><p><code class="code">_row</code> allows omitting action and guard methods.</p></li></ul></div><p>The signature for action methods is:</p><p><code class="code">void stop_playback(stop const&)</code></p><p>Action methods return nothing and take the argument as const reference. Of
- course nothing forbids you from defining an action for several events:</p><p><code class="code">template <class Event> void stop_playback(Event
- const&)</code></p><p>Guards have as only difference the return value, which is a boolean:</p><p><code class="code">bool good_disk_format(cd_detected const& evt)</code></p><p>The transition table is actually a MPL vector (or list), which brings a
- limitation that the default maximum size of the table is 20. If you need more
- transitions, overriding this default behavior is necessary, for example add
- before any header:</p><p><code class="code">#define BOOST_MPL_CFG_NO_PREPROCESSED_HEADERS </code></p><p><code class="code">#define BOOST_MPL_LIMIT_VECTOR_SIZE 30 // or whatever you need
- </code></p><p><code class="code">#define BOOST_MPL_LIMIT_MAP_SIZE 30 // or whatever you need
- </code></p><p>The other limitation is that the MPL types are defined only up to 50 entries.
- For the moment, the only solution to achieve more is to add headers to the MPL
- (luckily, this is not very complicated).TODO add them</p></div><div class="sect3" title="Defining states with entry/exit actions"><div class="titlepage"><div><div><h4 class="title"><a name="d0e977"></a>Defining states with entry/exit actions</h4></div></div></div><p>While states were enums in the MPL book, they now are structs, which allows
- them to hold data, provide entry, exit actions, different behaviors and be
- reusable (as they do not know anything about the containing state machine). To
- define a state, inherit from the correct state type:</p><p>struct Empty : public msm::front::state<> {};</p><p>They can optionally provide entry and exit behaviors:</p><p><code class="code">struct Empty : public msm::front::state<> {</code></p><p><code class="code">template <class Event, class Fsm> </code></p><p><code class="code">void on_entry(Event const&, Fsm& ) {std::cout <<
- "entering: Empty" << std::endl;} </code></p><p><code class="code">template <class Event, class Fsm> </code></p><p><code class="code">void on_exit(Event const&, Fsm& ) {std::cout << "leaving:
- Empty" << std::endl;} </code></p><p><code class="code">};</code></p><p>There are more state types (terminate, interrupt, pseudo states, etc.)
- corresponding to the UML standard state types. These will be described in
- details in the next pages.</p></div><div class="sect3" title="Defining a simple state machine"><div class="titlepage"><div><div><h4 class="title"><a name="d0e1006"></a>Defining a simple state machine</h4></div></div></div><p>Declaring a state machine is straightforward and is done with a high signal /
- noise ratio. In our player example, we declare the state machine as:</p><p><code class="code">struct player_ : public msm::front::state_machine_def<player_>{ /*
- see below */}</code></p><p>This declares a state machine using the basic front-end. We now declare inside
- the state machine structure the initial state:</p><p><code class="code">typedef Empty initial_state;</code></p><p>And that is about all of what is absolutely needed. In the example, the states
- are declared inside the state machine for readability but this is not a
- requirements, states can be declared wherever you see fit.</p><p>All what is left to us is to pick a back-end (which is quite simple as there
- is only one at the moment):</p><p><code class="code">typedef msm::back::state_machine<player_> player;</code></p><p>You now have a ready-to-use state machine with entry/exit actions, guards,
- transition actions, a message queue so that processing an event can generate
- another event. The state machine also adapted itself to your need and removed
- almost all features we didn't use in this simple example. Note that this is not
- per default the faster possible state machine. See the section "getting more
- speed" to know how to get the maximum speed. In a nutshell, MSM cannot know
- about your usage of some features so you will have to explicitly tell it.</p><p>TODO no_transition TODO start fct</p></div><div class="sect3" title="Defining a submachine"><div class="titlepage"><div><div><h4 class="title"><a name="d0e1030"></a>Defining a submachine</h4></div></div></div><p>We now want to extend our last state machine by making the Playing state a
- state machine itself (a submachine).</p><p><span class="inlinemediaobject"><img src="../images/CompositeTutorial.jpg"></span></p><p>Again, an <a class="link" href="examples/CompositeTutorial.cpp" target="_top">example</a> is
- also provided.</p><p>A submachine really is a state machine itself, so we declare Playing as such,
- choosing a front-end and a back-end:</p><p><code class="code">struct Playing_ : public msm::Front::state_machine_def<Playing_>{...}
- </code></p><p><code class="code">typedef msm::back::state_machine<Playing_> Playing;</code></p><p>Like for any state machine, one also needs a transition table and an initial
- state:</p><p>struct transition_table : mpl::vector<</p><table id="d0e1056"><tbody><tr>
- <td>//</td>
- <td>Start</td>
- <td>Event</td>
- <td>Next</td>
- <td>Action</td>
- <td>Guard</td>
- <td> </td>
- </tr><tr>
- <td>//</td>
- <td>+---------+</td>
- <td>-------------+</td>
- <td>---------+</td>
- <td>------------------------------+</td>
- <td>----------------------+</td>
- <td> </td>
- </tr><tr>
- <td>a_row <</td>
- <td>Song1 ,</td>
- <td>NextSong,</td>
- <td>Song2,</td>
- <td>&Playing_::start_next_song </td>
- <td> </td>
- <td>>,</td>
- </tr><tr>
- <td>a_row <</td>
- <td>Song2 ,</td>
- <td>PreviousSong,</td>
- <td>Song1,</td>
- <td>&Playing_::start_prev_song </td>
- <td> </td>
- <td>>,</td>
- </tr><tr>
- <td>a_row <</td>
- <td>Song2 ,</td>
- <td>NextSong,</td>
- <td>Song3,</td>
- <td>&Playing_::start_next_song </td>
- <td> </td>
- <td>>,</td>
- </tr><tr>
- <td>a_row <</td>
- <td>Song3 ,</td>
- <td>PreviousSong ,</td>
- <td>Song2 ,</td>
- <td>&Playing_::start_prev_song </td>
- <td> </td>
- <td>></td>
- </tr><tr>
- <td>//</td>
- <td>+---------+</td>
- <td>-------------+</td>
- <td>---------+</td>
- <td>------------------------------+</td>
- <td>----------------------+</td>
- <td> </td>
- </tr><tr>
- <td>> {};</td>
- <td> </td>
- <td> </td>
- <td> </td>
- <td> </td>
- <td> </td>
- <td> </td>
- </tr></tbody></table><p><code class="code">typedef Song1 initial_state; </code></p><p>This is about all you need to do. MSM will now automatically recognize Playing
- as a submachine and all events handled by Playing (NextSong and PreviousSong)
- will now be automatically forwarded to Playing whenever this state is active.
- All other state machine features described later are also available.</p></div><div class="sect3" title="Orthogonal regions, terminate state, event deferring"><div class="titlepage"><div><div><h4 class="title"><a name="d0e1247"></a>Orthogonal regions, terminate state, event deferring</h4></div></div></div><p>It is a very common problem in many state machines to have to handle errors.
- It usually involves defining a transition from all the states to a special error
- state. Translation: not fun. It is also not practical to find from which state
- the error originated. The following diagram shows an example of what clearly
- becomes not very readable:</p><p><span class="inlinemediaobject"><img src="../images/error_no_regions.jpg"></span></p><p>This is neither very readable nor beautiful, clearly. And we do not even have
- any action on the transitions yet.</p><p>Luckily, UML provides a helpful concept, orthogonal regions. See them as
- lightweight state machines running at the same time in a same state machine and
- having the capability to influence one another. The effect is that you have
- several active states at any time. We can therefore keep our state machine from
- the previous example and just define a new region made of two states, AllOk and
- ErrorMode. AllOk is most of the time active. But the error_found error event
- makes the second region move to the new active state ErrorMode. This event does
- not interest the main region so it will simply be ignored.
- "<code class="code">no_transition</code>" will be called only if no region at all handles
- the event. </p><p>Adding an orthogonal region is easy, one only needs to declare more states in
- the <code class="code">initial_state</code> typedef. So, adding a new region with AllOk as
- the region's initial state is:</p><p><code class="code">typedef mpl::vector<Empty,AllOk> initial_state;</code></p><p><span class="inlinemediaobject"><img src="../images/Orthogonal-deferred.jpg"></span></p><p>Furthermore, when you detect an error, you usually do not want other events to
- be handled. To achieve this, we use another UML feature, terminate states. When
- any region moves to a terminate state, the state machine “terminates” (the state
- machine and all its states stay alive) and all further events are ignored. This
- is of course not mandatory, one can use orthogonal regions without terminate
- states. Also note that, as UML mandates, every region gets a chance of handling
- the event, in the order as declared by the <code class="code">initial_state</code> type. MSM
- also provides a small extension to UML, interrupt states. If you declare
- ErrorMode as interrupt state instead of terminate state, the state machine will
- not handle any event other than the one which ends the interrupt. So it's like a
- terminate state, with the difference that you are allowed to resume the state
- machine when a condition (like handling of the original error) is met. </p><p>Last but not least, this example also shows here the handling of event
- deferring. Let's say someone puts a disc and immediately presses play. The event
- cannot be handled, yet you'd want it to be handled at a later point and not
- force the user to press play again. The solution is to define it as deferred in
- the Empty and Open states and get it handled in the first state where the event
- is not to be deferred. It can then be handled or rejected. In this example, when
- Stopped becomes active, the event will be handled because only Empty and Open
- defer the event.</p><p>Notice how UML defines event deferring as a state property. To accomodate
- this, MSM lets you specify this in states by providing a
- <code class="code">deferred_events</code> type:</p><p><code class="code">struct Empty : public msm::front::state<> </code></p><p><code class="code">{ </code></p><p><code class="code">// if the play event is fired while in this state, defer it until a
- state </code></p><p><code class="code">// handles or rejects it</code></p><p><code class="code"> typedef mpl::vector<play> deferred_events;</code></p><p><code class="code">...};</code></p><p>Please have a look at the <a class="link" href="examples/Orthogonal-deferred.cpp" target="_top">complete example</a>.</p><p>While this is wanted by UML and is simple, it is not always practical because
- one could wish to defer only in certain conditions. One could also want to make
- this be part of a transition action with the added bonus of a guard. It would
- also be conform to the MSM philosophy to get as much as possible in the
- transition table, where you can have all the important state machine structure
- grouped together. This is also possible but not practical with this front-end so
- we will need to pick a different row from the functor front-end. For a complete
- description of the <code class="code">Row</code> type, please have a look at the <span class="command"><strong><a class="command" href="ar01s04.html#functor-front-end">functor front-end.</a></strong></span></p><p>First, as there is no state where MSM can detect the requirement of this
- feature, we need to require deferred events capability explicitly, by adding a
- type in the state machine definition:</p><p><code class="code">struct player_ : public
- msm::front::state_machine_def<player_></code></p><p><code class="code">{ </code></p><p><code class="code">typedef int activate_deferred_events;</code></p><p><code class="code">...};</code></p><p>We can now defer an event in any transition of the transition table by using
- as action the predefined <code class="code">msm::front::Defer</code> functor, for
- example:</p><p><code class="code">Row < Empty , play , none , Defer , none ></code></p><p>This is an internal transition row(see <span class="command"><strong><a class="command" href="ar01s04.html#internal-transitions">internal transitions</a></strong></span>) but you
- can ignore this for the moment. It just means that we are not leaving the Empty
- state. What matters is that we use Defer as action. This is roughly equivalent
- to the previous syntax but has the advantage of giving you all the information
- in the transition table.</p><p>The second difference is that as we now have a transition defined, this
- transition can play in the resolution of <span class="command"><strong><a class="command" href="ar01s03.html#transition-conflict">transition conflicts</a></strong></span>. For
- example, we could model an "if (condition2) move to Playing else if (condition1)
- defer play event":</p><p>
- <code class="code">Row < Empty , play , none , Defer , condition1 >,</code></p><p><code class="code">g_row < Empty , play , Playing , &player_::condition2
- ></code></p><p>Please have a look at <a class="link" href="examples/Orthogonal-deferred2.cpp" target="_top">this possible implementation</a>.</p></div><div class="sect3" title="History"><div class="titlepage"><div><div><h4 class="title"><a name="d0e1361"></a>History</h4></div></div></div><p>UML defines two types of history, Shallow History and Deep History. What is it
- and when do you need it? In the previous examples, if the player was playing the
- second song and the user pressed pause, leaving Playing, at the next press on
- the play button, the Playing state would become active and the first song would
- play again. Soon would the first client complaints follow. They'd of course
- demand, that if the player was paused, then it should remember which song was
- playing. But it the player was stopped, then it should restart from the first
- song. Now, how can it be done? Of course, you could add a bit of programming
- logic and generate extra events to make the second song start if coming from
- Pause. Something like: </p><p><code class="code">if (Event == end_pause) { for (int i=0;i< song number;++i) {
- player.process_event(NextSong()); } } </code></p><p>Not much to like in this example, isn't it? To solve this problem, you define
- what is called a shallow or a deep history. A shallow history reactivates the
- last active state of a submachine when this state machine becomes active again.
- The deep history does the same recursively, so if this last active state of the
- submachine was itself a submachine, its last active state would become active
- and this will continue until an active state is a normal state. For example, let
- us have a look at the following UML diagram: </p><p><span class="inlinemediaobject"><img src="../images/HistoryTutorial.jpg"></span></p><p>Notice that the main difference compared to previous diagrams is that the
- initial state is gone and replaced by a History symbol (the H inside a
- circle).</p><p>As explained in the <span class="command"><strong><a class="command" href="ar01s03.html#uml-history">small UML
- tutorial</a></strong></span>, History is a good concept with a not completely
- satisfying specification. MSM kept the concept but not the specification. Msm
- goes another way and makes this a policy so you can define your own history
- types. Furthermore, History is a backend policy. This allows you to reuse the
- same state machine frontend with different history policies.</p><p>Concretely, your frontend stays unchanged:</p><p><code class="code">struct Playing_ : public
- msm::front::state_machine_def<Playing_></code></p><p>You then add the policy to the backend:</p><p><code class="code">typedef
- msm::back::state_machine<Playing_,msm::back::ShallowHistory<mpl::vector<end_pause>
- > > Playing;</code></p><p>This states that a shallow history must be activated if the Playing state
- machine gets activated by the end_pause event and only this one (or any other
- event added to the mpl::vector). If the state machine was in the Stopped state
- and the event play was generated, the history would not be activated and the
- normal initial state would become active. By default, history is disabled. For
- your convenience the library provides in addition to ShallowHistory a non-UML
- standard AlwaysHistory policy (likely to be your main choice) which always
- activates history, whatever event triggers the submachine activation. Deep
- history is not directly available. The reason is that it would conflict with
- policies which submachines could define. Of course, if for example, Song1 were a
- state machine itself, it could use the ShallowHistory policy itself thus
- creating Deep History. </p></div><div class="sect3" title="Anonymous transitions"><div class="titlepage"><div><div><h4 class="title"><a name="d0e1394"></a>Anonymous transitions</h4></div></div></div><p><span class="command"><strong><a name="anonymous-transitions"></a></strong></span>The following diagram shows an
- example making use of this feature:</p><p><span class="inlinemediaobject"><img src="../images/Anonymous.jpg"></span></p><p>Anonymous transitions are transitions without a named event. This means that
- the transition automatically fires when the predecessor state is entered (to be
- exact, after the entry action). Otherwise it is a normal transition with actions
- and guards. Why would you need something like that? A possible case would be if
- a part of your state machine implements some algorithm, where states are steps
- of the algorithm implementation. Then, using several anonymous transitions with
- different guard conditions, you are actually implementing some if/else
- statement. Another possible use would be a real-time system called at regular
- intervals and always doing the same thing, meaning implementing the same
- algorithm. The advantage is that once you know how long a transition takes to
- execute on the system, by calculating the longest path (the number of
- transitions from start to end), you can pretty much know how long your algorithm
- will take in the worst case, which in turns tells you how big of a time frame
- you are to request from a scheduler. </p><p>If you are using Executable UML (a good book describing it is "Executable UML,
- a foundation for Model-Driven Architecture"), you will notice that it is common
- for a state machine to generate an event to itself only to leave a state.
- Anonymous transitions free you from this constraint.</p><p>If you do not use this feature in a concrete state machine, MSM will
- deactivate it and you will not pay for it. If you use it, there is however a
- small performance penalty as MSM will try to fire a compound event (the other
- UML name for anonymous transitions) after every taken transition. This will
- therefore double the event processing cost, which is not as bad as it sounds as
- MSM’s execution speed is very high anyway.</p><p>To define such a transition, use “none” as event in the transition table, for
- example:</p><p><code class="code">row < State3 , none , State4 , &p::State3ToState4 ,
- &p::always_true ></code></p><p><a class="link" href="examples/AnonymousTutorial.cpp" target="_top">An implementation</a> of
- the state machine diagram is also provided.</p></div><div class="sect3" title="Internal transitions"><div class="titlepage"><div><div><h4 class="title"><a name="d0e1419"></a><span class="command"><strong><a name="internal-transitions"></a></strong></span>Internal transitions</h4></div></div></div><p>Internal transitions are transitions executing in the scope of the active
- state, being a simple state or a submachine. One can see them as a
- self-transition of this state, without an entry or exit action called. This is
- useful when all you want is to execute some code for a given event in a given
- state.</p><p>Internal transitions are specified as having a higher priority than normal
- transitions. While it makes sense for a submachine with exit points, it is
- surprising for a simple state. MSM lets you define the transition priority by
- setting the transition’s position inside the transition table (see <span class="command"><strong><a class="command" href="ar01s07.html#run-to-completion">internals</a></strong></span> ). The difference
- between "normal" and internal transitions is that internal transitions have no
- target state, therefore we need new row types. We had a_row, g_row, _row and
- row, we now add a_irow, g_irow, _irow and irow which are like normal transitions
- but define no target state. For, example an internal transition with a guard
- condition could be:</p><p><code class="code">g_irow < Empty /*state*/ , cd_detected
- /*event*/,&p::internal_guard /* guard */ ></code></p><p>These new row types can be placed anywhere in the transition table so that you
- can still have your state machine structure grouped together. The only
- difference of behavior with the UML standard is the missing notion of priority.
- Please have a look at <a class="link" href="examples/SimpleTutorialInternal.cpp" target="_top">the
- example</a>.</p><p>It is also possible to do it the UML-conform way by declaring a transition
- table called <code class="code">internal transition_table</code> inside the state itself and
- using internal row types. For example:</p><p><code class="code">struct Empty : public msm::front::state<> {</code></p><p><code class="code">struct internal_transition_table : mpl::vector<</code></p><p><code class="code">a_internal < cd_detected , Empty, &Empty::internal_action
- ></code></p><p><code class="code">> {};</code></p><p><code class="code">};</code></p><p>This declares an internal transition table called internal_transition_table
- and reacting on the event cd_detected by calling internal_action on Empty. Let
- us note a few points:</p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>internal tables are NOT called transition_table but
- internal_transition_table</p></li><li class="listitem"><p>they use different but similar row types: a_internal, g_internal,
- _internal and internal.</p></li><li class="listitem"><p>These types take as first template argument the triggering event
- and then the action and guard method. Note that the only real
- difference to classical rows is the extra argument before the
- function pointer. This is the type on which the function will be
- called.</p></li><li class="listitem"><p>This also allows you, if you wish, to define actions and guards in
- another state of the state machine or in the state machine
- itself.</p></li><li class="listitem"><p>submachines can have an internal transition table and a classical
- transition table.</p></li></ul></div><p>The <a class="link" href="examples/TestInternal.cpp" target="_top">following example</a>
- makes use of an a_internal. It also uses functor-based internal transitions
- which will be explained in <span class="command"><strong><a class="command" href="ar01s04.html#functor-internal-transitions">the functor front-end</a></strong></span>, please ignore them for the moment. Also
- note that the state-defined internal transitions, having following the UML
- standard the highest priority, are tried before those defined inside the state
- machine transition table.</p><p>Which method should you use? It depends on what you need:</p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>the first version (using irow) is simpler and likely to compile
- faster. It also lets you choose the priority of your internal
- transition.</p></li><li class="listitem"><p>the second version is more logical from a UML perspective and lets
- you make states more useful and reusable. It also allows you to call
- actions and guards on any state of the state machine</p></li></ul></div><p>
- <span class="command"><strong><a name="internal-transitions-note"></a></strong></span><span class="underline"><span class="bold"><strong>Note</strong></span></span>: There is an added
- possibility coming from this feature. The <code class="code">internal_transition_table</code>
- transitions being added directly inside the main state machine's transition
- table, it is possible, if it is more to your state, to distribute your state
- machine definition a bit like Boost.Statechart, leaving the state machine itself
- the only task of declaring the states it wants to use using the
- <code class="code">explicit_creation</code> type definition. While this is not the
- author's favorite way, it is still possible. A simplified example using only two
- states will make it clearer:</p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p><a class="link" href="examples/distributed_table/DistributedTable.cpp" target="_top">state machine definition</a></p></li><li class="listitem"><p>Empty <a class="link" href="examples/distributed_table/Empty.hpp" target="_top">header</a> and <a class="link" href="examples/distributed_table/Empty.cpp" target="_top">cpp</a></p></li><li class="listitem"><p>Open <a class="link" href="examples/distributed_table/Open.hpp" target="_top">header</a> and <a class="link" href="examples/distributed_table/Open.cpp" target="_top">cpp</a></p></li><li class="listitem"><p><a class="link" href="examples/distributed_table/Events.hpp" target="_top">events
- definition</a></p></li></ul></div><p>There is an added bonus offered for submachines, which can have both the
- standard transition_table and an internal_transition_table (which has higher
- priority). This makes it easier if you decide to make a full submachine from a
- state. It is also slightly faster than the standard alternative, adding
- orthogonal regions, because event dispatching will, if accepted by the internal
- table, not continue to the subregions. This gives you a O(1) dispatch instead of
- O(number of regions). While the example is with eUML, the same is also possible
- with this front-end.</p></div><div class="sect3" title="more row types"><div class="titlepage"><div><div><h4 class="title"><a name="d0e1532"></a>more row types</h4></div></div></div><p>It is also possible to write transitions using actions and guard conditions
- not just from the state machine but also from its contained states. In this
- case, one must specify not just a method pointer but also the object on which to
- call it. This transition row is called, not very originally, <code class="code">row2</code>.
- They come, like normal transitions in four flavors: <code class="code">a_row2, g_row2, _row2
- and row2</code>. For example, a transition calling an action from the state
- Empty could be:</p><p><code class="code">a_row2 < Stopped , open_close , Open , Empty /*action source*/ ,
- &Empty::open_drawer /*action*/></code></p><p>The same capabilities are also available for internal transitions so that we
- have: <code class="code">a_irow2, g_irow2, _irow2 and row2</code>. For transitions defined as
- part of the <code class="code">internal_transition_table</code>, you can use the <span class="command"><strong><a class="command" href="ar01s04.html#internal-transitions">a_internal, g_internal, _internal,
- internal</a></strong></span> row types.</p><p>These row types allow us to distribute the state machine code among states,
- making them reusable and more valuable. Using transition tables inside states
- also contributes to this possibility. An <a class="link" href="examples/SimpleTutorial2.cpp" target="_top">example</a> of these new tows
- is also provided.</p></div><div class="sect3" title="Explicit entry / entry and exit pseudo-state / fork"><div class="titlepage"><div><div><h4 class="title"><a name="d0e1562"></a>Explicit entry / entry and exit pseudo-state / fork</h4></div></div></div><p>MSM (almost) fully supports these features described in the <span class="command"><strong><a class="command" href="ar01s03.html#uml-history">small UML tutorial</a></strong></span>. Almost because there
- are currently two limitations: </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>it is only possible to explicitly enter a sub- state of the target
- but not a sub-sub state.</p></li><li class="listitem"><p>it is not possible to explicitly exit. Exit points must be
- used.</p></li></ul></div><p>Let us see a concrete example:</p><p><span class="inlinemediaobject"><img src="../images/entry%20tutorial.jpg"></span></p><p>We find in this diagram:</p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>A “normal” entering into SubFsm2 triggered by event1 and back to
- State1 using the same event. In each zone is the initial state
- activated, i.e. SubState1 and SubState1b.</p></li><li class="listitem"><p>An explicit entry into SubFsm2::SubState2 for zone “a” with event2
- as trigger, meaning that in region “b” the initial state,
- SubState1b, activated.</p></li><li class="listitem"><p>A fork into zones “a” and “b” to the explicit entries SubState2
- and SubState2b, triggered by event3. Both states become active so no
- zone is default activated (if we had a third zone, it would
- be).</p></li><li class="listitem"><p>A connection of two transitions through an entry pseudo state,
- SubFsm2::PseudoEntry1, triggered by event4 and triggering also the
- second transition on the same event (both transitions must be
- triggered by the same event). Zone “b” gets default-activated and
- SubState1b becomes active.</p></li><li class="listitem"><p>An exit from SubFsm2 using an exit pseudo-state, PseudoExit1,
- triggered by event5 and connecting two transitions using the same
- event. Again, the event is forwarded to the second transition and
- both regions are exited, as SubFsm2 becomes inactive. Note that if
- no transition is defined from PseudoExit1, an error (as defined in
- the UML standard) will be detected and no_transition called.</p></li></ul></div><p>The example is also <a class="link" href="examples/DirectEntryTutorial.cpp" target="_top">fully
- implemented</a>.</p><p>This sounds complicated but the syntax is simple.</p><div class="sect4" title="Explicit entry"><div class="titlepage"><div><div><h5 class="title"><a name="d0e1608"></a>Explicit entry</h5></div></div></div><p>First, to define that a state is an explicit entry, you have to make it a
- state and mark it as explicit, giving as template parameters the zone id
- (the zone id starts with 0 and corresponds to the first initial state of the
- initial_state type sequence).</p><p><code class="code">struct SubState2 : public msm::front::state<> , public
- msm::front::explicit_entry<0></code></p><p>And define the submachine as:</p><p><code class="code">typedef msm::back::state_machine<SubFsm2_> SubFsm2;</code></p><p>You can then use it as target in a transition with State1 as
- source:</p><p><code class="code">_row < State1, Event2, SubFsm2::direct< SubFsm2_::SubState2>
- ></code></p><p>The syntax deserves some explanation. SubFsm2_ is a front end. SubState2
- is a nested state, therefore the SubFsm2_::SubState2 syntax. The containing
- machine (containing State1 and SubFsm2) refers to the backend instance
- (SubFsm2). SubFsm2::direct states that a direct entry is desired.</p><p><span class="underline">Note (also valid for forks)</span>: in
- order to make compile time more bearable for the more standard cases, and
- unlike initial states, explicit entry states which are also not found in the
- transition table of the entered submachine (a rare case) do NOT get
- automatically created. To explicitly create such states, you need to add in
- the state machine containing the explicit states a simple typedef giving a
- sequence of states to be explicitly created like:</p><p><code class="code">typedef mpl::vector<SubState2,SubState2b>
- explicit_creation;</code></p></div><div class="sect4" title="Fork"><div class="titlepage"><div><div><h5 class="title"><a name="d0e1635"></a>Fork</h5></div></div></div><p>Need a fork instead of an explicit entry? Then, as a fork is an explicit
- entry into states of different regions, we do not change the state
- definition compared to the explicit entry and specify as target a list of
- explicit entry states:</p><p><code class="code">_row < State1, Event3, mpl::vector<SubFsm2::direct<
- SubFsm2_::SubState2>, SubFsm2::direct <SubFsm2_::SubState2b>
- ></code></p><p>With SubState2 defined as before and SubState2b defined as being in the
- second region (Caution: MSM does not check that the region is
- correct):</p><p><code class="code">struct SubState2b : public msm::front::state<> , public
- msm::front::explicit_entry<1></code></p></div><div class="sect4" title="Entry pseudo states"><div class="titlepage"><div><div><h5 class="title"><a name="d0e1648"></a>Entry pseudo states</h5></div></div></div><p> To define an entry pseudo state, you need derive from the corresponding
- class and give the region id:</p><p><code class="code">struct PseudoEntry1 : public
- msm::front::entry_pseudo_state<0></code></p><p>And add the corresponding transition in Fsm's transition table:</p><p><code class="code">_row < State1, Event4,
- SubFsm2::entry_pt<SubFsm2_::PseudoEntry1> ></code></p><p>And another in the SubFsm2_ submachine definition (remember that UML
- defines an entry point as a connection between two transitions), for example
- this time with an action method:</p><p><code class="code">_row < PseudoEntry1, Event4, SubState3,
- &SubFsm2_::entry_action ></code></p></div><div class="sect4" title="Exit pseudo states"><div class="titlepage"><div><div><h5 class="title"><a name="d0e1666"></a> Exit pseudo states </h5></div></div></div><p>And finally, exit pseudo states are to be used almost the same way, but
- defined differently: it takes as template argument the event to be forwarded
- (no region id is necessary):</p><p><code class="code">struct PseudoExit1 : public
- exit_pseudo_state<event6></code></p><p>And you need, as for entry pseudo states, two transitions, one in the
- submachine:</p><p><code class="code">_row < SubState3, Event5, PseudoExit1 ></code></p><p>And one in the containing state machine:</p><p><code class="code">_row < SubFsm2::exit_pt<SubFsm2_::PseudoExit1>, Event6, State2
- ></code></p><p><span class="underline">Important note 1:</span> UML defines
- transiting to an entry pseudo state and having either no second transition
- or one with a guard as an error but defines no error handling. MSM will
- tolerate this behavior; the entry pseudo state will simply be the newly
- active state.</p><p><span class="underline">Important note 2</span>: UML defines
- transiting to an exit pseudo state and having no second transition as an
- error, and also defines no error handling. Therefore, it was decided to
- implement exit pseudo state as terminate states and the containing composite
- not properly exited will stay terminated as it was technically
- “exited”.</p><p><span class="underline">Important note 3:</span> UML states that
- for the exit point, the same event must be used in both transitions. MSM
- relaxes this rule and only wants the event on the inside transition to be
- convertible to the one of the outside transition. In our case, event6 is
- convertible from event5. Notice that the forwarded event must be named in
- the exit point definition. For example, we could define event6 as simply
- as:</p><p><code class="code">struct event6 { event6(){} template <class Event> event6(Event
- const&){} };//convertible from any event</code>
- </p></div></div><div class="sect3" title="Flags"><div class="titlepage"><div><div><h4 class="title"><a name="d0e1700"></a>Flags</h4></div></div></div><p>This <a class="link" href="examples/Flags.cpp" target="_top">tutorial</a> is devoted to a
- concept not defined in UML: flags. It has been added into MSM after proving
- itself useful on many occasions. Please, do not be frightened as we are not
- talking about ugly shortcuts made of an improbable collusion of Booleans.</p><p>If you look into the Boost.Statechart documentation you'll find some code
- like:</p><p><code class="code">if ( ( state_downcast< const NumLockOff * >() != 0 ) &&
- </code></p><p><code class="code">( state_downcast< const CapsLockOff * >() != 0 ) &&
- </code></p><p><code class="code">( state_downcast< const ScrollLockOff * >() != 0 ) ) </code></p><p>While correct and found in many UML books, this can be error-prone and a
- potential time-bomb when your state machine grows and you add new states or
- orthogonal regions.</p><p>And most of all, it hides the real question, which would be “does my state
- machine's current state define a special property”? In this special case “are my
- keys in a lock state”? So let's apply the Fundamental Theorem of Software
- Engineering and move one level of abstraction higher.</p><p>In our player example, let's say we need to know if the player has a loaded
- CD. We could do the same:</p><p><code class="code">if ( ( state_downcast< const Stopped * >() != 0 ) &&
- </code></p><p><code class="code">( state_downcast< const Open * >() != 0 ) && </code></p><p><code class="code">( state_downcast< const Paused * >() != 0 ) &&</code></p><p><code class="code">( state_downcast< const Playing * >() != 0 )</code></p><p><code class="code"> ) </code></p><p>Or flag these 4 states as CDLoaded-able. You add a flag_list type into each
- flagged state:</p><p><code class="code">typedef mpl::vector1<CDLoaded> flag_list;</code></p><p>You can even define a list of flags, for example in Playing:</p><p><code class="code">typedef mpl::vector2<PlayingPaused,CDLoaded> flag_list;</code></p><p>This means that Playing supports both properties. Now to check if your player
- has a loaded CD, check if your flag is active in the current state:</p><p><code class="code">player p; if (p.is_flag_active<CDLoaded>()) ... </code></p><p>And what if you have orthogonal regions? How to decide if a state machine is
- in a flagged state? By default, you keep the same code and the current states
- will be OR'ed, meaning if one of the active states has the flag, then
- is_flag_active returns true. Of course, in some cases, you might want that all
- of the active states are flagged for the state to be active. You can also AND
- the active states:</p><p><code class="code">if (p.is_flag_active<CDLoaded,player::Flag_AND>()) ...</code></p><p>The following diagram displays the flag situation in the tutorial.</p><p><span class="inlinemediaobject"><img src="../images/FlagsTutorial.jpg"></span></p></div><div class="sect3" title="Event Hierarchy"><div class="titlepage"><div><div><h4 class="title"><a name="d0e1766"></a>Event Hierarchy</h4></div></div></div><p>There are cases where transitions with many related but different events are
- needed. An example is text parsing. Let's say you want to parse a string and use
- a state machine to handle you parsing state. You want to parse 4 digits and
- decide to use a state for every matched digit. Your state machine could look
- like:</p><p><span class="inlinemediaobject"><img src="../images/ParsingDigits.jpg"></span></p><p>But how to detect the digit event? We would like to avoid having to define 10
- transitions on char_0, char_1... between two states as it would force us to
- write 4 x 10 transitions and the compile-time would suffer. To solve this
- problem, MSM supports the triggering of a transition on a subclass event. For
- example, if we define digits as: </p><p><code class="code">struct digit {};</code></p><p><code class="code">struct char_0 : public digit {}; </code></p><p>And to the same for other digits, we can now fire char_0, char_1 events and
- this will cause a transition with "digit" as trigger to be taken.</p><p>An example with performance measurement, taken from the documentation of
- Boost.Xpressive illustrates this example (TODO). You might notice that the
- performance is actually very good (better).</p></div><div class="sect3" title="Containing state machine (deprecated)"><div class="titlepage"><div><div><h4 class="title"><a name="d0e1787"></a> Containing state machine (deprecated)</h4></div></div></div><p>This feature is still supported in MSM for backward compatibility but made
- obsolete by the fact that every guard/action/entry action/exit action get the
- state machine passed as argument and might be removed at a later time.</p><p>All of the states defined in the state machine are created upon state machine
- construction. This has the huge advantage of a reduced syntactic noise. The cost
- is a small loss of control of the user on the state creation and access. But
- sometimes you needed a way for a state to get access to its containing state
- machine. Basically, a state needs to change its declaration to:</p><p><code class="code">struct Stopped : public msm::front::state<sm_ptr></code></p><p>And to provide a set_sm_ptr function: <code class="code">void set_sm_ptr(player*
- pl)</code></p><p>to get a pointer to the containing state machine. The same applies to
- terminate_state / interrupt_state and entry_pseudo_state / exit_pseudo_state.
- </p></div></div><div class="sect2" title="Functor front-end"><div class="titlepage"><div><div><h3 class="title"><a name="d0e1803"></a><span class="command"><strong><a name="functor-front-end"></a></strong></span>Functor front-end</h3></div></div></div><p>The functor front-end is the preferred front-end at the moment. It is more
- powerful than the standard front-end, slightly faster and has a more readable
- transition table. It also makes it easier to reuse parts of state machines. Like
- <span class="command"><strong><a class="command" href="ar01s04.html#eUML-front-end">eUML</a></strong></span>, il also comes with a good
- deal of predefined actions. Actually, eUML generates a functor front-end through
- Boost.Typeof and Boost.Proto so both offer the same functionality.</p><p>The rows which MSM offers come in different flavors. We saw the a_row, g_row,
- _row, row, not counting internal rows. This is already much to know, so why define
- new rows? These types have some disadvantages: </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>They are more typing and information than we would wish. This means
- syntactic noise.</p></li><li class="listitem"><p>Function pointers are weird in C++.</p></li><li class="listitem"><p>The action/guard signature is limited and does not allow for more
- variations of parameters (source state, target state, current state
- machine, etc.)</p></li><li class="listitem"><p>It is not easy to reuse action code from a state machine to
- another.</p></li></ul></div><div class="sect3" title="Transition table"><div class="titlepage"><div><div><h4 class="title"><a name="d0e1827"></a> Transition table </h4></div></div></div><p>We can change the definition of the simple tutorial's transition table
- to:</p><p>
- </p><table id="d0e1834"><tbody><tr>
- <td>//</td>
- <td>Start</td>
- <td>Event</td>
- <td>Next</td>
- <td>Action</td>
- <td>Guard</td>
- <td> </td>
- </tr><tr>
- <td>//</td>
- <td>+---------+</td>
- <td>-------------+</td>
- <td>---------+</td>
- <td>---------------------+</td>
- <td>----------------------+</td>
- <td> </td>
- </tr><tr>
- <td>Row <</td>
- <td>Stopped ,</td>
- <td>play,</td>
- <td>Playing,</td>
- <td>start_playback</td>
- <td> </td>
- <td>>,</td>
- </tr><tr>
- <td>Row <</td>
- <td>Stopped ,</td>
- <td>open_close,</td>
- <td>Open,</td>
- <td>open_drawer,</td>
- <td> none</td>
- <td>>,</td>
- </tr><tr>
- <td>Row <</td>
- <td>Stopped ,</td>
- <td>stop,</td>
- <td>Stopped,</td>
- <td> </td>
- <td> none</td>
- <td>>,</td>
- </tr><tr>
- <td>//</td>
- <td>+---------</td>
- <td>-------------+</td>
- <td>---------+</td>
- <td>---------------------+</td>
- <td>----------------------+</td>
- <td> </td>
- </tr><tr>
- <td>Row <</td>
- <td>Open ,</td>
- <td>open_close ,</td>
- <td>Empty ,</td>
- <td>close_drawer,</td>
- <td> none</td>
- <td>>,</td>
- </tr><tr>
- <td>//</td>
- <td>+---------+</td>
- <td>-------------+</td>
- <td>---------+</td>
- <td>---------------------+</td>
- <td>----------------------+</td>
- <td> </td>
- </tr><tr>
- <td>Row <</td>
- <td>Empty ,</td>
- <td>open_close ,</td>
- <td>Open ,</td>
- <td>open_drawer</td>
- <td> </td>
- <td>>,</td>
- </tr><tr>
- <td>Row <</td>
- <td>Empty ,</td>
- <td>cd_detected ,</td>
- <td>Stopped ,</td>
- <td>store_cd_info ,</td>
- <td>good_disk_format</td>
- <td>>,</td>
- </tr><tr>
- <td>g_row <</td>
- <td>Empty ,</td>
- <td>cd_detected ,</td>
- <td>Playing ,</td>
- <td>store_cd_info ,</td>
- <td>&player_::auto_start</td>
- <td>>,</td>
- </tr><tr>
- <td>//</td>
- <td>+---------+</td>
- <td>-------------+</td>
- <td>---------+</td>
- <td>---------------------+</td>
- <td>----------------------+</td>
- <td> </td>
- </tr><tr>
- <td>Row <</td>
- <td>Playing ,</td>
- <td>stop ,</td>
- <td>Stopped ,</td>
- <td>stop_playback,</td>
- <td> none</td>
- <td>>,</td>
- </tr><tr>
- <td>Row <</td>
- <td>Playing ,</td>
- <td>pause ,</td>
- <td>Paused ,</td>
- <td>pause_playback,</td>
- <td> none</td>
- <td>>,</td>
- </tr><tr>
- <td>Row <</td>
- <td>Playing ,</td>
- <td>open_close ,</td>
- <td>Open ,</td>
- <td>stop_and_open,</td>
- <td> none</td>
- <td>>,</td>
- </tr><tr>
- <td>//</td>
- <td>+---------+</td>
- <td>-------------+</td>
- <td>---------+</td>
- <td>---------------------+</td>
- <td>----------------------+</td>
- <td> </td>
- </tr><tr>
- <td>Row <</td>
- <td> Paused ,</td>
- <td>end_pause ,</td>
- <td>Playing ,</td>
- <td>resume_playback,</td>
- <td> none</td>
- <td>>,</td>
- </tr><tr>
- <td>Row <</td>
- <td> Paused ,</td>
- <td>stop ,</td>
- <td>Stopped ,</td>
- <td>stop_playback,</td>
- <td> none</td>
- <td>>,</td>
- </tr><tr>
- <td>Row <</td>
- <td> Paused ,</td>
- <td>open_close ,</td>
- <td>Open ,</td>
- <td>stop_and_open,</td>
- <td> none</td>
- <td>></td>
- </tr><tr>
- <td>//</td>
- <td>+---------+</td>
- <td>-------------+</td>
- <td>---------+</td>
- <td>---------------------+</td>
- <td>----------------------+</td>
- <td> </td>
- </tr><tr>
- <td>> {};</td>
- <td> </td>
- <td> </td>
- <td> </td>
- <td> </td>
- <td> </td>
- <td> </td>
- </tr></tbody></table><p>
- </p><p>Transitions are now of type "Row" with exactly 5 template arguments: source
- state, event, target state, action and guard. Wherever there is nothing (for
- example actions and guards), write "none". Actions and guards are no more
- methods but functors getting as arguments the detected event, the state machine,
- source and target state:</p><p><code class="code">struct store_cd_info { </code></p><p><code class="code">template <class Fsm,class Evt,class SourceState,class TargetState>
- </code></p><p><code class="code">void operator()(Evt const&, Fsm& fsm, SourceState&,
- TargetState& ) </code></p><p><code class="code"> {</code></p><p><code class="code"> cout << "player::store_cd_info" << endl;
- fsm.process_event(play()); </code></p><p><code class="code"> } </code></p><p><code class="code">}; </code></p><p>The advantage to functors compared to functions are that they are generic and
- reusable. They also allow passing more parameters than just events. The guard
- functors are the same but have an operator() returning a bool.</p><p>It is also possible to mix rows from different front-ends. To show this, a
- g_row has been left in the transition table. <span class="underline">Note:</span> in case the action functor is used in the transition table
- of a state machine contained inside a top-level state machine, the “fsm”
- parameter refers to the lowest-level state machine (referencing this action),
- not the top-level one.</p><p>To illustrate the reusable point, MSM comes with a whole set of predefined
- functors. Please refer to eUML for the full list (TODO). For example, we are
- going to replace the first action by an action sequence and the guard by a more
- complex functor.</p><p>We decide we now want to execute 2 actions in the first transition (Stopped ->
- Playing). We only need to change the action start_playback to (TODO)
- <code class="code">ActionSequence_< mpl::vector<some_action, start_playback> >
- </code> and now will execute some_action and start_playback every time the
- transition is taken. ActionSequence_ is a functor callinng each element of the
- mpl::vector in sequence.</p><p>We also want to replace good_disk_format by a condition of the type:
- “good_disk_format && (some_condition || some_other_condition)”. We can
- achieve this using And_ and Or_ functors: <code class="code">And_<good_disk_format,Or_<
- some_condition , some_other_condition></code>. It even starts looking like
- functional programming. MSM ships with functors for operators, state machine
- usage, STL algorithms or container methods.</p></div><div class="sect3" title="Defining states with entry/exit actions"><div class="titlepage"><div><div><h4 class="title"><a name="d0e2362"></a>Defining states with entry/exit actions</h4></div></div></div><p>You probably noticed that we just showed a different transition table and that
- we even mixed rows from different front-ends. This means that you can do this
- and leave the definitions for states unchanged. Most examples are doing this as
- it is the simplest solution. You still enjoy the simplicity of the first
- front-end with the extended power of the new transition types. This <a class="link" href="examples/SimpleWithFunctors.cpp" target="_top">tutorial</a>, adapted from
- the earlier example does just this.</p><p>Of course, it is also possible to define states where entry and exit actions
- are also provided as functors as these are generated by eUML and both front-ends
- are equivalent. For example, we can define a state as:</p><p><code class="code">struct Empty_Entry { </code></p><p><code class="code">template <class Event,class Fsm,class State> </code></p><p><code class="code">void operator()(Event const&,Fsm&,State&) </code></p><p><code class="code"> {</code></p><p><code class="code"> ... </code></p><p><code class="code"> } </code></p><p><code class="code">}; // same for Empty_Exit</code></p><p><code class="code">struct Empty : public
- msm::front::euml::func_state<Empty_Entry,Empty_Exit>{};</code></p><p>This also means that you can, like in the transition table, write entry / exit
- actions made of more complicated action combinations. The previous example can
- therefore <a class="link" href="examples/SimpleWithFunctors2.cpp" target="_top">be
- rewritten</a>.</p><p>Usually, however, one will probably use the standard state definition as it
- provides the same capabilities as this front-end state definition, unless one
- needs some of the shipped predefined functors.</p></div><div class="sect3" title="Defining a simple state machine"><div class="titlepage"><div><div><h4 class="title"><a name="d0e2403"></a>Defining a simple state machine</h4></div></div></div><p>Like states, state machines can be defined using the previous front-end, as
- the previous example showed, or with the functor front-end, which allows you to
- define a state machine entry and exit functions as functors, as in <a class="link" href="examples/SimpleWithFunctors2.cpp" target="_top">this example</a>.</p></div><div class="sect3" title="Anonymous transitions"><div class="titlepage"><div><div><h4 class="title"><a name="d0e2411"></a>Anonymous transitions</h4></div></div></div><p>Anonymous (compound) transitions are transition withour a named event, taken
- automatically. We saw how this front-end uses <code class="code">none</code> when no action
- or guard is required. We can also use <code class="code">none</code> instead of an event to
- mark an anonymous transition. For example, the following transition makes an
- immediate transition from State1 to State2:</p><p>Row < State1 , none , State2 ></p><p>The following transition does the same but calling an action in the
- process:</p><p>Row < State1 , none , State2 , State1ToState2, none ></p><p>The following diagram shows an example and its <a class="link" href="examples/AnonymousTutorialWithFunctors.cpp" target="_top">implementation</a>:</p><p><span class="inlinemediaobject"><img src="../images/Anonymous.jpg"></span></p></div><div class="sect3" title="Internal transitions"><div class="titlepage"><div><div><h4 class="title"><a name="d0e2437"></a><span class="command"><strong><a name="functor-internal-transitions"></a></strong></span>Internal transitions</h4></div></div></div><p>The <a class="link" href="examples/SimpleTutorialInternalFunctors.cpp" target="_top">following
- example</a> uses internal transitions with the functor front-end. As for
- the simple standard front-end, both methods of defining internal transitions are supported:</p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>defining a <code class="code">Row</code> in the state machine's transition
- table with <code class="code">none</code> as target state defines an internal
- transition</p></li><li class="listitem"><p>defining an <code class="code">internal_transition_table</code> made of
- <code class="code">Internal</code> rows inside a state defines UML-conform
- internal transitions with higher priority</p></li><li class="listitem"><p>transitions defined inside <code class="code">internal_transition_table</code>
- require no source state either as the source state is known.</p></li></ul></div><p>Like for the <span class="command"><strong><a class="command" href="ar01s04.html#internal-transitions-note">standard front-end internal transitions</a></strong></span>, internal transition
- tables are added into the main state machine's table, thus allowing you to
- distribute the transition table definition and reuse states.</p><p>There is an added bonus offered for submachines, which can have both the
- standard transition_table and an internal_transition_table (which has higher
- priority). This makes it easier if you decide to make a full submachine from a
- state. It is also slightly faster than the standard alternative, adding
- orthogonal regions, because event dispatching will, if accepted by the internal
- table, not continue to the subregions. This gives you a O(1) dispatch instead of
- O(number of regions). While the example is with eUML, the same is also possible
- with this front-end.</p></div></div><div class="sect2" title="eUML (experimental)"><div class="titlepage"><div><div><h3 class="title"><a name="d0e2477"></a><span class="command"><strong><a name="eUML-front-end"></a></strong></span>eUML (experimental)</h3></div></div></div><p><span class="underline">Important note</span>: eUML requires a compiler
- supporting the C++0x decltype/typeof feature (from example VC >= 9, g++ >= 4.3. VC8
- is partially supported). More generally, eUML has experimental status because most
- compilers will start crashing when a state machine becomes too big. Only g++ 4.3
- (unfortunately not 4.4 which shows a serious regression) seems perfectly
- resilient.</p><p>The previous front-ends are simple to write but still force an amount of noise,
- mostly MPL types, so it would be nice to write code looking like C++ (with a C++
- action language) directly inside the transition table, like UML designers like to do
- on their state machine diagrams. This is what eUML is for.</p><p>eUML is a Boost.Proto-based compile-time domain specific embedded language. It
- provides grammars which allow the definition of actions/guards directly inside the
- transition table or entry/exit in the state definition. It is defined in the
- namespace msm::front::euml. There are grammars for actions, guards, flags,
- attributes, deferred events, initial states.</p><p>It also relies on Boost.Typeof as a wrapper around the new decltype C++0x feature
- to provide a compile-time evaluation of all the grammars. Unfortunately, all the
- underlying Boost libraries are not Typeof-enabled, so for the moment, you will need
- a compiler where Typeof is natively implemented (like VC8-9-10, g++ >= 4.3).</p><p>Examples will be provided in the next paragraphs. You need to include eUML basic
- features: </p><p><code class="code">#include <msm/front/euml/euml.hpp></code></p><p>To add STL support (at possible cost of longer compilation times), include: </p><p><code class="code">#include <msm/front/euml/stl.hpp></code></p><div class="sect3" title="Transition table"><div class="titlepage"><div><div><h4 class="title"><a name="d0e2501"></a>Transition table</h4></div></div></div><p>A transition can be defined using eUML as: </p><p><code class="code">source + event [guard] / action == target</code> or as</p><p><code class="code">target == source + event [guard] / action</code></p><p>The first version looks like a drawn transition in a diagram, the second one
- seems natural to a C++ developper.</p><p>The simple transition table written with the <span class="command"><strong><a class="command" href="ar01s04.html#functor-front-end">previous front-end</a></strong></span> can now be
- written as:</p><p>
- </p><table frame="void" id="d0e2522"><tbody><tr>
- <td>typedef BOOST_TYPEOF(build_stt((</td>
- <td> </td>
- <td> </td>
- </tr><tr>
- <td>Stopped +</td>
- <td>play [DummyGuard] / (TestFct,start_playback)</td>
- <td>== Playing</td>
- </tr><tr>
- <td>Stopped +</td>
- <td>open_close/ open_drawer</td>
- <td>== Open</td>
- </tr><tr>
- <td>Stopped +</td>
- <td>stop</td>
- <td>== Stopped</td>
- </tr><tr>
- <td>Open +</td>
- <td>open_close / close_drawer</td>
- <td>== Empty</td>
- </tr><tr>
- <td>Empty +</td>
- <td>open_close / open_drawer </td>
- <td>== Open</td>
- </tr><tr>
- <td>Empty +</td>
- <td>cd_detected [good_disk_format] / store_cd_info </td>
- <td>== Stopped</td>
- </tr><tr>
- <td> ) ) ) transition_table;</td>
- <td> </td>
- <td> </td>
- </tr></tbody></table><p>
- </p><p>Or, using the alternative notation, it can be:</p><p>
- </p><table id="d0e2617"><tbody><tr>
- <td>typedef BOOST_TYPEOF(build_stt((</td>
- <td> </td>
- <td> </td>
- </tr><tr>
- <td>Playing == </td>
- <td>Stopped +</td>
- <td>play [DummyGuard] / (TestFct,start_playback)</td>
- </tr><tr>
- <td>Open ==</td>
- <td>Stopped +</td>
- <td>open_close/ open_drawer</td>
- </tr><tr>
- <td>Stopped ==</td>
- <td>Stopped +</td>
- <td>stop</td>
- </tr><tr>
- <td>Empty ==</td>
- <td>Open +</td>
- <td>open_close / close_drawer</td>
- </tr><tr>
- <td>Open ==</td>
- <td>Empty +</td>
- <td>open_close / open_drawer</td>
- </tr><tr>
- <td>Stopped ==</td>
- <td>Empty +</td>
- <td>cd_detected [good_disk_format] / store_cd_info </td>
- </tr><tr>
- <td> ) ) ) transition_table;</td>
- <td> </td>
- <td> </td>
- </tr></tbody></table><p>
- </p><p>The transition table now looks like a list of (readable) rules with little
- noise.</p><p>UML defines guards between “[ ]” and actions after a “/”, so this is already
- more readable for UML designers. UML also allows designers to define several
- actions sequentially (our previous ActionSequence) separated by a comma. The
- first transition does just this: two actions separated by a comma and enclosed
- inside parenthesis to respect C++ operator precedence.</p><p>If this seems to you like it will cost you run-time performance, don't worry,
- typeof (decltype) only evaluates the build_stt function and no run-time cost
- occurs. Actually, eUML is only a metaprogramming layer on top of "standard" MSM
- metaprogramming and this first layer generates the previously-presented <span class="command"><strong><a class="command" href="ar01s04.html#functor-front-end">functor front-end</a></strong></span>.</p><p>UML also allows designers to define more complicated guards, like
- [good_disk_format && (some_condition || some_other_condition)]. This was
- possible with our previously defined functors, but using a complicated template
- syntax. This syntax is now possible exactly as written, which means without
- syntactic noise.</p></div><div class="sect3" title="Defining events, actions and states with entry/exit actions"><div class="titlepage"><div><div><h4 class="title"><a name="d0e2719"></a>Defining events, actions and states with entry/exit actions</h4></div></div></div><p>Events must be proto-enabled. To achieve this, they must inherit from
- euml_event:</p><p><code class="code">struct play : euml_event<play>{};</code></p><p>Actions (returning void) and guards (returning a bool) are defined like
- previous functors, with the difference that they also must be
- proto-enabled:</p><p><code class="code">struct some_condition : euml_action< some_condition ></code></p><p><code class="code">{ </code></p><p><code class="code">template <class Fsm,class Evt,class SourceState,class
- TargetState></code></p><p><code class="code">bool operator()(Evt const& ,Fsm& ,SourceState&
- ,TargetState& ) { return true; } </code></p><p><code class="code">}; </code></p><p>It is also possible to use the same action grammar as for the transition table
- for state entry and exit actions:</p><p><code class="code">typedef BOOST_TYPEOF(euml::build_state( (Empty_Entry,Dummy_Entry)/*2
- entry actions*/,Empty_Exit/*1 exit action*/ )) Empty;</code></p><p>This means that Empty is defined as a state with an entry action made of two
- sub-actions, Empty_Entry and Dummy_Entry (enclosed inside parenthesis), and an
- exit action, Empty_Exit.</p><p>There are several overloads of the <span class="command"><strong><a name="eUML-build-state"></a></strong></span>build_state function:</p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>build_state(): state without entry or exit action.</p></li><li class="listitem"><p>build_state(Expr1): state with entry but no exit action.</p></li><li class="listitem"><p>build_state(Expr1,Expr2): state with entry and exit action.</p></li><li class="listitem"><p>build_state(Expr1,Expr2,Attributes): state with entry and exit
- action, defining some attributes (read further on).</p></li><li class="listitem"><p>build_state(Expr1,Expr2,Attributes,Configure): state with entry
- and exit action, defining some attributes (read further on) and
- flags (standard MSM flags) or deferred events (standard MSM deferred
- events).</p></li><li class="listitem"><p>build_state(Expr1,Expr2,Attributes,Configure,Base): state with
- entry and exit action, defining some attributes (read further on),
- flags and deferred events (plain msm deferred events) and a
- non-default base state (as defined in standard MSM).</p></li></ul></div><p>A NoAction is also defined, which does, well, nothing except being a
- placeholder (needed for example as entry action if we have no entry but an
- exit). Expr1 and Expr2 are a sequence of actions, obeying the same action
- grammar as in the transition table (following the “/” symbol).</p><p>The state functors have a slightly different signature as there is no source
- and target state but only a current state (entry/exit actions are
- transition-independent), for example:</p><p><code class="code">struct Empty_Entry : euml_action< Empty_Entry ></code></p><p><code class="code">{ </code></p><p><code class="code">template <class Evt,class Fsm,class State></code></p><p><code class="code">void operator()(Evt const& ,Fsm& ,State& ) { ... }
- </code></p><p><code class="code">}; </code></p><p>Notice again the euml_action, to make the functor play nice with the grammar.
- </p></div><div class="sect3" title="Defining a simple state machine"><div class="titlepage"><div><div><h4 class="title"><a name="d0e2795"></a>Defining a simple state machine</h4></div></div></div><p>Like for a functor front-end, you can reuse the state machine definition
- method from the standard front-end. You can also use eUML to define a state
- machine "on the fly" (if, for example, you need to provide an on_entry/on_exit
- for this state machine as a functor). For this, there is also a function,
- <span class="command"><strong><a name="eUML-build-sm"></a></strong></span>build_sm, which has up to 8 arguments:</p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>build_sm(Stt, Init): simplest state machine where only the
- transition table and initial state(s) are defined.</p></li><li class="listitem"><p>build_sm(Stt, Init, Expr1): state machine where the transition
- table, initial state and entry action are defined.</p></li><li class="listitem"><p>build_sm(Stt, Init, Expr1, Expr2): state machine where the
- transition table, initial state, entry and exit actions are
- defined.</p></li><li class="listitem"><p>build_sm(Stt, Init, Expr1, Expr2, Attributes): state machine where
- the transition table, initial state, entry and exit actions are
- defined. Furthermore, some attributes are added (read further
- on).</p></li><li class="listitem"><p>build_sm(Stt, Init, Expr1, Expr2, Attributes, Configure): state
- machine where the transition table, initial state, entry and exit
- actions are defined. Furthermore, some attributes (read further on),
- flags, deferred events and configuration capabilities TODO link (no
- message queue / no exception catching) are added.</p></li><li class="listitem"><p>build_sm(Stt, Init, Expr1, Expr2, Attributes, Flags, Deferred ,
- Base): state machine where the transition table, initial state,
- entry and exit actions are defined. Furthermore, attributes (read
- further on), flags , deferred events and configuration capabilities
- (no message queue / no exception catching) are added and a
- non-default base state (see base state TODO) is defined.</p></li></ul></div><p>For example, a minimum state machine could be defined
- like:</p><p>
- </p><table id="d0e2824"><tbody><tr>
- <td>typedef BOOST_TYPEOF(build_stt((</td>
- <td> </td>
- <td> </td>
- </tr><tr>
- <td>... ) ) ) transition_table;</td>
- <td> </td>
- <td> </td>
- </tr></tbody></table><p>
- </p><p><code class="code">typedef BOOST_TYPEOF(build_sm( transition_table(),init_ << Empty
- )) player_;</code></p><p><span class="underline">Note for VC9</span>: This defined build_sm
- syntax works most of the time. But once in a while, VC9 will display the problem
- shown in the next section (not enough heap space). For example, this simple
- performance test (TODO link), while really simple, will display the bug. To
- correct it, the following solution works: </p><p><code class="code">#ifndef BOOST_MSVC</code></p><p><code class="code">typedef BOOST_TYPEOF(build_sm( transition_table(),init_ << Empty
- << AllOk )) player_;</code></p><p><code class="code">#else</code></p><p><code class="code">struct player_ : public BOOST_TYPEOF(build_sm( transition_table(),init_
- << Empty << AllOk )) {};</code></p><p><code class="code">#endif</code></p><p>Please have a look at the player tutorial written using eUML's <a class="link" href="examples/SimpleTutorialEuml2.cpp" target="_top">first</a> and <a class="link" href="examples/SimpleTutorialEuml.cpp" target="_top">second</a> syntax. Please
- ignore for the moment the BOOST_MSM_EUML_DECLARE_ATTRIBUTE macros, we come back
- to it very soon.</p></div><div class="sect3" title="Defining a submachine"><div class="titlepage"><div><div><h4 class="title"><a name="d0e2879"></a>Defining a submachine</h4></div></div></div><p>Defining a submachine (see <a class="link" href="examples/CompositeTutorialEuml.cpp" target="_top">tutorial</a>) with other
- front-ends simply means using a state which is a state machine in the transition
- table of another state machine. This is the same with eUML. One only needs
- define a second state machine and reference it in the transition table of the
- containing state machine.</p><p><span class="underline">Note</span>: the previous #ifdef trick has to
- be used for submachine definition because the VC9 bug occurs more often when
- submachines are involved.</p></div><div class="sect3" title="Attributes / Function call"><div class="titlepage"><div><div><h4 class="title"><a name="d0e2891"></a> Attributes / Function call</h4></div></div></div><p>We now want to make our grammar more useful. Very often, one needs only very
- simple action methods, for example ++Counter or Counter > 5 where Counter is
- usually defined as some attribute of the class containing the state machine.
- Furthermore, unlike many expensive tools which are on the market, states within
- MSM are also classes so they can have attributes, and we would also like to
- provide them with attributes. </p><p>If you look back at our examples using the <a class="link" href="examples/SimpleTutorialEuml2.cpp" target="_top">first</a> and <a class="link" href="examples/SimpleTutorialEuml.cpp" target="_top">second</a> syntaxes, you
- will find some unexplained BOOST_MSM_EUML_DECLARE_ATTRIBUTE macros. Let us go
- back to them. We have:</p><p><code class="code">BOOST_MSM_EUML_DECLARE_ATTRIBUTE(std::string,cd_name)</code></p><p><code class="code">BOOST_MSM_EUML_DECLARE_ATTRIBUTE(DiskTypeEnum,cd_type)</code></p><p>This declares two attributes: cd_name of type std::string and cd_type of type
- DiskTypeEnum. These attributes are not part of any event or state in particular,
- we just declared a name and a type. Now, we can add attributes to our
- cd_detected event:</p><p><code class="code">typedef BOOST_TYPEOF(build_attributes(attributes_ << cd_name
- << cd_type )) cd_detected_attributes;</code></p><p><code class="code">struct cd_detected : euml_event<cd_detected>,cd_detected_attributes
- {</code></p><p><code class="code">cd_detected(std::string name, DiskTypeEnum diskType) {</code></p><p><code class="code">get_attribute(cd_name)=name;get_attribute(cd_type)=diskType;}</code></p><p><code class="code">};</code></p><p>The two left shift of the first line add both attributes into the helper
- cd_detected_attributes structure. As cd_detected inherits from the helper, it
- now has these two attributes. The function get_attribute returns a reference to
- the required attributes so that we can easily write and set them.</p><p>Ok, great, we now have a two liner to add attributes to a class, which we
- could have done more easily, so what is the point? The point is that we can now
- do what was not possible, reference these attributes directly, at compile-time,
- in the transition table. For example, in the example, you will find this
- transition:</p><p><code class="code">Stopped == Empty + cd_detected [good_disk_format &&
- (event_(cd_type)==Int_<DISK_CD>())] </code></p><p>Read event_(cd_type) as event_->cd_type with event_ a type generic for events,
- whatever the concrete event is (in this particular case, it happens to be a
- cd_detected as the transition shows).</p><p>The main advantage of this feature is that you do not need to define a new
- functor and you do not need to look inside the functor to know what it does, you
- have all at hand.</p><p>MSM provides more generic objects for state machine types:</p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>event_ : used inside any action, the event triggering the
- transition</p></li><li class="listitem"><p>state_: used inside entry and exit actions, the entered / exited
- state</p></li><li class="listitem"><p>source_: used inside a transition action, the source state</p></li><li class="listitem"><p>target_: used inside a transition action, the target state</p></li><li class="listitem"><p>fsm_: used inside any action, the (lowest-level) state machine
- processing the transition</p></li><li class="listitem"><p>Int_<int value>: a functor representing an int</p></li><li class="listitem"><p>Char_<value>: a functor representing a char</p></li><li class="listitem"><p>Size_t_<value>: a functor representing a size_t</p></li><li class="listitem"><p>String_<mpl::string> (boost >= 1.40): a functor representing a
- string.</p></li></ul></div><p>These helpers can be used in two different ways:</p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>helper(attribute_name) returns the attribute with name
- attribute_name</p></li><li class="listitem"><p>helper returns the state / event type itself.</p></li></ul></div><p>The second form is helpful if you want to use states with self-created
- functors. In the <a class="link" href="examples/SimpleTutorialEuml.cpp" target="_top">above
- tutorial</a>, we provide Empty with an activate_empty method. We would
- like to create a eUML functor and call it from inside the transition table. This
- is done using the MSM_EUML_METHOD / MSM_EUML_FUNCTION macros. The first creates
- a functor to a method, the second to a free function. In the tutorial, we
- write:</p><p><code class="code">MSM_EUML_METHOD(ActivateEmpty_ , activate_empty , activate_empty_ , void
- , void )</code></p><p>The first parameter is the functor name, for use either directly or with the
- functor front-end. The second is the name of the method which will be called.
- The third is the function name for use in the transition table, the fourth is
- the return type of the function if used in the context of a transition action,
- the fifth is the result type if used in the context of a state entry / exit
- action (usually fourth and fifth are the same). We now have a new eUML function
- calling a method of "something", and this "something" is one of the five
- previously explained helpers. We can now use this in a transition, for
- example:</p><p><code class="code">Empty == Open + open_close /
- (close_drawer,activate_empty_(target_))</code></p><p>The action is now defined as a sequence of two actions: close_drawer and
- activate_empty called on the target itself. The target being Empty (the state
- defined left), this really will call Empty.activate_empty(). This method could
- also have an (or several) argument(s), for example the event, we could then call
- activate_empty_(target_ , event_).</p><p>More examples can be found in the <a class="link" href="examples/CompilerStressTestEuml.cpp" target="_top">terrible compiler stress
- test</a>, the <a class="link" href="examples/SimpleTimer.cpp" target="_top">timer
- example</a> or in the <a class="link" href="examples/iPodSearchEuml.cpp" target="_top">iPodSearch with eUML</a> (for String_ and more).</p></div><div class="sect3" title="Orthogonal regions, flags, event deferring"><div class="titlepage"><div><div><h4 class="title"><a name="d0e3003"></a>Orthogonal regions, flags, event deferring</h4></div></div></div><p>To define orthogonal regions really means defining more initial states. To add
- more initial states, “shift left” some, for example, if we had another initial
- state named AllOk :</p><p><code class="code">typedef BOOST_TYPEOF(build_sm( transition_table(),init_ << Empty
- << AllOk )) player_;</code></p><p>You remember from the <span class="command"><strong><a class="command" href="ar01s04.html#eUML-build-state">build_state</a></strong></span> and <span class="command"><strong><a class="command" href="ar01s04.html#eUML-build-sm">build_sm</a></strong></span> signatures that just after attributes, we can define
- flags, like in the basic MSM frontend. To do this, we have another "shift-left"
- grammar, for example:</p><p><code class="code">typedef BOOST_TYPEOF(build_state(NoAction,NoAction, attributes_ <<
- no_attributes_, </code></p><p><code class="code">/* flags */ configure_<< PlayingPaused << CDLoaded ))
- Paused; </code></p><p>We now defined that Paused will get two flags, PlayingPaused and CDLoaded,
- defined, for example as:</p><p><code class="code">struct CDLoaded : euml_flag<CDLoaded> {};</code></p><p>This corresponds to the following basic front-end definition of Paused:</p><p><code class="code">struct Paused : public msm::front::state<> </code></p><p><code class="code">{ typedef mpl::vector2<PlayingPaused,CDLoaded> flag_list; };
- </code></p><p>Under the hood, what you get really is a mpl::vector2.</p><p><span class="underline">Note</span>: As we use the version of
- build_state with 4 arguments, we need to tell eUML that we need no attributes.
- Similarly to a <code class="code">cout << endl</code>, we need a <code class="code">attributes_
- << no_attributes_</code> syntax.</p><p>You can use the flag with the is_flag_active method of a state machine. You
- can also use the provided helper function is_flag_ (returning a bool) for state
- and transition actions. For example, in the iPod implementation with eUML (TODO
- link), you find the following transition:</p><p><code class="code">ForwardPressed == NoForward + EastPressed
- [!is_flag_(NoFastFwd)]</code></p><p>The function also has an optional second parameter which is the state machine
- on which the function is called. by default, fsm_ is used (the current state
- machine) but you could provide a functor returning a reference to another state
- machine.</p><p>eUML also supports defining deferred events in the state (state machine)
- definition. To this aim, we can reuse the flag grammar. For example:</p><p><code class="code">typedef BOOST_TYPEOF(build_state(Empty_Entry,Empty_Exit, attributes_
- << no_attributes_, </code></p><p><code class="code">/* flags */ configure_<< play )) Empty; </code></p><p>The configure_ left shift is also responsible for deferring events. Shit
- inside a flag and it will be seen as a flag, shift an event and it will be a
- deferred event. This replaces the basic front-end definition:</p><p><code class="code">typedef mpl::vector<play> deferred_events;</code></p><p>In <a class="link" href="examples/OrthogonalDeferredEuml.cpp" target="_top">this
- tutorial</a>, player is defining a second orthogonal region with AllOk as
- initial state. The <code class="code">Empty</code> and <code class="code">Open</code> states also defer
- the event <code class="code">play</code>. <code class="code">Open</code>, <code class="code">Stopped</code> and
- <code class="code">Pause</code> also support the flag <code class="code">CDLoaded</code> using the
- same left shift into <code class="code">configure_</code>.</p><p>In the functor front_end, we also had the possibility to defer an event inside
- a transition, which makes possible conditional deferring. This is also possible
- with eUML through the use of the defer_ order, as shown in <a class="link" href="examples/OrthogonalDeferredEuml.cpp" target="_top">this tutorial</a>. You
- will find the foillowing transition:</p><p><code class="code">Open + play / defer_</code></p><p>This is an <span class="command"><strong><a class="command" href="ar01s04.html#eUML-internal">internal transition</a></strong></span>.
- Ignore it for the moment. Interesting is, that when the event <code class="code">play</code>
- is fired and <code class="code">Open</code> is active, the event will be deferred. Now add a
- guard and you can conditionally defer the event, for example:</p><p><code class="code">Open + play [ some_condition ] / defer_</code></p><p>This is similar to what we did with the functor front-end. This means that we
- have the same limitations. Using defer_ instead of a state declaration, we need
- to tell MSM that we have deferred events in this state machine. We do this
- (again) using a configure_ declaration in the state machine definition in which
- we shift the deferred_events configuration flag using the build_sm
- function:</p><p><code class="code">typedef BOOST_TYPEOF(build_sm( transition_table(),init_ << Empty
- << AllOk,</code></p><p><code class="code">Entry_Action, Exit_Action, attributes_ << no_attributes_,
- configure_<< deferred_events )) player_;</code></p><p>A <a class="link" href="examples/OrthogonalDeferredEuml2.cpp" target="_top">tutorial</a>
- illsutrates this possibility.</p></div><div class="sect3" title="Customizing a state machine / Getting more speed"><div class="titlepage"><div><div><h4 class="title"><a name="d0e3134"></a> Customizing a state machine / Getting more speed</h4></div></div></div><p>We just saw how to use configure_ to define deferred events or flags. We can
- also use it to configure our state machine like we did with other front-ends
- (TODO add in standard):</p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>configure_ << no_exception: disables exception
- handling</p></li><li class="listitem"><p>configure_ << no_msg_queue deactivates the message
- queue</p></li></ul></div><p>Deactivating these features if not needed greatly improves the event
- dispatching speed of your state machine. Our <a class="link" href="examples/EumlSimple.cpp" target="_top">speed testing</a> example with eUML
- use this feature.</p></div><div class="sect3" title="Anonymous transitions"><div class="titlepage"><div><div><h4 class="title"><a name="d0e3151"></a>Anonymous transitions</h4></div></div></div><p>Anonymous transitions (See <span class="command"><strong><a class="command" href="ar01s03.html#uml-anonymous">UML
- tutorial</a></strong></span>) are transitions without a named event which are
- therefore triggered immediately when the source state becomre active, provided a
- guard allows it. As there is no event, to define such a transition, simply omit
- the “+” part of the transition (the event), for example: </p><p><code class="code">State3 == State4 [always_true] / State3ToState4</code></p><p><code class="code">State4 [always_true] / State3ToState4 == State3</code></p><p>Please have a look at <a class="link" href="examples/AnonymousTutorialEuml.cpp" target="_top">this example</a>, which implements the <span class="command"><strong><a class="command" href="ar01s04.html#anonymous-transitions">previously defined</a></strong></span> state
- machine with eUML.</p></div><div class="sect3" title="Internal transitions"><div class="titlepage"><div><div><h4 class="title"><a name="d0e3173"></a><span class="command"><strong><a name="eUML-internal"></a></strong></span>Internal transitions</h4></div></div></div><p>Like both other front-ends, eUML supports two ways of defining internal transitions:</p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>in the state machine's transition table. In this case, you need to
- specify a source state, event, actions and guards but no target
- state, which eUML will interpret as an internal transition, for
- example this defines a transition internal to Open, on the event
- open_close:</p><p><code class="code">Open + open_close [internal_guard1] /
- internal_action1</code></p><p><a class="link" href="examples/EumlInternal.cpp" target="_top">A full example</a>
- is also provided.</p></li><li class="listitem"><p>in a state's <code class="code">internal_transition_table</code>. For
- example:</p><p><code class="code">typedef BOOST_TYPEOF(build_state( Open_Entry(),Open_Exit()
- )) Open_def;</code></p><p><code class="code">struct Open : public Open_def {</code></p><p><code class="code">typedef BOOST_TYPEOF(build_internal_stt((</code></p><p><code class="code">open_close [internal_guard1] /
- internal_action1</code></p><p><code class="code">) ) ) internal_transition_table;</code></p><p><code class="code">};</code></p><p>Notice how we do not need to repeat that the transition originates
- from Open as we already are in the context of Open. </p><p>The <a class="link" href="examples/EumlInternalDistributed.cpp" target="_top">implementation</a> also shows the added bonus offered for
- submachines, which can have both the standard transition_table and
- an internal_transition_table (which has higher priority). This makes
- it easier if you decide to make a full submachine from a state. It
- is also slightly faster than the standard alternative, adding
- orthogonal regions, because event dispatching will, if accepted by
- the internal table, not continue to the subregions. This gives you a
- O(1) dispatch instead of O(number of regions).</p></li></ul></div></div><div class="sect3" title="Direct entry / entry and exit pseudo-state / fork"><div class="titlepage"><div><div><h4 class="title"><a name="d0e3221"></a>Direct entry / entry and exit pseudo-state / fork</h4></div></div></div><p>We saw the <span class="command"><strong><a class="command" href="ar01s04.html#eUML-build-state">build_state</a></strong></span>
- function, which creates a simple state. Likewise, eUML provides other
- state-building functions for other types of states:</p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>build_terminal_state takes the same arguments as build_state and
- defines, well, a terminate state.</p></li><li class="listitem"><p>build_interrupt_state takes the same arguments as build_state and
- defines an interrupt state.</p></li><li class="listitem"><p>build_exit_state takes the same arguments as build_state and
- defines an exit pseudo state.</p></li><li class="listitem"><p>build_entry_state takes the same arguments as build_state and
- defines an interrupt state. The region index to be entered is
- defined as an int template argument, so build_entry_state<0>
- defines an entry state into the first region of a submachine.</p></li><li class="listitem"><p>build_explicit_entry_state takes the same arguments as build_state
- and defines an explicit entry state. The region index to be entered
- is defined as an int template argument, so
- build_explicit_entry_state<0> defines an explicit entry state
- into the first region of a submachine.</p></li></ul></div><p>Using these states in the transition table is like in any other front end
- using fsm_name::exit_pt<>, fsm_name::direct<> and fsm_name::entry_pt<>.
- For example, a direct entry could be:</p><p><code class="code">SubFsm2::direct<SubState2> == State1 + event2</code></p><p>Forks being a list on direct entries, eUML supports a logical syntax (state1,
- state2, ...), for example:</p><p><code class="code">(SubFsm2::direct<SubState2>, SubFsm2::direct<SubState2b>,
- SubFsm2::direct<SubState2c>) == State1 + event3</code></p><p>The <a class="link" href="examples/DirectEntryEuml.cpp" target="_top">entry tutorial</a> is
- also available with eUML.</p></div><div class="sect3" title="Helper functions"><div class="titlepage"><div><div><h4 class="title"><a name="d0e3260"></a>Helper functions</h4></div></div></div><p>We saw a few helpers but there are more, so let us have a more complete description:</p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>event_ : used inside any action, the event triggering the
- transition</p></li><li class="listitem"><p>state_: used inside entry and exit actions, the entered / exited
- state</p></li><li class="listitem"><p>source_: used inside a transition action, the source state</p></li><li class="listitem"><p>target_: used inside a transition action, the target state</p></li><li class="listitem"><p>fsm_: used inside any action, the (lowest-level) state machine
- processing the transition</p></li><li class="listitem"><p>The previous objects can also return an attribute, for example
- event_(cd_name)</p></li><li class="listitem"><p>Int_<int value>: a functor representing an int</p></li><li class="listitem"><p>Char_<value>: a functor representing a char</p></li><li class="listitem"><p>Size_t_<value>: a functor representing a size_t</p></li><li class="listitem"><p>True_ and False_ functors returning true and false
- respectively</p></li><li class="listitem"><p>String_<mpl::string> (boost >= 1.40): a functor representing a
- string.</p></li><li class="listitem"><p>if_then_else_(guard, action, action) where action can be an action
- sequence</p></li><li class="listitem"><p>if_then_(guard, action) where action can be an action
- sequence</p></li><li class="listitem"><p>while_(guard, action) where action can be an action
- sequence</p></li><li class="listitem"><p>do_while_(guard, action) where action can be an action
- sequence</p></li><li class="listitem"><p>for_(action, guard, action, action) where action can be an action
- sequence</p></li><li class="listitem"><p>process_(some_event [, some state machine] [, some state machine]
- [, some state machine] [, some state machine]) will call
- process_event (some_event) on the current state machine or on the
- one(s) passed as 2nd , 3rd, 4th, 5th argument. This allow sending
- events to several external machines</p></li><li class="listitem"><p>process2_(some_event,Value [, some state machine] [, some state
- machine] [, some state machine]) will call process_event
- (some_event(Value)) on the current state machine or on the one(s)
- passed as 3rd, 4th, 5th argument</p></li><li class="listitem"><p>is_ flag_(some_flag[, some state machine]) will call
- is_flag_active on the current state machine or on the one passed as
- 2nd argument</p></li><li class="listitem"><p>Predicate_<some predicate>: Used in STL algorithms. Wraps
- unary/binary functions to make them eUML-compatible so that they can
- be used in STL algorithms</p></li></ul></div><p>This can make for quite some fun. For example, </p><p><code class="code">/( if_then_else_(--fsm_(m_SongIndex) > Int_<0>(),/*if
- clause*/</code></p><p><code class="code">show_playing_song(), /*then clause*/</code></p><p><code class="code">(fsm_(m_SongIndex)=Int_<1>(),process_(EndPlay())) /*else clause*/ )
- )</code> means:</p><p>if (fsm.SongIndex > 0, call show_playing_song else {fsm.SongIndex=1; process
- EndPlay on fsm;}</p><p>A few examples are using these features:</p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>the iPod example introduced at the BoostCon09 <a class="link" href="examples/iPodEuml.cpp" target="_top">has been rewritten</a>
- with eUML (weak compilers please move on...)</p></li><li class="listitem"><p>the iPodSearch example also introduced at the BoostCon09 <a class="link" href="examples/iPodSearchEuml.cpp" target="_top">has been
- rewritten</a> with eUML. In this example, you will also find
- some examples of STL functor usage.</p></li><li class="listitem"><p><a class="link" href="examples/SimpleTimer.cpp" target="_top">A simpler timer</a>
- example is a good starting point. </p></li></ul></div><p>There is unfortunately a small catch. Defining a functor using MSM_EUML_METHOD
- or MSM_EUML_FUNCTION will create a correct functor. Your own eUML functors
- written as described at the beginning of this section will also work well,
- <span class="underline">except</span> with the while_, if_then_,
- if_then_else_ functions which will require a bit of writing. TODO macro.</p></div><div class="sect3" title="Phoenix-like STL support"><div class="titlepage"><div><div><h4 class="title"><a name="d0e3365"></a>Phoenix-like STL support</h4></div></div></div><p>As we saw, eUML supports most C++ operators (except address-of). For example
- it is possible to write event_(some_attribute)++ or [source_(some_bool)
- && fsm_(some_other_bool)]. But a programmer needs more than operators in
- his daily programming. The STL is clearly a must have. Therefore, eUML comes in
- with a lot of functors to simplify your day-to-day programming. For almost every
- algorithm or container method of the STL, a corresponding eUML function is
- defined. Like Boost.Phoenix, “.” And “->” of call on objects are replaced by a
- functional programming paradigm, for example:</p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>begin_(container), end_(container): returns iterators of a
- container.</p></li><li class="listitem"><p>empty_(container): returns container.empty()</p></li><li class="listitem"><p>clear_(container): container.clear()</p></li><li class="listitem"><p>transform_ : std::transform</p></li></ul></div><p>In a nutshell, almost every STL method or algorithm is matched by a
- corresponding functor, which can then be used in the transition table or state
- actions. The reference (TODO link) explains in detail the usage and the
- underlying functor (so that this possibility is not reserved to eUML but also to
- the functor-based front-end). The file structure of this Phoenix-like library
- matches the one of Boost.Phoenix. All STL algorithm functors are to be found
- in:</p><p><code class="code">#include <msm/front/euml/algorithm.hpp></code></p><p>The algorithms are also divided into sub-headers, matching the phoenix
- structure for simplicity:</p><p><code class="code">#include < msm/front/euml/iteration.hpp> </code></p><p><code class="code">#include < msm/front/euml/transformation.hpp> </code></p><p><code class="code">#include < msm/front/euml/querying.hpp> </code></p><p>Container methods can be found in:</p><p><code class="code">#include < msm/front/euml/container.hpp></code></p><p>Or one can simply include the whole STL support (you will also need to include
- euml.hpp):</p><p><code class="code">#include < msm/front/euml/stl.hpp></code></p><p>A few examples (to be found in <a class="link" href="examples/iPodSearchEuml.cpp" target="_top">this tutorial</a>):</p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p><code class="code">push_back_(fsm_(m_tgt_container),event_(m_song))</code>: the
- state machine has an attribute m_tgt_container of type
- std::vector<OneSong> and the event has an attribute m_song of
- type OneSong. The line therefore pushes m_song at the end of
- m_tgt_container</p></li><li class="listitem"><p><code class="code">if_then_( state_(m_src_it) != end_(fsm_(m_src_container)),
- process2_(OneSong(),*(state_(m_src_it)++)) )</code>: the current
- state has an attribute m_src_it (an iterator). If this iterator !=
- fsm.m_src_container.end(), process OneSong on fsm, copy-constructed
- from state.m_src_it which we post-increment</p></li></ul></div></div></div><div class="sect2" title="Back-end"><div class="titlepage"><div><div><h3 class="title"><a name="d0e3425"></a>Back-end</h3></div></div></div><p>There is, at the moment, one back-end. This back-end contains the library engine
- and defines the performance and functionality tradeoffs. The currently available
- back-end implements most of the functionality defined by the UML 2.0 standard at
- very high runtime speed, in exchange for longer compile-time. The runtime speed is
- due to a constant-time double-dispatch and self-adapting capabilities allowing the
- framework to adapt itself to the features used by a given concrete state machine.
- All unneeded features either disable themselves or can be manually disabled. See
- section 5.1 for a complete description of the run-to-completion algorithm.</p><div class="sect3" title="MSM Backend features"><div class="titlepage"><div><div><h4 class="title"><a name="d0e3430"></a> MSM Backend features </h4></div></div></div><p>TODO</p><p></p><div class="sect4" title="Creation"><div class="titlepage"><div><div><h5 class="title"><a name="d0e3436"></a> Creation </h5></div></div></div><p> MSM being divided betwenn front and back-end, one needs to first define a
- front-end. Then, to create a real state machine, the back-end must be
- created: <code class="code">typedef msm::back::state_machine<my_front_end>
- my_fsm;</code>
- </p><p>We now have a fully functional state machine. The next sections will
- describe what can be done with it.</p></div><div class="sect4" title="Event dispatching"><div class="titlepage"><div><div><h5 class="title"><a name="d0e3446"></a>Event dispatching</h5></div></div></div><p>The main reason to exist for a state machine is to dispatch events. For
- MSM, events are objects of a given event type. The object itself can contain
- data, but the event type is what decides of the transition to be taken. For
- MSM, if some_event is a given type (a simple struct for example) and e1 and
- e2 concrete events, e1 and e2 are equivalent, from a transition perspective.
- Of course, e1 and e2 can have different values and you can use them inside
- actions. Events are dispatched as const reference, so actions cannot modify
- events for obvious side-effect reasons. To dispatch an event of type
- some_event, you can simply write: </p><p><code class="code">my_fsm fsm; fsm.process_event(some_event());</code></p><p><code class="code">some_event e1; fsm.process_event(e1)</code></p><p>Creating an event on the fly will be optimized by the compiler so the
- performance will not degrade.</p></div><div class="sect4" title="Active state(s)"><div class="titlepage"><div><div><h5 class="title"><a name="d0e3459"></a>Active state(s)</h5></div></div></div><p>The backend also offers a way to know which state is active, though you
- will normally only need this for debugging purposes. If what you need simply
- is doing something with the active state, <span class="command"><strong><a class="command" href="ar01s03.html#UML-internal-transition">internal transitions</a></strong></span> or
- <span class="command"><strong><a class="command" href="ar01s04.html#backend-visitor">visitors</a></strong></span> are a better
- alternative. If you need to know what state is active, const int*
- current_state() will return an array of state ids. Please refer to the
- <span class="command"><strong><a class="command" href="ar01s07.html#internals-state-id">internals section</a></strong></span> to
- know how state ids are generated.</p></div><div class="sect4" title="Base state type"><div class="titlepage"><div><div><h5 class="title"><a name="d0e3473"></a> Base state type </h5></div></div></div><p>Sometimes, one needs to customize states to avoid repetition and provide a
- common functionality, for example in the form of a virtual method. You might
- also want to make your states polymorphic so that you can call typeid on
- them for logging or debugging. It is also useful if you need a visitor, like
- the next section will show. You will notice that all front-ends offer the
- possibility of adding a base type. Not that all states and state machines
- must have the same base state, so this could reduce reuse. For example,
- using the basic front end, you need to:</p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>Add the non-default base state in your msm::front::state<>
- definition, as first template argument (except for
- interrupt_states for which it is the second argument, the first
- one being the event ending the interrupt), for example,
- my_base_state being your new base state for all states in a
- given state machine: <code class="code">struct Empty : public
- msm::front::state<my_base_state></code> Now,
- my_base_state is your new base state. If it has a virtual
- function, your states become polymorphic. MSM also provides a
- default polymorphic base type for your convenience,
- <code class="code">msm::front::polymorphic_state</code>
- </p></li><li class="listitem"><p>Add the user-defined base state in the state machine frontend
- definition, as a second template argument, for example:
- <code class="code">struct player_ : public
- msm::front::state_machine<player_,my_base_state>
- </code></p></li></ul></div><p>You can also ask for a state with a given id (which you might have gotten
- from current_state()) using <code class="code">const base_state* get_state_by_id(int id)
- const</code> where base_state is the one you just defined. You can now
- do something ploymorphically. For example using the visitor.</p></div><div class="sect4" title="Visitor"><div class="titlepage"><div><div><h5 class="title"><a name="d0e3498"></a><span class="command"><strong><a name="backend-visitor"></a></strong></span>Visitor</h5></div></div></div><p>In some cases, having a pointer-to-base of the currently active states is
- not enough. You might want to call non-virtually a method of the currently
- active states. It will not be said that MSM forces the virtual keyword down
- your throat!</p><p>To achieve this goal, MSM provides its own variation of a visitor pattern
- using the previously described user-defined state technique. If you add to
- your user-defined base state an <code class="code">accept_sig</code> typedef giving the
- return value (unused for the moment) and signature and provide an accept
- method with this signature, calling visit_current_states will cause accept
- to be called on the currently active states. Typically, you will also want
- to provide an empty default accept in your base state in order in order not
- to force all your states to implement accept. For example your base state
- could be:</p><p><code class="code">struct my_visitable_state{</code></p><p><code class="code">// signature of the accept function</code></p><p><code class="code">typedef args<void> accept_sig;</code></p><p><code class="code">// we also want polymorphic states</code></p><p><code class="code">virtual ~my_visitable_state() {}</code></p><p><code class="code">// default implementation for states who do not need to be
- visited</code></p><p><code class="code">void accept() const {}</code></p><p><code class="code">};</code></p><p>This makes your states polymorphic and visitable. In this case, accept is
- made const and takes no argument. It could also be:</p><p><code class="code">struct SomeVisitor {…};</code></p><p><code class="code">struct my_visitable_state{</code></p><p><code class="code">// signature of the accept function</code></p><p><code class="code">typedef args<void,SomeVisitor&> accept_sig;</code></p><p><code class="code">// we also want polymorphic states</code></p><p><code class="code">virtual ~my_visitable_state() {}</code></p><p><code class="code">// default implementation for states who do not need to be
- visited</code></p><p><code class="code">void accept(SomeVisitor&) const {}</code></p><p><code class="code">};</code></p><p>And now, accept will take one argument (it could also be non-const). By
- default, accept takes up to 2 arguments. To get more, add a #define
- BOOST_MSM_VISITOR_ARG_SIZE to another value before including
- state_machine.hpp. For example:</p><p><code class="code">#define BOOST_MSM_VISITOR_ARG_SIZE 3</code></p><p><code class="code">#include <boost/msm/back/state_machine.hpp></code></p><p>Note that accept will be called on ALL active states <span class="underline">and also automatically on sub-states of a
- submachine</span>.</p><p><span class="underline">Important warning</span>: The method
- visit_current_states takes its parameter by value, so if the signature of
- the accept function is to contain a parameter passed by reference, pass this
- parameter with a boost:ref/cref to avoid undesired copies or slicing. So,
- for example, in the above case, call:</p><p><code class="code">SomeVisitor vis; sm.visit_current_states(boost::ref(vis));
- </code></p><p>This <a class="link" href="examples/SM-2Arg.cpp" target="_top">example</a> uses a
- visiting function with 2 arguments.</p></div><div class="sect4" title="Flags"><div class="titlepage"><div><div><h5 class="title"><a name="d0e3587"></a>Flags</h5></div></div></div><p>Flags is a MSM-only concept, supported by all front-ends, which base
- themselves on the functions: </p><p><code class="code">template <class Flag> bool is_flag_active()</code> and</p><p><code class="code">template <class Flag,class BinaryOp> bool is_flag_active()</code>
- </p><p>These functions return true if the currently active state(s) support the
- Flag property. The first variant ORs the result if there are several
- orthogonal regions, the second one expects OR or AND, for example:</p><p><code class="code">my_fsm.is_flag_active<MyFlag>()</code></p><p><code class="code">my_fsm.is_flag_active<MyFlag,my_fsm_type::Flag_OR>()</code></p><p>Please refer to the front-ends sections for more information.</p></div><div class="sect4" title="Getting a state"><div class="titlepage"><div><div><h5 class="title"><a name="d0e3610"></a>Getting a state</h5></div></div></div><p>It is sometimes necessary to have the client code get access to the
- states' data. After all, the states are created once for good and hang
- around as long as the state machine does so why not use it? You simply just
- need sometimes to get information about any state, even inactive ones. An
- example is if you want to write a coverage tool and know how many times a
- state was visited. To get a state, use the get_state method giving the state
- name, for example: </p><p><code class="code">player::Stopped* tempstate =
- p.get_state<player::Stopped*>();</code> or </p><p><code class="code">player::Stopped& tempstate2 =
- p.get_state<player::Stopped&>();</code> depending on your
- personal taste. </p></div><div class="sect4" title="State machine constructor with arguments"><div class="titlepage"><div><div><h5 class="title"><a name="d0e3623"></a> State machine constructor with arguments </h5></div></div></div><p>You might want to define a state machine with a non-default constructor.
- For example, you might want to write: </p><p><code class="code">struct player_ : public msm::front::state_machine_def<player_> {
- player_(int some_value){…} } </code></p><p>This is possible, using the back-end as forwarding object: </p><p><code class="code">typedef msm::back::state_machine<player_ > player; player
- p(3);</code> The back-end will call the corresponding front-end
- constructor upon creation.</p><p>You can pass arguments up to the value of the
- BOOST_MSM_CONSTRUCTOR_ARG_SIZE macro (currently 5) arguments. Change this
- value before including any header if you need to change it. </p></div></div></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="ar01s03.html">Prev</a> </td><td width="20%" align="center"> </td><td width="40%" align="right"> <a accesskey="n" href="ar01s05.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">UML Short Guide </td><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%" align="right" valign="top"> Performance / Compilers</td></tr></table></div></body></html>
\ No newline at end of file
Deleted: branches/release/libs/msm/doc/HTML/ar01s05.html
==============================================================================
--- branches/release/libs/msm/doc/HTML/ar01s05.html 2010-06-30 04:40:08 EDT (Wed, 30 Jun 2010)
+++ (empty file)
@@ -1,69 +0,0 @@
-<html><head>
- <meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
- <title>Performance / Compilers</title><meta name="generator" content="DocBook XSL-NS Stylesheets V1.75.2"><link rel="home" href="index.html" title="Meta State Machine (MSM)"><link rel="up" href="index.html" title="Meta State Machine (MSM)"><link rel="prev" href="ar01s04.html" title="User's Guide"><link rel="next" href="ar01s06.html" title="Questions & Answers"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center"> Performance / Compilers</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="ar01s04.html">Prev</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a accesskey="n" href="ar01s06.html">Next</a></td></tr></table><hr></div><div class="sect1" title="Performance / Compilers"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="d0e3639"></a> Performance / Compilers</h2></div></di
v></div><p>Tests were made on different PCs running Windows XP and Vista and compiled with VC9
- SP1 or Ubuntu and compiled with g++ 4.2 and 4.3. For these tests, the same player state
- machine was written using Boost.Statechart, as a <a class="link" href="examples/SC Simple.cpp" target="_top">state machine with only simple states</a> and
- as a <a class="link" href="examples/SC Composite.cpp" target="_top">state machine with a composite
- state</a>. The same simple and composite state machines are implemented with MSM
- with a standard frontend <a class="link" href="examples/MsmSimple.cpp" target="_top">(simple)</a><a class="link" href="examples/MsmComposite.cpp" target="_top">(composite)</a>, the simple one also with
- <a class="link" href="examples/MsmSimpleFunctors.cpp" target="_top">functors</a> and with <a class="link" href="examples/EumlSimple.cpp" target="_top">eUML</a>. As these simple machines need no
- terminate/interrupt states, no message queue and have no-throw guarantee on their
- actions, the MSM state machines are defined with minimum functionality.</p><div class="sect2" title="Speed"><div class="titlepage"><div><div><h3 class="title"><a name="d0e3661"></a>Speed</h3></div></div></div><p>VC9:</p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>The simple test completes 36 times faster with Msm than with
- Boost.Statechart</p></li><li class="listitem"><p>The composite test completes 18 times faster with MSM</p></li><li class="listitem"><p>The fastest version is with eUML/functors. It completes 58 times
- faster than Boost.Statechart. A transition costs 4.5ns on a
- Q6600.</p></li></ul></div><p>gcc 4.2.3:</p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>The simple test completes 54 times faster with Msm (with
- functors)</p></li><li class="listitem"><p>The composite test completes 25 times faster with Msm</p></li></ul></div></div><div class="sect2" title="Executable size"><div class="titlepage"><div><div><h3 class="title"><a name="d0e3685"></a>Executable size</h3></div></div></div><p>There are some worries that MSM generates huge code. Is it true? The 2 compilers I
- tested disagree with this claim. On VC9, the test state machines used in the
- performance section produce executables of 14kB (for simple and eUML) and 21kB (for
- the composite). This includes the test code and iostreams. By comparison, an empty
- executable with iostreams generated by VC9 has a size of 7kB. Boost.Statechart
- generates executables of 43kB and 54kB. As a bonus, eUML comes for “free” in terms
- of executable size. You even get a speed gain. With g++ 4.3, it strongly depends on
- the compiler options (much more than VC). A good size state machine with –O3 can
- generate an executable of 600kB, and with eUML you can get to 1.5MB. Trying with –Os
- –s I come down to 18kB and 30kB for the test state machines, while eUML will go down
- to 1MB (which is still big), so in this case eUML does not come for free.</p></div><div class="sect2" title="Supported compilers"><div class="titlepage"><div><div><h3 class="title"><a name="d0e3690"></a>Supported compilers</h3></div></div></div><p> MSM was successfully tested with: </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>VC8 (please read further), VC9SP1, VC10 Beta 1 and 2</p></li><li class="listitem"><p>g++ 4.1 and higher</p></li><li class="listitem"><p>Green Hills Software MULTI for ARM v5.0.5 patch 4416 (Simple and
- Composite tutorials)</p></li></ul></div><p> eUML will only work with: </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>VC8 (partly). You cannot, however use any overloaded function (like
- splice) and compile times and RAM consumption explode</p></li><li class="listitem"><p>VC9SP1, VC10 Beta1-2</p></li><li class="listitem"><p>g++ 4.3 and higher (previous versions lack native typeof
- support)</p></li></ul></div><p>VC8 and to some lesser extent VC9 suffer from a bug. Enabling the option "Enable
- Minimal Rebuild" (/Gm) will cause much higher compile-time (up to three times with
- VC8!). This option being activated per default in Debug mode, this can be a big
- problem.</p></div><div class="sect2" title="Limitations"><div class="titlepage"><div><div><h3 class="title"><a name="d0e3719"></a> Limitations </h3></div></div></div><p>
- </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>Compilation times of state machines with > 80 transitions that are
- going to make you storm the CFO's office and make sure you get a shiny
- octocore with 8GB RAM by next week, unless he's interested in paying you
- watch the compiler agonize for hours... (Make sure you ask for dual 24"
- as well, it doesn't hurt).</p></li><li class="listitem"><p>eUML allows very long constructs but will also quickly increase your
- compile time on some compilers (VC9, VC10 Beta1) with buggy decltype
- support (I suspect some at least quadratic algorithms there). Even g++
- 4.4 shows some regression compared to 4.3 and will crash if the
- constructs become too big.</p></li><li class="listitem"><p>Need to overwrite the mpl::vector/list default-size-limit of 20 and
- fusion default vector size of 10 if more than 10 states found in a state
- machine</p></li></ul></div><p>
- </p></div><div class="sect2" title="Compilers corner"><div class="titlepage"><div><div><h3 class="title"><a name="d0e3735"></a> Compilers corner </h3></div></div></div><p>Compilers are sometimes full of surprises and such strange errors happened in the
- course of the development that I wanted to list the most fun for readers’
- entertainment.</p><p><span class="underline">VC8</span>: </p><p><code class="code">template <class StateType> </code></p><p><code class="code">typename ::boost::enable_if< </code></p><p><code class="code">typename ::boost::mpl::and_<</code></p><p><code class="code">typename ::boost::mpl::not_<typename
- has_exit_pseudo_states<StateType>::type>::type, </code></p><p><code class="code">typename ::boost::mpl::not_<typename
- is_pseudo_exit<StateType>::type>::type >::type,BaseState*>::type
- </code></p><p>I get the following error:</p><p>error C2770: invalid explicit template argument(s) for '`global
- namespace'::boost::enable_if<is_pseudo_exit<StateType>::type,BaseState*>::type
- boost::msm::state_machine<Derived,HistoryPolicy,BaseState>::add_state<ContainingSM>::new_state_helper(boost::msm::dummy<__formal>)
- const' </p><p>If I now remove the first “::” in ::boost::mpl , the compiler shuts up. So in this
- case, it is not possible to follow Boost’s guidelines.</p><p><span class="underline">VC9</span>:</p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>This one is my all times’ favorite. Do you know why the exit pseudo
- states are referenced in the transition table with a
- “submachine::exit_pt” ? Because “exit” will crash the compiler. “Exit”
- is not possible either because it will crash the compiler on one
- machine, but not on another (the compiler was installed from the same
- disk).</p></li><li class="listitem"><p>Sometimes, removing a policy crashes the compiler, so some versions
- are defining a dummy policy called WorkaroundVC9.</p></li><li class="listitem"><p>Typeof: While g++ and VC9 compile “standard” state machines in
- comparable times, Typeof (while in both ways natively supported) seems
- to behave in a quadratic complexity with VC9 and VC10.</p></li><li class="listitem"><p>eUML: in case of a compiler crash, changing the order of state
- definitions (first states without entry or exit) sometimes solves the
- problem.</p></li></ul></div><p><span class="underline">g++ 4.x</span>: Boring compiler, almost all is
- working almost as expected. Being not a language lawyer I am unsure about the
- following “Typeof problem”. VC9 and g++ disagree on the question if you can derive
- from the BOOST_TYPEOF generated type without first defining a typedef. I will be
- thankful for an answer on this. I only found two ways to break the compiler:</p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>Add more eUML constructs until something explodes (especially with
- g++-4.4) </p></li><li class="listitem"><p>The build_terminate function uses 2 mpl::push_back instead of
- mpl::insert_range because g++ would not accept insert_range.</p></li></ul></div><p>You can test your compiler’s decltype implementation with the <a class="link" href="examples/CompilerStressTestEuml.cpp" target="_top">following stress test</a>
- and reactivate the commented-out code until the compiler crashes.</p></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="ar01s04.html">Prev</a> </td><td width="20%" align="center"> </td><td width="40%" align="right"> <a accesskey="n" href="ar01s06.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">User's Guide </td><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%" align="right" valign="top"> Questions & Answers</td></tr></table></div></body></html>
\ No newline at end of file
Deleted: branches/release/libs/msm/doc/HTML/ar01s06.html
==============================================================================
--- branches/release/libs/msm/doc/HTML/ar01s06.html 2010-06-30 04:40:08 EDT (Wed, 30 Jun 2010)
+++ (empty file)
@@ -1,29 +0,0 @@
-<html><head>
- <meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
- <title>Questions & Answers</title><meta name="generator" content="DocBook XSL-NS Stylesheets V1.75.2"><link rel="home" href="index.html" title="Meta State Machine (MSM)"><link rel="up" href="index.html" title="Meta State Machine (MSM)"><link rel="prev" href="ar01s05.html" title="Performance / Compilers"><link rel="next" href="ar01s07.html" title="Internals"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Questions & Answers</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="ar01s05.html">Prev</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a accesskey="n" href="ar01s07.html">Next</a></td></tr></table><hr></div><div class="sect1" title="Questions & Answers"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="d0e3798"></a>Questions & Answers</h2></div></div></d
iv><p><span class="underline">Question</span>: on_entry gets as argument, the sent
- event. What event do I get when the state becomes default-activated (because it is an
- initial state)?</p><p>
- <span class="underline">Answer</span>: To allow you to know that the state was
- default-activated, MSM generates a boost::msm::InitEvent default event. </p><p><span class="underline">Question</span>: Why do I see no call to no_transition
- in my composite state? </p><p><span class="underline">Answer</span>: Because of the priority rule defined by
- UML. It says that in case of transition conflict, the most inner state has a higher
- priority. So after asking the inner state, the containing composite has to be also asked
- to handle the transition and could find a possible transition.</p><p><span class="underline">Question</span>: Why do I get a compile error saying
- the compiler cannot convert to a function ...Fsm::*(some_event)? </p><p><span class="underline">Answer</span>: You probably defined a transition
- triggered by the event some_event, but used a guard/action method taking another event. </p><p><span class="underline">Question</span>: Why do I get a compile error saying
- something like “too few” or “too many” template arguments? </p><p><span class="underline">Answer</span>: You probably defined a transition in
- form of a a_row or g_row where you wanted just a _row or the other way around. With Row,
- it could mean that you forgot a "none". </p><p><span class="underline">Question</span>: Why do I get a very long compile error
- when I define more than 20 rows in the transition table? </p><p><span class="underline">Answer</span>: MSM uses Boost.MPL under the hood and
- this is the default maximum size. Please define the following 3 macros before including
- any MSM headers: </p><p><code class="code">#define BOOST_MPL_CFG_NO_PREPROCESSED_HEADERS </code></p><p><code class="code">#define BOOST_MPL_LIMIT_VECTOR_SIZE 30 // or whatever you need </code></p><p><code class="code">#define BOOST_MPL_LIMIT_MAP_SIZE 30 // or whatever you need </code></p><p><span class="underline">Question</span>: Why do I get this error: ”error C2977:
- 'boost::mpl::vector' : too many template arguments”? </p><p><span class="underline">Answer</span>: The first possibility is that you
- defined a transition table as, say, vector17 and have 18 entries. The second is that you
- have 17 entries and have a composite state. Under the hood, MSM adds a row for every
- event in the composite transition table. The third one is that you used a mpl::vector
- without the number of entries but are close to the MPL default of 50 and have a
- composite, thus pushing you above 50. Then you need mpl/vector60/70….hpp and a
- mpl/map60/70….hpp </p><p><span class="underline">Question</span>: Why do I get a very long compile error
- when I define more than 10 states in a state machine? </p><p><span class="underline">Answer</span>: Msm uses Boost.Fusion under the hood and
- this is the default maximum size. Please define the following macro before including any
- MSM headers: </p><p><code class="code">#define FUSION_MAX_VECTOR_SIZE 20 // or whatever you need </code></p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="ar01s05.html">Prev</a> </td><td width="20%" align="center"> </td><td width="40%" align="right"> <a accesskey="n" href="ar01s07.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top"> Performance / Compilers </td><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%" align="right" valign="top"> Internals</td></tr></table></div></body></html>
\ No newline at end of file
Deleted: branches/release/libs/msm/doc/HTML/ar01s07.html
==============================================================================
--- branches/release/libs/msm/doc/HTML/ar01s07.html 2010-06-30 04:40:08 EDT (Wed, 30 Jun 2010)
+++ (empty file)
@@ -1,149 +0,0 @@
-<html><head>
- <meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
- <title>Internals</title><meta name="generator" content="DocBook XSL-NS Stylesheets V1.75.2"><link rel="home" href="index.html" title="Meta State Machine (MSM)"><link rel="up" href="index.html" title="Meta State Machine (MSM)"><link rel="prev" href="ar01s06.html" title="Questions & Answers"><link rel="next" href="ar01s08.html" title="Acknowledgements"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Internals</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="ar01s06.html">Prev</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a accesskey="n" href="ar01s08.html">Next</a></td></tr></table><hr></div><div class="sect1" title="Internals"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="d0e3870"></a>Internals</h2></div></div></div><p>This chapter describes the internal machine
ry of the back-end, which can be useful for
- UML experts but can be safely ignored for most users. For implementers, the interface
- between front- and back- end is also described in detail.</p><div class="sect2" title="Backend: Run To Completion"><div class="titlepage"><div><div><h3 class="title"><a name="d0e3875"></a><span class="command"><strong><a name="run-to-completion"></a></strong></span>Backend: Run To Completion</h3></div></div></div><p>The back-end implements the following run-to completion algorithm:</p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>Check if one region of the concrete state machine is in a terminate or
- interrupt state. If yes, event processing is disabled while the
- condition perdures (forever for a terminate pseudo-state, while active
- for an interrupt pseudo-state).</p></li><li class="listitem"><p>If the message queue feature is enabled and if the state machine is
- already processing an event, push the currently processed event into the
- queue and end processing. Otherwise, notice that the state machine is
- now processing an event and continue.</p></li><li class="listitem"><p>If the state machine detected that no deferred event is used, skip
- this step. Otherwise, mark the first deferred event from the deferred
- queue as active.</p></li><li class="listitem"><p>Now start the core of event dispatching. If exception handling is
- activated, this will happen inside a try/catch block and the front-end
- <code class="code">exception_caught</code> is called if an exception occurs.
- </p></li><li class="listitem"><p>The event is now dispatched in turn to every region, in the order
- defined by the initial state front-end definition. This will, for every
- region, call the corresponding front-end transition definition (the
- "row" or "Row" of the transition table).</p></li><li class="listitem"><p>Without transition conflict, if for a given region a transition is
- possible, the guard condition is checked. If it returns
- <code class="code">true</code>, the transition processing continues and the
- current state's exit action is called, followed by the transition action
- and the new active state's entry action.</p></li><li class="listitem"><p>With transition conflicts (several possible transitions, disambiguated
- by mutually exclusive guard conditions), the guard conditions are tried
- in reverse order of their transition definition in the transition table.
- The first one returning <code class="code">true</code> selects its transition. Note
- that this is not defined by the UML standard, which simply specifies
- that if the guard conditions are not mutually exclusive, the state
- machine is ill-formed and the behaviour undefined. Relying on this
- implementation-specific behaviour will make it harder for the developer
- to support another state machine framework.</p></li><li class="listitem"><p>If at least one region processes the event, this event is seen as
- having been accepted. If not, the library calls
- <code class="code">no_transition</code> on the state machine for every contained
- region.</p></li><li class="listitem"><p>If the currently active state is a submachine, the behaviour is
- slightly different. The UML standard specifies that internal transitions
- have to be tried first, so the event is first dispatched to the
- submachine. Only if the submachine does not accept the event are other
- (non internal) transitions tried.</p></li><li class="listitem"><p>This back-end supports simple states' and submachines' internal
- transitions. These are provided in the state's
- <code class="code">internal_transition_table</code> type. Transitions defined in
- this table are added at the end of the main state machine's transition
- table, but with a lesser priority than the submachine's transitions
- (defined in <code class="code">transition_table</code>). This means, for simple
- states, that these transitions have higher priority than non-internal
- transitions, conform to the UML standard which gives higher priority to
- deeper-level transitions. For submachines, this is a non-standard
- addition which can help make event processing faster by giving a chance
- to bypass subregion processing. With standard UML, one would need to add
- a subregion only to process these internal transitions, which would be
- slower.</p></li><li class="listitem"><p>After the dispatching itself, the deferred event marked in step 3 (if
- any) now gets a chance of processing.</p></li><li class="listitem"><p>Then, events queued in the message queue also get a dispatching
- chance</p></li><li class="listitem"><p>Finally, compound events (transitions without a named event), if to be
- found in the transition table, also get their dispatching chance.</p></li></ul></div><p>This algorithm illustrates how the back-end configures itself at compile-time as
- much as possible. Every feature not found in a given state machine definition is
- deactivated and has therefore no runtime cost. Compound events, deferred events,
- terminate states, dispatching to several regions, internal transitions are all
- deactivated if not used. Only for exception handling and message queue is user
- configuration necessary.</p></div><div class="sect2" title="Frontend / Backend interface"><div class="titlepage"><div><div><h3 class="title"><a name="d0e3941"></a>Frontend / Backend interface</h3></div></div></div><p>The design of MSM tries to make front-ends and back-ends (later) to be as
- interchangeable as possible. Of course, Of course, no back-end will ever implement
- every feature defined by any possible front-end and inversely, but the goal is to
- make it as easy as possible to extend the current state of the library.</p><p>To achieve this, MSM divides the functionality between both sides: the front-end
- is a sort of user interface and is descriptive, the back-end implements the state
- machine engine.</p><p>MSM being based on a transition table, a concrete state machine (or a given
- front-end) must provide a transition_table. This transition table must be made of
- rows. And each row must tell what kind of transition it is and implement the calls
- to the actions and guards. A state machine must also define its regions (marked by
- initial states) And that is about the only constraints for front-ends. How the rows
- are described is implementer's choice. </p><p>Every row must provide:</p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>A <code class="code">Source</code> typedef indicating, well, the type of the source
- state.</p></li><li class="listitem"><p>A <code class="code">Target</code> typedef indicating, well, the type of the target
- state.</p></li><li class="listitem"><p>A <code class="code">Evt</code> typedef indicating the type of the event triggering the
- transition.</p></li><li class="listitem"><p>A <code class="code">row_type_tag</code> typedef indicating the type of the
- transition.</p></li><li class="listitem"><p>Rows having a type requiring transition actions must provide a static
- function <code class="code">action_call</code> with the following signature: <code class="code">
- template <class Fsm,class SourceState,class TargetState,class
- AllStates> </code></p><p><code class="code">static void action_call (Fsm& fsm, Event const& evt,
- SourceState&, TargetState&, AllStates&) </code></p><p>The function gets as parameters the (back-end) state machine, the event,
- source and target states and a container (in the current back-end, a
- fusion::set) of all the states defined in the state machine. For example, as
- the back-end has the front-end as basic class, <code class="code">action_call</code> is
- simply defined as <code class="code">(fsm.*action)(evt)</code>.</p></li><li class="listitem"><p>Rows having a type requiring a guard must provide a static function
- <code class="code">guard_call</code> with the following signature:<code class="code"> </code></p><p><code class="code">template <class Fsm,class SourceState,class TargetState,class
- AllStates></code></p><p><code class="code">static bool guard_call (Fsm&, Event const&,
- SourceState&, TargetState&, AllStates&)</code></p></li><li class="listitem"><p>The possible transition (row) types are:</p><div class="itemizedlist"><ul class="itemizedlist" type="circle"><li class="listitem"><p>a_row_tag: a transition with actions and no guard</p></li><li class="listitem"><p>g_row_type: a transition with a guard and no actions</p></li><li class="listitem"><p>_row_tag: a transition without actions or guard</p></li><li class="listitem"><p>row_tag: a transition with guard and actions</p></li><li class="listitem"><p>a_irow_tag: an internal transition (defined inside the
- <code class="code">transition_table</code>) with actions</p></li><li class="listitem"><p>g_irow_tag: an internal transition (defined inside the
- <code class="code">transition_table</code>) with guard</p></li><li class="listitem"><p>irow_tag: an internal transition (defined inside the
- <code class="code">transition_table</code>) with actions and
- guards</p></li><li class="listitem"><p>_irow_tag: an internal transition (defined inside the
- <code class="code">transition_table</code>) without action or guard. Due
- to higher priority for internal transitions, this is quivalent
- to a "ignore event"</p></li><li class="listitem"><p>sm_a_i_row_tag: an internal transition (defined inside the
- <code class="code">internal_transition_table</code>) with actions</p></li><li class="listitem"><p>sm_g_i_row_tag: an internal transition (defined inside the
- <code class="code">internal_transition_table</code>) with guard</p></li><li class="listitem"><p>sm_i_row_tag: an internal transition (defined inside the
- <code class="code">internal_transition_table</code>) with actions and
- guards</p></li><li class="listitem"><p>sm__i_row_tag: an internal transition (defined inside the
- <code class="code">internal_transition_table</code>) without action or
- guard. Due to higher priority for internal transitions, this is
- quivalent to a "ignore event"</p></li></ul></div></li></ul></div><p>Furthermore, a front-end must provide the definition of states and state machines.
- State machine definitions must provide (the implementer is free to provide it or let
- it be done by every concrete state machine. Different MSM front-ends took one or the
- other approach):</p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p><code class="code">initial_state</code>: This typedef can be a single state or a
- mpl container and provides the initial states defining one or several
- orthogonal regions.</p></li><li class="listitem"><p><code class="code">transition_table</code>: This typedef is a MPL sequence of
- rows.</p></li><li class="listitem"><p><code class="code">configuration</code>: this typedef is a MPL sequence of known
- types triggering special behavior in the back-end, for example if a
- concrete fsm requires a message queue or exception catching.</p></li></ul></div><p>States and state machines must both provide a (possibly empty) definition of:</p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p><code class="code">flag_list</code>: the flags being active when this state or
- state machine become the current state of the fsm.</p></li><li class="listitem"><p><code class="code">deferred_events</code>: events being automatically deferred when
- the state is the current state of the fsm.</p></li><li class="listitem"><p><code class="code">internal_transition_table</code>: the internal transitions of
- this state.</p></li><li class="listitem"><p><code class="code">on_entry</code> and <code class="code">on_exit</code> methods.</p></li></ul></div></div><div class="sect2" title="Generated state ids"><div class="titlepage"><div><div><h3 class="title"><a name="d0e4118"></a><span class="command"><strong><a name="internals-state-id"></a></strong></span> Generated state ids </h3></div></div></div><p>Normally, one does not need to know the ids generated for all the states of a
- state machine, unless for debugging purposes, like the pstate function does in the
- tutorials in order to display the name of the current state. This section will show
- how to automatically display typeid-generated names, but these are not very readable
- on all platforms, so it can help to know how the ids are generated. The ids are
- generated using the transition table, from the “Start” column up to down, then from
- the “Next” column, up to down, as shown in the next image: </p><p><span class="inlinemediaobject"><img src="../images/AnnexA.jpg"></span></p><p>Stopped will get id 0, Open id 1, ErrorMode id 6 and SleepMode (seen only in the
- “Next” column) id 7. If you have some implicitly created states, like
- transition-less initial states or states created using the explicit_creation
- typedef, these will be added as a source at the end of the transition table. If you
- have submachine states, a row will be added for them at the end of the table, after
- the automatically or explicitly created states, which can change their id. The next
- help you will need for debugging would be to call the current_state method of the
- state_machine class, then the display_type helper to generate a readable name from
- the id. If you do not want to go through the transition table to fill an array of
- names, the library provides another helper, fill_state_names, which, given an array
- of sufficient size (please see next section to know how many states are defined in
- the state machine), will fill it with typeid-generated names. </p></div><div class="sect2" title="Metaprogramming tools"><div class="titlepage"><div><div><h3 class="title"><a name="d0e4130"></a>Metaprogramming tools</h3></div></div></div><p>We can find for the transition table more uses than what we have seen so far.
- Let's suppose you need to write a coverage tool. A state machine would be perfect
- for such a job, if only it could provide some information about its structure. It is
- especially relevant if you are working with Executable UML, which bases most of its
- dynamic behaviour on state machines.As a matter of fact, thanks to the transition
- table and Boost.MPL, it does.</p><p>What is needed for a coverage tool? You need to know how many states are defined
- in the state machine, and how many events can be fired. This way you can log the
- fired events and the states visited in the life of a concrete machine and be able to
- perform some coverage analysis, like “fired 65% of all possible events and visited
- 80% of the states defined in the state machine”. To achieve this, MSM provides a few
- useful tools:</p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>generate_state_set<transition table>: returns a mpl::set of all the
- states defined in the table.</p></li><li class="listitem"><p>generate_event_set<transition table>: returns a mpl::set of all the
- events defined in the table.</p></li><li class="listitem"><p>using mpl::size<>::value you can get the number of elements in the
- set.</p></li><li class="listitem"><p>display_type defines an operator() sending typeid(Type).name() to
- cout.</p></li><li class="listitem"><p>fill_state_names fills an array of char const* with names of all
- states (found by typeid)</p></li><li class="listitem"><p>using mpl::for_each on the result of generate_state_set and
- generate_event_set passing display_type as argument will display all the
- states of the state machine.</p></li><li class="listitem"><p>let's suppose you need to recursively find the states and events
- defined in the composite states and thus also having a transition table.
- Calling recursive_get_transition_table<Composite> will return you the
- transition table of the composite state, recursively adding the
- transition tables of all sub-state machines and sub-sub...-sub-state
- machines. Then call generate_state_set or generate_event_set on the
- result to get the full list of states and events. </p></li></ul></div><p> An <a class="link" href="examples/BoostCon09Full.cpp" target="_top">example</a> shows the tools
- in action. </p></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="ar01s06.html">Prev</a> </td><td width="20%" align="center"> </td><td width="40%" align="right"> <a accesskey="n" href="ar01s08.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Questions & Answers </td><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%" align="right" valign="top"> Acknowledgements</td></tr></table></div></body></html>
\ No newline at end of file
Deleted: branches/release/libs/msm/doc/HTML/ar01s08.html
==============================================================================
--- branches/release/libs/msm/doc/HTML/ar01s08.html 2010-06-30 04:40:08 EDT (Wed, 30 Jun 2010)
+++ (empty file)
@@ -1,20 +0,0 @@
-<html><head>
- <meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
- <title>Acknowledgements</title><meta name="generator" content="DocBook XSL-NS Stylesheets V1.75.2"><link rel="home" href="index.html" title="Meta State Machine (MSM)"><link rel="up" href="index.html" title="Meta State Machine (MSM)"><link rel="prev" href="ar01s07.html" title="Internals"><link rel="next" href="ar01s09.html" title="Reference"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Acknowledgements</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="ar01s07.html">Prev</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a accesskey="n" href="ar01s09.html">Next</a></td></tr></table><hr></div><div class="sect1" title="Acknowledgements"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="d0e4164"></a>Acknowledgements</h2></div></div></div><p>I am in debt to the following people
who helped MSM along the way.</p><div class="sect2" title="MSM v2"><div class="titlepage"><div><div><h3 class="title"><a name="d0e4169"></a>MSM v2</h3></div></div></div><p>
- </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>Thanks to Dave Abrahams for managing the review</p></li><li class="listitem"><p>Thanks to Eric Niebler for his patience correcting my grammar
- errors</p></li><li class="listitem"><p>Special thanks to Joel de Guzman who gave me very good ideas at the
- BoostCon09. These ideas were the starting point of the redesign. Any
- time again, Joel ☺</p></li><li class="listitem"><p>Thanks to Richard O’Hara for making Green Hills bring a patch in less
- than 1 week, thus adding one more compiler to the supported list.</p></li><li class="listitem"><p>Big thanks to those who took the time to write a review: Franz Alt,
- David Bergman, Michael Caisse, Barend Gehrels, Darryl Greene, Juraj
- Ivancic, Erik Nelson, Kenny Riddile.</p></li><li class="listitem"><p>Thanks to Matt Calabrese and Juraj Ivancic for reporting bugs.</p></li></ul></div><p>
- </p></div><div class="sect2" title="MSM v1"><div class="titlepage"><div><div><h3 class="title"><a name="d0e4194"></a> MSM v1</h3></div></div></div><p>
- </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>The original version of this framework is based on the brilliant work
- of David Abrahams and Aleksey Gurtovoy who laid down the base and the
- principles of the framework in their excellent book, “C++ template
- Metaprogramming”. The implementation also makes heavy use of the
- boost::mpl.</p></li><li class="listitem"><p>Thanks to Jeff Flinn for his idea of the user-defined base state and
- his review which allowed MSM to be presented at the BoostCon09.</p></li><li class="listitem"><p>Thanks to my Msm v1beta testers, Christoph Woskowski and Franz Alt for
- using the framework with little documentation and to my private
- reviewer, Edouard Alligand</p></li></ul></div><p>
- </p></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="ar01s07.html">Prev</a> </td><td width="20%" align="center"> </td><td width="40%" align="right"> <a accesskey="n" href="ar01s09.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Internals </td><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%" align="right" valign="top"> Reference</td></tr></table></div></body></html>
\ No newline at end of file
Deleted: branches/release/libs/msm/doc/HTML/ar01s09.html
==============================================================================
--- branches/release/libs/msm/doc/HTML/ar01s09.html 2010-06-30 04:40:08 EDT (Wed, 30 Jun 2010)
+++ (empty file)
@@ -1,120 +0,0 @@
-<html><head>
- <meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
- <title>Reference</title><meta name="generator" content="DocBook XSL-NS Stylesheets V1.75.2"><link rel="home" href="index.html" title="Meta State Machine (MSM)"><link rel="up" href="index.html" title="Meta State Machine (MSM)"><link rel="prev" href="ar01s08.html" title="Acknowledgements"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Reference</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="ar01s08.html">Prev</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> </td></tr></table><hr></div><div class="sect1" title="Reference"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="d0e4210"></a>Reference</h2></div></div></div><p> todo </p><div class="sect2" title="Back-end"><div class="titlepage"><div><div><h3 class="title"><a name="d0e4215"></a> Back-end </h3></div></div></div><p>to
do</p><div class="sect3" title="File: <boost/msm/back/state_machine.hpp>"><div class="titlepage"><div><div><h4 class="title"><a name="d0e4220"></a>File: <boost/msm/back/state_machine.hpp></h4></div></div></div><pre class="synopsis">
- <code class="filename">boost/msm/back/state_machine.hpp</code>
- <code class="classname">fff</code>
- <code class="methodname">void start</code>
- <code class="methodname">template <class Event> HandledEnum process_event</code>
- <code class="methodname">const int* current_state const</code>
- </pre><pre class="classsynopsis"> <span class="ooclass"><span class="classname">template <class Derived,class HistoryPolicy=NoHistory,class
- CompilePolicy=favor_runtime_speed> state_machine</span></span> {<br><code class="methodsynopsis"> <span class="methodname">void start</span>(<span class="methodparam"></span>);</code><br><code class="methodsynopsis"> <span class="methodname">template <class Event> HandledEnum process_event</span>(<span class="methodparam">Event const&</span>);</code><br><code class="methodsynopsis"> <span class="methodname">const int* current_state const</span>(<span class="methodparam"></span>);</code><br><code class="methodsynopsis"> <span class="methodname">const BaseState* get_state_by_id const</span>(<span class="methodparam">int id</span>);</code><br><code class="methodsynopsis"> <span class="methodname">bool is_contained const</span>(<span class="methodparam"></span>);</code><br><code class="methodsynopsis"> <span class="methodname">template <class State> State* get_state</span>(<span class="methodpar
am"></span>);</code><br><code class="methodsynopsis"> <span class="methodname">template <class State> State& get_state</span>(<span class="methodparam"></span>);</code><br><code class="methodsynopsis"> <span class="methodname">template <class Flag,class BinaryOp> bool
- is_flag_active</span>(<span class="methodparam"></span>);</code><br><code class="methodsynopsis"> <span class="methodname">template <class Flag> bool is_flag_active</span>(<span class="methodparam"></span>);</code><br><code class="methodsynopsis"> <span class="methodname">void visit_current_states</span>(<span class="methodparam"></span>);</code><br><code class="methodsynopsis"> <span class="methodname">void visit_current_states</span>(<span class="methodparam">any-type param1, any-type param2,...</span>);</code><br><code class="methodsynopsis"> <span class="methodname">template <class Event> void defer_event</span>(<span class="methodparam">Event const&</span>);</code><br>}</pre></div></div><div class="sect2" title="eUML functions"><div class="titlepage"><div><div><h3 class="title"><a name="d0e4309"></a>eUML functions</h3></div></div></div><p>The following table lists the supported operators: </p><p>
- </p><div class="table"><a name="d0e4316"></a><p class="title"><b>Table 1. Operators and state machine helpers</b></p><div class="table-contents"><table summary="Operators and state machine helpers" border="1"><colgroup><col><col><col></colgroup><thead><tr><th>eUML function / operator</th><th>Description</th><th>Functor</th></tr></thead><tbody><tr><td>&&</td><td>Calls lazily Action1&& Action2</td><td>And_</td></tr><tr><td>||</td><td>Calls lazily Action1|| Action2</td><td>Or_</td></tr><tr><td>!</td><td>Calls lazily !Action1</td><td>Not_</td></tr><tr><td>!=</td><td>Calls lazily Action1 != Action2</td><td>NotEqualTo_</td></tr><tr><td>==</td><td>Calls lazily Action1 == Action2</td><td>EqualTo_</td></tr><tr><td>></td><td>Calls lazily Action1 > Action2</td><td>Greater_</td></tr><tr><td>>=</td><td>Calls lazily Action1 >= Action2</td><td>Greater_Equal_</td></tr><tr><td><</td><td>Calls lazily Action1 < Action2</td><td>Less_</td></tr><tr><td><=</td><td>Cal
ls lazily Action1 <= Action2</td><td>Less_Equal_</td></tr><tr><td>&</td><td>Calls lazily Action1 & Action2</td><td>Bitwise_And_</td></tr><tr><td>|</td><td>Calls lazily Action1 | Action2</td><td>Bitwise_Or_</td></tr><tr><td>^</td><td>Calls lazily Action1 ^ Action2</td><td>Bitwise_Xor_</td></tr><tr><td>--</td><td>Calls lazily --Action1 / Action1--</td><td>Pre_Dec_ / Post_Dec_</td></tr><tr><td>++</td><td>Calls lazily ++Action1 / Action1++</td><td>Pre_Inc_ / Post_Inc_</td></tr><tr><td>/</td><td>Calls lazily Action1 / Action2</td><td>Divides_</td></tr><tr><td>/=</td><td>Calls lazily Action1 /= Action2</td><td>Divides_Assign_</td></tr><tr><td>*</td><td>Calls lazily Action1 * Action2</td><td>Multiplies_</td></tr><tr><td>*=</td><td>Calls lazily Action1 *= Action2</td><td>Multiplies_Assign_</td></tr><tr><td>+ (binary)</td><td>Calls lazily Action1 + Action2</td><td>Plus_</td></tr><tr><td>+ (unary)</td><td>Calls lazily +Action1</td><td>Unary_Plus_</td></tr><tr><td>+=</td><td>Calls lazily Action1 += Action2</
td><td>Plus_Assign_</td></tr><tr><td>- (binary)</td><td>Calls lazily Action1 - Action2</td><td>Minus_</td></tr><tr><td>- (unary)</td><td>Calls lazily -Action1</td><td>Unary_Minus_</td></tr><tr><td>-=</td><td>Calls lazily Action1 -= Action2</td><td>Minus_Assign_</td></tr><tr><td>%</td><td>Calls lazily Action1 % Action2</td><td>Modulus_</td></tr><tr><td>%=</td><td>Calls lazily Action1 %= Action2</td><td>Modulus_Assign_</td></tr><tr><td>>></td><td>Calls lazily Action1 >> Action2</td><td>ShiftRight_</td></tr><tr><td>>>=</td><td>Calls lazily Action1 >>= Action2</td><td>ShiftRight_Assign_</td></tr><tr><td><<</td><td>Calls lazily Action1 << Action2</td><td>ShiftLeft_</td></tr><tr><td><<=</td><td>Calls lazily Action1 <<= Action2</td><td>ShiftLeft_Assign_</td></tr><tr><td>[] (works on vector, map, arrays)</td><td>Calls lazily Action1 [Action2]</td><td>Subscript_</td></tr><tr><td>if_then_else_(Condition,Action1,Action2)</td><td>Returns either the result of calling Action
1 or the result of
- calling Action2</td><td>If_Else_</td></tr><tr><td>if_then_(Condition,Action)</td><td>Returns the result of calling Action if Condition</td><td>If_Then_</td></tr><tr><td>while_(Condition, Body)</td><td>While Condition(), calls Body(). Returns nothing</td><td>While_Do_</td></tr><tr><td>do_while_(Condition, Body)</td><td>Calls Body() while Condition(). Returns nothing</td><td>Do_While_</td></tr><tr><td>for_(Begin,Stop,EndLoop,Body)</td><td>Calls for(Begin;Stop;EndLoop){Body;}</td><td>For_Loop_</td></tr><tr><td>process_(Event [,fsm1] [,fsm2] [,fsm3] [,fsm4])</td><td>Processes Event on the current state machine (if no fsm
- specified) or on up to 4 state machines returned by an
- appropriate functor.</td><td>Process_</td></tr><tr><td>process2_(Event, Data [,fsm1] [,fsm2] [,fsm3])</td><td>Processes Event on the current state machine (if no fsm
- specified) or on up to 2 state machines returned by an
- appropriate functor. The event is copy-constructed from what
- Data() returns.</td><td>Process2_</td></tr><tr><td>is_flag_(Flag [,fsm])</td><td>Calls is_flag_active() on the current state machine or the
- one returned by calling fsm.</td><td>Get_Flag_</td></tr><tr><td>event_ [(attribute name)]</td><td>Returns the current event (as const reference)</td><td>GetEvent_</td></tr><tr><td>source_ [(attribute name)]</td><td>Returns the source state of the currently triggered
- transition (as reference). If an attribute name is provided,
- returns the attribute by reference.</td><td>GetSource_</td></tr><tr><td>target_ [(attribute name)]</td><td>Returns the target state of the currently triggered
- transition (as reference). If an attribute name is provided,
- returns the attribute by reference.</td><td>GetTarget_</td></tr><tr><td>state_ [(attribute name)]</td><td>Returns the source state of the currently active state (as
- reference). Valid inside a state entry/exit action. If an
- attribute name is provided, returns the attribute by
- reference.</td><td>GetState_</td></tr><tr><td>fsm_ [(attribute name)]</td><td>Returns the current state machine (as reference). Valid
- inside a state entry/exit action or a transition. If an
- attribute name is provided, returns the attribute by
- reference.</td><td>GetFsm_</td></tr><tr><td>substate_(state_name [,fsm])</td><td>Returns (as reference) the state state_name referenced in the
- current state machine or the one given as argument.</td><td>SubState_</td></tr></tbody></table></div></div><p><br class="table-break">
- </p><p>TODO macro for functor def</p><p>To use these functions, you need to include: </p><p><code class="code">#include <msm/front/euml/euml.hpp></code></p></div><div class="sect2" title="Functional programming"><div class="titlepage"><div><div><h3 class="title"><a name="d0e4655"></a> Functional programming </h3></div></div></div><p>To use these functions, you need to include: </p><p><code class="code">#include <msm/front/euml/stl.hpp></code></p><p>or the specified header in the following tables.</p><p>The following table lists the supported STL algorithms: </p><p>
- </p><div class="table"><a name="d0e4669"></a><p class="title"><b>Table 2. STL algorithms</b></p><div class="table-contents"><table summary="STL algorithms" border="1"><colgroup><col><col></colgroup><thead><tr><th>STL algorithms in querying.hpp</th><th>Functor</th></tr></thead><tbody><tr><td>find_(first, last, value)</td><td>Find_</td></tr><tr><td>find_if_(first, last, value)</td><td>FindIf_</td></tr><tr><td>lower_bound_(first, last, value [,opᵃ])</td><td>LowerBound_</td></tr><tr><td>upper_bound_(first, last, value [,opᵃ])</td><td>UpperBound_</td></tr><tr><td>equal_range_(first, last, value [,opᵃ])</td><td>EqualRange_</td></tr><tr><td>binary_search_(first, last, value [,opᵃ])</td><td>BinarySearch_</td></tr><tr><td>min_element_(first, last[,opᵃ])</td><td>MinElement_</td></tr><tr><td>max_element_(first, last[,opᵃ])</td><td>MaxElement_</td></tr><tr><td>adjacent_find_(first, last[,opᵃ])</td><td>AdjacentFind_</td></tr><tr><td>find_end_( first1, l
ast1, first2, last2 [,op ᵃ])</td><td>FindEnd_</td></tr><tr><td>find_first_of_( first1, last1, first2, last2 [,op ᵃ])</td><td>FindFirstOf_</td></tr><tr><td>equal_( first1, last1, first2 [,op ᵃ])</td><td>Equal_</td></tr><tr><td>search_( first1, last1, first2, last2 [,op ᵃ])</td><td>Search_</td></tr><tr><td>includes_( first1, last1, first2, last2 [,op ᵃ])</td><td>Includes_</td></tr><tr><td>lexicographical_compare_ ( first1, last1, first2, last2 [,op
- ᵃ]) </td><td>LexicographicalCompare_</td></tr><tr><td>count_(first, last, value [,size])</td><td>Count_</td></tr><tr><td>count_if_(first, last, op ᵃ [,size])</td><td>CountIf_</td></tr><tr><td>distance_(first, last)</td><td>Distance_</td></tr><tr><td>mismatch _( first1, last1, first2 [,op ᵃ])</td><td>Mismatch_</td></tr></tbody></table></div></div><p><br class="table-break">
- </p><p>
- </p><div class="table"><a name="d0e4780"></a><p class="title"><b>Table 3. STL algorithms</b></p><div class="table-contents"><table summary="STL algorithms" border="1"><colgroup><col><col></colgroup><thead><tr><th>STL algorithms in transformation.hpp</th><th>Functor</th></tr></thead><tbody><tr><td>copy_(first, last, result)</td><td>Copy_</td></tr><tr><td>copy_backward_(first, last, result)</td><td>CopyBackward_</td></tr><tr><td>reverse_(first, last)</td><td>Reverse_</td></tr><tr><td>reverse_copy_(first, last , result)</td><td>ReverseCopy_</td></tr><tr><td>remove_(first, last, value)</td><td>Remove_</td></tr><tr><td>remove_if_(first, last , opᵃ)</td><td>RemoveIf_</td></tr><tr><td>remove_copy_(first, last , output, value)</td><td>RemoveCopy_</td></tr><tr><td>remove_copy_if_(first, last, output, opᵃ)</td><td>RemoveCopyIf_</td></tr><tr><td>fill_(first, last, value)</td><td>Fill_</td></tr><tr><td>fill_n_(first, size, value)ᵇ</td><td>FillN_</td></tr><tr><td>generate_(fir
st, last, generatorᵃ)</td><td>Generate_</td></tr><tr><td>generate_(first, size, generatorᵃ)ᵇ</td><td>GenerateN_</td></tr><tr><td>unique_(first, last [,opᵃ])</td><td>Unique_</td></tr><tr><td>unique_copy_(first, last, output [,opᵃ])</td><td>UniqueCopy_</td></tr><tr><td>random_shuffle_(first, last [,opᵃ])</td><td>RandomShuffle_</td></tr><tr><td>rotate_copy_(first, middle, last, output)</td><td>RotateCopy_</td></tr><tr><td>partition_ (first, last [,opᵃ])</td><td>Partition_</td></tr><tr><td>stable_partition_ (first, last [,opᵃ])</td><td>StablePartition_</td></tr><tr><td>stable_sort_(first, last [,opᵃ])</td><td>StableSort_</td></tr><tr><td>sort_(first, last [,opᵃ])</td><td>Sort_</td></tr><tr><td>partial_sort_(first, middle, last [,opᵃ])</td><td>PartialSort_</td></tr><tr><td>partial_sort_copy_ (first, last, res_first, res_last [,opᵃ]) </td><td>PartialSortCopy_</td></tr><tr><td>nth_element_(first, nth, last [,opᵃ])</td><td>NthElement_</td>
</tr><tr><td>merge_( first1, last1, first2, last2, output [,op ᵃ])</td><td>Merge_</td></tr><tr><td>inplace_merge_(first, middle, last [,opᵃ])</td><td>InplaceMerge_</td></tr><tr><td>set_union_(first1, last1, first2, last2, output [,op
- ᵃ])</td><td>SetUnion_</td></tr><tr><td>push_heap_(first, last [,op ᵃ])</td><td>PushHeap_</td></tr><tr><td>pop_heap_(first, last [,op ᵃ])</td><td>PopHeap_</td></tr><tr><td>make_heap_(first, last [,op ᵃ])</td><td>MakeHeap_</td></tr><tr><td>sort_heap_(first, last [,op ᵃ])</td><td>SortHeap_</td></tr><tr><td>next_permutation_(first, last [,op ᵃ])</td><td>NextPermutation_</td></tr><tr><td>prev_permutation_(first, last [,op ᵃ])</td><td>PrevPermutation_</td></tr><tr><td>inner_product_(first1, last1, first2, init [,op1ᵃ] [,op2ᵃ]) </td><td>InnerProduct_</td></tr><tr><td>partial_sum_(first, last, output [,opᵃ])</td><td>PartialSum_</td></tr><tr><td>adjacent_difference_(first, last, output [,opᵃ])</td><td>AdjacentDifference_</td></tr><tr><td>replace_(first, last, old_value, new_value)</td><td>Replace_</td></tr><tr><td>replace_if_(first, last, opᵃ, new_value)</td><td>ReplaceIf_</td></tr><tr><td>replace_copy_(first,
last, result, old_value,
- new_value)</td><td>ReplaceCopy_</td></tr><tr><td>replace_copy_if_(first, last, result, opᵃ, new_value)</td><td>ReplaceCopyIf_</td></tr><tr><td>rotate_(first, middle, last)ᵇ</td><td>Rotate_</td></tr></tbody></table></div></div><p><br class="table-break">
- </p><p>
- </p><div class="table"><a name="d0e4996"></a><p class="title"><b>Table 4. STL container methods</b></p><div class="table-contents"><table summary="STL container methods" border="1"><colgroup><col><col></colgroup><thead><tr><th>STL container methods(common) in container.hpp</th><th>Functor</th></tr></thead><tbody><tr><td>container::reference front_(container)</td><td>Front_</td></tr><tr><td>container::reference back_(container)</td><td>Back_</td></tr><tr><td>container::iterator begin_(container)</td><td>Begin_</td></tr><tr><td>container::iterator end_(container)</td><td>End_</td></tr><tr><td>container::reverse_iterator rbegin_(container)</td><td>RBegin_</td></tr><tr><td>container::reverse_iterator rend_(container)</td><td>REnd_</td></tr><tr><td>void push_back_(container, value)</td><td>Push_Back_</td></tr><tr><td>void pop_back_(container, value)</td><td>Pop_Back_</td></tr><tr><td>void push_front_(container, value)</td><td>Push_Front_</td></tr><tr><td>void pop_front_(container, value
)</td><td>Pop_Front_</td></tr><tr><td>void clear_(container)</td><td>Clear_</td></tr><tr><td>size_type capacity_(container)</td><td>Capacity_</td></tr><tr><td>size_type size_(container)</td><td>Size_</td></tr><tr><td>size_type max_size_(container)</td><td>Max_Size_</td></tr><tr><td>void reserve_(container, value)</td><td>Reserve _</td></tr><tr><td>void resize_(container, value)</td><td>Resize _</td></tr><tr><td>iterator insert_(container, pos, value)</td><td>Insert_</td></tr><tr><td>void insert_( container , pos, first, last)</td><td>Insert_</td></tr><tr><td>void insert_( container , pos, number, value)</td><td>Insert_</td></tr><tr><td>void swap_( container , other_container)</td><td>Swap_</td></tr><tr><td>void erase_( container , pos)</td><td>Erase_</td></tr><tr><td>void erase_( container , first, last) </td><td>Erase_</td></tr><tr><td>bool empty_( container)</td><td>Empty_</td></tr></tbody></table></div></div><p><br class="table-break">
- </p><p>
- </p><div class="table"><a name="d0e5127"></a><p class="title"><b>Table 5. STL list methods</b></p><div class="table-contents"><table summary="STL list methods" border="1"><colgroup><col><col></colgroup><thead><tr><th>std::list methods in container.hpp</th><th>Functor</th></tr></thead><tbody><tr><td>void list_remove_(container, value)</td><td>ListRemove_</td></tr><tr><td>void list_remove_if_(container, opᵃ)</td><td>ListRemove_If_</td></tr><tr><td>void list_merge_(container, other_list)</td><td>ListMerge_</td></tr><tr><td>void list_merge_(container, other_list, opᵃ)</td><td>ListMerge_</td></tr><tr><td>void splice_(container, iterator, other_list)</td><td>Splice_</td></tr><tr><td>void splice_(container, iterator, other_list,
- iterator)</td><td>Splice_</td></tr><tr><td>void splice_(container, iterator, other_list, first,
- last)</td><td>Splice_</td></tr><tr><td>void list_reverse_(container)</td><td>ListReverse_</td></tr><tr><td>void list_unique_(container)</td><td>ListUnique_</td></tr><tr><td>void list_unique_(container, opᵃ)</td><td>ListUnique_</td></tr><tr><td>void list_sort_(container)</td><td>ListSort_</td></tr><tr><td>void list_sort_(container, opᵃ)</td><td>ListSort_</td></tr></tbody></table></div></div><p><br class="table-break">
- </p><p>
- </p><div class="table"><a name="d0e5203"></a><p class="title"><b>Table 6. STL associative container methods </b></p><div class="table-contents"><table summary="STL associative container methods " border="1"><colgroup><col><col></colgroup><thead><tr><th>Associative container methods in container.hpp</th><th>Functor</th></tr></thead><tbody><tr><td>iterator insert_(container, pos, value)</td><td>Insert_</td></tr><tr><td>void insert_( container , first, last)</td><td>Insert_</td></tr><tr><td>pair<iterator, bool> insert_( container , value)</td><td>Insert_</td></tr><tr><td>void associative_erase_( container , pos)</td><td>Associative_Erase_</td></tr><tr><td>void associative_erase_( container , first, last)</td><td>Associative_Erase_</td></tr><tr><td>size_type associative_erase_( container , key)</td><td>Associative_Erase_</td></tr><tr><td>iterator associative_find_( container , key)</td><td>Associative_Find_</td></tr><tr><td>size_type associative_count_( container , key)</td><td>A
ssociativeCount_</td></tr><tr><td>iterator associative_lower_bound_( container , key)</td><td>Associative_Lower_Bound_</td></tr><tr><td>iterator associative_upper_bound_( container , key)</td><td>Associative_Upper_Bound_</td></tr><tr><td>pair<iterator, iterator> associative_equal_range_(
- container , key)</td><td>Associative_Equal_Range_</td></tr></tbody></table></div></div><p><br class="table-break">
- </p><p>
- </p><div class="table"><a name="d0e5274"></a><p class="title"><b>Table 7. STL pair</b></p><div class="table-contents"><table summary="STL pair" border="1"><colgroup><col><col></colgroup><thead><tr><th>std::pair in container.hpp</th><th>Functor</th></tr></thead><tbody><tr><td>first_type first_(pair<T1, T2>)</td><td>First_</td></tr><tr><td>second_type second_(pair<T1, T2>)</td><td>Second_</td></tr></tbody></table></div></div><p><br class="table-break">
- </p><p>
- </p><div class="table"><a name="d0e5300"></a><p class="title"><b>Table 8. STL string</b></p><div class="table-contents"><table summary="STL string" border="1"><colgroup><col><col><col></colgroup><thead><tr><th>STL string method</th><th>std::string method in container.hpp</th><th>Functor</th></tr></thead><tbody><tr><td>substr (size_type pos, size_type size)</td><td>string substr_(container, pos, length)</td><td>Substr_</td></tr><tr><td>int compare(string)</td><td>int string_compare_(container, another_string)</td><td>StringCompare_</td></tr><tr><td>int compare(char*)</td><td>int string_compare_(container, another_string)</td><td>StringCompare_</td></tr><tr><td>int compare(size_type pos, size_type size, string)</td><td>int string_compare_(container, pos, size,
- another_string)</td><td>StringCompare_</td></tr><tr><td>int compare (size_type pos, size_type size, string, size_type
- length)</td><td>int string_compare_(container, pos, size, another_string,
- length)</td><td>StringCompare_</td></tr><tr><td>string& append(const string&)</td><td>string& append_(container, another_string)</td><td>Append_</td></tr><tr><td>string& append (charT*)</td><td>string& append_(container, another_string)</td><td>Append_</td></tr><tr><td>string& append (string , size_type pos, size_type
- size)</td><td>string& append_(container, other_string, pos,
- size)</td><td>Append_</td></tr><tr><td>string& append (charT*, size_type size)</td><td>string& append_(container, another_string,
- length)</td><td>Append_</td></tr><tr><td>string& append (size_type size, charT)</td><td>string& append_(container, size, char)</td><td>Append_</td></tr><tr><td>string& append (iterator begin, iterator end)</td><td>string& append_(container, begin, end)</td><td>Append_</td></tr><tr><td>string& insert (size_type pos, charT*)</td><td>string& string_insert_(container, pos,
- other_string)</td><td>StringInsert_</td></tr><tr><td>string& insert(size_type pos, charT*,size_type n)</td><td>string& string_insert_(container, pos, other_string,
- n)</td><td>StringInsert_</td></tr><tr><td>string& insert(size_type pos,size_type n, charT
- c)</td><td>string& string_insert_(container, pos, n, c)</td><td>StringInsert_</td></tr><tr><td>string& insert (size_type pos, const string&)</td><td>string& string_insert_(container, pos,
- other_string)</td><td>StringInsert_</td></tr><tr><td>string& insert (size_type pos, const string&,
- size_type pos1, size_type n)</td><td>string& string_insert_(container, pos, other_string,
- pos1, n)</td><td>StringInsert_</td></tr><tr><td>string& erase(size_type pos=0, size_type n=npos)</td><td>string& string_erase_(container, pos, n)</td><td>StringErase_</td></tr><tr><td>string& assign(const string&)</td><td>string& string_assign_(container, another_string)</td><td>StringAssign_</td></tr><tr><td>string& assign(const charT*)</td><td>string& string_assign_(container, another_string)</td><td>StringAssign_</td></tr><tr><td>string& assign(const string&, size_type pos,
- size_type n)</td><td>string& string_assign_(container, another_string, pos,
- n)</td><td>StringAssign_</td></tr><tr><td>string& assign(const charT*, size_type n)</td><td>string& string_assign_(container, another_string,
- n)</td><td>StringAssign_</td></tr><tr><td>string& assign(size_type n, charT c)</td><td>string& string_assign_(container, n, c)</td><td>StringAssign_</td></tr><tr><td>string& assign(iterator first, iterator last)</td><td>string& string_assign_(container, first, last)</td><td>StringAssign_</td></tr><tr><td>string& replace(size_type pos, size_type n, const
- string&)</td><td>string& string_replace_(container, pos, n,
- another_string)</td><td>StringReplace_</td></tr><tr><td>string& replace(size_type pos, size_type n, const charT*,
- size_type n1)</td><td>string& string_replace_(container, pos, n,
- another_string, n1)</td><td>StringReplace_</td></tr><tr><td>string& replace(size_type pos, size_type n, const
- charT*)</td><td>string& string_replace_(container, pos, n,
- another_string)</td><td>StringReplace_</td></tr><tr><td>string& replace(size_type pos, size_type n, size_type n1,
- charT c)</td><td>string& string_replace_(container, pos, n, n1, c)</td><td>StringReplace_</td></tr><tr><td>string& replace(iterator first, iterator last, const
- string&)</td><td>string& string_replace_(container, first, last,
- another_string)</td><td>StringReplace_</td></tr><tr><td>string& replace(iterator first, iterator last, const
- charT*, size_type n)</td><td>string& string_replace_(container, first, last,
- another_string, n)</td><td>StringReplace_</td></tr><tr><td>string& replace(iterator first, iterator last, const
- charT*)</td><td>string& string_replace_(container, first, last,
- another_string)</td><td>StringReplace_</td></tr><tr><td>string& replace(iterator first, iterator last, size_type
- n, charT c)</td><td>string& string_replace_(container, first, last, n,
- c)</td><td>StringReplace_</td></tr><tr><td>string& replace(iterator first, iterator last, iterator
- f, iterator l)</td><td>string& string_replace_(container, first, last, f,
- l)</td><td>StringReplace_</td></tr><tr><td>const charT* c_str()</td><td>const charT* c_str_(container)</td><td>CStr_</td></tr><tr><td>const charT* data()</td><td>const charT* string_data_(container)</td><td>StringData_</td></tr><tr><td>size_type copy(charT* buf, size_type n, size_type pos =
- 0)</td><td>size_type string_copy_(container, buf, n, pos); size_type
- string_copy_(container, buf, n) </td><td>StringCopy_</td></tr><tr><td>size_type find(charT* s, size_type pos, size_type n)</td><td>size_type string_find_(container, s, pos, n)</td><td>StringFind_</td></tr><tr><td>size_type find(charT* s, size_type pos=0)</td><td>size_type string_find_(container, s, pos); size_type
- string_find_(container, s) </td><td>StringFind_</td></tr><tr><td>size_type find(const string& s, size_type pos=0)</td><td>size_type string_find_(container, s, pos) size_type
- string_find_(container, s) </td><td>StringFind_</td></tr><tr><td>size_type find(charT c, size_type pos=0)</td><td>size_type string_find_(container, c, pos) size_type
- string_find_(container, c) </td><td>StringFind_</td></tr><tr><td>size_type rfind(charT* s, size_type pos, size_type n)</td><td>size_type string_rfind_(container, s, pos, n)</td><td>StringRFind_</td></tr><tr><td>size_type rfind(charT* s, size_type pos=npos)</td><td>size_type string_rfind_(container, s, pos); size_type
- string_rfind_(container, s) </td><td>StringRFind_</td></tr><tr><td>size_type rfind(const string& s, size_type
- pos=npos)</td><td>size_type string_rfind_(container, s, pos); size_type
- string_rfind_(container, s) </td><td>StringRFind_</td></tr><tr><td>size_type rfind(charT c, size_type pos=npos)</td><td>size_type string_rfind_(container, c, pos) size_type
- string_rfind_(container, c) </td><td>StringRFind_</td></tr><tr><td>size_type find_first_of(charT* s, size_type pos, size_type
- n)</td><td>size_type find_first_of_(container, s, pos, n)</td><td>StringFindFirstOf_</td></tr><tr><td>size_type find_first_of (charT* s, size_type pos=0)</td><td>size_type find_first_of_(container, s, pos); size_type
- find_first_of_(container, s) </td><td>StringFindFirstOf_</td></tr><tr><td>size_type find_first_of (const string& s, size_type
- pos=0)</td><td>size_type find_first_of_(container, s, pos); size_type
- find_first_of_(container, s) </td><td>StringFindFirstOf_</td></tr><tr><td>size_type find_first_of (charT c, size_type pos=0)</td><td>size_type find_first_of_(container, c, pos) size_type
- find_first_of_(container, c) </td><td>StringFindFirstOf_</td></tr><tr><td>size_type find_first_not_of(charT* s, size_type pos,
- size_type n)</td><td>size_type find_first_not_of_(container, s, pos, n)</td><td>StringFindFirstNotOf_</td></tr><tr><td>size_type find_first_not_of (charT* s, size_type
- pos=0)</td><td>size_type find_first_not_of_(container, s, pos); size_type
- find_first_not_of_(container, s) </td><td>StringFindFirstNotOf_</td></tr><tr><td>size_type find_first_not_of (const string& s, size_type
- pos=0)</td><td>size_type find_first_not_of_(container, s, pos); size_type
- find_first_not_of_(container, s) </td><td>StringFindFirstNotOf_</td></tr><tr><td>size_type find_first_not_of (charT c, size_type
- pos=0)</td><td>size_type find_first_not_of_(container, c, pos); size_type
- find_first_not_of_(container, c) </td><td>StringFindFirstNotOf_</td></tr><tr><td>size_type find_last_of(charT* s, size_type pos, size_type
- n)</td><td>size_type find_last_of_(container, s, pos, n)</td><td>StringFindLastOf_</td></tr><tr><td>size_type find_last_of (charT* s, size_type pos=npos)</td><td>size_type find_last_of_(container, s, pos); size_type
- find_last_of_(container, s) </td><td>StringFindLastOf_</td></tr><tr><td>size_type find_last_of (const string& s, size_type
- pos=npos)</td><td>size_type find_last_of_(container, s, pos); size_type
- find_last_of_(container, s) </td><td>StringFindLastOf_</td></tr><tr><td>size_type find_last_of (charT c, size_type pos=npos)</td><td>size_type find_last_of_(container, c, pos); size_type
- find_last_of_(container, c) </td><td>StringFindLastOf_</td></tr><tr><td>size_type find_last_not_of(charT* s, size_type pos, size_type
- n)</td><td>size_type find_last_not_of_(container, s, pos, n)</td><td>StringFindLastNotOf_</td></tr><tr><td>size_type find_last_not_of (charT* s, size_type
- pos=npos)</td><td>size_type find_last_not_of_(container, s, pos); size_type
- find_last_of_(container, s) </td><td>StringFindLastNotOf_</td></tr><tr><td>size_type find_last_not_of (const string& s, size_type
- pos=npos)</td><td>size_type find_last_not_of_(container, s, pos); size_type
- find_last_not_of_(container, s) </td><td>StringFindLastNotOf_</td></tr><tr><td>size_type find_last_not_of (charT c, size_type
- pos=npos)</td><td>size_type find_last_not_of_(container, c, pos); size_type
- find_last_not_of_(container, c) </td><td>StringFindLastNotOf_</td></tr></tbody></table></div></div><p><br class="table-break">
- </p><p><span class="underline">Notes</span>: </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>ᵃ: algorithms requiring a predicate need to make them eUML compatible
- by wrapping them inside a Predicate_ functor. For example,
- std::less<int> => Predicate_<std::less<int> >()</p></li><li class="listitem"><p>ᵇ: If using the SGI STL implementation, these functors use the SGI
- return value</p></li></ul></div><p>
- </p></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="ar01s08.html">Prev</a> </td><td width="20%" align="center"> </td><td width="40%" align="right"> </td></tr><tr><td width="40%" align="left" valign="top">Acknowledgements </td><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%" align="right" valign="top"> </td></tr></table></div></body></html>
\ No newline at end of file
Deleted: branches/release/libs/msm/doc/HTML/ch08s02.html
==============================================================================
--- branches/release/libs/msm/doc/HTML/ch08s02.html 2010-06-30 04:40:08 EDT (Wed, 30 Jun 2010)
+++ (empty file)
@@ -1,23 +0,0 @@
-<html><head>
- <meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
- <title>eUML functions</title><meta name="generator" content="DocBook XSL-NS Stylesheets V1.75.2"><link rel="home" href="index.html" title="Meta State Machine (MSM)"><link rel="up" href="ch08.html" title="Chapter 8. Reference"><link rel="prev" href="ch08.html" title="Chapter 8. Reference"><link rel="next" href="ch08s03.html" title="Functional programming"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">eUML functions</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="ch08.html">Prev</a> </td><th width="60%" align="center">Chapter 8. Reference</th><td width="20%" align="right"> <a accesskey="n" href="ch08s03.html">Next</a></td></tr></table><hr></div><div class="sect1" title="eUML functions"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="d0e4306"></a>eUML functions</h2></div></
div></div><p>The following table lists the supported operators: </p><p>
- </p><div class="table"><a name="d0e4313"></a><p class="title"><b>Table 8.1. Operators and state machine helpers</b></p><div class="table-contents"><table summary="Operators and state machine helpers" border="1"><colgroup><col><col><col></colgroup><thead><tr><th>eUML function / operator</th><th>Description</th><th>Functor</th></tr></thead><tbody><tr><td>&&</td><td>Calls lazily Action1&& Action2</td><td>And_</td></tr><tr><td>||</td><td>Calls lazily Action1|| Action2</td><td>Or_</td></tr><tr><td>!</td><td>Calls lazily !Action1</td><td>Not_</td></tr><tr><td>!=</td><td>Calls lazily Action1 != Action2</td><td>NotEqualTo_</td></tr><tr><td>==</td><td>Calls lazily Action1 == Action2</td><td>EqualTo_</td></tr><tr><td>></td><td>Calls lazily Action1 > Action2</td><td>Greater_</td></tr><tr><td>>=</td><td>Calls lazily Action1 >= Action2</td><td>Greater_Equal_</td></tr><tr><td><</td><td>Calls lazily Action1 < Action2</td><td>Less_</td></tr><tr><td><=</td><td>C
alls lazily Action1 <= Action2</td><td>Less_Equal_</td></tr><tr><td>&</td><td>Calls lazily Action1 & Action2</td><td>Bitwise_And_</td></tr><tr><td>|</td><td>Calls lazily Action1 | Action2</td><td>Bitwise_Or_</td></tr><tr><td>^</td><td>Calls lazily Action1 ^ Action2</td><td>Bitwise_Xor_</td></tr><tr><td>--</td><td>Calls lazily --Action1 / Action1--</td><td>Pre_Dec_ / Post_Dec_</td></tr><tr><td>++</td><td>Calls lazily ++Action1 / Action1++</td><td>Pre_Inc_ / Post_Inc_</td></tr><tr><td>/</td><td>Calls lazily Action1 / Action2</td><td>Divides_</td></tr><tr><td>/=</td><td>Calls lazily Action1 /= Action2</td><td>Divides_Assign_</td></tr><tr><td>*</td><td>Calls lazily Action1 * Action2</td><td>Multiplies_</td></tr><tr><td>*=</td><td>Calls lazily Action1 *= Action2</td><td>Multiplies_Assign_</td></tr><tr><td>+ (binary)</td><td>Calls lazily Action1 + Action2</td><td>Plus_</td></tr><tr><td>+ (unary)</td><td>Calls lazily +Action1</td><td>Unary_Plus_</td></tr><tr><td>+=</td><td>Calls lazily Action1 += Action2
</td><td>Plus_Assign_</td></tr><tr><td>- (binary)</td><td>Calls lazily Action1 - Action2</td><td>Minus_</td></tr><tr><td>- (unary)</td><td>Calls lazily -Action1</td><td>Unary_Minus_</td></tr><tr><td>-=</td><td>Calls lazily Action1 -= Action2</td><td>Minus_Assign_</td></tr><tr><td>%</td><td>Calls lazily Action1 % Action2</td><td>Modulus_</td></tr><tr><td>%=</td><td>Calls lazily Action1 %= Action2</td><td>Modulus_Assign_</td></tr><tr><td>>></td><td>Calls lazily Action1 >> Action2</td><td>ShiftRight_</td></tr><tr><td>>>=</td><td>Calls lazily Action1 >>= Action2</td><td>ShiftRight_Assign_</td></tr><tr><td><<</td><td>Calls lazily Action1 << Action2</td><td>ShiftLeft_</td></tr><tr><td><<=</td><td>Calls lazily Action1 <<= Action2</td><td>ShiftLeft_Assign_</td></tr><tr><td>[] (works on vector, map, arrays)</td><td>Calls lazily Action1 [Action2]</td><td>Subscript_</td></tr><tr><td>if_then_else_(Condition,Action1,Action2)</td><td>Returns either the result of calling Acti
on1 or the result of
- calling Action2</td><td>If_Else_</td></tr><tr><td>if_then_(Condition,Action)</td><td>Returns the result of calling Action if Condition</td><td>If_Then_</td></tr><tr><td>while_(Condition, Body)</td><td>While Condition(), calls Body(). Returns nothing</td><td>While_Do_</td></tr><tr><td>do_while_(Condition, Body)</td><td>Calls Body() while Condition(). Returns nothing</td><td>Do_While_</td></tr><tr><td>for_(Begin,Stop,EndLoop,Body)</td><td>Calls for(Begin;Stop;EndLoop){Body;}</td><td>For_Loop_</td></tr><tr><td>process_(Event [,fsm1] [,fsm2] [,fsm3] [,fsm4])</td><td>Processes Event on the current state machine (if no fsm
- specified) or on up to 4 state machines returned by an
- appropriate functor.</td><td>Process_</td></tr><tr><td>process2_(Event, Data [,fsm1] [,fsm2] [,fsm3])</td><td>Processes Event on the current state machine (if no fsm
- specified) or on up to 2 state machines returned by an
- appropriate functor. The event is copy-constructed from what
- Data() returns.</td><td>Process2_</td></tr><tr><td>is_flag_(Flag [,fsm])</td><td>Calls is_flag_active() on the current state machine or the
- one returned by calling fsm.</td><td>Get_Flag_</td></tr><tr><td>event_ [(attribute name)]</td><td>Returns the current event (as const reference)</td><td>GetEvent_</td></tr><tr><td>source_ [(attribute name)]</td><td>Returns the source state of the currently triggered
- transition (as reference). If an attribute name is provided,
- returns the attribute by reference.</td><td>GetSource_</td></tr><tr><td>target_ [(attribute name)]</td><td>Returns the target state of the currently triggered
- transition (as reference). If an attribute name is provided,
- returns the attribute by reference.</td><td>GetTarget_</td></tr><tr><td>state_ [(attribute name)]</td><td>Returns the source state of the currently active state (as
- reference). Valid inside a state entry/exit action. If an
- attribute name is provided, returns the attribute by
- reference.</td><td>GetState_</td></tr><tr><td>fsm_ [(attribute name)]</td><td>Returns the current state machine (as reference). Valid
- inside a state entry/exit action or a transition. If an
- attribute name is provided, returns the attribute by
- reference.</td><td>GetFsm_</td></tr><tr><td>substate_(state_name [,fsm])</td><td>Returns (as reference) the state state_name referenced in the
- current state machine or the one given as argument.</td><td>SubState_</td></tr></tbody></table></div></div><p><br class="table-break">
- </p><p>TODO macro for functor def</p><p>To use these functions, you need to include: </p><p><code class="code">#include <msm/front/euml/euml.hpp></code></p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch08.html">Prev</a> </td><td width="20%" align="center"><a accesskey="u" href="ch08.html">Up</a></td><td width="40%" align="right"> <a accesskey="n" href="ch08s03.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Chapter 8. Reference </td><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%" align="right" valign="top"> Functional programming </td></tr></table></div></body></html>
\ No newline at end of file
Deleted: branches/release/libs/msm/doc/HTML/ch08s03.html
==============================================================================
--- branches/release/libs/msm/doc/HTML/ch08s03.html 2010-06-30 04:40:08 EDT (Wed, 30 Jun 2010)
+++ (empty file)
@@ -1,92 +0,0 @@
-<html><head>
- <meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
- <title>Functional programming</title><meta name="generator" content="DocBook XSL-NS Stylesheets V1.75.2"><link rel="home" href="index.html" title="Meta State Machine (MSM)"><link rel="up" href="ch08.html" title="Chapter 8. Reference"><link rel="prev" href="ch08s02.html" title="eUML functions"><link rel="next" href="rn01.html" title="Reference"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center"> Functional programming </th></tr><tr><td width="20%" align="left"><a accesskey="p" href="ch08s02.html">Prev</a> </td><th width="60%" align="center">Chapter 8. Reference</th><td width="20%" align="right"> <a accesskey="n" href="rn01.html">Next</a></td></tr></table><hr></div><div class="sect1" title="Functional programming"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="d0e4652"></a> Functional programming </h2><
/div></div></div><p>To use these functions, you need to include: </p><p><code class="code">#include <msm/front/euml/stl.hpp></code></p><p>or the specified header in the following tables.</p><p>The following table lists the supported STL algorithms: </p><p>
- </p><div class="table"><a name="d0e4666"></a><p class="title"><b>Table 8.2. STL algorithms</b></p><div class="table-contents"><table summary="STL algorithms" border="1"><colgroup><col><col></colgroup><thead><tr><th>STL algorithms in querying.hpp</th><th>Functor</th></tr></thead><tbody><tr><td>find_(first, last, value)</td><td>Find_</td></tr><tr><td>find_if_(first, last, value)</td><td>FindIf_</td></tr><tr><td>lower_bound_(first, last, value [,opᵃ])</td><td>LowerBound_</td></tr><tr><td>upper_bound_(first, last, value [,opᵃ])</td><td>UpperBound_</td></tr><tr><td>equal_range_(first, last, value [,opᵃ])</td><td>EqualRange_</td></tr><tr><td>binary_search_(first, last, value [,opᵃ])</td><td>BinarySearch_</td></tr><tr><td>min_element_(first, last[,opᵃ])</td><td>MinElement_</td></tr><tr><td>max_element_(first, last[,opᵃ])</td><td>MaxElement_</td></tr><tr><td>adjacent_find_(first, last[,opᵃ])</td><td>AdjacentFind_</td></tr><tr><td>find_end_( first1,
last1, first2, last2 [,op ᵃ])</td><td>FindEnd_</td></tr><tr><td>find_first_of_( first1, last1, first2, last2 [,op ᵃ])</td><td>FindFirstOf_</td></tr><tr><td>equal_( first1, last1, first2 [,op ᵃ])</td><td>Equal_</td></tr><tr><td>search_( first1, last1, first2, last2 [,op ᵃ])</td><td>Search_</td></tr><tr><td>includes_( first1, last1, first2, last2 [,op ᵃ])</td><td>Includes_</td></tr><tr><td>lexicographical_compare_ ( first1, last1, first2, last2 [,op
- ᵃ]) </td><td>LexicographicalCompare_</td></tr><tr><td>count_(first, last, value [,size])</td><td>Count_</td></tr><tr><td>count_if_(first, last, op ᵃ [,size])</td><td>CountIf_</td></tr><tr><td>distance_(first, last)</td><td>Distance_</td></tr><tr><td>mismatch _( first1, last1, first2 [,op ᵃ])</td><td>Mismatch_</td></tr></tbody></table></div></div><p><br class="table-break">
- </p><p>
- </p><div class="table"><a name="d0e4777"></a><p class="title"><b>Table 8.3. STL algorithms</b></p><div class="table-contents"><table summary="STL algorithms" border="1"><colgroup><col><col></colgroup><thead><tr><th>STL algorithms in transformation.hpp</th><th>Functor</th></tr></thead><tbody><tr><td>copy_(first, last, result)</td><td>Copy_</td></tr><tr><td>copy_backward_(first, last, result)</td><td>CopyBackward_</td></tr><tr><td>reverse_(first, last)</td><td>Reverse_</td></tr><tr><td>reverse_copy_(first, last , result)</td><td>ReverseCopy_</td></tr><tr><td>remove_(first, last, value)</td><td>Remove_</td></tr><tr><td>remove_if_(first, last , opᵃ)</td><td>RemoveIf_</td></tr><tr><td>remove_copy_(first, last , output, value)</td><td>RemoveCopy_</td></tr><tr><td>remove_copy_if_(first, last, output, opᵃ)</td><td>RemoveCopyIf_</td></tr><tr><td>fill_(first, last, value)</td><td>Fill_</td></tr><tr><td>fill_n_(first, size, value)ᵇ</td><td>FillN_</td></tr><tr><td>generate_(f
irst, last, generatorᵃ)</td><td>Generate_</td></tr><tr><td>generate_(first, size, generatorᵃ)ᵇ</td><td>GenerateN_</td></tr><tr><td>unique_(first, last [,opᵃ])</td><td>Unique_</td></tr><tr><td>unique_copy_(first, last, output [,opᵃ])</td><td>UniqueCopy_</td></tr><tr><td>random_shuffle_(first, last [,opᵃ])</td><td>RandomShuffle_</td></tr><tr><td>rotate_copy_(first, middle, last, output)</td><td>RotateCopy_</td></tr><tr><td>partition_ (first, last [,opᵃ])</td><td>Partition_</td></tr><tr><td>stable_partition_ (first, last [,opᵃ])</td><td>StablePartition_</td></tr><tr><td>stable_sort_(first, last [,opᵃ])</td><td>StableSort_</td></tr><tr><td>sort_(first, last [,opᵃ])</td><td>Sort_</td></tr><tr><td>partial_sort_(first, middle, last [,opᵃ])</td><td>PartialSort_</td></tr><tr><td>partial_sort_copy_ (first, last, res_first, res_last [,opᵃ]) </td><td>PartialSortCopy_</td></tr><tr><td>nth_element_(first, nth, last [,opᵃ])</td><td>NthElement_</t
d></tr><tr><td>merge_( first1, last1, first2, last2, output [,op ᵃ])</td><td>Merge_</td></tr><tr><td>inplace_merge_(first, middle, last [,opᵃ])</td><td>InplaceMerge_</td></tr><tr><td>set_union_(first1, last1, first2, last2, output [,op
- ᵃ])</td><td>SetUnion_</td></tr><tr><td>push_heap_(first, last [,op ᵃ])</td><td>PushHeap_</td></tr><tr><td>pop_heap_(first, last [,op ᵃ])</td><td>PopHeap_</td></tr><tr><td>make_heap_(first, last [,op ᵃ])</td><td>MakeHeap_</td></tr><tr><td>sort_heap_(first, last [,op ᵃ])</td><td>SortHeap_</td></tr><tr><td>next_permutation_(first, last [,op ᵃ])</td><td>NextPermutation_</td></tr><tr><td>prev_permutation_(first, last [,op ᵃ])</td><td>PrevPermutation_</td></tr><tr><td>inner_product_(first1, last1, first2, init [,op1ᵃ] [,op2ᵃ]) </td><td>InnerProduct_</td></tr><tr><td>partial_sum_(first, last, output [,opᵃ])</td><td>PartialSum_</td></tr><tr><td>adjacent_difference_(first, last, output [,opᵃ])</td><td>AdjacentDifference_</td></tr><tr><td>replace_(first, last, old_value, new_value)</td><td>Replace_</td></tr><tr><td>replace_if_(first, last, opᵃ, new_value)</td><td>ReplaceIf_</td></tr><tr><td>replace_copy_(first,
last, result, old_value,
- new_value)</td><td>ReplaceCopy_</td></tr><tr><td>replace_copy_if_(first, last, result, opᵃ, new_value)</td><td>ReplaceCopyIf_</td></tr><tr><td>rotate_(first, middle, last)ᵇ</td><td>Rotate_</td></tr></tbody></table></div></div><p><br class="table-break">
- </p><p>
- </p><div class="table"><a name="d0e4993"></a><p class="title"><b>Table 8.4. STL container methods</b></p><div class="table-contents"><table summary="STL container methods" border="1"><colgroup><col><col></colgroup><thead><tr><th>STL container methods(common) in container.hpp</th><th>Functor</th></tr></thead><tbody><tr><td>container::reference front_(container)</td><td>Front_</td></tr><tr><td>container::reference back_(container)</td><td>Back_</td></tr><tr><td>container::iterator begin_(container)</td><td>Begin_</td></tr><tr><td>container::iterator end_(container)</td><td>End_</td></tr><tr><td>container::reverse_iterator rbegin_(container)</td><td>RBegin_</td></tr><tr><td>container::reverse_iterator rend_(container)</td><td>REnd_</td></tr><tr><td>void push_back_(container, value)</td><td>Push_Back_</td></tr><tr><td>void pop_back_(container, value)</td><td>Pop_Back_</td></tr><tr><td>void push_front_(container, value)</td><td>Push_Front_</td></tr><tr><td>void pop_front_(container, val
ue)</td><td>Pop_Front_</td></tr><tr><td>void clear_(container)</td><td>Clear_</td></tr><tr><td>size_type capacity_(container)</td><td>Capacity_</td></tr><tr><td>size_type size_(container)</td><td>Size_</td></tr><tr><td>size_type max_size_(container)</td><td>Max_Size_</td></tr><tr><td>void reserve_(container, value)</td><td>Reserve _</td></tr><tr><td>void resize_(container, value)</td><td>Resize _</td></tr><tr><td>iterator insert_(container, pos, value)</td><td>Insert_</td></tr><tr><td>void insert_( container , pos, first, last)</td><td>Insert_</td></tr><tr><td>void insert_( container , pos, number, value)</td><td>Insert_</td></tr><tr><td>void swap_( container , other_container)</td><td>Swap_</td></tr><tr><td>void erase_( container , pos)</td><td>Erase_</td></tr><tr><td>void erase_( container , first, last) </td><td>Erase_</td></tr><tr><td>bool empty_( container)</td><td>Empty_</td></tr></tbody></table></div></div><p><br class="table-break">
- </p><p>
- </p><div class="table"><a name="d0e5124"></a><p class="title"><b>Table 8.5. STL list methods</b></p><div class="table-contents"><table summary="STL list methods" border="1"><colgroup><col><col></colgroup><thead><tr><th>std::list methods in container.hpp</th><th>Functor</th></tr></thead><tbody><tr><td>void list_remove_(container, value)</td><td>ListRemove_</td></tr><tr><td>void list_remove_if_(container, opᵃ)</td><td>ListRemove_If_</td></tr><tr><td>void list_merge_(container, other_list)</td><td>ListMerge_</td></tr><tr><td>void list_merge_(container, other_list, opᵃ)</td><td>ListMerge_</td></tr><tr><td>void splice_(container, iterator, other_list)</td><td>Splice_</td></tr><tr><td>void splice_(container, iterator, other_list,
- iterator)</td><td>Splice_</td></tr><tr><td>void splice_(container, iterator, other_list, first,
- last)</td><td>Splice_</td></tr><tr><td>void list_reverse_(container)</td><td>ListReverse_</td></tr><tr><td>void list_unique_(container)</td><td>ListUnique_</td></tr><tr><td>void list_unique_(container, opᵃ)</td><td>ListUnique_</td></tr><tr><td>void list_sort_(container)</td><td>ListSort_</td></tr><tr><td>void list_sort_(container, opᵃ)</td><td>ListSort_</td></tr></tbody></table></div></div><p><br class="table-break">
- </p><p>
- </p><div class="table"><a name="d0e5200"></a><p class="title"><b>Table 8.6. STL associative container methods </b></p><div class="table-contents"><table summary="STL associative container methods " border="1"><colgroup><col><col></colgroup><thead><tr><th>Associative container methods in container.hpp</th><th>Functor</th></tr></thead><tbody><tr><td>iterator insert_(container, pos, value)</td><td>Insert_</td></tr><tr><td>void insert_( container , first, last)</td><td>Insert_</td></tr><tr><td>pair<iterator, bool> insert_( container , value)</td><td>Insert_</td></tr><tr><td>void associative_erase_( container , pos)</td><td>Associative_Erase_</td></tr><tr><td>void associative_erase_( container , first, last)</td><td>Associative_Erase_</td></tr><tr><td>size_type associative_erase_( container , key)</td><td>Associative_Erase_</td></tr><tr><td>iterator associative_find_( container , key)</td><td>Associative_Find_</td></tr><tr><td>size_type associative_count_( container , key)</td><td
>AssociativeCount_</td></tr><tr><td>iterator associative_lower_bound_( container , key)</td><td>Associative_Lower_Bound_</td></tr><tr><td>iterator associative_upper_bound_( container , key)</td><td>Associative_Upper_Bound_</td></tr><tr><td>pair<iterator, iterator> associative_equal_range_(
- container , key)</td><td>Associative_Equal_Range_</td></tr></tbody></table></div></div><p><br class="table-break">
- </p><p>
- </p><div class="table"><a name="d0e5271"></a><p class="title"><b>Table 8.7. STL pair</b></p><div class="table-contents"><table summary="STL pair" border="1"><colgroup><col><col></colgroup><thead><tr><th>std::pair in container.hpp</th><th>Functor</th></tr></thead><tbody><tr><td>first_type first_(pair<T1, T2>)</td><td>First_</td></tr><tr><td>second_type second_(pair<T1, T2>)</td><td>Second_</td></tr></tbody></table></div></div><p><br class="table-break">
- </p><p>
- </p><div class="table"><a name="d0e5297"></a><p class="title"><b>Table 8.8. STL string</b></p><div class="table-contents"><table summary="STL string" border="1"><colgroup><col><col><col></colgroup><thead><tr><th>STL string method</th><th>std::string method in container.hpp</th><th>Functor</th></tr></thead><tbody><tr><td>substr (size_type pos, size_type size)</td><td>string substr_(container, pos, length)</td><td>Substr_</td></tr><tr><td>int compare(string)</td><td>int string_compare_(container, another_string)</td><td>StringCompare_</td></tr><tr><td>int compare(char*)</td><td>int string_compare_(container, another_string)</td><td>StringCompare_</td></tr><tr><td>int compare(size_type pos, size_type size, string)</td><td>int string_compare_(container, pos, size,
- another_string)</td><td>StringCompare_</td></tr><tr><td>int compare (size_type pos, size_type size, string, size_type
- length)</td><td>int string_compare_(container, pos, size, another_string,
- length)</td><td>StringCompare_</td></tr><tr><td>string& append(const string&)</td><td>string& append_(container, another_string)</td><td>Append_</td></tr><tr><td>string& append (charT*)</td><td>string& append_(container, another_string)</td><td>Append_</td></tr><tr><td>string& append (string , size_type pos, size_type
- size)</td><td>string& append_(container, other_string, pos,
- size)</td><td>Append_</td></tr><tr><td>string& append (charT*, size_type size)</td><td>string& append_(container, another_string,
- length)</td><td>Append_</td></tr><tr><td>string& append (size_type size, charT)</td><td>string& append_(container, size, char)</td><td>Append_</td></tr><tr><td>string& append (iterator begin, iterator end)</td><td>string& append_(container, begin, end)</td><td>Append_</td></tr><tr><td>string& insert (size_type pos, charT*)</td><td>string& string_insert_(container, pos,
- other_string)</td><td>StringInsert_</td></tr><tr><td>string& insert(size_type pos, charT*,size_type n)</td><td>string& string_insert_(container, pos, other_string,
- n)</td><td>StringInsert_</td></tr><tr><td>string& insert(size_type pos,size_type n, charT
- c)</td><td>string& string_insert_(container, pos, n, c)</td><td>StringInsert_</td></tr><tr><td>string& insert (size_type pos, const string&)</td><td>string& string_insert_(container, pos,
- other_string)</td><td>StringInsert_</td></tr><tr><td>string& insert (size_type pos, const string&,
- size_type pos1, size_type n)</td><td>string& string_insert_(container, pos, other_string,
- pos1, n)</td><td>StringInsert_</td></tr><tr><td>string& erase(size_type pos=0, size_type n=npos)</td><td>string& string_erase_(container, pos, n)</td><td>StringErase_</td></tr><tr><td>string& assign(const string&)</td><td>string& string_assign_(container, another_string)</td><td>StringAssign_</td></tr><tr><td>string& assign(const charT*)</td><td>string& string_assign_(container, another_string)</td><td>StringAssign_</td></tr><tr><td>string& assign(const string&, size_type pos,
- size_type n)</td><td>string& string_assign_(container, another_string, pos,
- n)</td><td>StringAssign_</td></tr><tr><td>string& assign(const charT*, size_type n)</td><td>string& string_assign_(container, another_string,
- n)</td><td>StringAssign_</td></tr><tr><td>string& assign(size_type n, charT c)</td><td>string& string_assign_(container, n, c)</td><td>StringAssign_</td></tr><tr><td>string& assign(iterator first, iterator last)</td><td>string& string_assign_(container, first, last)</td><td>StringAssign_</td></tr><tr><td>string& replace(size_type pos, size_type n, const
- string&)</td><td>string& string_replace_(container, pos, n,
- another_string)</td><td>StringReplace_</td></tr><tr><td>string& replace(size_type pos, size_type n, const charT*,
- size_type n1)</td><td>string& string_replace_(container, pos, n,
- another_string, n1)</td><td>StringReplace_</td></tr><tr><td>string& replace(size_type pos, size_type n, const
- charT*)</td><td>string& string_replace_(container, pos, n,
- another_string)</td><td>StringReplace_</td></tr><tr><td>string& replace(size_type pos, size_type n, size_type n1,
- charT c)</td><td>string& string_replace_(container, pos, n, n1, c)</td><td>StringReplace_</td></tr><tr><td>string& replace(iterator first, iterator last, const
- string&)</td><td>string& string_replace_(container, first, last,
- another_string)</td><td>StringReplace_</td></tr><tr><td>string& replace(iterator first, iterator last, const
- charT*, size_type n)</td><td>string& string_replace_(container, first, last,
- another_string, n)</td><td>StringReplace_</td></tr><tr><td>string& replace(iterator first, iterator last, const
- charT*)</td><td>string& string_replace_(container, first, last,
- another_string)</td><td>StringReplace_</td></tr><tr><td>string& replace(iterator first, iterator last, size_type
- n, charT c)</td><td>string& string_replace_(container, first, last, n,
- c)</td><td>StringReplace_</td></tr><tr><td>string& replace(iterator first, iterator last, iterator
- f, iterator l)</td><td>string& string_replace_(container, first, last, f,
- l)</td><td>StringReplace_</td></tr><tr><td>const charT* c_str()</td><td>const charT* c_str_(container)</td><td>CStr_</td></tr><tr><td>const charT* data()</td><td>const charT* string_data_(container)</td><td>StringData_</td></tr><tr><td>size_type copy(charT* buf, size_type n, size_type pos =
- 0)</td><td>size_type string_copy_(container, buf, n, pos); size_type
- string_copy_(container, buf, n) </td><td>StringCopy_</td></tr><tr><td>size_type find(charT* s, size_type pos, size_type n)</td><td>size_type string_find_(container, s, pos, n)</td><td>StringFind_</td></tr><tr><td>size_type find(charT* s, size_type pos=0)</td><td>size_type string_find_(container, s, pos); size_type
- string_find_(container, s) </td><td>StringFind_</td></tr><tr><td>size_type find(const string& s, size_type pos=0)</td><td>size_type string_find_(container, s, pos) size_type
- string_find_(container, s) </td><td>StringFind_</td></tr><tr><td>size_type find(charT c, size_type pos=0)</td><td>size_type string_find_(container, c, pos) size_type
- string_find_(container, c) </td><td>StringFind_</td></tr><tr><td>size_type rfind(charT* s, size_type pos, size_type n)</td><td>size_type string_rfind_(container, s, pos, n)</td><td>StringRFind_</td></tr><tr><td>size_type rfind(charT* s, size_type pos=npos)</td><td>size_type string_rfind_(container, s, pos); size_type
- string_rfind_(container, s) </td><td>StringRFind_</td></tr><tr><td>size_type rfind(const string& s, size_type
- pos=npos)</td><td>size_type string_rfind_(container, s, pos); size_type
- string_rfind_(container, s) </td><td>StringRFind_</td></tr><tr><td>size_type rfind(charT c, size_type pos=npos)</td><td>size_type string_rfind_(container, c, pos) size_type
- string_rfind_(container, c) </td><td>StringRFind_</td></tr><tr><td>size_type find_first_of(charT* s, size_type pos, size_type
- n)</td><td>size_type find_first_of_(container, s, pos, n)</td><td>StringFindFirstOf_</td></tr><tr><td>size_type find_first_of (charT* s, size_type pos=0)</td><td>size_type find_first_of_(container, s, pos); size_type
- find_first_of_(container, s) </td><td>StringFindFirstOf_</td></tr><tr><td>size_type find_first_of (const string& s, size_type
- pos=0)</td><td>size_type find_first_of_(container, s, pos); size_type
- find_first_of_(container, s) </td><td>StringFindFirstOf_</td></tr><tr><td>size_type find_first_of (charT c, size_type pos=0)</td><td>size_type find_first_of_(container, c, pos) size_type
- find_first_of_(container, c) </td><td>StringFindFirstOf_</td></tr><tr><td>size_type find_first_not_of(charT* s, size_type pos,
- size_type n)</td><td>size_type find_first_not_of_(container, s, pos, n)</td><td>StringFindFirstNotOf_</td></tr><tr><td>size_type find_first_not_of (charT* s, size_type
- pos=0)</td><td>size_type find_first_not_of_(container, s, pos); size_type
- find_first_not_of_(container, s) </td><td>StringFindFirstNotOf_</td></tr><tr><td>size_type find_first_not_of (const string& s, size_type
- pos=0)</td><td>size_type find_first_not_of_(container, s, pos); size_type
- find_first_not_of_(container, s) </td><td>StringFindFirstNotOf_</td></tr><tr><td>size_type find_first_not_of (charT c, size_type
- pos=0)</td><td>size_type find_first_not_of_(container, c, pos); size_type
- find_first_not_of_(container, c) </td><td>StringFindFirstNotOf_</td></tr><tr><td>size_type find_last_of(charT* s, size_type pos, size_type
- n)</td><td>size_type find_last_of_(container, s, pos, n)</td><td>StringFindLastOf_</td></tr><tr><td>size_type find_last_of (charT* s, size_type pos=npos)</td><td>size_type find_last_of_(container, s, pos); size_type
- find_last_of_(container, s) </td><td>StringFindLastOf_</td></tr><tr><td>size_type find_last_of (const string& s, size_type
- pos=npos)</td><td>size_type find_last_of_(container, s, pos); size_type
- find_last_of_(container, s) </td><td>StringFindLastOf_</td></tr><tr><td>size_type find_last_of (charT c, size_type pos=npos)</td><td>size_type find_last_of_(container, c, pos); size_type
- find_last_of_(container, c) </td><td>StringFindLastOf_</td></tr><tr><td>size_type find_last_not_of(charT* s, size_type pos, size_type
- n)</td><td>size_type find_last_not_of_(container, s, pos, n)</td><td>StringFindLastNotOf_</td></tr><tr><td>size_type find_last_not_of (charT* s, size_type
- pos=npos)</td><td>size_type find_last_not_of_(container, s, pos); size_type
- find_last_of_(container, s) </td><td>StringFindLastNotOf_</td></tr><tr><td>size_type find_last_not_of (const string& s, size_type
- pos=npos)</td><td>size_type find_last_not_of_(container, s, pos); size_type
- find_last_not_of_(container, s) </td><td>StringFindLastNotOf_</td></tr><tr><td>size_type find_last_not_of (charT c, size_type
- pos=npos)</td><td>size_type find_last_not_of_(container, c, pos); size_type
- find_last_not_of_(container, c) </td><td>StringFindLastNotOf_</td></tr></tbody></table></div></div><p><br class="table-break">
- </p><p><span class="underline">Notes</span>: </p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem"><p>ᵃ: algorithms requiring a predicate need to make them eUML compatible
- by wrapping them inside a Predicate_ functor. For example,
- std::less<int> => Predicate_<std::less<int> >()</p></li><li class="listitem"><p>ᵇ: If using the SGI STL implementation, these functors use the SGI
- return value</p></li></ul></div><p>
- </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch08s02.html">Prev</a> </td><td width="20%" align="center"><a accesskey="u" href="ch08.html">Up</a></td><td width="40%" align="right"> <a accesskey="n" href="rn01.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">eUML functions </td><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%" align="right" valign="top"> Reference</td></tr></table></div></body></html>
\ No newline at end of file
Deleted: branches/release/libs/msm/doc/HTML/rn01.html
==============================================================================
--- branches/release/libs/msm/doc/HTML/rn01.html 2010-06-30 04:40:08 EDT (Wed, 30 Jun 2010)
+++ (empty file)
@@ -1,3 +0,0 @@
-<html><head>
- <meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
- <title>Reference</title><meta name="generator" content="DocBook XSL-NS Stylesheets V1.75.2"><link rel="home" href="index.html" title="Meta State Machine (MSM)"><link rel="up" href="pt02.html" title="Part II. Reference"><link rel="prev" href="ch09.html" title="Chapter 9. Functional programming"><link rel="next" href="rn01re01.html" title="Back-end classes"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Reference</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="ch09.html">Prev</a> </td><th width="60%" align="center">Part II. Reference</th><td width="20%" align="right"> <a accesskey="n" href="rn01re01.html">Next</a></td></tr></table><hr></div><div class="reference" title="Reference"><div class="titlepage"><div><div><h1 class="title"><a name="d0e5672"></a>Reference</h1></div></div><hr></div><div class="toc"
><p><b>Table of Contents</b></p><dl><dt><span class="refentrytitle">Back-end classes</span><span class="refpurpose"> — the types provided by the back-end (boost::msm::back)</span></dt></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch09.html">Prev</a> </td><td width="20%" align="center"><a accesskey="u" href="pt02.html">Up</a></td><td width="40%" align="right"> <a accesskey="n" href="rn01re01.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Chapter 9. Functional programming </td><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%" align="right" valign="top"> Back-end classes</td></tr></table></div></body></html>
\ No newline at end of file
Deleted: branches/release/libs/msm/doc/HTML/rn01re01.html
==============================================================================
--- branches/release/libs/msm/doc/HTML/rn01re01.html 2010-06-30 04:40:08 EDT (Wed, 30 Jun 2010)
+++ (empty file)
@@ -1,73 +0,0 @@
-<html><head>
- <meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
- <title>Back-end classes</title><meta name="generator" content="DocBook XSL-NS Stylesheets V1.75.2"><link rel="home" href="index.html" title="Meta State Machine (MSM)"><link rel="up" href="rn01.html" title="Reference"><link rel="prev" href="rn01.html" title="Reference"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Back-end classes</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="rn01.html">Prev</a> </td><th width="60%" align="center">Reference</th><td width="20%" align="right"> </td></tr></table><hr></div><div class="refentry" title="Back-end classes"><a name="d0e5675"></a><div class="titlepage"></div><div class="refnamediv"><h2>Name</h2><p>Back-end classes — the types provided by the back-end (boost::msm::back)</p></div><div class="refsect1" title="state_machine.hpp"><a name="d0e5681"></a><h2>state_machine.hpp</h2><p> This hea
der provides one type, state_machine, MSM's state machine engine
- implementation.</p><pre class="classsynopsis"> <span class="ooclass"><span class="classname">template <class Derived,class
- HistoryPolicy=NoHistory,class CompilePolicy=favor_runtime_speed>
- state_machine</span></span> {<br>}</pre><div class="refsect2" title="methods"><a name="d0e5690"></a><h3> methods </h3><div class="refsect3" title="start"><a name="d0e5693"></a><h4>start</h4><p> The start methods must be called before any call to
- process_event. It activates the entry action of the initial
- state(s). This allows you to choose when a state machine can start.
- (TODO in user guide)</p><code class="methodsynopsis"><span class="methodname">void start</span>(<span class="methodparam"></span>);</code></div><div class="refsect3" title="process_event"><a name="d0e5703"></a><h4>process_event</h4><p>The event processing method implements the double-dispatch. Each
- call to this function with a new event type instantiates a new
- dispatch algorithm and increases compile-time.</p><code class="methodsynopsis"><span class="methodname">template <class Event> HandledEnum
- process_event</span>(<span class="methodparam">Event const&</span>);</code></div><div class="refsect3" title="current_state"><a name="d0e5714"></a><h4>current_state</h4><p>Returns the ids of currently active states. You will typically
- need it only for debugging or logging purposes.</p><code class="methodsynopsis"><span class="methodname">const int* current_state const</span>(<span class="methodparam"></span>);</code></div><div class="refsect3" title="get_state_by_id"><a name="d0e5724"></a><h4>get_state_by_id</h4><p>Returns the state whose id is given. As all states of a concrete
- state machine share a common base state, the return value is a base
- state. If the id corresponds to no state, a null pointer is
- returned.</p><code class="methodsynopsis"><span class="methodname">const BaseState* get_state_by_id const</span>(<span class="methodparam">int id</span>);</code></div><div class="refsect3" title="is_contained"><a name="d0e5735"></a><h4>is_contained</h4><p>Helper returning true if the state machine is contained as a
- submachine of another state machine.</p><code class="methodsynopsis"><span class="methodname">bool is_contained const</span>(<span class="methodparam"></span>);</code></div><div class="refsect3" title="get_state"><a name="d0e5745"></a><h4>get_state</h4><p>Returns the required state of the state machine as a pointer. A
- compile error will occur if the state is not to be found in the
- state machine.</p><code class="methodsynopsis"><span class="methodname">template <class State> State* get_state</span>(<span class="methodparam"></span>);</code></div><div class="refsect3" title="get_state"><a name="d0e5755"></a><h4>get_state</h4><p>Returns the required state of the state machine as a reference. A
- compile error will occur if the state is not to be found in the
- state machine.</p><code class="methodsynopsis"><span class="methodname">template <class State> State&
- get_state</span>(<span class="methodparam"></span>);</code></div><div class="refsect3" title="is_flag_active"><a name="d0e5765"></a><h4>is_flag_active</h4><p>Returns true if the given flag is currently active. A flag is
- active if the active state of one region is tagged with this flag
- (using OR as BinaryOp) or active states of <span class="underline">all</span> regions (using AND as
- BinaryOp)</p><code class="methodsynopsis"><span class="methodname">template <class Flag,class BinaryOp> bool
- is_flag_active</span>(<span class="methodparam"></span>);</code></div><div class="refsect3" title="is_flag_active"><a name="d0e5778"></a><h4>is_flag_active</h4><p>Returns true if the given flag is currently active. A flag is
- active if the active state of one region is tagged with this
- flag.</p><code class="methodsynopsis"><span class="methodname">template <class Flag> bool
- is_flag_active</span>(<span class="methodparam"></span>);</code></div><div class="refsect3" title="visit_current_states"><a name="d0e5788"></a><h4>visit_current_states</h4><p>Visits all active states and their substates. A state is visited
- using the <code class="code">accept</code> method without argument. The base
- class of all states must provide an <code class="code">accept_sig</code>
- type.</p><code class="methodsynopsis"><span class="methodname">void visit_current_states</span>(<span class="methodparam"></span>);</code></div><div class="refsect3" title="visit_current_states"><a name="d0e5804"></a><h4>visit_current_states</h4><p>Visits all active states and their substates. A state is visited
- using the <code class="code">accept</code> method with arguments. The base class
- of all states must provide an <code class="code">accept_sig</code> type defining
- the signature and thus the number and type of the parameters.</p><code class="methodsynopsis"><span class="methodname">void visit_current_states</span>(<span class="methodparam">any-type param1, any-type param2,...</span>);</code></div><div class="refsect3" title="defer_event"><a name="d0e5821"></a><h4>defer_event</h4><p> Defers the provided event. This method can be called only if at
- least one state defers an event or if the state machine provides the
- <code class="code">activate_deferred_events</code>(TODO example) type either
- directly or using the deferred_events configuration of eUML
- (<code class="code">configure_ << deferred_events</code>)</p><code class="methodsynopsis"><span class="methodname">template <class Event> void defer_event</span>(<span class="methodparam">Event const&</span>);</code></div></div><div class="refsect2" title="Types"><a name="d0e5838"></a><h3>Types</h3><div class="refsect3" title="entry_pt"><a name="d0e5841"></a><h4>entry_pt</h4><p>This nested type provides the necessary typedef for entry point
- pseudostates.
- <code class="code">state_machine<...>::entry_pt<state_name></code> is a
- transition's valid target inside the containing state machine's
- transition table.</p><pre class="classsynopsis"> <span class="ooclass"><span class="classname">entry_pt</span></span> {<br>}</pre></div><div class="refsect3" title="exit_pt"><a name="d0e5853"></a><h4>exit_pt</h4><p>This nested type provides the necessary typedef for exit point
- pseudostates.
- <code class="code">state_machine<...>::exit_pt<state_name></code> is a
- transition's valid source inside the containing state machine's
- transition table.</p><pre class="classsynopsis"> <span class="ooclass"><span class="classname">exit_pt</span></span> {<br>}</pre></div><div class="refsect3" title="direct"><a name="d0e5865"></a><h4>direct</h4><p>This nested type provides the necessary typedef for an explicit
- entry inside a submachine.
- <code class="code">state_machine<...>::direct<state_name></code> is a
- transition's valid target inside the containing state machine's
- transition table.</p><pre class="classsynopsis"> <span class="ooclass"><span class="classname">direct</span></span> {<br>}</pre></div></div></div><div class="refsect1" title="args.hpp"><a name="d0e5877"></a><h2>args.hpp</h2><p>This header provides one type, args. which provides the necessary types
- for a visitor implementation.</p></div><div class="refsect1" title="history_policies.hpp"><a name="d0e5882"></a><h2>history_policies.hpp</h2><p>This header provides the out-of-the-box history policies supported by MSM.
- There are 3 such policies. Every history policy must implement the following
- methods:</p><div class="refsect2" title="set_initial_states"><a name="d0e5887"></a><h3> set_initial_states </h3><p> This method is called by msm::back::state_machine when constructed.
- It gives the policy a chance to save the ids of all initial states
- (passed as array).</p><div class="funcsynopsis"><table border="0" summary="Function synopsis" cellspacing="0" cellpadding="0" class="funcprototype-table"><tr><td><code class="funcdef">void set_initial_states(</code></td><td><code>)</code>;</td><td> </td></tr></table><div class="paramdef-list"><code>
- <code>(</code>int* const<code>)</code>
- </code>;</div><div class="funcprototype-spacer"> </div></div></div><div class="refsect2" title="history_exit"><a name="d0e5901"></a><h3> history_exit </h3><p>This method is called by msm::back::state_machine when the submachine
- is exited. It gives the policy a chance to remember the ids of the last
- active substates of this submachine states (passed as array).</p><div class="funcsynopsis"><table border="0" summary="Function synopsis" cellspacing="0" cellpadding="0" class="funcprototype-table"><tr><td><code class="funcdef">void history_exit(</code></td><td><code>)</code>;</td><td> </td></tr></table><div class="paramdef-list"><code>
- <code>(</code>int* const<code>)</code>
- </code>;</div><div class="funcprototype-spacer"> </div></div></div><div class="refsect2" title="history_entry"><a name="d0e5915"></a><h3> history_entry </h3><p>This method is called by msm::back::state_machine when the submachine
- is entered. It gives the policy a chance to set the the active states
- according to the policy's aim. The policy gets as parameter the event
- which activated the submachine and returns an array of active states
- ids.</p><div class="funcsynopsis"><table border="0" summary="Function synopsis" cellspacing="0" cellpadding="0" class="funcprototype-table"><tr><td><code class="funcdef">template <class Event> int* const history_exit(</code></td><td><code>)</code>;</td><td> </td></tr></table><div class="paramdef-list"><code>
- <code>(</code>Event const&<code>)</code>
- </code>;</div><div class="funcprototype-spacer"> </div></div></div><div class="refsect2" title="NoHistory"><a name="d0e5929"></a><h3>NoHistory</h3><p>This policy is the default used by state_machine. No active state of a
- submachine is remembered and at every new activation of the submachine,
- the initial state(s) are activated. </p></div><div class="refsect2" title="AlwaysHistory"><a name="d0e5934"></a><h3>AlwaysHistory</h3><p>This policy is a non-UML-standard extension. The active state(s) of a
- submachine is (are) always remembered at every new activation of the
- submachine. </p></div><div class="refsect2" title="ShallowHistory"><a name="d0e5939"></a><h3>ShallowHistory</h3><p>This policy activates the active state(s) of a submachine if the event
- is found in the policy's event list. </p></div></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="rn01.html">Prev</a> </td><td width="20%" align="center"><a accesskey="u" href="rn01.html">Up</a></td><td width="40%" align="right"> </td></tr><tr><td width="40%" align="left" valign="top">Reference </td><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%" align="right" valign="top"> </td></tr></table></div></body></html>
\ No newline at end of file
Boost-Commit list run by bdawes at acm.org, david.abrahams at rcn.com, gregod at cs.rpi.edu, cpdaniel at pacbell.net, john at johnmaddock.co.uk