|
Boost-Commit : |
Subject: [Boost-commit] svn:boost r63668 - in sandbox/geometry/boost/geometry/extensions/contrib: . ttmath
From: barend.gehrels_at_[hidden]
Date: 2010-07-05 13:06:08
Author: barendgehrels
Date: 2010-07-05 13:06:03 EDT (Mon, 05 Jul 2010)
New Revision: 63668
URL: http://svn.boost.org/trac/boost/changeset/63668
Log:
Added (possibly temporary) ttmath as extension / contribution, for testing high precision
Added:
sandbox/geometry/boost/geometry/extensions/contrib/
sandbox/geometry/boost/geometry/extensions/contrib/ttmath/
sandbox/geometry/boost/geometry/extensions/contrib/ttmath/ttmath.h (contents, props changed)
sandbox/geometry/boost/geometry/extensions/contrib/ttmath/ttmathbig.h (contents, props changed)
sandbox/geometry/boost/geometry/extensions/contrib/ttmath/ttmathint.h (contents, props changed)
sandbox/geometry/boost/geometry/extensions/contrib/ttmath/ttmathmisc.h (contents, props changed)
sandbox/geometry/boost/geometry/extensions/contrib/ttmath/ttmathobjects.h (contents, props changed)
sandbox/geometry/boost/geometry/extensions/contrib/ttmath/ttmathparser.h (contents, props changed)
sandbox/geometry/boost/geometry/extensions/contrib/ttmath/ttmaththreads.h (contents, props changed)
sandbox/geometry/boost/geometry/extensions/contrib/ttmath/ttmathtypes.h (contents, props changed)
sandbox/geometry/boost/geometry/extensions/contrib/ttmath/ttmathuint.h (contents, props changed)
sandbox/geometry/boost/geometry/extensions/contrib/ttmath/ttmathuint_noasm.h (contents, props changed)
sandbox/geometry/boost/geometry/extensions/contrib/ttmath/ttmathuint_x86.h (contents, props changed)
sandbox/geometry/boost/geometry/extensions/contrib/ttmath/ttmathuint_x86_64.h (contents, props changed)
sandbox/geometry/boost/geometry/extensions/contrib/ttmath/ttmathuint_x86_64_msvc.asm (contents, props changed)
sandbox/geometry/boost/geometry/extensions/contrib/ttmath_stub.hpp (contents, props changed)
Added: sandbox/geometry/boost/geometry/extensions/contrib/ttmath/ttmath.h
==============================================================================
--- (empty file)
+++ sandbox/geometry/boost/geometry/extensions/contrib/ttmath/ttmath.h 2010-07-05 13:06:03 EDT (Mon, 05 Jul 2010)
@@ -0,0 +1,2835 @@
+/*
+ * This file is a part of TTMath Bignum Library
+ * and is distributed under the (new) BSD licence.
+ * Author: Tomasz Sowa <t.sowa_at_[hidden]>
+ */
+
+/*
+ * Copyright (c) 2006-2009, Tomasz Sowa
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are met:
+ *
+ * * Redistributions of source code must retain the above copyright notice,
+ * this list of conditions and the following disclaimer.
+ *
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * * Neither the name Tomasz Sowa nor the names of contributors to this
+ * project may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
+ * THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+
+
+#ifndef headerfilettmathmathtt
+#define headerfilettmathmathtt
+
+/*!
+ \file ttmath.h
+ \brief Mathematics functions.
+*/
+
+#ifdef _MSC_VER
+//warning C4127: conditional expression is constant
+#pragma warning( disable: 4127 )
+//warning C4702: unreachable code
+#pragma warning( disable: 4702 )
+//warning C4800: forcing value to bool 'true' or 'false' (performance warning)
+#pragma warning( disable: 4800 )
+#endif
+
+
+#include "ttmathbig.h"
+#include "ttmathobjects.h"
+
+
+namespace ttmath
+{
+ /*
+ *
+ * functions defined here are used only with Big<> types
+ *
+ *
+ */
+
+
+ /*
+ *
+ * functions for rounding
+ *
+ *
+ */
+
+
+ /*!
+ this function skips the fraction from x
+ e.g 2.2 = 2
+ 2.7 = 2
+ -2.2 = 2
+ -2.7 = 2
+ */
+ template<class ValueType>
+ ValueType SkipFraction(const ValueType & x)
+ {
+ ValueType result( x );
+ result.SkipFraction();
+
+ return result;
+ }
+
+
+ /*!
+ this function rounds to the nearest integer value
+ e.g 2.2 = 2
+ 2.7 = 3
+ -2.2 = -2
+ -2.7 = -3
+ */
+ template<class ValueType>
+ ValueType Round(const ValueType & x, ErrorCode * err = 0)
+ {
+ if( x.IsNan() )
+ {
+ if( err )
+ *err = err_improper_argument;
+
+ return x; // NaN
+ }
+
+ ValueType result( x );
+ uint c = result.Round();
+
+ if( err )
+ *err = c ? err_overflow : err_ok;
+
+ return result;
+ }
+
+
+
+ /*!
+ this function returns a value representing the smallest integer
+ that is greater than or equal to x
+
+ Ceil(-3.7) = -3
+ Ceil(-3.1) = -3
+ Ceil(-3.0) = -3
+ Ceil(4.0) = 4
+ Ceil(4.2) = 5
+ Ceil(4.8) = 5
+ */
+ template<class ValueType>
+ ValueType Ceil(const ValueType & x, ErrorCode * err = 0)
+ {
+ if( x.IsNan() )
+ {
+ if( err )
+ *err = err_improper_argument;
+
+ return x; // NaN
+ }
+
+ ValueType result(x);
+ uint c = 0;
+
+ result.SkipFraction();
+
+ if( result != x )
+ {
+ // x is with fraction
+ // if x is negative we don't have to do anything
+ if( !x.IsSign() )
+ {
+ ValueType one;
+ one.SetOne();
+
+ c += result.Add(one);
+ }
+ }
+
+ if( err )
+ *err = c ? err_overflow : err_ok;
+
+ return result;
+ }
+
+
+ /*!
+ this function returns a value representing the largest integer
+ that is less than or equal to x
+
+ Floor(-3.6) = -4
+ Floor(-3.1) = -4
+ Floor(-3) = -3
+ Floor(2) = 2
+ Floor(2.3) = 2
+ Floor(2.8) = 2
+ */
+ template<class ValueType>
+ ValueType Floor(const ValueType & x, ErrorCode * err = 0)
+ {
+ if( x.IsNan() )
+ {
+ if( err )
+ *err = err_improper_argument;
+
+ return x; // NaN
+ }
+
+ ValueType result(x);
+ uint c = 0;
+
+ result.SkipFraction();
+
+ if( result != x )
+ {
+ // x is with fraction
+ // if x is positive we don't have to do anything
+ if( x.IsSign() )
+ {
+ ValueType one;
+ one.SetOne();
+
+ c += result.Sub(one);
+ }
+ }
+
+ if( err )
+ *err = c ? err_overflow : err_ok;
+
+ return result;
+ }
+
+
+
+ /*
+ *
+ * logarithms and the exponent
+ *
+ *
+ */
+
+
+ /*!
+ this function calculates the natural logarithm (logarithm with the base 'e')
+ */
+ template<class ValueType>
+ ValueType Ln(const ValueType & x, ErrorCode * err = 0)
+ {
+ if( x.IsNan() )
+ {
+ if( err )
+ *err = err_improper_argument;
+
+ return x; // NaN
+ }
+
+ ValueType result;
+ uint state = result.Ln(x);
+
+ if( err )
+ {
+ switch( state )
+ {
+ case 0:
+ *err = err_ok;
+ break;
+ case 1:
+ *err = err_overflow;
+ break;
+ case 2:
+ *err = err_improper_argument;
+ break;
+ default:
+ *err = err_internal_error;
+ break;
+ }
+ }
+
+
+ return result;
+ }
+
+
+ /*!
+ this function calculates the logarithm
+ */
+ template<class ValueType>
+ ValueType Log(const ValueType & x, const ValueType & base, ErrorCode * err = 0)
+ {
+ if( x.IsNan() || base.IsNan() )
+ {
+ if( err )
+ *err = err_improper_argument;
+
+ return ValueType(); // default NaN
+ }
+
+ ValueType result;
+ uint state = result.Log(x, base);
+
+ if( err )
+ {
+ switch( state )
+ {
+ case 0:
+ *err = err_ok;
+ break;
+ case 1:
+ *err = err_overflow;
+ break;
+ case 2:
+ case 3:
+ *err = err_improper_argument;
+ break;
+ default:
+ *err = err_internal_error;
+ break;
+ }
+ }
+
+ return result;
+ }
+
+
+ /*!
+ this function calculates the expression e^x
+ */
+ template<class ValueType>
+ ValueType Exp(const ValueType & x, ErrorCode * err = 0)
+ {
+ if( x.IsNan() )
+ {
+ if( err )
+ *err = err_improper_argument;
+
+ return x; // NaN
+ }
+
+ ValueType result;
+ uint c = result.Exp(x);
+
+ if( err )
+ *err = c ? err_overflow : err_ok;
+
+ return result;
+ }
+
+
+ /*!
+ *
+ * trigonometric functions
+ *
+ */
+
+
+ /*
+ this namespace consists of auxiliary functions
+ (something like 'private' in a class)
+ */
+ namespace auxiliaryfunctions
+ {
+
+ /*!
+ an auxiliary function for calculating the Sine
+ (you don't have to call this function)
+ */
+ template<class ValueType>
+ uint PrepareSin(ValueType & x, bool & change_sign)
+ {
+ ValueType temp;
+
+ change_sign = false;
+
+ if( x.IsSign() )
+ {
+ // we're using the formula 'sin(-x) = -sin(x)'
+ change_sign = !change_sign;
+ x.ChangeSign();
+ }
+
+ // we're reducing the period 2*PI
+ // (for big values there'll always be zero)
+ temp.Set2Pi();
+
+ if( x.Mod(temp) )
+ return 1;
+
+
+ // we're setting 'x' as being in the range of <0, 0.5PI>
+
+ temp.SetPi();
+
+ if( x > temp )
+ {
+ // x is in (pi, 2*pi>
+ x.Sub( temp );
+ change_sign = !change_sign;
+ }
+
+ temp.Set05Pi();
+
+ if( x > temp )
+ {
+ // x is in (0.5pi, pi>
+ x.Sub( temp );
+ x = temp - x;
+ }
+
+ return 0;
+ }
+
+
+ /*!
+ an auxiliary function for calculating the Sine
+ (you don't have to call this function)
+
+ it returns Sin(x) where 'x' is from <0, PI/2>
+ we're calculating the Sin with using Taylor series in zero or PI/2
+ (depending on which point of these two points is nearer to the 'x')
+
+ Taylor series:
+ sin(x) = sin(a) + cos(a)*(x-a)/(1!)
+ - sin(a)*((x-a)^2)/(2!) - cos(a)*((x-a)^3)/(3!)
+ + sin(a)*((x-a)^4)/(4!) + ...
+
+ when a=0 it'll be:
+ sin(x) = (x)/(1!) - (x^3)/(3!) + (x^5)/(5!) - (x^7)/(7!) + (x^9)/(9!) ...
+
+ and when a=PI/2:
+ sin(x) = 1 - ((x-PI/2)^2)/(2!) + ((x-PI/2)^4)/(4!) - ((x-PI/2)^6)/(6!) ...
+ */
+ template<class ValueType>
+ ValueType Sin0pi05(const ValueType & x)
+ {
+ ValueType result;
+ ValueType numerator, denominator;
+ ValueType d_numerator, d_denominator;
+ ValueType one, temp, old_result;
+
+ // temp = pi/4
+ temp.Set05Pi();
+ temp.exponent.SubOne();
+
+ one.SetOne();
+
+ if( x < temp )
+ {
+ // we're using the Taylor series with a=0
+ result = x;
+ numerator = x;
+ denominator = one;
+
+ // d_numerator = x^2
+ d_numerator = x;
+ d_numerator.Mul(x);
+
+ d_denominator = 2;
+ }
+ else
+ {
+ // we're using the Taylor series with a=PI/2
+ result = one;
+ numerator = one;
+ denominator = one;
+
+ // d_numerator = (x-pi/2)^2
+ ValueType pi05;
+ pi05.Set05Pi();
+
+ temp = x;
+ temp.Sub( pi05 );
+ d_numerator = temp;
+ d_numerator.Mul( temp );
+
+ d_denominator = one;
+ }
+
+ uint c = 0;
+ bool addition = false;
+
+ old_result = result;
+ for(uint i=1 ; i<=TTMATH_ARITHMETIC_MAX_LOOP ; ++i)
+ {
+ // we're starting from a second part of the formula
+ c += numerator. Mul( d_numerator );
+ c += denominator. Mul( d_denominator );
+ c += d_denominator.Add( one );
+ c += denominator. Mul( d_denominator );
+ c += d_denominator.Add( one );
+ temp = numerator;
+ c += temp.Div(denominator);
+
+ if( c )
+ // Sin is from <-1,1> and cannot make an overflow
+ // but the carry can be from the Taylor series
+ // (then we only break our calculations)
+ break;
+
+ if( addition )
+ result.Add( temp );
+ else
+ result.Sub( temp );
+
+
+ addition = !addition;
+
+ // we're testing whether the result has changed after adding
+ // the next part of the Taylor formula, if not we end the loop
+ // (it means 'x' is zero or 'x' is PI/2 or this part of the formula
+ // is too small)
+ if( result == old_result )
+ break;
+
+ old_result = result;
+ }
+
+ return result;
+ }
+
+ } // namespace auxiliaryfunctions
+
+
+
+ /*!
+ this function calculates the Sine
+ */
+ template<class ValueType>
+ ValueType Sin(ValueType x, ErrorCode * err = 0)
+ {
+ using namespace auxiliaryfunctions;
+
+ ValueType one, result;
+ bool change_sign;
+
+ if( x.IsNan() )
+ {
+ if( err )
+ *err = err_improper_argument;
+
+ return result; // NaN is set by default
+ }
+
+ if( err )
+ *err = err_ok;
+
+ if( PrepareSin( x, change_sign ) )
+ {
+ // x is too big, we cannnot reduce the 2*PI period
+ // prior to version 0.8.5 the result was zero
+
+ // result has NaN flag set by default
+
+ if( err )
+ *err = err_overflow; // maybe another error code? err_improper_argument?
+
+ return result; // NaN is set by default
+ }
+
+ result = Sin0pi05( x );
+
+ one.SetOne();
+
+ // after calculations there can be small distortions in the result
+ if( result > one )
+ result = one;
+ else
+ if( result.IsSign() )
+ // we've calculated the sin from <0, pi/2> and the result
+ // should be positive
+ result.SetZero();
+
+ if( change_sign )
+ result.ChangeSign();
+
+ return result;
+ }
+
+
+ /*!
+ this function calulates the Cosine
+ we're using the formula cos(x) = sin(x + PI/2)
+ */
+ template<class ValueType>
+ ValueType Cos(ValueType x, ErrorCode * err = 0)
+ {
+ if( x.IsNan() )
+ {
+ if( err )
+ *err = err_improper_argument;
+
+ return x; // NaN
+ }
+
+ ValueType pi05;
+ pi05.Set05Pi();
+
+ uint c = x.Add( pi05 );
+
+ if( c )
+ {
+ if( err )
+ *err = err_overflow;
+
+ return ValueType(); // result is undefined (NaN is set by default)
+ }
+
+ return Sin(x, err);
+ }
+
+
+ /*!
+ this function calulates the Tangent
+ we're using the formula tan(x) = sin(x) / cos(x)
+
+ it takes more time than calculating the Tan directly
+ from for example Taylor series but should be a bit preciser
+ because Tan receives its values from -infinity to +infinity
+ and when we calculate it from any series then we can make
+ a greater mistake than calculating 'sin/cos'
+ */
+ template<class ValueType>
+ ValueType Tan(const ValueType & x, ErrorCode * err = 0)
+ {
+ ValueType result = Cos(x, err);
+
+ if( err && *err != err_ok )
+ return result;
+
+ if( result.IsZero() )
+ {
+ if( err )
+ *err = err_improper_argument;
+
+ result.SetNan();
+
+ return result;
+ }
+
+ return Sin(x, err) / result;
+ }
+
+
+ /*!
+ this function calulates the Tangent
+ look at the description of Tan(...)
+
+ (the abbreviation of Tangent can be 'tg' as well)
+ */
+ template<class ValueType>
+ ValueType Tg(const ValueType & x, ErrorCode * err = 0)
+ {
+ return Tan(x, err);
+ }
+
+
+ /*!
+ this function calulates the Cotangent
+ we're using the formula tan(x) = cos(x) / sin(x)
+
+ (why do we make it in this way?
+ look at information in Tan() function)
+ */
+ template<class ValueType>
+ ValueType Cot(const ValueType & x, ErrorCode * err = 0)
+ {
+ ValueType result = Sin(x, err);
+
+ if( err && *err != err_ok )
+ return result;
+
+ if( result.IsZero() )
+ {
+ if( err )
+ *err = err_improper_argument;
+
+ result.SetNan();
+
+ return result;
+ }
+
+ return Cos(x, err) / result;
+ }
+
+
+ /*!
+ this function calulates the Cotangent
+ look at the description of Cot(...)
+
+ (the abbreviation of Cotangent can be 'ctg' as well)
+ */
+ template<class ValueType>
+ ValueType Ctg(const ValueType & x, ErrorCode * err = 0)
+ {
+ return Cot(x, err);
+ }
+
+
+ /*
+ *
+ * inverse trigonometric functions
+ *
+ *
+ */
+
+ namespace auxiliaryfunctions
+ {
+
+ /*!
+ an auxiliary function for calculating the Arc Sine
+
+ we're calculating asin from the following formula:
+ asin(x) = x + (1*x^3)/(2*3) + (1*3*x^5)/(2*4*5) + (1*3*5*x^7)/(2*4*6*7) + ...
+ where abs(x) <= 1
+
+ we're using this formula when x is from <0, 1/2>
+ */
+ template<class ValueType>
+ ValueType ASin_0(const ValueType & x)
+ {
+ ValueType nominator, denominator, nominator_add, nominator_x, denominator_add, denominator_x;
+ ValueType two, result(x), x2(x);
+ ValueType nominator_temp, denominator_temp, old_result = result;
+ uint c = 0;
+
+ x2.Mul(x);
+ two = 2;
+
+ nominator.SetOne();
+ denominator = two;
+ nominator_add = nominator;
+ denominator_add = denominator;
+ nominator_x = x;
+ denominator_x = 3;
+
+ for(uint i=1 ; i<=TTMATH_ARITHMETIC_MAX_LOOP ; ++i)
+ {
+ c += nominator_x.Mul(x2);
+ nominator_temp = nominator_x;
+ c += nominator_temp.Mul(nominator);
+ denominator_temp = denominator;
+ c += denominator_temp.Mul(denominator_x);
+ c += nominator_temp.Div(denominator_temp);
+
+ // if there is a carry somewhere we only break the calculating
+ // the result should be ok -- it's from <-pi/2, pi/2>
+ if( c )
+ break;
+
+ result.Add(nominator_temp);
+
+ if( result == old_result )
+ // there's no sense to calculate more
+ break;
+
+ old_result = result;
+
+
+ c += nominator_add.Add(two);
+ c += denominator_add.Add(two);
+ c += nominator.Mul(nominator_add);
+ c += denominator.Mul(denominator_add);
+ c += denominator_x.Add(two);
+ }
+
+ return result;
+ }
+
+
+
+ /*!
+ an auxiliary function for calculating the Arc Sine
+
+ we're calculating asin from the following formula:
+ asin(x) = pi/2 - sqrt(2)*sqrt(1-x) * asin_temp
+ asin_temp = 1 + (1*(1-x))/((2*3)*(2)) + (1*3*(1-x)^2)/((2*4*5)*(4)) + (1*3*5*(1-x)^3)/((2*4*6*7)*(8)) + ...
+
+ where abs(x) <= 1
+
+ we're using this formula when x is from (1/2, 1>
+ */
+ template<class ValueType>
+ ValueType ASin_1(const ValueType & x)
+ {
+ ValueType nominator, denominator, nominator_add, nominator_x, nominator_x_add, denominator_add, denominator_x;
+ ValueType denominator2;
+ ValueType one, two, result;
+ ValueType nominator_temp, denominator_temp, old_result;
+ uint c = 0;
+
+ two = 2;
+
+ one.SetOne();
+ nominator = one;
+ result = one;
+ old_result = result;
+ denominator = two;
+ nominator_add = nominator;
+ denominator_add = denominator;
+ nominator_x = one;
+ nominator_x.Sub(x);
+ nominator_x_add = nominator_x;
+ denominator_x = 3;
+ denominator2 = two;
+
+
+ for(uint i=1 ; i<=TTMATH_ARITHMETIC_MAX_LOOP ; ++i)
+ {
+ nominator_temp = nominator_x;
+ c += nominator_temp.Mul(nominator);
+ denominator_temp = denominator;
+ c += denominator_temp.Mul(denominator_x);
+ c += denominator_temp.Mul(denominator2);
+ c += nominator_temp.Div(denominator_temp);
+
+ // if there is a carry somewhere we only break the calculating
+ // the result should be ok -- it's from <-pi/2, pi/2>
+ if( c )
+ break;
+
+ result.Add(nominator_temp);
+
+ if( result == old_result )
+ // there's no sense to calculate more
+ break;
+
+ old_result = result;
+
+ c += nominator_x.Mul(nominator_x_add);
+ c += nominator_add.Add(two);
+ c += denominator_add.Add(two);
+ c += nominator.Mul(nominator_add);
+ c += denominator.Mul(denominator_add);
+ c += denominator_x.Add(two);
+ c += denominator2.Mul(two);
+ }
+
+
+ nominator_x_add.exponent.AddOne(); // *2
+ one.exponent.SubOne(); // =0.5
+ nominator_x_add.Pow(one); // =sqrt(nominator_x_add)
+ result.Mul(nominator_x_add);
+
+ one.Set05Pi();
+ one.Sub(result);
+
+ return one;
+ }
+
+
+ } // namespace auxiliaryfunctions
+
+
+ /*!
+ this function calculates the Arc Sine
+ x is from <-1,1>
+ */
+ template<class ValueType>
+ ValueType ASin(ValueType x, ErrorCode * err = 0)
+ {
+ using namespace auxiliaryfunctions;
+
+ ValueType result, one;
+ one.SetOne();
+ bool change_sign = false;
+
+ if( x.IsNan() )
+ {
+ if( err )
+ *err = err_improper_argument;
+
+ return result; // NaN is set by default
+ }
+
+ if( x.GreaterWithoutSignThan(one) )
+ {
+ if( err )
+ *err = err_improper_argument;
+
+ return result; // NaN is set by default
+ }
+
+ if( x.IsSign() )
+ {
+ change_sign = true;
+ x.Abs();
+ }
+
+ one.exponent.SubOne(); // =0.5
+
+ // asin(-x) = -asin(x)
+ if( x.GreaterWithoutSignThan(one) )
+ result = ASin_1(x);
+ else
+ result = ASin_0(x);
+
+ if( change_sign )
+ result.ChangeSign();
+
+ if( err )
+ *err = err_ok;
+
+ return result;
+ }
+
+
+ /*!
+ this function calculates the Arc Cosine
+
+ we're using the formula:
+ acos(x) = pi/2 - asin(x)
+ */
+ template<class ValueType>
+ ValueType ACos(const ValueType & x, ErrorCode * err = 0)
+ {
+ ValueType temp;
+
+ temp.Set05Pi();
+ temp.Sub(ASin(x, err));
+
+ return temp;
+ }
+
+
+
+ namespace auxiliaryfunctions
+ {
+
+ /*!
+ an auxiliary function for calculating the Arc Tangent
+
+ arc tan (x) where x is in <0; 0.5)
+ (x can be in (-0.5 ; 0.5) too)
+
+ we're using the Taylor series expanded in zero:
+ atan(x) = x - (x^3)/3 + (x^5)/5 - (x^7)/7 + ...
+ */
+ template<class ValueType>
+ ValueType ATan0(const ValueType & x)
+ {
+ ValueType nominator, denominator, nominator_add, denominator_add, temp;
+ ValueType result, old_result;
+ bool adding = false;
+ uint c = 0;
+
+ result = x;
+ old_result = result;
+ nominator = x;
+ nominator_add = x;
+ nominator_add.Mul(x);
+
+ denominator.SetOne();
+ denominator_add = 2;
+
+ for(uint i=1 ; i<=TTMATH_ARITHMETIC_MAX_LOOP ; ++i)
+ {
+ c += nominator.Mul(nominator_add);
+ c += denominator.Add(denominator_add);
+
+ temp = nominator;
+ c += temp.Div(denominator);
+
+ if( c )
+ // the result should be ok
+ break;
+
+ if( adding )
+ result.Add(temp);
+ else
+ result.Sub(temp);
+
+ if( result == old_result )
+ // there's no sense to calculate more
+ break;
+
+ old_result = result;
+ adding = !adding;
+ }
+
+ return result;
+ }
+
+
+ /*!
+ an auxiliary function for calculating the Arc Tangent
+
+ where x is in <0 ; 1>
+ */
+ template<class ValueType>
+ ValueType ATan01(const ValueType & x)
+ {
+ ValueType half;
+ half.Set05();
+
+ /*
+ it would be better if we chose about sqrt(2)-1=0.41... instead of 0.5 here
+
+ because as you can see below:
+ when x = sqrt(2)-1
+ abs(x) = abs( (x-1)/(1+x) )
+ so when we're calculating values around x
+ then they will be better converged to each other
+
+ for example if we have x=0.4999 then during calculating ATan0(0.4999)
+ we have to make about 141 iterations but when we have x=0.5
+ then during calculating ATan0( (x-1)/(1+x) ) we have to make
+ only about 89 iterations (both for Big<3,9>)
+
+ in the future this 0.5 can be changed
+ */
+ if( x.SmallerWithoutSignThan(half) )
+ return ATan0(x);
+
+
+ /*
+ x>=0.5 and x<=1
+ (x can be even smaller than 0.5)
+
+ y = atac(x)
+ x = tan(y)
+
+ tan(y-b) = (tan(y)-tab(b)) / (1+tan(y)*tan(b))
+ y-b = atan( (tan(y)-tab(b)) / (1+tan(y)*tan(b)) )
+ y = b + atan( (x-tab(b)) / (1+x*tan(b)) )
+
+ let b = pi/4
+ tan(b) = tan(pi/4) = 1
+ y = pi/4 + atan( (x-1)/(1+x) )
+
+ so
+ atac(x) = pi/4 + atan( (x-1)/(1+x) )
+ when x->1 (x converges to 1) the (x-1)/(1+x) -> 0
+ and we can use ATan0() function here
+ */
+
+ ValueType n(x),d(x),one,result;
+
+ one.SetOne();
+ n.Sub(one);
+ d.Add(one);
+ n.Div(d);
+
+ result = ATan0(n);
+
+ n.Set05Pi();
+ n.exponent.SubOne(); // =pi/4
+ result.Add(n);
+
+ return result;
+ }
+
+
+ /*!
+ an auxiliary function for calculating the Arc Tangent
+ where x > 1
+
+ we're using the formula:
+ atan(x) = pi/2 - atan(1/x) for x>0
+ */
+ template<class ValueType>
+ ValueType ATanGreaterThanPlusOne(const ValueType & x)
+ {
+ ValueType temp, atan;
+
+ temp.SetOne();
+
+ if( temp.Div(x) )
+ {
+ // if there was a carry here that means x is very big
+ // and atan(1/x) fast converged to 0
+ atan.SetZero();
+ }
+ else
+ atan = ATan01(temp);
+
+ temp.Set05Pi();
+ temp.Sub(atan);
+
+ return temp;
+ }
+
+ } // namespace auxiliaryfunctions
+
+
+ /*!
+ this function calculates the Arc Tangent
+ */
+ template<class ValueType>
+ ValueType ATan(ValueType x)
+ {
+ using namespace auxiliaryfunctions;
+
+ ValueType one, result;
+ one.SetOne();
+ bool change_sign = false;
+
+ if( x.IsNan() )
+ return result; // NaN is set by default
+
+ // if x is negative we're using the formula:
+ // atan(-x) = -atan(x)
+ if( x.IsSign() )
+ {
+ change_sign = true;
+ x.Abs();
+ }
+
+ if( x.GreaterWithoutSignThan(one) )
+ result = ATanGreaterThanPlusOne(x);
+ else
+ result = ATan01(x);
+
+ if( change_sign )
+ result.ChangeSign();
+
+ return result;
+ }
+
+
+ /*!
+ this function calculates the Arc Tangent
+ look at the description of ATan(...)
+
+ (the abbreviation of Arc Tangent can be 'atg' as well)
+ */
+ template<class ValueType>
+ ValueType ATg(const ValueType & x)
+ {
+ return ATan(x);
+ }
+
+
+ /*!
+ this function calculates the Arc Cotangent
+
+ we're using the formula:
+ actan(x) = pi/2 - atan(x)
+ */
+ template<class ValueType>
+ ValueType ACot(const ValueType & x)
+ {
+ ValueType result;
+
+ result.Set05Pi();
+ result.Sub(ATan(x));
+
+ return result;
+ }
+
+
+ /*!
+ this function calculates the Arc Cotangent
+ look at the description of ACot(...)
+
+ (the abbreviation of Arc Cotangent can be 'actg' as well)
+ */
+ template<class ValueType>
+ ValueType ACtg(const ValueType & x)
+ {
+ return ACot(x);
+ }
+
+
+ /*
+ *
+ * hyperbolic functions
+ *
+ *
+ */
+
+
+ /*!
+ this function calculates the Hyperbolic Sine
+
+ we're using the formula sinh(x)= ( e^x - e^(-x) ) / 2
+ */
+ template<class ValueType>
+ ValueType Sinh(const ValueType & x, ErrorCode * err = 0)
+ {
+ if( x.IsNan() )
+ {
+ if( err )
+ *err = err_improper_argument;
+
+ return x; // NaN
+ }
+
+ ValueType ex, emx;
+ uint c = 0;
+
+ c += ex.Exp(x);
+ c += emx.Exp(-x);
+
+ c += ex.Sub(emx);
+ c += ex.exponent.SubOne();
+
+ if( err )
+ *err = c ? err_overflow : err_ok;
+
+ return ex;
+ }
+
+
+ /*!
+ this function calculates the Hyperbolic Cosine
+
+ we're using the formula cosh(x)= ( e^x + e^(-x) ) / 2
+ */
+ template<class ValueType>
+ ValueType Cosh(const ValueType & x, ErrorCode * err = 0)
+ {
+ if( x.IsNan() )
+ {
+ if( err )
+ *err = err_improper_argument;
+
+ return x; // NaN
+ }
+
+ ValueType ex, emx;
+ uint c = 0;
+
+ c += ex.Exp(x);
+ c += emx.Exp(-x);
+
+ c += ex.Add(emx);
+ c += ex.exponent.SubOne();
+
+ if( err )
+ *err = c ? err_overflow : err_ok;
+
+ return ex;
+ }
+
+
+ /*!
+ this function calculates the Hyperbolic Tangent
+
+ we're using the formula tanh(x)= ( e^x - e^(-x) ) / ( e^x + e^(-x) )
+ */
+ template<class ValueType>
+ ValueType Tanh(const ValueType & x, ErrorCode * err = 0)
+ {
+ if( x.IsNan() )
+ {
+ if( err )
+ *err = err_improper_argument;
+
+ return x; // NaN
+ }
+
+ ValueType ex, emx, nominator, denominator;
+ uint c = 0;
+
+ c += ex.Exp(x);
+ c += emx.Exp(-x);
+
+ nominator = ex;
+ c += nominator.Sub(emx);
+ denominator = ex;
+ c += denominator.Add(emx);
+
+ c += nominator.Div(denominator);
+
+ if( err )
+ *err = c ? err_overflow : err_ok;
+
+ return nominator;
+ }
+
+
+ /*!
+ this function calculates the Hyperbolic Tangent
+ look at the description of Tanh(...)
+
+ (the abbreviation of Hyperbolic Tangent can be 'tgh' as well)
+ */
+ template<class ValueType>
+ ValueType Tgh(const ValueType & x, ErrorCode * err = 0)
+ {
+ return Tanh(x, err);
+ }
+
+ /*!
+ this function calculates the Hyperbolic Cotangent
+
+ we're using the formula coth(x)= ( e^x + e^(-x) ) / ( e^x - e^(-x) )
+ */
+ template<class ValueType>
+ ValueType Coth(const ValueType & x, ErrorCode * err = 0)
+ {
+ if( x.IsNan() )
+ {
+ if( err )
+ *err = err_improper_argument;
+
+ return x; // NaN
+ }
+
+ if( x.IsZero() )
+ {
+ if( err )
+ *err = err_improper_argument;
+
+ return ValueType(); // NaN is set by default
+ }
+
+ ValueType ex, emx, nominator, denominator;
+ uint c = 0;
+
+ c += ex.Exp(x);
+ c += emx.Exp(-x);
+
+ nominator = ex;
+ c += nominator.Add(emx);
+ denominator = ex;
+ c += denominator.Sub(emx);
+
+ c += nominator.Div(denominator);
+
+ if( err )
+ *err = c ? err_overflow : err_ok;
+
+ return nominator;
+ }
+
+
+ /*!
+ this function calculates the Hyperbolic Cotangent
+ look at the description of Coth(...)
+
+ (the abbreviation of Hyperbolic Cotangent can be 'ctgh' as well)
+ */
+ template<class ValueType>
+ ValueType Ctgh(const ValueType & x, ErrorCode * err = 0)
+ {
+ return Coth(x, err);
+ }
+
+
+ /*
+ *
+ * inverse hyperbolic functions
+ *
+ *
+ */
+
+
+ /*!
+ inverse hyperbolic sine
+
+ asinh(x) = ln( x + sqrt(x^2 + 1) )
+ */
+ template<class ValueType>
+ ValueType ASinh(const ValueType & x, ErrorCode * err = 0)
+ {
+ if( x.IsNan() )
+ {
+ if( err )
+ *err = err_improper_argument;
+
+ return x; // NaN
+ }
+
+ ValueType xx(x), one, result;
+ uint c = 0;
+ one.SetOne();
+
+ c += xx.Mul(x);
+ c += xx.Add(one);
+ one.exponent.SubOne(); // one=0.5
+ // xx is >= 1
+ c += xx.PowFrac(one); // xx=sqrt(xx)
+ c += xx.Add(x);
+ c += result.Ln(xx); // xx > 0
+
+ // here can only be a carry
+ if( err )
+ *err = c ? err_overflow : err_ok;
+
+ return result;
+ }
+
+
+ /*!
+ inverse hyperbolic cosine
+
+ acosh(x) = ln( x + sqrt(x^2 - 1) ) x in <1, infinity)
+ */
+ template<class ValueType>
+ ValueType ACosh(const ValueType & x, ErrorCode * err = 0)
+ {
+ if( x.IsNan() )
+ {
+ if( err )
+ *err = err_improper_argument;
+
+ return x; // NaN
+ }
+
+ ValueType xx(x), one, result;
+ uint c = 0;
+ one.SetOne();
+
+ if( x < one )
+ {
+ if( err )
+ *err = err_improper_argument;
+
+ return result; // NaN is set by default
+ }
+
+ c += xx.Mul(x);
+ c += xx.Sub(one);
+ // xx is >= 0
+ // we can't call a PowFrac when the 'x' is zero
+ // if x is 0 the sqrt(0) is 0
+ if( !xx.IsZero() )
+ {
+ one.exponent.SubOne(); // one=0.5
+ c += xx.PowFrac(one); // xx=sqrt(xx)
+ }
+ c += xx.Add(x);
+ c += result.Ln(xx); // xx >= 1
+
+ // here can only be a carry
+ if( err )
+ *err = c ? err_overflow : err_ok;
+
+ return result;
+ }
+
+
+ /*!
+ inverse hyperbolic tangent
+
+ atanh(x) = 0.5 * ln( (1+x) / (1-x) ) x in (-1, 1)
+ */
+ template<class ValueType>
+ ValueType ATanh(const ValueType & x, ErrorCode * err = 0)
+ {
+ if( x.IsNan() )
+ {
+ if( err )
+ *err = err_improper_argument;
+
+ return x; // NaN
+ }
+
+ ValueType nominator(x), denominator, one, result;
+ uint c = 0;
+ one.SetOne();
+
+ if( !x.SmallerWithoutSignThan(one) )
+ {
+ if( err )
+ *err = err_improper_argument;
+
+ return result; // NaN is set by default
+ }
+
+ c += nominator.Add(one);
+ denominator = one;
+ c += denominator.Sub(x);
+ c += nominator.Div(denominator);
+ c += result.Ln(nominator);
+ c += result.exponent.SubOne();
+
+ // here can only be a carry
+ if( err )
+ *err = c ? err_overflow : err_ok;
+
+ return result;
+ }
+
+
+ /*!
+ inverse hyperbolic tantent
+ */
+ template<class ValueType>
+ ValueType ATgh(const ValueType & x, ErrorCode * err = 0)
+ {
+ return ATanh(x, err);
+ }
+
+
+ /*!
+ inverse hyperbolic cotangent
+
+ acoth(x) = 0.5 * ln( (x+1) / (x-1) ) x in (-infinity, -1) or (1, infinity)
+ */
+ template<class ValueType>
+ ValueType ACoth(const ValueType & x, ErrorCode * err = 0)
+ {
+ if( x.IsNan() )
+ {
+ if( err )
+ *err = err_improper_argument;
+
+ return x; // NaN
+ }
+
+ ValueType nominator(x), denominator(x), one, result;
+ uint c = 0;
+ one.SetOne();
+
+ if( !x.GreaterWithoutSignThan(one) )
+ {
+ if( err )
+ *err = err_improper_argument;
+
+ return result; // NaN is set by default
+ }
+
+ c += nominator.Add(one);
+ c += denominator.Sub(one);
+ c += nominator.Div(denominator);
+ c += result.Ln(nominator);
+ c += result.exponent.SubOne();
+
+ // here can only be a carry
+ if( err )
+ *err = c ? err_overflow : err_ok;
+
+ return result;
+ }
+
+
+ /*!
+ inverse hyperbolic cotantent
+ */
+ template<class ValueType>
+ ValueType ACtgh(const ValueType & x, ErrorCode * err = 0)
+ {
+ return ACoth(x, err);
+ }
+
+
+
+
+
+ /*
+ *
+ * functions for converting between degrees, radians and gradians
+ *
+ *
+ */
+
+
+ /*!
+ this function converts degrees to radians
+
+ it returns: x * pi / 180
+ */
+ template<class ValueType>
+ ValueType DegToRad(const ValueType & x, ErrorCode * err = 0)
+ {
+ ValueType result, temp;
+ uint c = 0;
+
+ if( x.IsNan() )
+ {
+ if( err )
+ *err = err_improper_argument;
+
+ return result; // NaN is set by default
+ }
+
+ result = x;
+
+ // it is better to make division first and then multiplication
+ // the result is more accurate especially when x is: 90,180,270 or 360
+ temp = 180;
+ c += result.Div(temp);
+
+ temp.SetPi();
+ c += result.Mul(temp);
+
+ if( err )
+ *err = c ? err_overflow : err_ok;
+
+ return result;
+ }
+
+
+ /*!
+ this function converts radians to degrees
+
+ it returns: x * 180 / pi
+ */
+ template<class ValueType>
+ ValueType RadToDeg(const ValueType & x, ErrorCode * err = 0)
+ {
+ ValueType result, delimiter;
+ uint c = 0;
+
+ if( x.IsNan() )
+ {
+ if( err )
+ *err = err_improper_argument;
+
+ return result; // NaN is set by default
+ }
+
+ result = 180;
+ c += result.Mul(x);
+
+ delimiter.SetPi();
+ c += result.Div(delimiter);
+
+ if( err )
+ *err = c ? err_overflow : err_ok;
+
+ return result;
+ }
+
+
+ /*!
+ this function converts degrees in the long format into one value
+
+ long format: (degrees, minutes, seconds)
+ minutes and seconds must be greater than or equal zero
+
+ result:
+ if d>=0 : result= d + ((s/60)+m)/60
+ if d<0 : result= d - ((s/60)+m)/60
+
+ ((s/60)+m)/60 = (s+60*m)/3600 (second version is faster because
+ there's only one division)
+
+ for example:
+ DegToDeg(10, 30, 0) = 10.5
+ DegToDeg(10, 24, 35.6)=10.4098(8)
+ */
+ template<class ValueType>
+ ValueType DegToDeg( const ValueType & d, const ValueType & m, const ValueType & s,
+ ErrorCode * err = 0)
+ {
+ ValueType delimiter, multipler;
+ uint c = 0;
+
+ if( d.IsNan() || m.IsNan() || s.IsNan() || m.IsSign() || s.IsSign() )
+ {
+ if( err )
+ *err = err_improper_argument;
+
+ return delimiter ; // NaN is set by default
+ }
+
+ multipler = 60;
+ delimiter = 3600;
+
+ c += multipler.Mul(m);
+ c += multipler.Add(s);
+ c += multipler.Div(delimiter);
+
+ if( d.IsSign() )
+ multipler.ChangeSign();
+
+ c += multipler.Add(d);
+
+ if( err )
+ *err = c ? err_overflow : err_ok;
+
+ return multipler;
+ }
+
+
+ /*!
+ this function converts degrees in the long format to radians
+ */
+ template<class ValueType>
+ ValueType DegToRad( const ValueType & d, const ValueType & m, const ValueType & s,
+ ErrorCode * err = 0)
+ {
+ ValueType temp_deg = DegToDeg(d,m,s,err);
+
+ if( err && *err!=err_ok )
+ return temp_deg;
+
+ return DegToRad(temp_deg, err);
+ }
+
+
+ /*!
+ this function converts gradians to radians
+
+ it returns: x * pi / 200
+ */
+ template<class ValueType>
+ ValueType GradToRad(const ValueType & x, ErrorCode * err = 0)
+ {
+ ValueType result, temp;
+ uint c = 0;
+
+ if( x.IsNan() )
+ {
+ if( err )
+ *err = err_improper_argument;
+
+ return result; // NaN is set by default
+ }
+
+ result = x;
+
+ // it is better to make division first and then multiplication
+ // the result is more accurate especially when x is: 100,200,300 or 400
+ temp = 200;
+ c += result.Div(temp);
+
+ temp.SetPi();
+ c += result.Mul(temp);
+
+ if( err )
+ *err = c ? err_overflow : err_ok;
+
+ return result;
+ }
+
+
+ /*!
+ this function converts radians to gradians
+
+ it returns: x * 200 / pi
+ */
+ template<class ValueType>
+ ValueType RadToGrad(const ValueType & x, ErrorCode * err = 0)
+ {
+ ValueType result, delimiter;
+ uint c = 0;
+
+ if( x.IsNan() )
+ {
+ if( err )
+ *err = err_improper_argument;
+
+ return result; // NaN is set by default
+ }
+
+ result = 200;
+ c += result.Mul(x);
+
+ delimiter.SetPi();
+ c += result.Div(delimiter);
+
+ if( err )
+ *err = c ? err_overflow : err_ok;
+
+ return result;
+ }
+
+
+ /*!
+ this function converts degrees to gradians
+
+ it returns: x * 200 / 180
+ */
+ template<class ValueType>
+ ValueType DegToGrad(const ValueType & x, ErrorCode * err = 0)
+ {
+ ValueType result, temp;
+ uint c = 0;
+
+ if( x.IsNan() )
+ {
+ if( err )
+ *err = err_improper_argument;
+
+ return result; // NaN is set by default
+ }
+
+ result = x;
+
+ temp = 200;
+ c += result.Mul(temp);
+
+ temp = 180;
+ c += result.Div(temp);
+
+ if( err )
+ *err = c ? err_overflow : err_ok;
+
+ return result;
+ }
+
+
+ /*!
+ this function converts degrees in the long format to gradians
+ */
+ template<class ValueType>
+ ValueType DegToGrad( const ValueType & d, const ValueType & m, const ValueType & s,
+ ErrorCode * err = 0)
+ {
+ ValueType temp_deg = DegToDeg(d,m,s,err);
+
+ if( err && *err!=err_ok )
+ return temp_deg;
+
+ return DegToGrad(temp_deg, err);
+ }
+
+
+ /*!
+ this function converts degrees to gradians
+
+ it returns: x * 180 / 200
+ */
+ template<class ValueType>
+ ValueType GradToDeg(const ValueType & x, ErrorCode * err = 0)
+ {
+ ValueType result, temp;
+ uint c = 0;
+
+ if( x.IsNan() )
+ {
+ if( err )
+ *err = err_improper_argument;
+
+ return result; // NaN is set by default
+ }
+
+ result = x;
+
+ temp = 180;
+ c += result.Mul(temp);
+
+ temp = 200;
+ c += result.Div(temp);
+
+ if( err )
+ *err = c ? err_overflow : err_ok;
+
+ return result;
+ }
+
+
+
+
+ /*
+ *
+ * another functions
+ *
+ *
+ */
+
+
+ /*!
+ this function calculates the square root
+
+ Sqrt(9) = 3
+ */
+ template<class ValueType>
+ ValueType Sqrt(ValueType x, ErrorCode * err = 0)
+ {
+ if( x.IsNan() || x.IsSign() )
+ {
+ if( err )
+ *err = err_improper_argument;
+
+ return ValueType(); // NaN is set by default
+ }
+
+ uint c = x.Sqrt();
+
+ if( err )
+ *err = c ? err_overflow : err_ok;
+
+ return x;
+ }
+
+
+
+ namespace auxiliaryfunctions
+ {
+
+ template<class ValueType>
+ bool RootCheckIndexSign(ValueType & x, const ValueType & index, ErrorCode * err)
+ {
+ if( index.IsSign() )
+ {
+ // index cannot be negative
+ if( err )
+ *err = err_improper_argument;
+
+ x.SetNan();
+
+ return true;
+ }
+
+ return false;
+ }
+
+
+ template<class ValueType>
+ bool RootCheckIndexZero(ValueType & x, const ValueType & index, ErrorCode * err)
+ {
+ if( index.IsZero() )
+ {
+ if( x.IsZero() )
+ {
+ // there isn't root(0;0) - we assume it's not defined
+ if( err )
+ *err = err_improper_argument;
+
+ x.SetNan();
+
+ return true;
+ }
+
+ // root(x;0) is 1 (if x!=0)
+ x.SetOne();
+
+ if( err )
+ *err = err_ok;
+
+ return true;
+ }
+
+ return false;
+ }
+
+
+ template<class ValueType>
+ bool RootCheckIndexOne(const ValueType & index, ErrorCode * err)
+ {
+ ValueType one;
+ one.SetOne();
+
+ if( index == one )
+ {
+ //root(x;1) is x
+ // we do it because if we used the PowFrac function
+ // we would lose the precision
+ if( err )
+ *err = err_ok;
+
+ return true;
+ }
+
+ return false;
+ }
+
+
+ template<class ValueType>
+ bool RootCheckIndexTwo(ValueType & x, const ValueType & index, ErrorCode * err)
+ {
+ if( index == 2 )
+ {
+ x = Sqrt(x, err);
+
+ return true;
+ }
+
+ return false;
+ }
+
+
+ template<class ValueType>
+ bool RootCheckIndexFrac(ValueType & x, const ValueType & index, ErrorCode * err)
+ {
+ if( !index.IsInteger() )
+ {
+ // index must be integer
+ if( err )
+ *err = err_improper_argument;
+
+ x.SetNan();
+
+ return true;
+ }
+
+ return false;
+ }
+
+
+ template<class ValueType>
+ bool RootCheckXZero(ValueType & x, ErrorCode * err)
+ {
+ if( x.IsZero() )
+ {
+ // root(0;index) is zero (if index!=0)
+ // RootCheckIndexZero() must be called beforehand
+ x.SetZero();
+
+ if( err )
+ *err = err_ok;
+
+ return true;
+ }
+
+ return false;
+ }
+
+
+ template<class ValueType>
+ bool RootCheckIndex(ValueType & x, const ValueType & index, ErrorCode * err, bool * change_sign)
+ {
+ *change_sign = false;
+
+ if( index.Mod2() )
+ {
+ // index is odd (1,3,5...)
+ if( x.IsSign() )
+ {
+ *change_sign = true;
+ x.Abs();
+ }
+ }
+ else
+ {
+ // index is even
+ // x cannot be negative
+ if( x.IsSign() )
+ {
+ if( err )
+ *err = err_improper_argument;
+
+ x.SetNan();
+
+ return true;
+ }
+ }
+
+ return false;
+ }
+
+
+ template<class ValueType>
+ uint RootCorrectInteger(ValueType & old_x, ValueType & x, const ValueType & index)
+ {
+ if( !old_x.IsInteger() || x.IsInteger() || !index.exponent.IsSign() )
+ return 0;
+
+ // old_x is integer,
+ // x is not integer,
+ // index is relatively small (index.exponent<0 or index.exponent<=0)
+ // (because we're using a special powering algorithm Big::PowUInt())
+
+ uint c = 0;
+
+ ValueType temp(x);
+ c += temp.Round();
+
+ ValueType temp_round(temp);
+ c += temp.PowUInt(index);
+
+ if( temp == old_x )
+ x = temp_round;
+
+ return (c==0)? 0 : 1;
+ }
+
+
+
+ } // namespace auxiliaryfunctions
+
+
+
+ /*!
+ indexth Root of x
+ index must be integer and not negative <0;1;2;3....)
+
+ if index==0 the result is one
+ if x==0 the result is zero and we assume root(0;0) is not defined
+
+ if index is even (2;4;6...) the result is x^(1/index) and x>0
+ if index is odd (1;2;3;...) the result is either
+ -(abs(x)^(1/index)) if x<0 or
+ x^(1/index)) if x>0
+
+ (for index==1 the result is equal x)
+ */
+ template<class ValueType>
+ ValueType Root(ValueType x, const ValueType & index, ErrorCode * err = 0)
+ {
+ using namespace auxiliaryfunctions;
+
+ if( x.IsNan() || index.IsNan() )
+ {
+ if( err )
+ *err = err_improper_argument;
+
+ return ValueType(); // NaN is set by default
+ }
+
+ if( RootCheckIndexSign(x, index, err) ) return x;
+ if( RootCheckIndexZero(x, index, err) ) return x;
+ if( RootCheckIndexOne ( index, err) ) return x;
+ if( RootCheckIndexTwo (x, index, err) ) return x;
+ if( RootCheckIndexFrac(x, index, err) ) return x;
+ if( RootCheckXZero (x, err) ) return x;
+
+ // index integer and index!=0
+ // x!=0
+
+ ValueType old_x(x);
+ bool change_sign;
+
+ if( RootCheckIndex(x, index, err, &change_sign ) ) return x;
+
+ ValueType temp;
+ uint c = 0;
+
+ // we're using the formula: root(x ; n) = exp( ln(x) / n )
+ c += temp.Ln(x);
+ c += temp.Div(index);
+ c += x.Exp(temp);
+
+ if( change_sign )
+ {
+ // x is different from zero
+ x.SetSign();
+ }
+
+ c += RootCorrectInteger(old_x, x, index);
+
+ if( err )
+ *err = c ? err_overflow : err_ok;
+
+ return x;
+ }
+
+
+
+ /*!
+ absolute value of x
+ e.g. -2 = 2
+ 2 = 2
+ */
+ template<class ValueType>
+ ValueType Abs(const ValueType & x)
+ {
+ ValueType result( x );
+ result.Abs();
+
+ return result;
+ }
+
+
+ /*!
+ it returns the sign of the value
+ e.g. -2 = -1
+ 0 = 0
+ 10 = 1
+ */
+ template<class ValueType>
+ ValueType Sgn(ValueType x)
+ {
+ x.Sgn();
+
+ return x;
+ }
+
+
+ /*!
+ the remainder from a division
+
+ e.g.
+ mod( 12.6 ; 3) = 0.6 because 12.6 = 3*4 + 0.6
+ mod(-12.6 ; 3) = -0.6 bacause -12.6 = 3*(-4) + (-0.6)
+ mod( 12.6 ; -3) = 0.6
+ mod(-12.6 ; -3) = -0.6
+ */
+ template<class ValueType>
+ ValueType Mod(ValueType a, const ValueType & b, ErrorCode * err = 0)
+ {
+ if( a.IsNan() || b.IsNan() )
+ {
+ if( err )
+ *err = err_improper_argument;
+
+ return ValueType(); // NaN is set by default
+ }
+
+ uint c = a.Mod(b);
+
+ if( err )
+ *err = c ? err_overflow : err_ok;
+
+ return a;
+ }
+
+
+
+ namespace auxiliaryfunctions
+ {
+
+ /*!
+ this function is used to store factorials in a given container
+ 'more' means how many values should be added at the end
+
+ e.g.
+ std::vector<ValueType> fact;
+ SetFactorialSequence(fact, 3);
+ // now the container has three values: 1 1 2
+
+ SetFactorialSequence(fact, 2);
+ // now the container has five values: 1 1 2 6 24
+ */
+ template<class ValueType>
+ void SetFactorialSequence(std::vector<ValueType> & fact, uint more = 20)
+ {
+ if( more == 0 )
+ more = 1;
+
+ uint start = static_cast<uint>(fact.size());
+ fact.resize(fact.size() + more);
+
+ if( start == 0 )
+ {
+ fact[0] = 1;
+ ++start;
+ }
+
+ for(uint i=start ; i<fact.size() ; ++i)
+ {
+ fact[i] = fact[i-1];
+ fact[i].MulInt(i);
+ }
+ }
+
+
+ /*!
+ an auxiliary function used to calculate Bernoulli numbers
+
+ this function returns a sum:
+ sum(m) = sum_{k=0}^{m-1} {2^k * (m k) * B(k)} k in [0, m-1] (m k) means binomial coefficient = (m! / (k! * (m-k)!))
+
+ you should have sufficient factorials in cgamma.fact
+ (cgamma.fact should have at least m items)
+
+ n_ should be equal 2
+ */
+ template<class ValueType>
+ ValueType SetBernoulliNumbersSum(CGamma<ValueType> & cgamma, const ValueType & n_, uint m,
+ const volatile StopCalculating * stop = 0)
+ {
+ ValueType k_, temp, temp2, temp3, sum;
+
+ sum.SetZero();
+
+ for(uint k=0 ; k<m ; ++k) // k<m means k<=m-1
+ {
+ if( stop && (k & 15)==0 ) // means: k % 16 == 0
+ if( stop->WasStopSignal() )
+ return ValueType(); // NaN
+
+ if( k>1 && (k & 1) == 1 ) // for that k the Bernoulli number is zero
+ continue;
+
+ k_ = k;
+
+ temp = n_; // n_ is equal 2
+ temp.Pow(k_);
+ // temp = 2^k
+
+ temp2 = cgamma.fact[m];
+ temp3 = cgamma.fact[k];
+ temp3.Mul(cgamma.fact[m-k]);
+ temp2.Div(temp3);
+ // temp2 = (m k) = m! / ( k! * (m-k)! )
+
+ temp.Mul(temp2);
+ temp.Mul(cgamma.bern[k]);
+
+ sum.Add(temp);
+ // sum += 2^k * (m k) * B(k)
+
+ if( sum.IsNan() )
+ break;
+ }
+
+ return sum;
+ }
+
+
+ /*!
+ an auxiliary function used to calculate Bernoulli numbers
+ start is >= 2
+
+ we use the recurrence formula:
+ B(m) = 1 / (2*(1 - 2^m)) * sum(m)
+ where sum(m) is calculated by SetBernoulliNumbersSum()
+ */
+ template<class ValueType>
+ bool SetBernoulliNumbersMore(CGamma<ValueType> & cgamma, uint start, const volatile StopCalculating * stop = 0)
+ {
+ ValueType denominator, temp, temp2, temp3, m_, sum, sum2, n_, k_;
+
+ const uint n = 2;
+ n_ = n;
+
+ // start is >= 2
+ for(uint m=start ; m<cgamma.bern.size() ; ++m)
+ {
+ if( (m & 1) == 1 )
+ {
+ cgamma.bern[m].SetZero();
+ }
+ else
+ {
+ m_ = m;
+
+ temp = n_; // n_ = 2
+ temp.Pow(m_);
+ // temp = 2^m
+
+ denominator.SetOne();
+ denominator.Sub(temp);
+ if( denominator.exponent.AddOne() ) // it means: denominator.MulInt(2)
+ denominator.SetNan();
+
+ // denominator = 2 * (1 - 2^m)
+
+ cgamma.bern[m] = SetBernoulliNumbersSum(cgamma, n_, m, stop);
+
+ if( stop && stop->WasStopSignal() )
+ {
+ cgamma.bern.resize(m); // valid numbers are in [0, m-1]
+ return false;
+ }
+
+ cgamma.bern[m].Div(denominator);
+ }
+ }
+
+ return true;
+ }
+
+
+ /*!
+ this function is used to calculate Bernoulli numbers,
+ returns false if there was a stop signal,
+ 'more' means how many values should be added at the end
+
+ e.g.
+ typedef Big<1,2> MyBig;
+ CGamma<MyBig> cgamma;
+ SetBernoulliNumbers(cgamma, 3);
+ // now we have three first Bernoulli numbers: 1 -0.5 0.16667
+
+ SetBernoulliNumbers(cgamma, 4);
+ // now we have 7 Bernoulli numbers: 1 -0.5 0.16667 0 -0.0333 0 0.0238
+ */
+ template<class ValueType>
+ bool SetBernoulliNumbers(CGamma<ValueType> & cgamma, uint more = 20, const volatile StopCalculating * stop = 0)
+ {
+ if( more == 0 )
+ more = 1;
+
+ uint start = static_cast<uint>(cgamma.bern.size());
+ cgamma.bern.resize(cgamma.bern.size() + more);
+
+ if( start == 0 )
+ {
+ cgamma.bern[0].SetOne();
+ ++start;
+ }
+
+ if( cgamma.bern.size() == 1 )
+ return true;
+
+ if( start == 1 )
+ {
+ cgamma.bern[1].Set05();
+ cgamma.bern[1].ChangeSign();
+ ++start;
+ }
+
+ // we should have sufficient factorials in cgamma.fact
+ if( cgamma.fact.size() < cgamma.bern.size() )
+ SetFactorialSequence(cgamma.fact, static_cast<uint>(cgamma.bern.size() - cgamma.fact.size()));
+
+
+ return SetBernoulliNumbersMore(cgamma, start, stop);
+ }
+
+
+ /*!
+ an auxiliary function used to calculate the Gamma() function
+
+ we calculate a sum:
+ sum(n) = sum_{m=2} { B(m) / ( (m^2 - m) * n^(m-1) ) } = 1/(12*n) - 1/(360*n^3) + 1/(1260*n^5) + ...
+ B(m) means a mth Bernoulli number
+ the sum starts from m=2, we calculate as long as the value will not change after adding a next part
+ */
+ template<class ValueType>
+ ValueType GammaFactorialHighSum(const ValueType & n, CGamma<ValueType> & cgamma, ErrorCode & err,
+ const volatile StopCalculating * stop)
+ {
+ ValueType temp, temp2, denominator, sum, oldsum;
+
+ sum.SetZero();
+
+ for(uint m=2 ; m<TTMATH_ARITHMETIC_MAX_LOOP ; m+=2)
+ {
+ if( stop && (m & 3)==0 ) // (m & 3)==0 means: (m % 4)==0
+ if( stop->WasStopSignal() )
+ {
+ err = err_interrupt;
+ return ValueType(); // NaN
+ }
+
+ temp = (m-1);
+ denominator = n;
+ denominator.Pow(temp);
+ // denominator = n ^ (m-1)
+
+ temp = m;
+ temp2 = temp;
+ temp.Mul(temp2);
+ temp.Sub(temp2);
+ // temp = m^2 - m
+
+ denominator.Mul(temp);
+ // denominator = (m^2 - m) * n ^ (m-1)
+
+ if( m >= cgamma.bern.size() )
+ {
+ if( !SetBernoulliNumbers(cgamma, m - cgamma.bern.size() + 1 + 3, stop) ) // 3 more than needed
+ {
+ // there was the stop signal
+ err = err_interrupt;
+ return ValueType(); // NaN
+ }
+ }
+
+ temp = cgamma.bern[m];
+ temp.Div(denominator);
+
+ oldsum = sum;
+ sum.Add(temp);
+
+ if( sum.IsNan() || oldsum==sum )
+ break;
+ }
+
+ return sum;
+ }
+
+
+ /*!
+ an auxiliary function used to calculate the Gamma() function
+
+ we calculate a helper function GammaFactorialHigh() by using Stirling's series:
+ n! = (n/e)^n * sqrt(2*pi*n) * exp( sum(n) )
+ where n is a real number (not only an integer) and is sufficient large (greater than TTMATH_GAMMA_BOUNDARY)
+ and sum(n) is calculated by GammaFactorialHighSum()
+ */
+ template<class ValueType>
+ ValueType GammaFactorialHigh(const ValueType & n, CGamma<ValueType> & cgamma, ErrorCode & err,
+ const volatile StopCalculating * stop)
+ {
+ ValueType temp, temp2, temp3, denominator, sum;
+
+ temp.Set2Pi();
+ temp.Mul(n);
+ temp2 = Sqrt(temp);
+ // temp2 = sqrt(2*pi*n)
+
+ temp = n;
+ temp3.SetE();
+ temp.Div(temp3);
+ temp.Pow(n);
+ // temp = (n/e)^n
+
+ sum = GammaFactorialHighSum(n, cgamma, err, stop);
+ temp3.Exp(sum);
+ // temp3 = exp(sum)
+
+ temp.Mul(temp2);
+ temp.Mul(temp3);
+
+ return temp;
+ }
+
+
+ /*!
+ an auxiliary function used to calculate the Gamma() function
+
+ Gamma(x) = GammaFactorialHigh(x-1)
+ */
+ template<class ValueType>
+ ValueType GammaPlusHigh(ValueType n, CGamma<ValueType> & cgamma, ErrorCode & err, const volatile StopCalculating * stop)
+ {
+ ValueType one;
+
+ one.SetOne();
+ n.Sub(one);
+
+ return GammaFactorialHigh(n, cgamma, err, stop);
+ }
+
+
+ /*!
+ an auxiliary function used to calculate the Gamma() function
+
+ we use this function when n is integer and a small value (from 0 to TTMATH_GAMMA_BOUNDARY]
+ we use the formula:
+ gamma(n) = (n-1)! = 1 * 2 * 3 * ... * (n-1)
+ */
+ template<class ValueType>
+ ValueType GammaPlusLowIntegerInt(uint n, CGamma<ValueType> & cgamma)
+ {
+ TTMATH_ASSERT( n > 0 )
+
+ if( n - 1 < static_cast<uint>(cgamma.fact.size()) )
+ return cgamma.fact[n - 1];
+
+ ValueType res;
+ uint start = 2;
+
+ if( cgamma.fact.size() < 2 )
+ {
+ res.SetOne();
+ }
+ else
+ {
+ start = static_cast<uint>(cgamma.fact.size());
+ res = cgamma.fact[start-1];
+ }
+
+ for(uint i=start ; i<n ; ++i)
+ res.MulInt(i);
+
+ return res;
+ }
+
+
+ /*!
+ an auxiliary function used to calculate the Gamma() function
+
+ we use this function when n is integer and a small value (from 0 to TTMATH_GAMMA_BOUNDARY]
+ */
+ template<class ValueType>
+ ValueType GammaPlusLowInteger(const ValueType & n, CGamma<ValueType> & cgamma)
+ {
+ sint n_;
+
+ n.ToInt(n_);
+
+ return GammaPlusLowIntegerInt(n_, cgamma);
+ }
+
+
+ /*!
+ an auxiliary function used to calculate the Gamma() function
+
+ we use this function when n is a small value (from 0 to TTMATH_GAMMA_BOUNDARY]
+ we use a recurrence formula:
+ gamma(z+1) = z * gamma(z)
+ then: gamma(z) = gamma(z+1) / z
+
+ e.g.
+ gamma(3.89) = gamma(2001.89) / ( 3.89 * 4.89 * 5.89 * ... * 1999.89 * 2000.89 )
+ */
+ template<class ValueType>
+ ValueType GammaPlusLow(ValueType n, CGamma<ValueType> & cgamma, ErrorCode & err, const volatile StopCalculating * stop)
+ {
+ ValueType one, denominator, temp, boundary;
+
+ if( n.IsInteger() )
+ return GammaPlusLowInteger(n, cgamma);
+
+ one.SetOne();
+ denominator = n;
+ boundary = TTMATH_GAMMA_BOUNDARY;
+
+ while( n < boundary )
+ {
+ n.Add(one);
+ denominator.Mul(n);
+ }
+
+ n.Add(one);
+
+ // now n is sufficient big
+ temp = GammaPlusHigh(n, cgamma, err, stop);
+ temp.Div(denominator);
+
+ return temp;
+ }
+
+
+ /*!
+ an auxiliary function used to calculate the Gamma() function
+ */
+ template<class ValueType>
+ ValueType GammaPlus(const ValueType & n, CGamma<ValueType> & cgamma, ErrorCode & err, const volatile StopCalculating * stop)
+ {
+ if( n > TTMATH_GAMMA_BOUNDARY )
+ return GammaPlusHigh(n, cgamma, err, stop);
+
+ return GammaPlusLow(n, cgamma, err, stop);
+ }
+
+
+ /*!
+ an auxiliary function used to calculate the Gamma() function
+
+ this function is used when n is negative
+ we use the reflection formula:
+ gamma(1-z) * gamma(z) = pi / sin(pi*z)
+ then: gamma(z) = pi / (sin(pi*z) * gamma(1-z))
+
+ */
+ template<class ValueType>
+ ValueType GammaMinus(const ValueType & n, CGamma<ValueType> & cgamma, ErrorCode & err, const volatile StopCalculating * stop)
+ {
+ ValueType pi, denominator, temp, temp2;
+
+ if( n.IsInteger() )
+ {
+ // gamma function is not defined when n is negative and integer
+ err = err_improper_argument;
+ return temp; // NaN
+ }
+
+ pi.SetPi();
+
+ temp = pi;
+ temp.Mul(n);
+ temp2 = Sin(temp);
+ // temp2 = sin(pi * n)
+
+ temp.SetOne();
+ temp.Sub(n);
+ temp = GammaPlus(temp, cgamma, err, stop);
+ // temp = gamma(1 - n)
+
+ temp.Mul(temp2);
+ pi.Div(temp);
+
+ return pi;
+ }
+
+ } // namespace auxiliaryfunctions
+
+
+
+ /*!
+ this function calculates the Gamma function
+
+ it's multithread safe, you should create a CGamma<> object and use it whenever you call the Gamma()
+ e.g.
+ typedef Big<1,2> MyBig;
+ MyBig x=234, y=345.53;
+ CGamma<MyBig> cgamma;
+ std::cout << Gamma(x, cgamma) << std::endl;
+ std::cout << Gamma(y, cgamma) << std::endl;
+ in the CGamma<> object the function stores some coefficients (factorials, Bernoulli numbers),
+ and they will be reused in next calls to the function
+
+ each thread should have its own CGamma<> object, and you can use these objects with Factorial() function too
+ */
+ template<class ValueType>
+ ValueType Gamma(const ValueType & n, CGamma<ValueType> & cgamma, ErrorCode * err = 0,
+ const volatile StopCalculating * stop = 0)
+ {
+ using namespace auxiliaryfunctions;
+
+ ValueType result;
+ ErrorCode err_tmp;
+
+ if( n.IsNan() )
+ {
+ if( err )
+ *err = err_improper_argument;
+
+ return result; // NaN is set by default
+ }
+
+ if( cgamma.history.Get(n, result, err_tmp) )
+ {
+ if( err )
+ *err = err_tmp;
+
+ return result;
+ }
+
+ err_tmp = err_ok;
+
+ if( n.IsSign() )
+ {
+ result = GammaMinus(n, cgamma, err_tmp, stop);
+ }
+ else
+ if( n.IsZero() )
+ {
+ err_tmp = err_improper_argument;
+ result.SetNan();
+ }
+ else
+ {
+ result = GammaPlus(n, cgamma, err_tmp, stop);
+ }
+
+ if( result.IsNan() && err_tmp==err_ok )
+ err_tmp = err_overflow;
+
+ if( err )
+ *err = err_tmp;
+
+ if( stop && !stop->WasStopSignal() )
+ cgamma.history.Add(n, result, err_tmp);
+
+ return result;
+ }
+
+
+ /*!
+ this function calculates the Gamma function
+
+ note: this function should be used only in a single-thread environment
+ */
+ template<class ValueType>
+ ValueType Gamma(const ValueType & n, ErrorCode * err = 0)
+ {
+ // warning: this static object is not thread safe
+ static CGamma<ValueType> cgamma;
+
+ return Gamma(n, cgamma, err);
+ }
+
+
+
+ namespace auxiliaryfunctions
+ {
+
+ /*!
+ an auxiliary function for calculating the factorial function
+
+ we use the formula:
+ x! = gamma(x+1)
+ */
+ template<class ValueType>
+ ValueType Factorial2(ValueType x,
+ CGamma<ValueType> * cgamma = 0,
+ ErrorCode * err = 0,
+ const volatile StopCalculating * stop = 0)
+ {
+ ValueType result, one;
+
+ if( x.IsNan() || x.IsSign() || !x.IsInteger() )
+ {
+ if( err )
+ *err = err_improper_argument;
+
+ return result; // NaN set by default
+ }
+
+ one.SetOne();
+ x.Add(one);
+
+ if( cgamma )
+ return Gamma(x, *cgamma, err, stop);
+
+ return Gamma(x, err);
+ }
+
+ } // namespace auxiliaryfunctions
+
+
+
+ /*!
+ the factorial from given 'x'
+ e.g.
+ Factorial(4) = 4! = 1*2*3*4
+
+ it's multithread safe, you should create a CGamma<> object and use it whenever you call the Factorial()
+ e.g.
+ typedef Big<1,2> MyBig;
+ MyBig x=234, y=54345;
+ CGamma<MyBig> cgamma;
+ std::cout << Factorial(x, cgamma) << std::endl;
+ std::cout << Factorial(y, cgamma) << std::endl;
+ in the CGamma<> object the function stores some coefficients (factorials, Bernoulli numbers),
+ and they will be reused in next calls to the function
+
+ each thread should have its own CGamma<> object, and you can use these objects with Gamma() function too
+ */
+ template<class ValueType>
+ ValueType Factorial(const ValueType & x, CGamma<ValueType> & cgamma, ErrorCode * err = 0,
+ const volatile StopCalculating * stop = 0)
+ {
+ return auxiliaryfunctions::Factorial2(x, &cgamma, err, stop);
+ }
+
+
+ /*!
+ the factorial from given 'x'
+ e.g.
+ Factorial(4) = 4! = 1*2*3*4
+
+ note: this function should be used only in a single-thread environment
+ */
+ template<class ValueType>
+ ValueType Factorial(const ValueType & x, ErrorCode * err = 0)
+ {
+ return auxiliaryfunctions::Factorial2(x, (CGamma<ValueType>*)0, err, 0);
+ }
+
+
+ /*!
+ this method prepares some coefficients: factorials and Bernoulli numbers
+ stored in 'fact' and 'bern' objects
+
+ we're defining the method here because we're using Gamma() function which
+ is not available in ttmathobjects.h
+
+ read the doc info in ttmathobjects.h file where CGamma<> struct is declared
+ */
+ template<class ValueType>
+ void CGamma<ValueType>::InitAll()
+ {
+ ValueType x = TTMATH_GAMMA_BOUNDARY + 1;
+
+ // history.Remove(x) removes only one object
+ // we must be sure that there are not others objects with the key 'x'
+ while( history.Remove(x) )
+ {
+ }
+
+ // the simplest way to initialize is to call the Gamma function with (TTMATH_GAMMA_BOUNDARY + 1)
+ // when x is larger then fewer coefficients we need
+ Gamma(x, *this);
+ }
+
+
+
+} // namespace
+
+
+/*!
+ this is for convenience for the user
+ he can only use '#include <ttmath/ttmath.h>' even if he uses the parser
+*/
+#include "ttmathparser.h"
+
+
+#ifdef _MSC_VER
+//warning C4127: conditional expression is constant
+#pragma warning( default: 4127 )
+//warning C4702: unreachable code
+#pragma warning( default: 4702 )
+//warning C4800: forcing value to bool 'true' or 'false' (performance warning)
+#pragma warning( default: 4800 )
+#endif
+
+#endif
Added: sandbox/geometry/boost/geometry/extensions/contrib/ttmath/ttmathbig.h
==============================================================================
--- (empty file)
+++ sandbox/geometry/boost/geometry/extensions/contrib/ttmath/ttmathbig.h 2010-07-05 13:06:03 EDT (Mon, 05 Jul 2010)
@@ -0,0 +1,5222 @@
+/*
+ * This file is a part of TTMath Bignum Library
+ * and is distributed under the (new) BSD licence.
+ * Author: Tomasz Sowa <t.sowa_at_[hidden]>
+ */
+
+/*
+ * Copyright (c) 2006-2010, Tomasz Sowa
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are met:
+ *
+ * * Redistributions of source code must retain the above copyright notice,
+ * this list of conditions and the following disclaimer.
+ *
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * * Neither the name Tomasz Sowa nor the names of contributors to this
+ * project may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
+ * THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#ifndef headerfilettmathbig
+#define headerfilettmathbig
+
+/*!
+ \file ttmathbig.h
+ \brief A Class for representing floating point numbers
+*/
+
+#include "ttmathint.h"
+#include "ttmaththreads.h"
+
+#include <iostream>
+
+#ifdef TTMATH_MULTITHREADS
+#include <signal.h>
+#endif
+
+namespace ttmath
+{
+
+
+/*!
+ \brief Big implements the floating point numbers
+*/
+template <uint exp, uint man>
+class Big
+{
+
+/*
+ value = mantissa * 2^exponent
+
+ exponent - an integer value with a sign
+ mantissa - an integer value without a sing
+
+ mantissa must be pushed into the left side that is the highest bit from
+ mantissa must be one (of course if there's another value than zero) -- this job
+ (pushing bits into the left side) making Standardizing() method
+
+ for example:
+ if we want to store value one (1) into our Big object we must:
+ set mantissa to 1
+ set exponent to 0
+ set info to 0
+ and call method Standardizing()
+*/
+
+
+public:
+
+Int<exp> exponent;
+UInt<man> mantissa;
+unsigned char info;
+
+
+/*!
+ Sign
+ the mask of a bit from 'info' which means that there is a sign
+ (when the bit is set)
+*/
+#define TTMATH_BIG_SIGN 128
+
+
+/*!
+ Not a number
+ if this bit is set that there is not a valid number
+*/
+#define TTMATH_BIG_NAN 64
+
+
+/*!
+ Zero
+ if this bit is set that there is value zero
+ mantissa should be zero and exponent should be zero too
+ (the Standardizing() method does this)
+*/
+#define TTMATH_BIG_ZERO 32
+
+
+ /*!
+ this method sets NaN if there was a carry (and returns 1 in such a case)
+
+ c can be 0, 1 or other value different from zero
+ */
+ uint CheckCarry(uint c)
+ {
+ if( c != 0 )
+ {
+ SetNan();
+ return 1;
+ }
+
+ return 0;
+ }
+
+public:
+
+
+ /*!
+ returning the string represents the currect type of the library
+ we have following types:
+ asm_vc_32 - with asm code designed for Microsoft Visual C++ (32 bits)
+ asm_gcc_32 - with asm code designed for GCC (32 bits)
+ asm_vc_64 - with asm for VC (64 bit)
+ asm_gcc_64 - with asm for GCC (64 bit)
+ no_asm_32 - pure C++ version (32 bit) - without any asm code
+ no_asm_64 - pure C++ version (64 bit) - without any asm code
+ */
+ static const char * LibTypeStr()
+ {
+ return UInt<man>::LibTypeStr();
+ }
+
+
+ /*!
+ returning the currect type of the library
+ */
+ static LibTypeCode LibType()
+ {
+ return UInt<man>::LibType();
+ }
+
+
+
+ /*!
+ this method moves all bits from mantissa into its left side
+ (suitably changes the exponent) or if the mantissa is zero
+ it sets the exponent to zero as well
+ (and clears the sign bit and sets the zero bit)
+
+ it can return a carry
+ the carry will be when we don't have enough space in the exponent
+
+ you don't have to use this method if you don't change the mantissa
+ and exponent directly
+ */
+ uint Standardizing()
+ {
+ if( mantissa.IsTheHighestBitSet() )
+ {
+ ClearInfoBit(TTMATH_BIG_ZERO);
+ return 0;
+ }
+
+ if( CorrectZero() )
+ return 0;
+
+ uint comp = mantissa.CompensationToLeft();
+
+ return exponent.Sub( comp );
+ }
+
+
+private:
+
+ /*!
+ if the mantissa is equal zero this method sets exponent to zero and
+ info without the sign
+
+ it returns true if there was the correction
+ */
+ bool CorrectZero()
+ {
+ if( mantissa.IsZero() )
+ {
+ SetInfoBit(TTMATH_BIG_ZERO);
+ ClearInfoBit(TTMATH_BIG_SIGN);
+ exponent.SetZero();
+
+ return true;
+ }
+ else
+ {
+ ClearInfoBit(TTMATH_BIG_ZERO);
+ }
+
+ return false;
+ }
+
+
+public:
+
+ /*!
+ this method clears a specific bit in the 'info' variable
+
+ bit is one of: TTMATH_BIG_SIGN, TTMATH_BIG_NAN etc.
+ */
+ void ClearInfoBit(unsigned char bit)
+ {
+ info = info & (~bit);
+ }
+
+
+ /*!
+ this method sets a specific bit in the 'info' variable
+
+ bit is one of: TTMATH_BIG_SIGN, TTMATH_BIG_NAN etc.
+
+ */
+ void SetInfoBit(unsigned char bit)
+ {
+ info = info | bit;
+ }
+
+
+ /*!
+ this method returns true if a specific bit in the 'info' variable is set
+
+ bit is one of: TTMATH_BIG_SIGN, TTMATH_BIG_NAN etc.
+ */
+ bool IsInfoBit(unsigned char bit) const
+ {
+ return (info & bit) != 0;
+ }
+
+
+ /*!
+ this method sets zero
+ */
+ void SetZero()
+ {
+ info = TTMATH_BIG_ZERO;
+ exponent.SetZero();
+ mantissa.SetZero();
+
+ /*
+ we don't have to compensate zero
+ */
+ }
+
+
+ /*!
+ this method sets one
+ */
+ void SetOne()
+ {
+ FromUInt(1);
+ }
+
+
+ /*!
+ this method sets value 0.5
+ */
+ void Set05()
+ {
+ FromUInt(1);
+ exponent.SubOne();
+ }
+
+
+ /*!
+ this method sets NaN flag (Not a Number)
+ when this flag is set that means there is no a valid number
+ */
+ void SetNan()
+ {
+ SetInfoBit(TTMATH_BIG_NAN);
+ }
+
+
+private:
+
+ /*!
+ this method sets the mantissa of the value of pi
+ */
+ void SetMantissaPi()
+ {
+ // this is a static table which represents the value of Pi (mantissa of it)
+ // (first is the highest word)
+ // we must define this table as 'unsigned int' because
+ // both on 32bit and 64bit platforms this table is 32bit
+ static const unsigned int temp_table[] = {
+ 0xc90fdaa2, 0x2168c234, 0xc4c6628b, 0x80dc1cd1, 0x29024e08, 0x8a67cc74, 0x020bbea6, 0x3b139b22,
+ 0x514a0879, 0x8e3404dd, 0xef9519b3, 0xcd3a431b, 0x302b0a6d, 0xf25f1437, 0x4fe1356d, 0x6d51c245,
+ 0xe485b576, 0x625e7ec6, 0xf44c42e9, 0xa637ed6b, 0x0bff5cb6, 0xf406b7ed, 0xee386bfb, 0x5a899fa5,
+ 0xae9f2411, 0x7c4b1fe6, 0x49286651, 0xece45b3d, 0xc2007cb8, 0xa163bf05, 0x98da4836, 0x1c55d39a,
+ 0x69163fa8, 0xfd24cf5f, 0x83655d23, 0xdca3ad96, 0x1c62f356, 0x208552bb, 0x9ed52907, 0x7096966d,
+ 0x670c354e, 0x4abc9804, 0xf1746c08, 0xca18217c, 0x32905e46, 0x2e36ce3b, 0xe39e772c, 0x180e8603,
+ 0x9b2783a2, 0xec07a28f, 0xb5c55df0, 0x6f4c52c9, 0xde2bcbf6, 0x95581718, 0x3995497c, 0xea956ae5,
+ 0x15d22618, 0x98fa0510, 0x15728e5a, 0x8aaac42d, 0xad33170d, 0x04507a33, 0xa85521ab, 0xdf1cba64,
+ 0xecfb8504, 0x58dbef0a, 0x8aea7157, 0x5d060c7d, 0xb3970f85, 0xa6e1e4c7, 0xabf5ae8c, 0xdb0933d7,
+ 0x1e8c94e0, 0x4a25619d, 0xcee3d226, 0x1ad2ee6b, 0xf12ffa06, 0xd98a0864, 0xd8760273, 0x3ec86a64,
+ 0x521f2b18, 0x177b200c, 0xbbe11757, 0x7a615d6c, 0x770988c0, 0xbad946e2, 0x08e24fa0, 0x74e5ab31,
+ 0x43db5bfc, 0xe0fd108e, 0x4b82d120, 0xa9210801, 0x1a723c12, 0xa787e6d7, 0x88719a10, 0xbdba5b26,
+ 0x99c32718, 0x6af4e23c, 0x1a946834, 0xb6150bda, 0x2583e9ca, 0x2ad44ce8, 0xdbbbc2db, 0x04de8ef9,
+ 0x2e8efc14, 0x1fbecaa6, 0x287c5947, 0x4e6bc05d, 0x99b2964f, 0xa090c3a2, 0x233ba186, 0x515be7ed,
+ 0x1f612970, 0xcee2d7af, 0xb81bdd76, 0x2170481c, 0xd0069127, 0xd5b05aa9, 0x93b4ea98, 0x8d8fddc1,
+ 0x86ffb7dc, 0x90a6c08f, 0x4df435c9, 0x34028492, 0x36c3fab4, 0xd27c7026, 0xc1d4dcb2, 0x602646de,
+ 0xc9751e76, 0x3dba37bd, 0xf8ff9406, 0xad9e530e, 0xe5db382f, 0x413001ae, 0xb06a53ed, 0x9027d831,
+ 0x179727b0, 0x865a8918, 0xda3edbeb, 0xcf9b14ed, 0x44ce6cba, 0xced4bb1b, 0xdb7f1447, 0xe6cc254b,
+ 0x33205151, 0x2bd7af42, 0x6fb8f401, 0x378cd2bf, 0x5983ca01, 0xc64b92ec, 0xf032ea15, 0xd1721d03,
+ 0xf482d7ce, 0x6e74fef6, 0xd55e702f, 0x46980c82, 0xb5a84031, 0x900b1c9e, 0x59e7c97f, 0xbec7e8f3,
+ 0x23a97a7e, 0x36cc88be, 0x0f1d45b7, 0xff585ac5, 0x4bd407b2, 0x2b4154aa, 0xcc8f6d7e, 0xbf48e1d8,
+ 0x14cc5ed2, 0x0f8037e0, 0xa79715ee, 0xf29be328, 0x06a1d58b, 0xb7c5da76, 0xf550aa3d, 0x8a1fbff0,
+ 0xeb19ccb1, 0xa313d55c, 0xda56c9ec, 0x2ef29632, 0x387fe8d7, 0x6e3c0468, 0x043e8f66, 0x3f4860ee,
+ 0x12bf2d5b, 0x0b7474d6, 0xe694f91e, 0x6dbe1159, 0x74a3926f, 0x12fee5e4, 0x38777cb6, 0xa932df8c,
+ 0xd8bec4d0, 0x73b931ba, 0x3bc832b6, 0x8d9dd300, 0x741fa7bf, 0x8afc47ed, 0x2576f693, 0x6ba42466,
+ 0x3aab639c, 0x5ae4f568, 0x3423b474, 0x2bf1c978, 0x238f16cb, 0xe39d652d, 0xe3fdb8be, 0xfc848ad9,
+ 0x22222e04, 0xa4037c07, 0x13eb57a8, 0x1a23f0c7, 0x3473fc64, 0x6cea306b, 0x4bcbc886, 0x2f8385dd,
+ 0xfa9d4b7f, 0xa2c087e8, 0x79683303, 0xed5bdd3a, 0x062b3cf5, 0xb3a278a6, 0x6d2a13f8, 0x3f44f82d,
+ 0xdf310ee0, 0x74ab6a36, 0x4597e899, 0xa0255dc1, 0x64f31cc5, 0x0846851d, 0xf9ab4819, 0x5ded7ea1,
+ 0xb1d510bd, 0x7ee74d73, 0xfaf36bc3, 0x1ecfa268, 0x359046f4, 0xeb879f92, 0x4009438b, 0x481c6cd7,
+ 0x889a002e, 0xd5ee382b, 0xc9190da6, 0xfc026e47, 0x9558e447, 0x5677e9aa, 0x9e3050e2, 0x765694df,
+ 0xc81f56e8, 0x80b96e71, 0x60c980dd, 0x98a573ea, 0x4472065a, 0x139cd290, 0x6cd1cb72, 0x9ec52a53 // last one was: 0x9ec52a52
+ //0x86d44014, ...
+ // (the last word 0x9ec52a52 was rounded up because the next one is 0x86d44014 -- first bit is one 0x8..)
+ // 256 32bit words for the mantissa -- about 2464 valid decimal digits
+ };
+ // the value of PI is comming from the website http://zenwerx.com/pi.php
+ // 3101 digits were taken from this website
+ // (later the digits were compared with:
+ // http://www.eveandersson.com/pi/digits/1000000 and http://www.geom.uiuc.edu/~huberty/math5337/groupe/digits.html )
+ // and they were set into Big<1,400> type (using operator=(const char*) on a 32bit platform)
+ // and then the first 256 words were taken into this table
+ // (TTMATH_BUILTIN_VARIABLES_SIZE on 32bit platform should have the value 256,
+ // and on 64bit platform value 128 (256/2=128))
+
+ mantissa.SetFromTable(temp_table, sizeof(temp_table) / sizeof(int));
+ }
+
+public:
+
+
+ /*!
+ this method sets the value of pi
+ */
+ void SetPi()
+ {
+ SetMantissaPi();
+ info = 0;
+ exponent = -sint(man)*sint(TTMATH_BITS_PER_UINT) + 2;
+ }
+
+
+ /*!
+ this method sets the value of 0.5 * pi
+ */
+ void Set05Pi()
+ {
+ SetMantissaPi();
+ info = 0;
+ exponent = -sint(man)*sint(TTMATH_BITS_PER_UINT) + 1;
+ }
+
+
+ /*!
+ this method sets the value of 2 * pi
+ */
+ void Set2Pi()
+ {
+ SetMantissaPi();
+ info = 0;
+ exponent = -sint(man)*sint(TTMATH_BITS_PER_UINT) + 3;
+ }
+
+
+ /*!
+ this method sets the value of e
+ (the base of the natural logarithm)
+ */
+ void SetE()
+ {
+ static const unsigned int temp_table[] = {
+ 0xadf85458, 0xa2bb4a9a, 0xafdc5620, 0x273d3cf1, 0xd8b9c583, 0xce2d3695, 0xa9e13641, 0x146433fb,
+ 0xcc939dce, 0x249b3ef9, 0x7d2fe363, 0x630c75d8, 0xf681b202, 0xaec4617a, 0xd3df1ed5, 0xd5fd6561,
+ 0x2433f51f, 0x5f066ed0, 0x85636555, 0x3ded1af3, 0xb557135e, 0x7f57c935, 0x984f0c70, 0xe0e68b77,
+ 0xe2a689da, 0xf3efe872, 0x1df158a1, 0x36ade735, 0x30acca4f, 0x483a797a, 0xbc0ab182, 0xb324fb61,
+ 0xd108a94b, 0xb2c8e3fb, 0xb96adab7, 0x60d7f468, 0x1d4f42a3, 0xde394df4, 0xae56ede7, 0x6372bb19,
+ 0x0b07a7c8, 0xee0a6d70, 0x9e02fce1, 0xcdf7e2ec, 0xc03404cd, 0x28342f61, 0x9172fe9c, 0xe98583ff,
+ 0x8e4f1232, 0xeef28183, 0xc3fe3b1b, 0x4c6fad73, 0x3bb5fcbc, 0x2ec22005, 0xc58ef183, 0x7d1683b2,
+ 0xc6f34a26, 0xc1b2effa, 0x886b4238, 0x611fcfdc, 0xde355b3b, 0x6519035b, 0xbc34f4de, 0xf99c0238,
+ 0x61b46fc9, 0xd6e6c907, 0x7ad91d26, 0x91f7f7ee, 0x598cb0fa, 0xc186d91c, 0xaefe1309, 0x85139270,
+ 0xb4130c93, 0xbc437944, 0xf4fd4452, 0xe2d74dd3, 0x64f2e21e, 0x71f54bff, 0x5cae82ab, 0x9c9df69e,
+ 0xe86d2bc5, 0x22363a0d, 0xabc52197, 0x9b0deada, 0x1dbf9a42, 0xd5c4484e, 0x0abcd06b, 0xfa53ddef,
+ 0x3c1b20ee, 0x3fd59d7c, 0x25e41d2b, 0x669e1ef1, 0x6e6f52c3, 0x164df4fb, 0x7930e9e4, 0xe58857b6,
+ 0xac7d5f42, 0xd69f6d18, 0x7763cf1d, 0x55034004, 0x87f55ba5, 0x7e31cc7a, 0x7135c886, 0xefb4318a,
+ 0xed6a1e01, 0x2d9e6832, 0xa907600a, 0x918130c4, 0x6dc778f9, 0x71ad0038, 0x092999a3, 0x33cb8b7a,
+ 0x1a1db93d, 0x7140003c, 0x2a4ecea9, 0xf98d0acc, 0x0a8291cd, 0xcec97dcf, 0x8ec9b55a, 0x7f88a46b,
+ 0x4db5a851, 0xf44182e1, 0xc68a007e, 0x5e0dd902, 0x0bfd64b6, 0x45036c7a, 0x4e677d2c, 0x38532a3a,
+ 0x23ba4442, 0xcaf53ea6, 0x3bb45432, 0x9b7624c8, 0x917bdd64, 0xb1c0fd4c, 0xb38e8c33, 0x4c701c3a,
+ 0xcdad0657, 0xfccfec71, 0x9b1f5c3e, 0x4e46041f, 0x388147fb, 0x4cfdb477, 0xa52471f7, 0xa9a96910,
+ 0xb855322e, 0xdb6340d8, 0xa00ef092, 0x350511e3, 0x0abec1ff, 0xf9e3a26e, 0x7fb29f8c, 0x183023c3,
+ 0x587e38da, 0x0077d9b4, 0x763e4e4b, 0x94b2bbc1, 0x94c6651e, 0x77caf992, 0xeeaac023, 0x2a281bf6,
+ 0xb3a739c1, 0x22611682, 0x0ae8db58, 0x47a67cbe, 0xf9c9091b, 0x462d538c, 0xd72b0374, 0x6ae77f5e,
+ 0x62292c31, 0x1562a846, 0x505dc82d, 0xb854338a, 0xe49f5235, 0xc95b9117, 0x8ccf2dd5, 0xcacef403,
+ 0xec9d1810, 0xc6272b04, 0x5b3b71f9, 0xdc6b80d6, 0x3fdd4a8e, 0x9adb1e69, 0x62a69526, 0xd43161c1,
+ 0xa41d570d, 0x7938dad4, 0xa40e329c, 0xcff46aaa, 0x36ad004c, 0xf600c838, 0x1e425a31, 0xd951ae64,
+ 0xfdb23fce, 0xc9509d43, 0x687feb69, 0xedd1cc5e, 0x0b8cc3bd, 0xf64b10ef, 0x86b63142, 0xa3ab8829,
+ 0x555b2f74, 0x7c932665, 0xcb2c0f1c, 0xc01bd702, 0x29388839, 0xd2af05e4, 0x54504ac7, 0x8b758282,
+ 0x2846c0ba, 0x35c35f5c, 0x59160cc0, 0x46fd8251, 0x541fc68c, 0x9c86b022, 0xbb709987, 0x6a460e74,
+ 0x51a8a931, 0x09703fee, 0x1c217e6c, 0x3826e52c, 0x51aa691e, 0x0e423cfc, 0x99e9e316, 0x50c1217b,
+ 0x624816cd, 0xad9a95f9, 0xd5b80194, 0x88d9c0a0, 0xa1fe3075, 0xa577e231, 0x83f81d4a, 0x3f2fa457,
+ 0x1efc8ce0, 0xba8a4fe8, 0xb6855dfe, 0x72b0a66e, 0xded2fbab, 0xfbe58a30, 0xfafabe1c, 0x5d71a87e,
+ 0x2f741ef8, 0xc1fe86fe, 0xa6bbfde5, 0x30677f0d, 0x97d11d49, 0xf7a8443d, 0x0822e506, 0xa9f4614e,
+ 0x011e2a94, 0x838ff88c, 0xd68c8bb7, 0xc51eef6d, 0x49ea8ab4, 0xf2c3df5b, 0xb4e0735a, 0xb0d68749
+ // 0x2fe26dd4, ...
+ // 256 32bit words for the mantissa -- about 2464 valid decimal digits
+ };
+
+ // above value was calculated using Big<1,400> type on a 32bit platform
+ // and then the first 256 words were taken,
+ // the calculating was made by using ExpSurrounding0(1) method
+ // which took 1420 iterations
+ // (the result was compared with e taken from http://antwrp.gsfc.nasa.gov/htmltest/gifcity/e.2mil)
+ // (TTMATH_BUILTIN_VARIABLES_SIZE on 32bit platform should have the value 256,
+ // and on 64bit platform value 128 (256/2=128))
+
+ mantissa.SetFromTable(temp_table, sizeof(temp_table) / sizeof(int));
+ exponent = -sint(man)*sint(TTMATH_BITS_PER_UINT) + 2;
+ info = 0;
+ }
+
+
+ /*!
+ this method sets the value of ln(2)
+ the natural logarithm from 2
+ */
+ void SetLn2()
+ {
+ static const unsigned int temp_table[] = {
+ 0xb17217f7, 0xd1cf79ab, 0xc9e3b398, 0x03f2f6af, 0x40f34326, 0x7298b62d, 0x8a0d175b, 0x8baafa2b,
+ 0xe7b87620, 0x6debac98, 0x559552fb, 0x4afa1b10, 0xed2eae35, 0xc1382144, 0x27573b29, 0x1169b825,
+ 0x3e96ca16, 0x224ae8c5, 0x1acbda11, 0x317c387e, 0xb9ea9bc3, 0xb136603b, 0x256fa0ec, 0x7657f74b,
+ 0x72ce87b1, 0x9d6548ca, 0xf5dfa6bd, 0x38303248, 0x655fa187, 0x2f20e3a2, 0xda2d97c5, 0x0f3fd5c6,
+ 0x07f4ca11, 0xfb5bfb90, 0x610d30f8, 0x8fe551a2, 0xee569d6d, 0xfc1efa15, 0x7d2e23de, 0x1400b396,
+ 0x17460775, 0xdb8990e5, 0xc943e732, 0xb479cd33, 0xcccc4e65, 0x9393514c, 0x4c1a1e0b, 0xd1d6095d,
+ 0x25669b33, 0x3564a337, 0x6a9c7f8a, 0x5e148e82, 0x074db601, 0x5cfe7aa3, 0x0c480a54, 0x17350d2c,
+ 0x955d5179, 0xb1e17b9d, 0xae313cdb, 0x6c606cb1, 0x078f735d, 0x1b2db31b, 0x5f50b518, 0x5064c18b,
+ 0x4d162db3, 0xb365853d, 0x7598a195, 0x1ae273ee, 0x5570b6c6, 0x8f969834, 0x96d4e6d3, 0x30af889b,
+ 0x44a02554, 0x731cdc8e, 0xa17293d1, 0x228a4ef9, 0x8d6f5177, 0xfbcf0755, 0x268a5c1f, 0x9538b982,
+ 0x61affd44, 0x6b1ca3cf, 0x5e9222b8, 0x8c66d3c5, 0x422183ed, 0xc9942109, 0x0bbb16fa, 0xf3d949f2,
+ 0x36e02b20, 0xcee886b9, 0x05c128d5, 0x3d0bd2f9, 0x62136319, 0x6af50302, 0x0060e499, 0x08391a0c,
+ 0x57339ba2, 0xbeba7d05, 0x2ac5b61c, 0xc4e9207c, 0xef2f0ce2, 0xd7373958, 0xd7622658, 0x901e646a,
+ 0x95184460, 0xdc4e7487, 0x156e0c29, 0x2413d5e3, 0x61c1696d, 0xd24aaebd, 0x473826fd, 0xa0c238b9,
+ 0x0ab111bb, 0xbd67c724, 0x972cd18b, 0xfbbd9d42, 0x6c472096, 0xe76115c0, 0x5f6f7ceb, 0xac9f45ae,
+ 0xcecb72f1, 0x9c38339d, 0x8f682625, 0x0dea891e, 0xf07afff3, 0xa892374e, 0x175eb4af, 0xc8daadd8,
+ 0x85db6ab0, 0x3a49bd0d, 0xc0b1b31d, 0x8a0e23fa, 0xc5e5767d, 0xf95884e0, 0x6425a415, 0x26fac51c,
+ 0x3ea8449f, 0xe8f70edd, 0x062b1a63, 0xa6c4c60c, 0x52ab3316, 0x1e238438, 0x897a39ce, 0x78b63c9f,
+ 0x364f5b8a, 0xef22ec2f, 0xee6e0850, 0xeca42d06, 0xfb0c75df, 0x5497e00c, 0x554b03d7, 0xd2874a00,
+ 0x0ca8f58d, 0x94f0341c, 0xbe2ec921, 0x56c9f949, 0xdb4a9316, 0xf281501e, 0x53daec3f, 0x64f1b783,
+ 0x154c6032, 0x0e2ff793, 0x33ce3573, 0xfacc5fdc, 0xf1178590, 0x3155bbd9, 0x0f023b22, 0x0224fcd8,
+ 0x471bf4f4, 0x45f0a88a, 0x14f0cd97, 0x6ea354bb, 0x20cdb5cc, 0xb3db2392, 0x88d58655, 0x4e2a0e8a,
+ 0x6fe51a8c, 0xfaa72ef2, 0xad8a43dc, 0x4212b210, 0xb779dfe4, 0x9d7307cc, 0x846532e4, 0xb9694eda,
+ 0xd162af05, 0x3b1751f3, 0xa3d091f6, 0x56658154, 0x12b5e8c2, 0x02461069, 0xac14b958, 0x784934b8,
+ 0xd6cce1da, 0xa5053701, 0x1aa4fb42, 0xb9a3def4, 0x1bda1f85, 0xef6fdbf2, 0xf2d89d2a, 0x4b183527,
+ 0x8fd94057, 0x89f45681, 0x2b552879, 0xa6168695, 0xc12963b0, 0xff01eaab, 0x73e5b5c1, 0x585318e7,
+ 0x624f14a5, 0x1a4a026b, 0x68082920, 0x57fd99b6, 0x6dc085a9, 0x8ac8d8ca, 0xf9eeeea9, 0x8a2400ca,
+ 0xc95f260f, 0xd10036f9, 0xf91096ac, 0x3195220a, 0x1a356b2a, 0x73b7eaad, 0xaf6d6058, 0x71ef7afb,
+ 0x80bc4234, 0x33562e94, 0xb12dfab4, 0x14451579, 0xdf59eae0, 0x51707062, 0x4012a829, 0x62c59cab,
+ 0x347f8304, 0xd889659e, 0x5a9139db, 0x14efcc30, 0x852be3e8, 0xfc99f14d, 0x1d822dd6, 0xe2f76797,
+ 0xe30219c8, 0xaa9ce884, 0x8a886eb3, 0xc87b7295, 0x988012e8, 0x314186ed, 0xbaf86856, 0xccd3c3b6,
+ 0xee94e62f, 0x110a6783, 0xd2aae89c, 0xcc3b76fc, 0x435a0ce1, 0x34c2838f, 0xd571ec6c, 0x1366a993 // last one was: 0x1366a992
+ //0xcbb9ac40, ...
+ // (the last word 0x1366a992 was rounded up because the next one is 0xcbb9ac40 -- first bit is one 0xc..)
+ // 256 32bit words for the mantissa -- about 2464 valid decimal digits
+ };
+
+ // above value was calculated using Big<1,400> type on a 32bit platform
+ // and then the first 256 words were taken,
+ // the calculating was made by using LnSurrounding1(2) method
+ // which took 4035 iterations
+ // (the result was compared with ln(2) taken from http://ja0hxv.calico.jp/pai/estart.html)
+ // (TTMATH_BUILTIN_VARIABLES_SIZE on 32bit platform should have the value 256,
+ // and on 64bit platform value 128 (256/2=128))
+
+ mantissa.SetFromTable(temp_table, sizeof(temp_table) / sizeof(int));
+ exponent = -sint(man)*sint(TTMATH_BITS_PER_UINT);
+ info = 0;
+ }
+
+
+ /*!
+ this method sets the value of ln(10)
+ the natural logarithm from 10
+
+ I introduced this constant especially to make the conversion ToString()
+ being faster. In fact the method ToString() is keeping values of logarithms
+ it has calculated but it must calculate the logarithm at least once.
+ If a program, which uses this library, is running for a long time this
+ would be ok, but for programs which are running shorter, for example for
+ CGI applications which only once are printing values, this would be much
+ inconvenience. Then if we're printing with base (radix) 10 and the mantissa
+ of our value is smaller than or equal to TTMATH_BUILTIN_VARIABLES_SIZE
+ we don't calculate the logarithm but take it from this constant.
+ */
+ void SetLn10()
+ {
+ static const unsigned int temp_table[] = {
+ 0x935d8ddd, 0xaaa8ac16, 0xea56d62b, 0x82d30a28, 0xe28fecf9, 0xda5df90e, 0x83c61e82, 0x01f02d72,
+ 0x962f02d7, 0xb1a8105c, 0xcc70cbc0, 0x2c5f0d68, 0x2c622418, 0x410be2da, 0xfb8f7884, 0x02e516d6,
+ 0x782cf8a2, 0x8a8c911e, 0x765aa6c3, 0xb0d831fb, 0xef66ceb0, 0x4ab3c6fa, 0x5161bb49, 0xd219c7bb,
+ 0xca67b35b, 0x23605085, 0x8e93368d, 0x44789c4f, 0x5b08b057, 0xd5ede20f, 0x469ea58e, 0x9305e981,
+ 0xe2478fca, 0xad3aee98, 0x9cd5b42e, 0x6a271619, 0xa47ecb26, 0x978c5d4f, 0xdb1d28ea, 0x57d4fdc0,
+ 0xe40bf3cc, 0x1e14126a, 0x45765cde, 0x268339db, 0xf47fa96d, 0xeb271060, 0xaf88486e, 0xa9b7401e,
+ 0x3dfd3c51, 0x748e6d6e, 0x3848c8d2, 0x5faf1bca, 0xe88047f1, 0x7b0d9b50, 0xa949eaaa, 0xdf69e8a5,
+ 0xf77e3760, 0x4e943960, 0xe38a5700, 0xffde2db1, 0xad6bfbff, 0xd821ba0a, 0x4cb0466d, 0x61ba648e,
+ 0xef99c8e5, 0xf6974f36, 0x3982a78c, 0xa45ddfc8, 0x09426178, 0x19127a6e, 0x3b70fcda, 0x2d732d47,
+ 0xb5e4b1c8, 0xc0e5a10a, 0xaa6604a5, 0x324ec3dc, 0xbc64ea80, 0x6e198566, 0x1f1d366c, 0x20663834,
+ 0x4d5e843f, 0x20642b97, 0x0a62d18e, 0x478f7bd5, 0x8fcd0832, 0x4a7b32a6, 0xdef85a05, 0xeb56323a,
+ 0x421ef5e0, 0xb00410a0, 0xa0d9c260, 0x794a976f, 0xf6ff363d, 0xb00b6b33, 0xf42c58de, 0xf8a3c52d,
+ 0xed69b13d, 0xc1a03730, 0xb6524dc1, 0x8c167e86, 0x99d6d20e, 0xa2defd2b, 0xd006f8b4, 0xbe145a2a,
+ 0xdf3ccbb3, 0x189da49d, 0xbc1261c8, 0xb3e4daad, 0x6a36cecc, 0xb2d5ae5b, 0x89bf752f, 0xb5dfb353,
+ 0xff3065c4, 0x0cfceec8, 0x1be5a9a9, 0x67fddc57, 0xc4b83301, 0x006bf062, 0x4b40ed7a, 0x56c6cdcd,
+ 0xa2d6fe91, 0x388e9e3e, 0x48a93f5f, 0x5e3b6eb4, 0xb81c4a5b, 0x53d49ea6, 0x8e668aea, 0xba83c7f8,
+ 0xfb5f06c3, 0x58ac8f70, 0xfa9d8c59, 0x8c574502, 0xbaf54c96, 0xc84911f0, 0x0482d095, 0x1a0af022,
+ 0xabbab080, 0xec97efd3, 0x671e4e0e, 0x52f166b6, 0xcd5cd226, 0x0dc67795, 0x2e1e34a3, 0xf799677f,
+ 0x2c1d48f1, 0x2944b6c5, 0x2ba1307e, 0x704d67f9, 0x1c1035e4, 0x4e927c63, 0x03cf12bf, 0xe2cd2e31,
+ 0xf8ee4843, 0x344d51b0, 0xf37da42b, 0x9f0b0fd9, 0x134fb2d9, 0xf815e490, 0xd966283f, 0x23962766,
+ 0xeceab1e4, 0xf3b5fc86, 0x468127e2, 0xb606d10d, 0x3a45f4b6, 0xb776102d, 0x2fdbb420, 0x80c8fa84,
+ 0xd0ff9f45, 0xc58aef38, 0xdb2410fd, 0x1f1cebad, 0x733b2281, 0x52ca5f36, 0xddf29daa, 0x544334b8,
+ 0xdeeaf659, 0x4e462713, 0x1ed485b4, 0x6a0822e1, 0x28db471c, 0xa53938a8, 0x44c3bef7, 0xf35215c8,
+ 0xb382bc4e, 0x3e4c6f15, 0x6285f54c, 0x17ab408e, 0xccbf7f5e, 0xd16ab3f6, 0xced2846d, 0xf457e14f,
+ 0xbb45d9c5, 0x646ad497, 0xac697494, 0x145de32e, 0x93907128, 0xd263d521, 0x79efb424, 0xd64651d6,
+ 0xebc0c9f0, 0xbb583a44, 0xc6412c84, 0x85bb29a6, 0x4d31a2cd, 0x92954469, 0xa32b1abd, 0xf7f5202c,
+ 0xa4aa6c93, 0x2e9b53cf, 0x385ab136, 0x2741f356, 0x5de9c065, 0x6009901c, 0x88abbdd8, 0x74efcf73,
+ 0x3f761ad4, 0x35f3c083, 0xfd6b8ee0, 0x0bef11c7, 0xc552a89d, 0x58ce4a21, 0xd71e54f2, 0x4157f6c7,
+ 0xd4622316, 0xe98956d7, 0x450027de, 0xcbd398d8, 0x4b98b36a, 0x0724c25c, 0xdb237760, 0xe9324b68,
+ 0x7523e506, 0x8edad933, 0x92197f00, 0xb853a326, 0xb330c444, 0x65129296, 0x34bc0670, 0xe177806d,
+ 0xe338dac4, 0x5537492a, 0xe19add83, 0xcf45000f, 0x5b423bce, 0x6497d209, 0xe30e18a1, 0x3cbf0687,
+ 0x67973103, 0xd9485366, 0x81506bba, 0x2e93a9a4, 0x7dd59d3f, 0xf17cd746, 0x8c2075be, 0x552a4348 // last one was: 0x552a4347
+ // 0xb4a638ef, ...
+ //(the last word 0x552a4347 was rounded up because the next one is 0xb4a638ef -- first bit is one 0xb..)
+ // 256 32bit words for the mantissa -- about 2464 valid digits (decimal)
+ };
+
+ // above value was calculated using Big<1,400> type on a 32bit platform
+ // and then the first 256 32bit words were taken,
+ // the calculating was made by using LnSurrounding1(10) method
+ // which took 22080 iterations
+ // (the result was compared with ln(10) taken from http://ja0hxv.calico.jp/pai/estart.html)
+ // (the formula used in LnSurrounding1(x) converges badly when
+ // the x is greater than one but in fact we can use it, only the
+ // number of iterations will be greater)
+ // (TTMATH_BUILTIN_VARIABLES_SIZE on 32bit platform should have the value 256,
+ // and on 64bit platform value 128 (256/2=128))
+
+ mantissa.SetFromTable(temp_table, sizeof(temp_table) / sizeof(int));
+ exponent = -sint(man)*sint(TTMATH_BITS_PER_UINT) + 2;
+ info = 0;
+ }
+
+
+ /*!
+ this method sets the maximum value which can be held in this type
+ */
+ void SetMax()
+ {
+ info = 0;
+ mantissa.SetMax();
+ exponent.SetMax();
+
+ // we don't have to use 'Standardizing()' because the last bit from
+ // the mantissa is set
+ }
+
+
+ /*!
+ this method sets the minimum value which can be held in this type
+ */
+ void SetMin()
+ {
+ info = 0;
+
+ mantissa.SetMax();
+ exponent.SetMax();
+ SetSign();
+
+ // we don't have to use 'Standardizing()' because the last bit from
+ // the mantissa is set
+ }
+
+
+ /*!
+ testing whether there is a value zero or not
+ */
+ bool IsZero() const
+ {
+ return IsInfoBit(TTMATH_BIG_ZERO);
+ }
+
+
+ /*!
+ this method returns true when there's the sign set
+ also we don't check the NaN flag
+ */
+ bool IsSign() const
+ {
+ return IsInfoBit(TTMATH_BIG_SIGN);
+ }
+
+
+ /*!
+ this method returns true when there is not a valid number
+ */
+ bool IsNan() const
+ {
+ return IsInfoBit(TTMATH_BIG_NAN);
+ }
+
+
+
+ /*!
+ this method clears the sign
+ (there'll be an absolute value)
+
+ e.g.
+ -1 -> 1
+ 2 -> 2
+ */
+ void Abs()
+ {
+ ClearInfoBit(TTMATH_BIG_SIGN);
+ }
+
+
+ /*!
+ this method remains the 'sign' of the value
+ e.g. -2 = -1
+ 0 = 0
+ 10 = 1
+ */
+ void Sgn()
+ {
+ // we have to check the NaN flag, because the next SetOne() method would clear it
+ if( IsNan() )
+ return;
+
+ if( IsSign() )
+ {
+ SetOne();
+ SetSign();
+ }
+ else
+ if( IsZero() )
+ SetZero();
+ else
+ SetOne();
+ }
+
+
+
+ /*!
+ this method sets the sign
+
+ e.g.
+ -1 -> -1
+ 2 -> -2
+
+ we do not check whether there is a zero or not, if you're using this method
+ you must be sure that the value is (or will be afterwards) different from zero
+ */
+ void SetSign()
+ {
+ SetInfoBit(TTMATH_BIG_SIGN);
+ }
+
+
+ /*!
+ this method changes the sign
+ when there is a value of zero then the sign is not changed
+
+ e.g.
+ -1 -> 1
+ 2 -> -2
+ */
+ void ChangeSign()
+ {
+ // we don't have to check the NaN flag here
+
+ if( IsZero() )
+ return;
+
+ if( IsSign() )
+ ClearInfoBit(TTMATH_BIG_SIGN);
+ else
+ SetInfoBit(TTMATH_BIG_SIGN);
+ }
+
+
+
+private:
+
+ /*!
+ this method does the half-to-even rounding (banker's rounding)
+
+ if is_half is:
+ true - that means the rest was equal the half (0.5 decimal)
+ false - that means the rest was greater than a half (greater than 0.5 decimal)
+
+ if the rest was less than a half then don't call this method
+ (the rounding should does nothing then)
+ */
+ uint RoundHalfToEven(bool is_half, bool rounding_up = true)
+ {
+ uint c = 0;
+
+ if( !is_half || mantissa.IsTheLowestBitSet() )
+ {
+ if( rounding_up )
+ {
+ if( mantissa.AddOne() )
+ {
+ mantissa.Rcr(1, 1);
+ c = exponent.AddOne();
+ }
+ }
+ else
+ {
+ #ifdef TTMATH_DEBUG
+ uint c_from_zero =
+ #endif
+ mantissa.SubOne();
+
+ // we're using rounding_up=false in Add() when the mantissas have different signs
+ // mantissa can be zero only when previous mantissa was equal to ss2.mantissa
+ // but in such a case 'last_bit_set' will not be set and consequently 'do_rounding' will be false
+ TTMATH_ASSERT( c_from_zero == 0 )
+ }
+ }
+
+ return c;
+ }
+
+
+
+
+
+ /*!
+ *
+ * basic mathematic functions
+ *
+ */
+
+private:
+
+
+ /*!
+ an auxiliary method for adding
+ */
+ void AddCheckExponents( Big<exp, man> & ss2,
+ Int<exp> & exp_offset,
+ bool & last_bit_set,
+ bool & rest_zero,
+ bool & do_adding,
+ bool & do_rounding)
+ {
+ Int<exp> mantissa_size_in_bits( man * TTMATH_BITS_PER_UINT );
+
+ if( exp_offset == mantissa_size_in_bits )
+ {
+ last_bit_set = ss2.mantissa.IsTheHighestBitSet();
+ rest_zero = ss2.mantissa.AreFirstBitsZero(man*TTMATH_BITS_PER_UINT - 1);
+ do_rounding = true; // we'are only rounding
+ }
+ else
+ if( exp_offset < mantissa_size_in_bits )
+ {
+ uint moved = exp_offset.ToInt(); // how many times we must move ss2.mantissa
+ rest_zero = true;
+
+ if( moved > 0 )
+ {
+ last_bit_set = static_cast<bool>( ss2.mantissa.GetBit(moved-1) );
+
+ if( moved > 1 )
+ rest_zero = ss2.mantissa.AreFirstBitsZero(moved - 1);
+
+ // (2) moving 'exp_offset' times
+ ss2.mantissa.Rcr(moved, 0);
+ }
+
+ do_adding = true;
+ do_rounding = true;
+ }
+
+ // if exp_offset is greater than mantissa_size_in_bits then we do nothing
+ // ss2 is too small for taking into consideration in the sum
+ }
+
+
+ /*!
+ an auxiliary method for adding
+ */
+ uint AddMantissas( Big<exp, man> & ss2,
+ bool & last_bit_set,
+ bool & rest_zero,
+ bool & rounding_up)
+ {
+ uint c = 0;
+
+ if( IsSign() == ss2.IsSign() )
+ {
+ // values have the same signs
+ if( mantissa.Add(ss2.mantissa) )
+ {
+ // we have one bit more from addition (carry)
+ // now rest_zero means the old rest_zero with the old last_bit_set
+ rest_zero = (!last_bit_set && rest_zero);
+ last_bit_set = mantissa.Rcr(1,1);
+ c += exponent.AddOne();
+ }
+
+ rounding_up = true;
+ }
+ else
+ {
+ // values have different signs
+ // there shouldn't be a carry here because
+ // (1) (2) guarantee that the mantissa of this
+ // is greater than or equal to the mantissa of the ss2
+
+ #ifdef TTMATH_DEBUG
+ uint c_temp =
+ #endif
+ mantissa.Sub(ss2.mantissa);
+
+ TTMATH_ASSERT( c_temp == 0 )
+ }
+
+ return c;
+ }
+
+
+public:
+
+
+ /*!
+ Addition this = this + ss2
+
+ it returns carry if the sum is too big
+ */
+ uint Add(Big<exp, man> ss2, bool round = true)
+ {
+ bool last_bit_set, rest_zero, do_adding, do_rounding, rounding_up;
+ Int<exp> exp_offset( exponent );
+ uint c = 0;
+
+ if( IsNan() || ss2.IsNan() )
+ return CheckCarry(1);
+
+ exp_offset.Sub( ss2.exponent );
+ exp_offset.Abs();
+
+ // (1) abs(this) will be >= abs(ss2)
+ if( SmallerWithoutSignThan(ss2) )
+ {
+ // !! use Swap here (not implemented yet)
+ Big<exp, man> temp(ss2);
+
+ ss2 = *this;
+ *this = temp;
+ }
+
+ if( ss2.IsZero() )
+ return 0;
+
+ last_bit_set = rest_zero = do_adding = do_rounding = rounding_up = false;
+ AddCheckExponents(ss2, exp_offset, last_bit_set, rest_zero, do_adding, do_rounding);
+
+ if( do_adding )
+ c += AddMantissas(ss2, last_bit_set, rest_zero, rounding_up);
+
+ if( !round || !last_bit_set )
+ do_rounding = false;
+
+ if( do_rounding )
+ c += RoundHalfToEven(rest_zero, rounding_up);
+
+ if( do_adding || do_rounding )
+ c += Standardizing();
+
+ return CheckCarry(c);
+ }
+
+
+
+ /*!
+ Subtraction this = this - ss2
+
+ it returns carry if the result is too big
+ */
+ uint Sub(Big<exp, man> ss2, bool round = true)
+ {
+ ss2.ChangeSign();
+
+ return Add(ss2, round);
+ }
+
+
+ /*!
+ bitwise AND
+
+ this and ss2 must be >= 0
+ return values:
+ 0 - ok
+ 1 - carry
+ 2 - this or ss2 was negative
+ */
+ uint BitAnd(Big<exp, man> ss2)
+ {
+ if( IsNan() || ss2.IsNan() )
+ return CheckCarry(1);
+
+ if( IsSign() || ss2.IsSign() )
+ return 2;
+
+ if( IsZero() )
+ return 0;
+
+ if( ss2.IsZero() )
+ {
+ SetZero();
+ return 0;
+ }
+
+ Int<exp> exp_offset( exponent );
+ Int<exp> mantissa_size_in_bits( man * TTMATH_BITS_PER_UINT );
+
+ uint c = 0;
+
+ exp_offset.Sub( ss2.exponent );
+ exp_offset.Abs();
+
+ // abs(this) will be >= abs(ss2)
+ if( SmallerWithoutSignThan(ss2) )
+ {
+ Big<exp, man> temp(ss2);
+
+ ss2 = *this;
+ *this = temp;
+ }
+
+ if( exp_offset >= mantissa_size_in_bits )
+ {
+ // the second value is too small
+ SetZero();
+ return 0;
+ }
+
+ // exp_offset < mantissa_size_in_bits, moving 'exp_offset' times
+ ss2.mantissa.Rcr( exp_offset.ToInt(), 0 );
+ mantissa.BitAnd(ss2.mantissa);
+
+ c += Standardizing();
+
+ return CheckCarry(c);
+ }
+
+
+ /*!
+ bitwise OR
+
+ this and ss2 must be >= 0
+ return values:
+ 0 - ok
+ 1 - carry
+ 2 - this or ss2 was negative
+ */
+ uint BitOr(Big<exp, man> ss2)
+ {
+ if( IsNan() || ss2.IsNan() )
+ return CheckCarry(1);
+
+ if( IsSign() || ss2.IsSign() )
+ return 2;
+
+ if( IsZero() )
+ {
+ *this = ss2;
+ return 0;
+ }
+
+ if( ss2.IsZero() )
+ return 0;
+
+ Int<exp> exp_offset( exponent );
+ Int<exp> mantissa_size_in_bits( man * TTMATH_BITS_PER_UINT );
+
+ uint c = 0;
+
+ exp_offset.Sub( ss2.exponent );
+ exp_offset.Abs();
+
+ // abs(this) will be >= abs(ss2)
+ if( SmallerWithoutSignThan(ss2) )
+ {
+ Big<exp, man> temp(ss2);
+
+ ss2 = *this;
+ *this = temp;
+ }
+
+ if( exp_offset >= mantissa_size_in_bits )
+ // the second value is too small
+ return 0;
+
+ // exp_offset < mantissa_size_in_bits, moving 'exp_offset' times
+ ss2.mantissa.Rcr( exp_offset.ToInt(), 0 );
+ mantissa.BitOr(ss2.mantissa);
+
+ c += Standardizing();
+
+ return CheckCarry(c);
+ }
+
+
+ /*!
+ bitwise XOR
+
+ this and ss2 must be >= 0
+ return values:
+ 0 - ok
+ 1 - carry
+ 2 - this or ss2 was negative
+ */
+ uint BitXor(Big<exp, man> ss2)
+ {
+ if( IsNan() || ss2.IsNan() )
+ return CheckCarry(1);
+
+ if( IsSign() || ss2.IsSign() )
+ return 2;
+
+ if( ss2.IsZero() )
+ return 0;
+
+ if( IsZero() )
+ {
+ *this = ss2;
+ return 0;
+ }
+
+ Int<exp> exp_offset( exponent );
+ Int<exp> mantissa_size_in_bits( man * TTMATH_BITS_PER_UINT );
+
+ uint c = 0;
+
+ exp_offset.Sub( ss2.exponent );
+ exp_offset.Abs();
+
+ // abs(this) will be >= abs(ss2)
+ if( SmallerWithoutSignThan(ss2) )
+ {
+ Big<exp, man> temp(ss2);
+
+ ss2 = *this;
+ *this = temp;
+ }
+
+ if( exp_offset >= mantissa_size_in_bits )
+ // the second value is too small
+ return 0;
+
+ // exp_offset < mantissa_size_in_bits, moving 'exp_offset' times
+ ss2.mantissa.Rcr( exp_offset.ToInt(), 0 );
+ mantissa.BitXor(ss2.mantissa);
+
+ c += Standardizing();
+
+ return CheckCarry(c);
+ }
+
+
+
+ /*!
+ Multiplication this = this * ss2 (ss2 is uint)
+
+ ss2 without a sign
+ */
+ uint MulUInt(uint ss2)
+ {
+ UInt<man+1> man_result;
+ uint i,c = 0;
+
+ if( IsNan() )
+ return 1;
+
+ if( IsZero() )
+ return 0;
+
+ if( ss2 == 0 )
+ {
+ SetZero();
+ return 0;
+ }
+
+ // man_result = mantissa * ss2.mantissa
+ mantissa.MulInt(ss2, man_result);
+
+ sint bit = UInt<man>::FindLeadingBitInWord(man_result.table[man]); // man - last word
+
+ if( bit!=-1 && uint(bit) > (TTMATH_BITS_PER_UINT/2) )
+ {
+ // 'i' will be from 0 to TTMATH_BITS_PER_UINT
+ i = man_result.CompensationToLeft();
+ c = exponent.Add( TTMATH_BITS_PER_UINT - i );
+
+ for(i=0 ; i<man ; ++i)
+ mantissa.table[i] = man_result.table[i+1];
+ }
+ else
+ {
+ if( bit != -1 )
+ {
+ man_result.Rcr(bit+1, 0);
+ c += exponent.Add(bit+1);
+ }
+
+ for(i=0 ; i<man ; ++i)
+ mantissa.table[i] = man_result.table[i];
+ }
+
+ c += Standardizing();
+
+ return CheckCarry(c);
+ }
+
+
+ /*!
+ Multiplication this = this * ss2 (ss2 is sint)
+
+ ss2 with a sign
+ */
+ uint MulInt(sint ss2)
+ {
+ if( IsNan() )
+ return 1;
+
+ if( ss2 == 0 )
+ {
+ SetZero();
+ return 0;
+ }
+
+ if( IsZero() )
+ return 0;
+
+ if( IsSign() == (ss2<0) )
+ {
+ // the signs are the same (both are either - or +), the result is positive
+ Abs();
+ }
+ else
+ {
+ // the signs are different, the result is negative
+ SetSign();
+ }
+
+ if( ss2<0 )
+ ss2 = -ss2;
+
+
+ return MulUInt( uint(ss2) );
+ }
+
+
+private:
+
+
+ /*!
+ this method checks whether a table pointed by 'tab' and 'len'
+ has the value 0.5 decimal
+ (it is treated as the comma operator would be before the highest bit)
+ call this method only if the highest bit is set - you have to test it beforehand
+
+ return:
+ true - tab was equal the half (0.5 decimal)
+ false - tab was greater than a half (greater than 0.5 decimal)
+
+ */
+ bool CheckGreaterOrEqualHalf(uint * tab, uint len)
+ {
+ uint i;
+
+ TTMATH_ASSERT( len>0 && (tab[len-1] & TTMATH_UINT_HIGHEST_BIT)!=0 )
+
+ for(i=0 ; i<len-1 ; ++i)
+ if( tab[i] != 0 )
+ return false;
+
+ if( tab[i] != TTMATH_UINT_HIGHEST_BIT )
+ return false;
+
+ return true;
+ }
+
+
+
+public:
+
+
+ /*!
+ multiplication this = this * ss2
+ this method returns a carry
+ */
+ uint Mul(const Big<exp, man> & ss2, bool round = true)
+ {
+ TTMATH_REFERENCE_ASSERT( ss2 )
+
+ UInt<man*2> man_result;
+ uint c = 0;
+ uint i;
+
+ if( IsNan() || ss2.IsNan() )
+ return CheckCarry(1);
+
+ if( IsZero() )
+ return 0;
+
+ if( ss2.IsZero() )
+ {
+ SetZero();
+ return 0;
+ }
+
+ // man_result = mantissa * ss2.mantissa
+ mantissa.MulBig(ss2.mantissa, man_result);
+
+ // 'i' will be from 0 to man*TTMATH_BITS_PER_UINT
+ // because mantissa and ss2.mantissa are standardized
+ // (the highest bit in man_result is set to 1 or
+ // if there is a zero value in man_result the method CompensationToLeft()
+ // returns 0 but we'll correct this at the end in Standardizing() method)
+ i = man_result.CompensationToLeft();
+ uint exp_add = man * TTMATH_BITS_PER_UINT - i;
+
+ if( exp_add )
+ c += exponent.Add( exp_add );
+
+ c += exponent.Add( ss2.exponent );
+
+ for(i=0 ; i<man ; ++i)
+ mantissa.table[i] = man_result.table[i+man];
+
+ if( round && (man_result.table[man-1] & TTMATH_UINT_HIGHEST_BIT) != 0 )
+ {
+ bool is_half = CheckGreaterOrEqualHalf(man_result.table, man);
+ c += RoundHalfToEven(is_half);
+ }
+
+ if( IsSign() == ss2.IsSign() )
+ {
+ // the signs are the same, the result is positive
+ Abs();
+ }
+ else
+ {
+ // the signs are different, the result is negative
+ // if the value is zero it will be corrected later in Standardizing method
+ SetSign();
+ }
+
+ c += Standardizing();
+
+ return CheckCarry(c);
+ }
+
+
+ /*!
+ division this = this / ss2
+
+ return value:
+ 0 - ok
+ 1 - carry (in a division carry can be as well)
+ 2 - improper argument (ss2 is zero)
+ */
+ uint Div(const Big<exp, man> & ss2, bool round = true)
+ {
+ TTMATH_REFERENCE_ASSERT( ss2 )
+
+ UInt<man*2> man1;
+ UInt<man*2> man2;
+ uint i,c = 0;
+
+ if( IsNan() || ss2.IsNan() )
+ return CheckCarry(1);
+
+ if( ss2.IsZero() )
+ {
+ SetNan();
+ return 2;
+ }
+
+ if( IsZero() )
+ return 0;
+
+ for(i=0 ; i<man ; ++i)
+ {
+ man1.table[i+man] = mantissa.table[i];
+ man2.table[i] = ss2.mantissa.table[i];
+ }
+
+ for(i=0 ; i<man ; ++i)
+ {
+ man1.table[i] = 0;
+ man2.table[i+man] = 0;
+ }
+
+ man1.Div(man2);
+
+ i = man1.CompensationToLeft();
+
+ if( i )
+ c += exponent.Sub(i);
+
+ c += exponent.Sub(ss2.exponent);
+
+ for(i=0 ; i<man ; ++i)
+ mantissa.table[i] = man1.table[i+man];
+
+ if( round && (man1.table[man-1] & TTMATH_UINT_HIGHEST_BIT) != 0 )
+ {
+ bool is_half = CheckGreaterOrEqualHalf(man1.table, man);
+ c += RoundHalfToEven(is_half);
+ }
+
+ if( IsSign() == ss2.IsSign() )
+ Abs();
+ else
+ SetSign(); // if there is a zero it will be corrected in Standardizing()
+
+ c += Standardizing();
+
+ return CheckCarry(c);
+ }
+
+
+ /*!
+ the remainder from a division
+
+ e.g.
+ 12.6 mod 3 = 0.6 because 12.6 = 3*4 + 0.6
+ -12.6 mod 3 = -0.6 bacause -12.6 = 3*(-4) + (-0.6)
+ 12.6 mod -3 = 0.6
+ -12.6 mod -3 = -0.6
+
+ it means:
+ in other words: this(old) = ss2 * q + this(new)
+
+ return value:
+ 0 - ok
+ 1 - carry
+ 2 - improper argument (ss2 is zero)
+ */
+ uint Mod(const Big<exp, man> & ss2)
+ {
+ TTMATH_REFERENCE_ASSERT( ss2 )
+
+ uint c = 0;
+
+ if( IsNan() || ss2.IsNan() )
+ return CheckCarry(1);
+
+ if( ss2.IsZero() )
+ {
+ SetNan();
+ return 2;
+ }
+
+ if( !SmallerWithoutSignThan(ss2) )
+ {
+ Big<exp, man> temp(*this);
+
+ c = temp.Div(ss2);
+ temp.SkipFraction();
+ c += temp.Mul(ss2);
+ c += Sub(temp);
+
+ if( !SmallerWithoutSignThan( ss2 ) )
+ c += 1;
+ }
+
+ return CheckCarry(c);
+ }
+
+
+
+
+ /*!
+ power this = this ^ pow
+ (pow without a sign)
+
+ binary algorithm (r-to-l)
+
+ return values:
+ 0 - ok
+ 1 - carry
+ 2 - incorrect arguments (0^0)
+ */
+ template<uint pow_size>
+ uint Pow(UInt<pow_size> pow)
+ {
+ if( IsNan() )
+ return 1;
+
+ if( IsZero() )
+ {
+ if( pow.IsZero() )
+ {
+ // we don't define zero^zero
+ SetNan();
+ return 2;
+ }
+
+ // 0^(+something) is zero
+ return 0;
+ }
+
+ Big<exp, man> start(*this), start_temp;
+ Big<exp, man> result;
+ result.SetOne();
+ uint c = 0;
+
+ while( !c )
+ {
+ if( pow.table[0] & 1 )
+ c += result.Mul(start);
+
+ pow.Rcr(1);
+
+ if( pow.IsZero() )
+ break;
+
+ start_temp = start;
+ c += start.Mul(start_temp);
+ }
+
+ *this = result;
+
+ return CheckCarry(c);
+ }
+
+
+ /*!
+ power this = this ^ pow
+ p can be negative
+
+ return values:
+ 0 - ok
+ 1 - carry
+ 2 - incorrect arguments 0^0 or 0^(-something)
+ */
+ template<uint pow_size>
+ uint Pow(Int<pow_size> pow)
+ {
+ if( IsNan() )
+ return 1;
+
+ if( !pow.IsSign() )
+ return Pow( UInt<pow_size>(pow) );
+
+ if( IsZero() )
+ {
+ // if 'p' is negative then
+ // 'this' must be different from zero
+ SetNan();
+ return 2;
+ }
+
+ uint c = pow.ChangeSign();
+
+ Big<exp, man> t(*this);
+ c += t.Pow( UInt<pow_size>(pow) ); // here can only be a carry (return:1)
+
+ SetOne();
+ c += Div(t);
+
+ return CheckCarry(c);
+ }
+
+
+ /*!
+ this method returns: 'this' mod 2
+ (either zero or one)
+
+ this method is much faster than using Mod( object_with_value_two )
+ */
+ uint Mod2() const
+ {
+ if( exponent>sint(0) || exponent<=-sint(man*TTMATH_BITS_PER_UINT) )
+ return 0;
+
+ sint exp_int = exponent.ToInt();
+ // 'exp_int' is negative (or zero), we set it as positive
+ exp_int = -exp_int;
+
+ return mantissa.GetBit(exp_int);
+ }
+
+
+
+ /*!
+ power this = this ^ abs([pow])
+ pow is treated as a value without a sign and without a fraction
+ if pow has a sign then the method pow.Abs() is used
+ if pow has a fraction the fraction is skipped (not used in calculation)
+
+ return values:
+ 0 - ok
+ 1 - carry
+ 2 - incorrect arguments (0^0)
+ */
+ uint PowUInt(Big<exp, man> pow)
+ {
+ if( IsNan() || pow.IsNan() )
+ return CheckCarry(1);
+
+ if( IsZero() )
+ {
+ if( pow.IsZero() )
+ {
+ SetNan();
+ return 2;
+ }
+
+ // 0^(+something) is zero
+ return 0;
+ }
+
+ if( pow.IsSign() )
+ pow.Abs();
+
+ Big<exp, man> start(*this), start_temp;
+ Big<exp, man> result;
+ Big<exp, man> one;
+ Int<exp> e_one;
+ uint c = 0;
+
+ e_one.SetOne();
+ one.SetOne();
+ result = one;
+
+ while( !c )
+ {
+ if( pow.Mod2() )
+ c += result.Mul(start);
+
+ c += pow.exponent.Sub( e_one ); // !! may use SubOne() here?
+
+ if( pow < one )
+ break;
+
+ start_temp = start;
+ c += start.Mul(start_temp);
+ }
+
+ *this = result;
+
+ return CheckCarry(c);
+ }
+
+
+ /*!
+ power this = this ^ [pow]
+ pow is treated as a value without a fraction
+ pow can be negative
+
+ return values:
+ 0 - ok
+ 1 - carry
+ 2 - incorrect arguments 0^0 or 0^(-something)
+ */
+ uint PowInt(const Big<exp, man> & pow)
+ {
+ TTMATH_REFERENCE_ASSERT( pow )
+
+ if( IsNan() || pow.IsNan() )
+ return CheckCarry(1);
+
+ if( !pow.IsSign() )
+ return PowUInt(pow);
+
+ if( IsZero() )
+ {
+ // if 'pow' is negative then
+ // 'this' must be different from zero
+ SetNan();
+ return 2;
+ }
+
+ Big<exp, man> temp(*this);
+ uint c = temp.PowUInt(pow); // here can only be a carry (result:1)
+
+ SetOne();
+ c += Div(temp);
+
+ return CheckCarry(c);
+ }
+
+
+ /*!
+ power this = this ^ pow
+ this must be greater than zero (this > 0)
+ pow can be negative and with fraction
+
+ return values:
+ 0 - ok
+ 1 - carry
+ 2 - incorrect argument ('this' <= 0)
+ */
+ uint PowFrac(const Big<exp, man> & pow)
+ {
+ TTMATH_REFERENCE_ASSERT( pow )
+
+ if( IsNan() || pow.IsNan() )
+ return CheckCarry(1);
+
+ Big<exp, man> temp;
+ uint c = temp.Ln(*this);
+
+ if( c != 0 ) // can be 2 from Ln()
+ {
+ SetNan();
+ return c;
+ }
+
+ c += temp.Mul(pow);
+ c += Exp(temp);
+
+ return CheckCarry(c);
+ }
+
+
+
+ /*!
+ power this = this ^ pow
+ pow can be negative and with fraction
+
+ return values:
+ 0 - ok
+ 1 - carry
+ 2 - incorrect argument ('this' or 'pow')
+ */
+ uint Pow(const Big<exp, man> & pow)
+ {
+ TTMATH_REFERENCE_ASSERT( pow )
+
+ if( IsNan() || pow.IsNan() )
+ return CheckCarry(1);
+
+ if( IsZero() )
+ {
+ // 0^pow will be 0 only for pow>0
+ if( pow.IsSign() || pow.IsZero() )
+ {
+ SetNan();
+ return 2;
+ }
+
+ SetZero();
+
+ return 0;
+ }
+
+ if( pow.exponent>-int(man*TTMATH_BITS_PER_UINT) && pow.exponent<=0 )
+ {
+ if( pow.IsInteger() )
+ return PowInt( pow );
+ }
+
+ return PowFrac(pow);
+ }
+
+
+ /*!
+ this function calculates the square root
+ e.g. let this=9 then this.Sqrt() gives 3
+
+ return: 0 - ok
+ 1 - carry
+ 2 - improper argument (this<0 or NaN)
+ */
+ uint Sqrt()
+ {
+ if( IsNan() || IsSign() )
+ {
+ SetNan();
+ return 2;
+ }
+
+ if( IsZero() )
+ return 0;
+
+ Big<exp, man> old(*this);
+ Big<exp, man> ln;
+ uint c = 0;
+
+ // we're using the formula: sqrt(x) = e ^ (ln(x) / 2)
+ c += ln.Ln(*this);
+ c += ln.exponent.SubOne(); // ln = ln / 2
+ c += Exp(ln);
+
+ // above formula doesn't give accurate results for some integers
+ // e.g. Sqrt(81) would not be 9 but a value very closed to 9
+ // we're rounding the result, calculating result*result and comparing
+ // with the old value, if they are equal then the result is an integer too
+
+ if( !c && old.IsInteger() && !IsInteger() )
+ {
+ Big<exp, man> temp(*this);
+ c += temp.Round();
+
+ Big<exp, man> temp2(temp);
+ c += temp.Mul(temp2);
+
+ if( temp == old )
+ *this = temp2;
+ }
+
+ return CheckCarry(c);
+ }
+
+
+private:
+
+#ifdef TTMATH_CONSTANTSGENERATOR
+public:
+#endif
+
+ /*!
+ Exponent this = exp(x) = e^x where x is in (-1,1)
+
+ we're using the formula exp(x) = 1 + (x)/(1!) + (x^2)/(2!) + (x^3)/(3!) + ...
+ */
+ void ExpSurrounding0(const Big<exp,man> & x, uint * steps = 0)
+ {
+ TTMATH_REFERENCE_ASSERT( x )
+
+ Big<exp,man> denominator, denominator_i;
+ Big<exp,man> one, old_value, next_part;
+ Big<exp,man> numerator = x;
+
+ SetOne();
+ one.SetOne();
+ denominator.SetOne();
+ denominator_i.SetOne();
+
+ uint i;
+ old_value = *this;
+
+ // we begin from 1 in order to not test at the beginning
+ #ifdef TTMATH_CONSTANTSGENERATOR
+ for(i=1 ; true ; ++i)
+ #else
+ for(i=1 ; i<=TTMATH_ARITHMETIC_MAX_LOOP ; ++i)
+ #endif
+ {
+ bool testing = ((i & 3) == 0); // it means '(i % 4) == 0'
+
+ next_part = numerator;
+
+ if( next_part.Div( denominator ) )
+ // if there is a carry here we only break the loop
+ // however the result we return as good
+ // it means there are too many parts of the formula
+ break;
+
+ // there shouldn't be a carry here
+ Add( next_part );
+
+ if( testing )
+ {
+ if( old_value == *this )
+ // we've added next few parts of the formula but the result
+ // is still the same then we break the loop
+ break;
+ else
+ old_value = *this;
+ }
+
+ // we set the denominator and the numerator for a next part of the formula
+ if( denominator_i.Add(one) )
+ // if there is a carry here the result we return as good
+ break;
+
+ if( denominator.Mul(denominator_i) )
+ break;
+
+ if( numerator.Mul(x) )
+ break;
+ }
+
+ if( steps )
+ *steps = i;
+ }
+
+public:
+
+
+ /*!
+ Exponent this = exp(x) = e^x
+
+ we're using the fact that our value is stored in form of:
+ x = mantissa * 2^exponent
+ then
+ e^x = e^(mantissa* 2^exponent) or
+ e^x = (e^mantissa)^(2^exponent)
+
+ 'Exp' returns a carry if we can't count the result ('x' is too big)
+ */
+ uint Exp(const Big<exp,man> & x)
+ {
+ uint c = 0;
+
+ if( x.IsNan() )
+ return CheckCarry(1);
+
+ if( x.IsZero() )
+ {
+ SetOne();
+ return 0;
+ }
+
+ // m will be the value of the mantissa in range (-1,1)
+ Big<exp,man> m(x);
+ m.exponent = -sint(man*TTMATH_BITS_PER_UINT);
+
+ // 'e_' will be the value of '2^exponent'
+ // e_.mantissa.table[man-1] = TTMATH_UINT_HIGHEST_BIT; and
+ // e_.exponent.Add(1) mean:
+ // e_.mantissa.table[0] = 1;
+ // e_.Standardizing();
+ // e_.exponent.Add(man*TTMATH_BITS_PER_UINT)
+ // (we must add 'man*TTMATH_BITS_PER_UINT' because we've taken it from the mantissa)
+ Big<exp,man> e_(x);
+ e_.mantissa.SetZero();
+ e_.mantissa.table[man-1] = TTMATH_UINT_HIGHEST_BIT;
+ c += e_.exponent.Add(1);
+ e_.Abs();
+
+ /*
+ now we've got:
+ m - the value of the mantissa in range (-1,1)
+ e_ - 2^exponent
+
+ e_ can be as:
+ ...2^-2, 2^-1, 2^0, 2^1, 2^2 ...
+ ...1/4 , 1/2 , 1 , 2 , 4 ...
+
+ above one e_ is integer
+
+ if e_ is greater than 1 we calculate the exponent as:
+ e^(m * e_) = ExpSurrounding0(m) ^ e_
+ and if e_ is smaller or equal one we calculate the exponent in this way:
+ e^(m * e_) = ExpSurrounding0(m* e_)
+ because if e_ is smaller or equal 1 then the product of m*e_ is smaller or equal m
+ */
+
+ if( e_ <= 1 )
+ {
+ m.Mul(e_);
+ ExpSurrounding0(m);
+ }
+ else
+ {
+ ExpSurrounding0(m);
+ c += PowUInt(e_);
+ }
+
+ return CheckCarry(c);
+ }
+
+
+
+
+private:
+
+#ifdef TTMATH_CONSTANTSGENERATOR
+public:
+#endif
+
+ /*!
+ Natural logarithm this = ln(x) where x in range <1,2)
+
+ we're using the formula:
+ ln x = 2 * [ (x-1)/(x+1) + (1/3)((x-1)/(x+1))^3 + (1/5)((x-1)/(x+1))^5 + ... ]
+ */
+ void LnSurrounding1(const Big<exp,man> & x, uint * steps = 0)
+ {
+ Big<exp,man> old_value, next_part, denominator, one, two, x1(x), x2(x);
+
+ one.SetOne();
+
+ if( x == one )
+ {
+ // LnSurrounding1(1) is 0
+ SetZero();
+ return;
+ }
+
+ two = 2;
+
+ x1.Sub(one);
+ x2.Add(one);
+
+ x1.Div(x2);
+ x2 = x1;
+ x2.Mul(x1);
+
+ denominator.SetOne();
+ SetZero();
+
+ old_value = *this;
+ uint i;
+
+
+ #ifdef TTMATH_CONSTANTSGENERATOR
+ for(i=1 ; true ; ++i)
+ #else
+ // we begin from 1 in order to not test at the beginning
+ for(i=1 ; i<=TTMATH_ARITHMETIC_MAX_LOOP ; ++i)
+ #endif
+ {
+ bool testing = ((i & 3) == 0); // it means '(i % 4) == 0'
+
+ next_part = x1;
+
+ if( next_part.Div(denominator) )
+ // if there is a carry here we only break the loop
+ // however the result we return as good
+ // it means there are too many parts of the formula
+ break;
+
+ // there shouldn't be a carry here
+ Add(next_part);
+
+ if( testing )
+ {
+ if( old_value == *this )
+ // we've added next (step_test) parts of the formula but the result
+ // is still the same then we break the loop
+ break;
+ else
+ old_value = *this;
+ }
+
+ if( x1.Mul(x2) )
+ // if there is a carry here the result we return as good
+ break;
+
+ if( denominator.Add(two) )
+ break;
+ }
+
+ // this = this * 2
+ // ( there can't be a carry here because we calculate the logarithm between <1,2) )
+ exponent.AddOne();
+
+ if( steps )
+ *steps = i;
+ }
+
+
+
+
+public:
+
+
+ /*!
+ Natural logarithm this = ln(x)
+ (a logarithm with the base equal 'e')
+
+ we're using the fact that our value is stored in form of:
+ x = mantissa * 2^exponent
+ then
+ ln(x) = ln (mantissa * 2^exponent) = ln (mantissa) + (exponent * ln (2))
+
+ the mantissa we'll show as a value from range <1,2) because the logarithm
+ is decreasing too fast when 'x' is going to 0
+
+ return values:
+ 0 - ok
+ 1 - overflow (carry)
+ 2 - incorrect argument (x<=0)
+ */
+ uint Ln(const Big<exp,man> & x)
+ {
+ TTMATH_REFERENCE_ASSERT( x )
+
+ if( x.IsNan() )
+ return CheckCarry(1);
+
+ if( x.IsSign() || x.IsZero() )
+ {
+ SetNan();
+ return 2;
+ }
+
+ // m will be the value of the mantissa in range <1,2)
+ Big<exp,man> m(x);
+ m.exponent = -sint(man*TTMATH_BITS_PER_UINT - 1);
+
+ LnSurrounding1(m);
+
+ Big<exp,man> exponent_temp;
+ exponent_temp.FromInt( x.exponent );
+
+ // we must add 'man*TTMATH_BITS_PER_UINT-1' because we've taken it from the mantissa
+ uint c = exponent_temp.Add(man*TTMATH_BITS_PER_UINT-1);
+
+ Big<exp,man> ln2;
+ ln2.SetLn2();
+ c += exponent_temp.Mul(ln2);
+ c += Add(exponent_temp);
+
+ return CheckCarry(c);
+ }
+
+
+
+ /*!
+ Logarithm from 'x' with a 'base'
+
+ we're using the formula:
+ Log(x) with 'base' = ln(x) / ln(base)
+
+ return values:
+ 0 - ok
+ 1 - overflow
+ 2 - incorrect argument (x<=0)
+ 3 - incorrect base (a<=0 lub a=1)
+ */
+ uint Log(const Big<exp,man> & x, const Big<exp,man> & base)
+ {
+ TTMATH_REFERENCE_ASSERT( base )
+ TTMATH_REFERENCE_ASSERT( x )
+
+ if( x.IsNan() || base.IsNan() )
+ return CheckCarry(1);
+
+ if( x.IsSign() || x.IsZero() )
+ {
+ SetNan();
+ return 2;
+ }
+
+ Big<exp,man> denominator;;
+ denominator.SetOne();
+
+ if( base.IsSign() || base.IsZero() || base==denominator )
+ {
+ SetNan();
+ return 3;
+ }
+
+ if( x == denominator ) // (this is: if x == 1)
+ {
+ // log(1) is 0
+ SetZero();
+ return 0;
+ }
+
+ // another error values we've tested at the beginning
+ // there can only be a carry
+ uint c = Ln(x);
+
+ c += denominator.Ln(base);
+ c += Div(denominator);
+
+ return CheckCarry(c);
+ }
+
+
+
+
+ /*!
+ *
+ * converting methods
+ *
+ */
+
+
+ /*!
+ converting from another type of a Big object
+ */
+ template<uint another_exp, uint another_man>
+ uint FromBig(const Big<another_exp, another_man> & another)
+ {
+ info = another.info;
+
+ if( IsNan() )
+ return 1;
+
+ if( exponent.FromInt(another.exponent) )
+ {
+ SetNan();
+ return 1;
+ }
+
+ uint man_len_min = (man < another_man)? man : another_man;
+ uint i;
+ uint c = 0;
+
+ for( i = 0 ; i<man_len_min ; ++i )
+ mantissa.table[man-1-i] = another.mantissa.table[another_man-1-i];
+
+ for( ; i<man ; ++i )
+ mantissa.table[man-1-i] = 0;
+
+
+ // MS Visual Express 2005 reports a warning (in the lines with 'uint man_diff = ...'):
+ // warning C4307: '*' : integral constant overflow
+ // but we're using 'if( man > another_man )' and 'if( man < another_man )' and there'll be no such situation here
+ #ifdef _MSC_VER
+ #pragma warning( disable: 4307 )
+ #endif
+
+ if( man > another_man )
+ {
+ uint man_diff = (man - another_man) * TTMATH_BITS_PER_UINT;
+ c += exponent.SubInt(man_diff, 0);
+ }
+ else
+ if( man < another_man )
+ {
+ uint man_diff = (another_man - man) * TTMATH_BITS_PER_UINT;
+ c += exponent.AddInt(man_diff, 0);
+ }
+
+ #ifdef _MSC_VER
+ #pragma warning( default: 4307 )
+ #endif
+
+ // mantissa doesn't have to be standardized (either the highest bit is set or all bits are equal zero)
+ CorrectZero();
+
+ return CheckCarry(c);
+ }
+
+
+ /*!
+ this method converts 'this' into 'result'
+
+ if the value is too big this method returns a carry (1)
+ */
+ uint ToUInt(uint & result, bool test_sign = true) const
+ {
+ result = 0;
+
+ if( IsZero() )
+ return 0;
+
+ if( test_sign && IsSign() )
+ // the result should be positive
+ return 1;
+
+ sint maxbit = -sint(man*TTMATH_BITS_PER_UINT);
+
+ if( exponent > maxbit + sint(TTMATH_BITS_PER_UINT) )
+ // if exponent > (maxbit + sint(TTMATH_BITS_PER_UINT)) the value can't be passed
+ // into the 'sint' type (it's too big)
+ return 1;
+
+ if( exponent <= maxbit )
+ // our value is from the range of (-1,1) and we return zero
+ return 0;
+
+ UInt<man> mantissa_temp(mantissa);
+ // exponent is from a range of (maxbit, maxbit + sint(TTMATH_BITS_PER_UINT) >
+ sint how_many_bits = exponent.ToInt();
+
+ // how_many_bits is negative, we'll make it positive
+ how_many_bits = -how_many_bits;
+
+ // we're taking into account only the last word in a mantissa table
+ mantissa_temp.Rcr( how_many_bits % TTMATH_BITS_PER_UINT, 0 );
+ result = mantissa_temp.table[ man-1 ];
+
+ return 0;
+ }
+
+
+
+ /*!
+ this method converts 'this' into 'result'
+
+ if the value is too big this method returns a carry (1)
+ */
+ uint ToInt(sint & result) const
+ {
+ result = 0;
+ uint result_uint;
+
+ if( ToUInt(result_uint, false) )
+ return 1;
+
+ result = static_cast<sint>( result_uint );
+
+ // the exception for the minimal value
+ if( IsSign() && result_uint == TTMATH_UINT_HIGHEST_BIT )
+ return 0;
+
+ if( (result_uint & TTMATH_UINT_HIGHEST_BIT) != 0 )
+ // the value is too big
+ return 1;
+
+ if( IsSign() )
+ result = -result;
+
+ return 0;
+ }
+
+
+ /*!
+ this method converts 'this' into 'result'
+
+ if the value is too big this method returns a carry (1)
+ */
+ template<uint int_size>
+ uint ToInt(Int<int_size> & result) const
+ {
+ result.SetZero();
+
+ if( IsZero() )
+ return 0;
+
+ sint maxbit = -sint(man*TTMATH_BITS_PER_UINT);
+
+ if( exponent > maxbit + sint(int_size*TTMATH_BITS_PER_UINT) )
+ // if exponent > (maxbit + sint(int_size*TTMATH_BITS_PER_UINT)) the value can't be passed
+ // into the 'Int<int_size>' type (it's too big)
+ return 1;
+
+ if( exponent <= maxbit )
+ // our value is from range (-1,1) and we return zero
+ return 0;
+
+ sint how_many_bits = exponent.ToInt();
+
+ if( how_many_bits < 0 )
+ {
+ how_many_bits = -how_many_bits;
+ uint index = how_many_bits / TTMATH_BITS_PER_UINT;
+
+ UInt<man> mantissa_temp(mantissa);
+ mantissa_temp.Rcr( how_many_bits % TTMATH_BITS_PER_UINT, 0 );
+
+ for(uint i=index, a=0 ; i<man ; ++i,++a)
+ result.table[a] = mantissa_temp.table[i];
+ }
+ else
+ {
+ uint index = how_many_bits / TTMATH_BITS_PER_UINT;
+
+ for(uint i=0 ; i<man ; ++i)
+ result.table[index+i] = mantissa.table[i];
+
+ result.Rcl( how_many_bits % TTMATH_BITS_PER_UINT, 0 );
+ }
+
+ // the exception for the minimal value
+ if( IsSign() )
+ {
+ Int<int_size> min;
+ min.SetMin();
+
+ if( result == min )
+ return 0;
+ }
+
+ if( (result.table[int_size-1] & TTMATH_UINT_HIGHEST_BIT) != 0 )
+ // the value is too big
+ return 1;
+
+ if( IsSign() )
+ result.ChangeSign();
+
+ return 0;
+ }
+
+
+ /*!
+ a method for converting 'uint' to this class
+ */
+ void FromUInt(uint value)
+ {
+ info = 0;
+
+ for(uint i=0 ; i<man-1 ; ++i)
+ mantissa.table[i] = 0;
+
+ mantissa.table[man-1] = value;
+ exponent = -sint(man-1) * sint(TTMATH_BITS_PER_UINT);
+
+ // there shouldn't be a carry because 'value' has the 'uint' type
+ Standardizing();
+ }
+
+
+ /*!
+ a method for converting 'sint' to this class
+ */
+ void FromInt(sint value)
+ {
+ bool is_sign = false;
+
+ if( value < 0 )
+ {
+ value = -value;
+ is_sign = true;
+ }
+
+ FromUInt(uint(value));
+
+ if( is_sign )
+ SetSign();
+ }
+
+
+
+ /*!
+ this method converts from standard double into this class
+
+ standard double means IEEE-754 floating point value with 64 bits
+ it is as follows (from http://www.psc.edu/general/software/packages/ieee/ieee.html):
+
+ The IEEE double precision floating point standard representation requires
+ a 64 bit word, which may be represented as numbered from 0 to 63, left to
+ right. The first bit is the sign bit, S, the next eleven bits are the
+ exponent bits, 'E', and the final 52 bits are the fraction 'F':
+
+ S EEEEEEEEEEE FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
+ 0 1 11 12 63
+
+ The value V represented by the word may be determined as follows:
+
+ * If E=2047 and F is nonzero, then V=NaN ("Not a number")
+ * If E=2047 and F is zero and S is 1, then V=-Infinity
+ * If E=2047 and F is zero and S is 0, then V=Infinity
+ * If 0<E<2047 then V=(-1)**S * 2 ** (E-1023) * (1.F) where "1.F" is intended
+ to represent the binary number created by prefixing F with an implicit
+ leading 1 and a binary point.
+ * If E=0 and F is nonzero, then V=(-1)**S * 2 ** (-1022) * (0.F) These are
+ "unnormalized" values.
+ * If E=0 and F is zero and S is 1, then V=-0
+ * If E=0 and F is zero and S is 0, then V=0
+ */
+
+#ifdef TTMATH_PLATFORM32
+
+ void FromDouble(double value)
+ {
+ // sizeof(double) should be 8 (64 bits), this is actually not a runtime
+ // error but I leave it at the moment as is
+ TTMATH_ASSERT( sizeof(double) == 8 )
+
+ // I am not sure what will be on a platform which has
+ // a different endianness... but we use this library only
+ // on x86 and amd (intel) 64 bits (as there's a lot of assembler code)
+ union
+ {
+ double d;
+ uint u[2]; // two 32bit words
+ } temp;
+
+ temp.d = value;
+
+ sint e = ( temp.u[1] & 0x7FF00000u) >> 20;
+ uint m1 = ((temp.u[1] & 0xFFFFFu) << 11) | (temp.u[0] >> 21);
+ uint m2 = temp.u[0] << 11;
+
+ if( e == 2047 )
+ {
+ // If E=2047 and F is nonzero, then V=NaN ("Not a number")
+ // If E=2047 and F is zero and S is 1, then V=-Infinity
+ // If E=2047 and F is zero and S is 0, then V=Infinity
+
+ // we do not support -Infinity and +Infinity
+ // we assume that there is always NaN
+
+ SetNan();
+ }
+ else
+ if( e > 0 )
+ {
+ // If 0<E<2047 then
+ // V=(-1)**S * 2 ** (E-1023) * (1.F)
+ // where "1.F" is intended to represent the binary number
+ // created by prefixing F with an implicit leading 1 and a binary point.
+
+ FromDouble_SetExpAndMan((temp.u[1] & 0x80000000u) != 0,
+ e - 1023 - man*TTMATH_BITS_PER_UINT + 1, 0x80000000u,
+ m1, m2);
+
+ // we do not have to call Standardizing() here
+ // because the mantissa will have the highest bit set
+ }
+ else
+ {
+ // e == 0
+
+ if( m1 != 0 || m2 != 0 )
+ {
+ // If E=0 and F is nonzero,
+ // then V=(-1)**S * 2 ** (-1022) * (0.F)
+ // These are "unnormalized" values.
+
+ UInt<2> m;
+ m.table[1] = m1;
+ m.table[0] = m2;
+ uint moved = m.CompensationToLeft();
+
+ FromDouble_SetExpAndMan((temp.u[1] & 0x80000000u) != 0,
+ e - 1022 - man*TTMATH_BITS_PER_UINT + 1 - moved, 0,
+ m.table[1], m.table[2]);
+ }
+ else
+ {
+ // If E=0 and F is zero and S is 1, then V=-0
+ // If E=0 and F is zero and S is 0, then V=0
+
+ // we do not support -0 or 0, only is one 0
+ SetZero();
+ }
+ }
+ }
+
+
+private:
+
+ void FromDouble_SetExpAndMan(bool is_sign, int e, uint mhighest, uint m1, uint m2)
+ {
+ exponent = e;
+
+ if( man > 1 )
+ {
+ mantissa.table[man-1] = m1 | mhighest;
+ mantissa.table[sint(man-2)] = m2;
+ // although man>1 we're using casting into sint
+ // to get rid from a warning which generates Microsoft Visual:
+ // warning C4307: '*' : integral constant overflow
+
+ for(uint i=0 ; i<man-2 ; ++i)
+ mantissa.table[i] = 0;
+ }
+ else
+ {
+ mantissa.table[0] = m1 | mhighest;
+ }
+
+ info = 0;
+
+ // the value should be different from zero
+ TTMATH_ASSERT( mantissa.IsZero() == false )
+
+ if( is_sign )
+ SetSign();
+ }
+
+
+#else
+
+public:
+
+ // 64bit platforms
+ void FromDouble(double value)
+ {
+ // sizeof(double) should be 8 (64 bits), this is actually not a runtime
+ // error but I leave it at the moment as is
+ TTMATH_ASSERT( sizeof(double) == 8 )
+
+ // I am not sure what will be on a plaltform which has
+ // a different endianness... but we use this library only
+ // on x86 and amd (intel) 64 bits (as there's a lot of assembler code)
+ union
+ {
+ double d;
+ uint u; // one 64bit word
+ } temp;
+
+ temp.d = value;
+
+ sint e = (temp.u & 0x7FF0000000000000ul) >> 52;
+ uint m = (temp.u & 0xFFFFFFFFFFFFFul) << 11;
+
+ if( e == 2047 )
+ {
+ // If E=2047 and F is nonzero, then V=NaN ("Not a number")
+ // If E=2047 and F is zero and S is 1, then V=-Infinity
+ // If E=2047 and F is zero and S is 0, then V=Infinity
+
+ // we do not support -Infinity and +Infinity
+ // we assume that there is always NaN
+
+ SetNan();
+ }
+ else
+ if( e > 0 )
+ {
+ // If 0<E<2047 then
+ // V=(-1)**S * 2 ** (E-1023) * (1.F)
+ // where "1.F" is intended to represent the binary number
+ // created by prefixing F with an implicit leading 1 and a binary point.
+
+ FromDouble_SetExpAndMan((temp.u & 0x8000000000000000ul) != 0,
+ e - 1023 - man*TTMATH_BITS_PER_UINT + 1,
+ 0x8000000000000000ul, m);
+
+ // we do not have to call Standardizing() here
+ // because the mantissa will have the highest bit set
+ }
+ else
+ {
+ // e == 0
+
+ if( m != 0 )
+ {
+ // If E=0 and F is nonzero,
+ // then V=(-1)**S * 2 ** (-1022) * (0.F)
+ // These are "unnormalized" values.
+
+ FromDouble_SetExpAndMan(bool(temp.u & 0x8000000000000000ul),
+ e - 1022 - man*TTMATH_BITS_PER_UINT + 1, 0, m);
+ Standardizing();
+ }
+ else
+ {
+ // If E=0 and F is zero and S is 1, then V=-0
+ // If E=0 and F is zero and S is 0, then V=0
+
+ // we do not support -0 or 0, only is one 0
+ SetZero();
+ }
+ }
+ }
+
+private:
+
+ void FromDouble_SetExpAndMan(bool is_sign, sint e, uint mhighest, uint m)
+ {
+ exponent = e;
+ mantissa.table[man-1] = m | mhighest;
+
+ for(uint i=0 ; i<man-1 ; ++i)
+ mantissa.table[i] = 0;
+
+ info = 0;
+
+ // the value should be different from zero
+ TTMATH_ASSERT( mantissa.IsZero() == false )
+
+ if( is_sign )
+ SetSign();
+ }
+
+#endif
+
+
+public:
+
+
+
+ /*!
+ this method converts from this class into the 'double'
+
+ if the value is too big:
+ 'result' will be +/-infinity (depending on the sign)
+ and the method returns 1
+ if the value is too small:
+ 'result' will be 0
+ and the method returns 1
+ */
+ uint ToDouble(double & result) const
+ {
+ // sizeof(double) should be 8 (64 bits), this is actually not a runtime
+ // error but I leave it at the moment as is
+ TTMATH_ASSERT( sizeof(double) == 8 )
+
+ if( IsZero() )
+ {
+ result = 0.0;
+ return 0;
+ }
+
+ if( IsNan() )
+ {
+ result = ToDouble_SetDouble( false, 2047, 0, false, true);
+
+ return 0;
+ }
+
+ sint e_correction = sint(man*TTMATH_BITS_PER_UINT) - 1;
+
+ if( exponent >= 1024 - e_correction )
+ {
+ // +/- infinity
+ result = ToDouble_SetDouble( 0, 2047, 0, true);
+
+ return 1;
+ }
+ else
+ if( exponent <= -1023 - 52 - e_correction )
+ {
+ // too small value - we assume that there'll be a zero
+ result = 0;
+
+ // and return a carry
+ return 1;
+ }
+
+ sint e = exponent.ToInt() + e_correction;
+
+ if( e <= -1023 )
+ {
+ // -1023-52 < e <= -1023 (unnormalized value)
+ result = ToDouble_SetDouble( IsSign(), 0, -(e + 1023));
+ }
+ else
+ {
+ // -1023 < e < 1024
+ result = ToDouble_SetDouble( IsSign(), e + 1023, -1);
+ }
+
+ return 0;
+ }
+
+private:
+
+#ifdef TTMATH_PLATFORM32
+
+ // 32bit platforms
+ double ToDouble_SetDouble(bool is_sign, uint e, sint move, bool infinity = false, bool nan = false) const
+ {
+ union
+ {
+ double d;
+ uint u[2]; // two 32bit words
+ } temp;
+
+ temp.u[0] = temp.u[1] = 0;
+
+ if( is_sign )
+ temp.u[1] |= 0x80000000u;
+
+ temp.u[1] |= (e << 20) & 0x7FF00000u;
+
+ if( nan )
+ {
+ temp.u[0] |= 1;
+ return temp.d;
+ }
+
+ if( infinity )
+ return temp.d;
+
+ UInt<2> m;
+ m.table[1] = mantissa.table[man-1];
+ m.table[0] = ( man > 1 ) ? mantissa.table[sint(man-2)] : 0;
+ // although man>1 we're using casting into sint
+ // to get rid from a warning which generates Microsoft Visual:
+ // warning C4307: '*' : integral constant overflow
+
+ m.Rcr( 12 + move );
+ m.table[1] &= 0xFFFFFu; // cutting the 20 bit (when 'move' was -1)
+
+ temp.u[1] |= m.table[1];
+ temp.u[0] |= m.table[0];
+
+ return temp.d;
+ }
+
+#else
+
+ // 64bit platforms
+ double ToDouble_SetDouble(bool is_sign, uint e, sint move, bool infinity = false, bool nan = false) const
+ {
+ union
+ {
+ double d;
+ uint u; // 64bit word
+ } temp;
+
+ temp.u = 0;
+
+ if( is_sign )
+ temp.u |= 0x8000000000000000ul;
+
+ temp.u |= (e << 52) & 0x7FF0000000000000ul;
+
+ if( nan )
+ {
+ temp.u |= 1;
+ return temp.d;
+ }
+
+ if( infinity )
+ return temp.d;
+
+ uint m = mantissa.table[man-1];
+
+ m >>= ( 12 + move );
+ m &= 0xFFFFFFFFFFFFFul; // cutting the 20 bit (when 'move' was -1)
+ temp.u |= m;
+
+ return temp.d;
+ }
+
+#endif
+
+
+public:
+
+
+ /*!
+ an operator= for converting 'sint' to this class
+ */
+ Big<exp, man> & operator=(sint value)
+ {
+ FromInt(value);
+
+ return *this;
+ }
+
+
+ /*!
+ an operator= for converting 'uint' to this class
+ */
+ Big<exp, man> & operator=(uint value)
+ {
+ FromUInt(value);
+
+ return *this;
+ }
+
+
+ /*!
+ an operator= for converting 'double' to this class
+ */
+ Big<exp, man> & operator=(double value)
+ {
+ FromDouble(value);
+
+ return *this;
+ }
+
+
+ /*!
+ a constructor for converting 'sint' to this class
+ */
+ Big(sint value)
+ {
+ FromInt(value);
+ }
+
+ /*!
+ a constructor for converting 'uint' to this class
+ */
+ Big(uint value)
+ {
+ FromUInt(value);
+ }
+
+
+ /*!
+ a constructor for converting 'double' to this class
+ */
+ Big(double value)
+ {
+ FromDouble(value);
+ }
+
+
+#ifdef TTMATH_PLATFORM64
+
+ /*!
+ in 64bit platforms we must define additional operators and contructors
+ in order to allow a user initializing the objects in this way:
+ Big<...> type = 20;
+ or
+ Big<...> type;
+ type = 30;
+
+ decimal constants such as 20, 30 etc. are integer literal of type int,
+ if the value is greater it can even be long int,
+ 0 is an octal integer of type int
+ (ISO 14882 p2.13.1 Integer literals)
+ */
+
+ /*!
+ an operator= for converting 'signed int' to this class
+ ***this operator is created only on a 64bit platform***
+ it takes one argument of 32bit
+
+
+ */
+ Big<exp, man> & operator=(signed int value)
+ {
+ FromInt(sint(value));
+
+ return *this;
+ }
+
+
+ /*!
+ an operator= for converting 'unsigned int' to this class
+ ***this operator is created only on a 64bit platform***
+ it takes one argument of 32bit
+ */
+ Big<exp, man> & operator=(unsigned int value)
+ {
+ FromUInt(uint(value));
+
+ return *this;
+ }
+
+
+ /*!
+ a constructor for converting 'signed int' to this class
+ ***this constructor is created only on a 64bit platform***
+ it takes one argument of 32bit
+ */
+ Big(signed int value)
+ {
+ FromInt(sint(value));
+ }
+
+ /*!
+ a constructor for converting 'unsigned int' to this class
+ ***this constructor is created only on a 64bit platform***
+ it takes one argument of 32bit
+ */
+ Big(unsigned int value)
+ {
+ FromUInt(uint(value));
+ }
+
+#endif
+
+private:
+
+ /*!
+ an auxiliary method for converting from UInt and Int
+
+ we assume that there'll never be a carry here
+ (we have an exponent and the value in Big can be bigger than
+ that one from the UInt)
+ */
+ template<uint int_size>
+ void FromUIntOrInt(const UInt<int_size> & value, sint compensation)
+ {
+ uint minimum_size = (int_size < man)? int_size : man;
+ exponent = (sint(int_size)-sint(man)) * sint(TTMATH_BITS_PER_UINT) - compensation;
+
+ // copying the highest words
+ uint i;
+ for(i=1 ; i<=minimum_size ; ++i)
+ mantissa.table[man-i] = value.table[int_size-i];
+
+ // setting the rest of mantissa.table into zero (if some has left)
+ for( ; i<=man ; ++i)
+ mantissa.table[man-i] = 0;
+
+ // the highest bit is either one or zero (when the whole mantissa is zero)
+ // we can only call CorrectZero()
+ CorrectZero();
+ }
+
+
+public:
+
+
+ /*!
+ a method for converting from 'UInt<int_size>' to this class
+ */
+ template<uint int_size>
+ void FromUInt(UInt<int_size> value)
+ {
+ info = 0;
+ sint compensation = (sint)value.CompensationToLeft();
+
+ return FromUIntOrInt(value, compensation);
+ }
+
+
+ /*!
+ a method for converting from 'Int<int_size>' to this class
+ */
+ template<uint int_size>
+ void FromInt(Int<int_size> value)
+ {
+ info = 0;
+ bool is_sign = false;
+
+ if( value.IsSign() )
+ {
+ value.ChangeSign();
+ is_sign = true;
+ }
+
+ sint compensation = (sint)value.CompensationToLeft();
+ FromUIntOrInt(value, compensation);
+
+ if( is_sign )
+ SetSign();
+ }
+
+
+ /*!
+ an operator= for converting from 'Int<int_size>' to this class
+ */
+ template<uint int_size>
+ Big<exp,man> & operator=(const Int<int_size> & value)
+ {
+ FromInt(value);
+
+ return *this;
+ }
+
+
+ /*!
+ a constructor for converting from 'Int<int_size>' to this class
+ */
+ template<uint int_size>
+ Big(const Int<int_size> & value)
+ {
+ FromInt(value);
+ }
+
+
+ /*!
+ an operator= for converting from 'UInt<int_size>' to this class
+ */
+ template<uint int_size>
+ Big<exp,man> & operator=(const UInt<int_size> & value)
+ {
+ FromUInt(value);
+
+ return *this;
+ }
+
+
+ /*!
+ a constructor for converting from 'UInt<int_size>' to this class
+ */
+ template<uint int_size>
+ Big(const UInt<int_size> & value)
+ {
+ FromUInt(value);
+ }
+
+
+ /*!
+ an operator= for converting from 'Big<another_exp, another_man>' to this class
+ */
+ template<uint another_exp, uint another_man>
+ Big<exp,man> & operator=(const Big<another_exp, another_man> & value)
+ {
+ FromBig(value);
+
+ return *this;
+ }
+
+
+ /*!
+ a constructor for converting from 'Big<another_exp, another_man>' to this class
+ */
+ template<uint another_exp, uint another_man>
+ Big(const Big<another_exp, another_man> & value)
+ {
+ FromBig(value);
+ }
+
+
+ /*!
+ a default constructor
+
+ we don't set any of the members to zero
+ only NaN flag is set
+ */
+ Big()
+ {
+ info = TTMATH_BIG_NAN;
+
+ /*
+ we're directly setting 'info' (instead of calling SetNan())
+ in order to get rid of a warning saying that 'info' is uninitialized
+ */
+ }
+
+
+ /*!
+ a destructor
+ */
+ ~Big()
+ {
+ }
+
+
+ /*!
+ the default assignment operator
+ */
+ Big<exp,man> & operator=(const Big<exp,man> & value)
+ {
+ info = value.info;
+ exponent = value.exponent;
+ mantissa = value.mantissa;
+
+ return *this;
+ }
+
+
+ /*!
+ a constructor for copying from another object of this class
+ */
+
+ Big(const Big<exp,man> & value)
+ {
+ operator=(value);
+ }
+
+
+
+ /*!
+ a method for converting into a string
+ struct Conv is defined in ttmathtypes.h, look there for more information about parameters
+
+ output:
+ return value:
+ 0 - ok and 'result' will be an object of type std::string (or std::wstring) which holds the value
+ 1 - if there is a carry (it shoudn't be in a normal situation - if it is that means there
+ is somewhere an error in the library)
+ */
+ uint ToString( std::string & result,
+ uint base = 10,
+ bool scient = false,
+ sint scient_from = 15,
+ sint round = -1,
+ bool trim_zeroes = true,
+ wchar_t comma = '.' ) const
+ {
+ Conv conv;
+
+ conv.base = base;
+ conv.scient = scient;
+ conv.scient_from = scient_from;
+ conv.round = round;
+ conv.trim_zeroes = trim_zeroes;
+ conv.comma = static_cast<uint>(comma);
+
+ return ToStringBase<std::string, char>(result, conv);
+ }
+
+
+ /*!
+ a method for converting into a string
+ struct Conv is defined in ttmathtypes.h, look there for more information about parameters
+ */
+ uint ToString( std::wstring & result,
+ uint base = 10,
+ bool scient = false,
+ sint scient_from = 15,
+ sint round = -1,
+ bool trim_zeroes = true,
+ wchar_t comma = '.' ) const
+ {
+ Conv conv;
+
+ conv.base = base;
+ conv.scient = scient;
+ conv.scient_from = scient_from;
+ conv.round = round;
+ conv.trim_zeroes = trim_zeroes;
+ conv.comma = static_cast<uint>(comma);
+
+ return ToStringBase<std::wstring, wchar_t>(result, conv);
+ }
+
+
+ /*!
+ a method for converting into a string
+ struct Conv is defined in ttmathtypes.h, look there for more information about parameters
+ */
+ uint ToString(std::string & result, const Conv & conv) const
+ {
+ return ToStringBase<std::string, char>(result, conv);
+ }
+
+
+ /*!
+ a method for converting into a string
+ struct Conv is defined in ttmathtypes.h, look there for more information about parameters
+ */
+ uint ToString(std::wstring & result, const Conv & conv) const
+ {
+ return ToStringBase<std::wstring, wchar_t>(result, conv);
+ }
+
+
+ /*!
+ a method for converting into a string
+ struct Conv is defined in ttmathtypes.h, look there for more information about parameters
+ */
+ std::string ToString(const Conv & conv) const
+ {
+ std::string result;
+ ToStringBase<std::string, char>(result, conv);
+
+ return result;
+ }
+
+
+ /*!
+ a method for converting into a string
+ struct Conv is defined in ttmathtypes.h, look there for more information about parameters
+ */
+ std::string ToString() const
+ {
+ Conv conv;
+
+ return ToString(conv);
+ }
+
+
+ /*!
+ a method for converting into a string
+ struct Conv is defined in ttmathtypes.h, look there for more information about parameters
+ */
+ std::wstring ToWString(const Conv & conv) const
+ {
+ std::wstring result;
+ ToStringBase<std::wstring, wchar_t>(result, conv);
+
+ return result;
+ }
+
+
+ /*!
+ a method for converting into a string
+ struct Conv is defined in ttmathtypes.h, look there for more information about parameters
+ */
+ std::wstring ToWString() const
+ {
+ Conv conv;
+
+ return ToWString(conv);
+ }
+
+
+private:
+
+
+ /*!
+ an auxiliary method for converting into the string
+ */
+ template<class string_type, class char_type>
+ uint ToStringBase(string_type & result, const Conv & conv) const
+ {
+ static char error_overflow_msg[] = "overflow";
+ static char error_nan_msg[] = "NaN";
+ result.erase();
+
+ if( IsNan() )
+ {
+ Misc::AssignString(result, error_nan_msg);
+ return 0;
+ }
+
+ if( conv.base<2 || conv.base>16 )
+ {
+ Misc::AssignString(result, error_overflow_msg);
+ return 1;
+ }
+
+ if( IsZero() )
+ {
+ result = '0';
+
+ return 0;
+ }
+
+ /*
+ since 'base' is greater or equal 2 that 'new_exp' of type 'Int<exp>' should
+ hold the new value of exponent but we're using 'Int<exp+1>' because
+ if the value for example would be 'max()' then we couldn't show it
+
+ max() -> 11111111 * 2 ^ 11111111111 (bin)(the mantissa and exponent have all bits set)
+ if we were using 'Int<exp>' we couldn't show it in this format:
+ 1,1111111 * 2 ^ 11111111111 (bin)
+ because we have to add something to the mantissa and because
+ mantissa is full we can't do it and it'll be a carry
+ (look at ToString_SetCommaAndExponent(...))
+
+ when the base would be greater than two (for example 10)
+ we could use 'Int<exp>' here
+ */
+ Int<exp+1> new_exp;
+
+ if( ToString_CreateNewMantissaAndExponent<string_type, char_type>(result, conv, new_exp) )
+ {
+ Misc::AssignString(result, error_overflow_msg);
+ return 1;
+ }
+
+
+ if( ToString_SetCommaAndExponent<string_type, char_type>(result, conv, new_exp) )
+ {
+ Misc::AssignString(result, error_overflow_msg);
+ return 1;
+ }
+
+ if( IsSign() )
+ result.insert(result.begin(), '-');
+
+
+ // converted successfully
+ return 0;
+ }
+
+
+
+ /*!
+ in the method 'ToString_CreateNewMantissaAndExponent()' we're using
+ type 'Big<exp+1,man>' and we should have the ability to use some
+ necessary methods from that class (methods which are private here)
+ */
+ friend class Big<exp-1,man>;
+
+
+ /*!
+ an auxiliary method for converting into the string
+
+ input:
+ base - the base in range <2,16>
+
+ output:
+ return values:
+ 0 - ok
+ 1 - if there was a carry
+ new_man - the new mantissa for 'base'
+ new_exp - the new exponent for 'base'
+
+ mathematic part:
+
+ the value is stored as:
+ value = mantissa * 2^exponent
+ we want to show 'value' as:
+ value = new_man * base^new_exp
+
+ then 'new_man' we'll print using the standard method from UInt<> type for printing
+ and 'new_exp' is the offset of the comma operator in a system of a base 'base'
+
+ value = mantissa * 2^exponent
+ value = mantissa * 2^exponent * (base^new_exp / base^new_exp)
+ value = mantissa * (2^exponent / base^new_exp) * base^new_exp
+
+ look at the part (2^exponent / base^new_exp), there'll be good if we take
+ a 'new_exp' equal that value when the (2^exponent / base^new_exp) will be equal one
+
+ on account of the 'base' is not as power of 2 (can be from 2 to 16),
+ this formula will not be true for integer 'new_exp' then in our case we take
+ 'base^new_exp' _greater_ than '2^exponent'
+
+ if 'base^new_exp' were smaller than '2^exponent' the new mantissa could be
+ greater than the max value of the container UInt<man>
+
+ value = mantissa * (2^exponent / base^new_exp) * base^new_exp
+ let M = mantissa * (2^exponent / base^new_exp) then
+ value = M * base^new_exp
+
+ in our calculation we treat M as floating value showing it as:
+ M = mm * 2^ee where ee will be <= 0
+
+ next we'll move all bits of mm into the right when ee is equal zero
+ abs(ee) must not be too big that only few bits from mm we can leave
+
+ then we'll have:
+ M = mmm * 2^0
+ 'mmm' is the new_man which we're looking for
+
+
+ new_exp we calculate in this way:
+ 2^exponent <= base^new_exp
+ new_exp >= log base (2^exponent) <- logarithm with the base 'base' from (2^exponent)
+
+ but we need new_exp as integer then we test:
+ if new_exp is greater than zero and with fraction we add one to new_exp
+ new_exp = new_exp + 1 (if new_exp>0 and with fraction)
+ and at the end we take the integer part:
+ new_exp = int(new_exp)
+ */
+ template<class string_type, class char_type>
+ uint ToString_CreateNewMantissaAndExponent( string_type & new_man, const Conv & conv,
+ Int<exp+1> & new_exp) const
+ {
+ uint c = 0;
+
+ if( conv.base<2 || conv.base>16 )
+ return 1;
+
+ // the speciality for base equal 2
+ if( conv.base == 2 )
+ return ToString_CreateNewMantissaAndExponent_Base2(new_man, new_exp);
+
+ // the speciality for base equal 4
+ if( conv.base == 4 )
+ return ToString_CreateNewMantissaAndExponent_BasePow2(new_man, new_exp, 2);
+
+ // the speciality for base equal 8
+ if( conv.base == 8 )
+ return ToString_CreateNewMantissaAndExponent_BasePow2(new_man, new_exp, 3);
+
+ // the speciality for base equal 16
+ if( conv.base == 16 )
+ return ToString_CreateNewMantissaAndExponent_BasePow2(new_man, new_exp, 4);
+
+
+ // this = mantissa * 2^exponent
+
+ // temp = +1 * 2^exponent
+ // we're using a bigger type than 'big<exp,man>' (look below)
+ Big<exp+1,man> temp;
+ temp.info = 0;
+ temp.exponent = exponent;
+ temp.mantissa.SetOne();
+ c += temp.Standardizing();
+
+ // new_exp_ = log base (2^exponent)
+ // if new_exp_ is positive and with fraction then we add one
+ Big<exp+1,man> new_exp_;
+ c += new_exp_.ToString_Log(temp, conv.base); // this logarithm isn't very complicated
+
+ // adding some epsilon value (to get rid of some floating point errors)
+ temp.Set05();
+ temp.exponent.SubOne(); // temp = 0.5/2 = 0.25
+ c += new_exp_.Add(temp);
+
+ if( !new_exp_.IsSign() && !new_exp_.IsInteger() )
+ {
+ // new_exp_ > 0 and with fraction
+ temp.SetOne();
+ c += new_exp_.Add( temp );
+ }
+
+ // new_exp_ = int(new_exp_)
+ new_exp_.SkipFraction();
+
+
+ // because 'base^new_exp' is >= '2^exponent' then
+ // because base is >= 2 then we've got:
+ // 'new_exp_' must be smaller or equal 'new_exp'
+ // and we can pass it into the Int<exp> type
+ // (in fact we're using a greater type then it'll be ok)
+ c += new_exp_.ToInt(new_exp);
+
+ // base_ = base
+ Big<exp+1,man> base_(conv.base);
+
+ // base_ = base_ ^ new_exp_
+ c += base_.Pow( new_exp_ );
+ // if we hadn't used a bigger type than 'Big<exp,man>' then the result
+ // of this formula 'Pow(...)' would have been with an overflow
+
+ // temp = mantissa * 2^exponent / base_^new_exp_
+ // the sign don't interest us here
+ temp.mantissa = mantissa;
+ temp.exponent = exponent;
+ c += temp.Div(base_, false); // dividing without rounding
+
+ // moving all bits of the mantissa into the right
+ // (how many times to move depend on the exponent)
+ c += temp.ToString_MoveMantissaIntoRight();
+
+ // because we took 'new_exp' as small as it was
+ // possible ([log base (2^exponent)] + 1) that after the division
+ // (temp.Div( base_ )) the value of exponent should be equal zero or
+ // minimum smaller than zero then we've got the mantissa which has
+ // maximum valid bits
+ temp.mantissa.ToString(new_man, conv.base);
+
+ // base rounding
+ if( conv.base_round )
+ c += ToString_BaseRound<string_type, char_type>(new_man, conv, new_exp);
+
+ return (c==0)? 0 : 1;
+ }
+
+
+ /*!
+ this method calculates the logarithm
+ it is used by ToString_CreateNewMantissaAndExponent() method
+
+ it's not too complicated
+ because x=+1*2^exponent (mantissa is one) then during the calculation
+ the Ln(x) will not be making the long formula from LnSurrounding1()
+ and only we have to calculate 'Ln(base)' but it'll be calculated
+ only once, the next time we will get it from the 'history'
+
+ x is greater than 0
+ base is in <2,16> range
+ */
+ uint ToString_Log(const Big<exp,man> & x, uint base)
+ {
+ TTMATH_REFERENCE_ASSERT( x )
+ TTMATH_ASSERT( base>=2 && base<=16 )
+
+ Big<exp,man> temp;
+ temp.SetOne();
+
+ if( x == temp )
+ {
+ // log(1) is 0
+ SetZero();
+
+ return 0;
+ }
+
+ // there can be only a carry
+ // because the 'x' is in '1+2*exponent' form then
+ // the long formula from LnSurrounding1() will not be calculated
+ // (LnSurrounding1() will return one immediately)
+ uint c = Ln(x);
+
+ if( base==10 && man<=TTMATH_BUILTIN_VARIABLES_SIZE )
+ {
+ // for the base equal 10 we're using SelLn10() instead of calculating it
+ // (only if we have the constant sufficient big)
+ temp.SetLn10();
+ }
+ else
+ {
+ c += ToString_LogBase(base, temp);
+ }
+
+ c += Div( temp );
+
+ return (c==0)? 0 : 1;
+ }
+
+
+#ifndef TTMATH_MULTITHREADS
+
+ /*!
+ this method calculates the logarithm of 'base'
+ it's used in single thread environment
+ */
+ uint ToString_LogBase(uint base, Big<exp,man> & result)
+ {
+ TTMATH_ASSERT( base>=2 && base<=16 )
+
+ // this guardians are initialized before the program runs (static POD types)
+ static int guardians[15] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
+ static Big<exp,man> log_history[15];
+ uint index = base - 2;
+ uint c = 0;
+
+ if( guardians[index] == 0 )
+ {
+ Big<exp,man> base_(base);
+ c += log_history[index].Ln(base_);
+ guardians[index] = 1;
+ }
+
+ result = log_history[index];
+
+ return (c==0)? 0 : 1;
+ }
+
+#else
+
+ /*!
+ this method calculates the logarithm of 'base'
+ it's used in multi-thread environment
+ */
+ uint ToString_LogBase(uint base, Big<exp,man> & result)
+ {
+ TTMATH_ASSERT( base>=2 && base<=16 )
+
+ // this guardians are initialized before the program runs (static POD types)
+ volatile static sig_atomic_t guardians[15] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
+ static Big<exp,man> * plog_history;
+ uint index = base - 2;
+ uint c = 0;
+
+ // double-checked locking
+ if( guardians[index] == 0 )
+ {
+ ThreadLock thread_lock;
+
+ // locking
+ if( thread_lock.Lock() )
+ {
+ static Big<exp,man> log_history[15];
+
+ if( guardians[index] == 0 )
+ {
+ plog_history = log_history;
+
+ Big<exp,man> base_(base);
+ c += log_history[index].Ln(base_);
+ guardians[index] = 1;
+ }
+ }
+ else
+ {
+ // there was a problem with locking, we store the result directly in 'result' object
+ Big<exp,man> base_(base);
+ c += result.Ln(base_);
+
+ return (c==0)? 0 : 1;
+ }
+
+ // automatically unlocking
+ }
+
+ result = plog_history[index];
+
+ return (c==0)? 0 : 1;
+ }
+
+#endif
+
+ /*!
+ an auxiliary method for converting into the string (private)
+
+ this method moving all bits from mantissa into the right side
+ the exponent tell us how many times moving (the exponent is <=0)
+ */
+ uint ToString_MoveMantissaIntoRight()
+ {
+ if( exponent.IsZero() )
+ return 0;
+
+ // exponent can't be greater than zero
+ // because we would cat the highest bits of the mantissa
+ if( !exponent.IsSign() )
+ return 1;
+
+
+ if( exponent <= -sint(man*TTMATH_BITS_PER_UINT) )
+ // if 'exponent' is <= than '-sint(man*TTMATH_BITS_PER_UINT)'
+ // it means that we must cut the whole mantissa
+ // (there'll not be any of the valid bits)
+ return 1;
+
+ // e will be from (-man*TTMATH_BITS_PER_UINT, 0>
+ sint e = -( exponent.ToInt() );
+ mantissa.Rcr(e,0);
+
+ return 0;
+ }
+
+
+ /*!
+ a special method similar to the 'ToString_CreateNewMantissaAndExponent'
+ when the 'base' is equal 2
+
+ we use it because if base is equal 2 we don't have to make those
+ complicated calculations and the output is directly from the source
+ (there will not be any small distortions)
+ */
+ template<class string_type>
+ uint ToString_CreateNewMantissaAndExponent_Base2( string_type & new_man,
+ Int<exp+1> & new_exp ) const
+ {
+ for( sint i=man-1 ; i>=0 ; --i )
+ {
+ uint value = mantissa.table[i];
+
+ for( uint bit=0 ; bit<TTMATH_BITS_PER_UINT ; ++bit )
+ {
+ if( (value & TTMATH_UINT_HIGHEST_BIT) != 0 )
+ new_man += '1';
+ else
+ new_man += '0';
+
+ value <<= 1;
+ }
+ }
+
+ new_exp = exponent;
+
+ return 0;
+ }
+
+
+ /*!
+ a special method used to calculate the new mantissa and exponent
+ when the 'base' is equal 4, 8 or 16
+
+ when base is 4 then bits is 2
+ when base is 8 then bits is 3
+ when base is 16 then bits is 4
+ (and the algorithm can be used with a base greater than 16)
+ */
+ template<class string_type>
+ uint ToString_CreateNewMantissaAndExponent_BasePow2( string_type & new_man,
+ Int<exp+1> & new_exp,
+ uint bits) const
+ {
+ sint move; // how many times move the mantissa
+ UInt<man+1> man_temp(mantissa); // man+1 for moving
+ new_exp = exponent;
+ new_exp.DivInt((sint)bits, move);
+
+ if( move != 0 )
+ {
+ // we're moving the man_temp to left-hand side
+ if( move < 0 )
+ {
+ move = sint(bits) + move;
+ new_exp.SubOne(); // when move is < than 0 then new_exp is < 0 too
+ }
+
+ man_temp.Rcl(move);
+ }
+
+
+ if( bits == 3 )
+ {
+ // base 8
+ // now 'move' is greater than or equal 0
+ uint len = man*TTMATH_BITS_PER_UINT + move;
+ return ToString_CreateNewMantissaAndExponent_Base8(new_man, man_temp, len, bits);
+ }
+ else
+ {
+ // base 4 or 16
+ return ToString_CreateNewMantissaAndExponent_Base4or16(new_man, man_temp, bits);
+ }
+ }
+
+
+ /*!
+ a special method used to calculate the new mantissa
+ when the 'base' is equal 8
+
+ bits is always 3
+
+ we can use this algorithm when the base is 4 or 16 too
+ but we have a faster method ToString_CreateNewMantissaAndExponent_Base4or16()
+ */
+ template<class string_type>
+ uint ToString_CreateNewMantissaAndExponent_Base8( string_type & new_man,
+ UInt<man+1> & man_temp,
+ uint len,
+ uint bits) const
+ {
+ uint shift = TTMATH_BITS_PER_UINT - bits;
+ uint mask = TTMATH_UINT_MAX_VALUE >> shift;
+ uint i;
+
+ for( i=0 ; i<len ; i+=bits )
+ {
+ uint digit = man_temp.table[0] & mask;
+ new_man.insert(new_man.begin(), static_cast<char>(Misc::DigitToChar(digit)));
+
+ man_temp.Rcr(bits);
+ }
+
+ TTMATH_ASSERT( man_temp.IsZero() )
+
+ return 0;
+ }
+
+
+ /*!
+ a special method used to calculate the new mantissa
+ when the 'base' is equal 4 or 16
+
+ when the base is equal 4 or 16 the bits is 2 or 4
+ and because TTMATH_BITS_PER_UINT (32 or 64) is divisible by 2 (or 4)
+ then we can get digits from the end of our mantissa
+ */
+ template<class string_type>
+ uint ToString_CreateNewMantissaAndExponent_Base4or16( string_type & new_man,
+ UInt<man+1> & man_temp,
+ uint bits) const
+ {
+ TTMATH_ASSERT( TTMATH_BITS_PER_UINT % 2 == 0 )
+ TTMATH_ASSERT( TTMATH_BITS_PER_UINT % 4 == 0 )
+
+ uint shift = TTMATH_BITS_PER_UINT - bits;
+ uint mask = TTMATH_UINT_MAX_VALUE << shift;
+ uint digit;
+
+ // table[man] - last word - is different from zero if we moved man_temp
+ digit = man_temp.table[man];
+
+ if( digit != 0 )
+ new_man += static_cast<char>(Misc::DigitToChar(digit));
+
+
+ for( int i=man-1 ; i>=0 ; --i )
+ {
+ uint shift_local = shift;
+ uint mask_local = mask;
+
+ while( mask_local != 0 )
+ {
+ digit = man_temp.table[i] & mask_local;
+
+ if( shift_local != 0 )
+ digit = digit >> shift_local;
+
+ new_man += static_cast<char>(Misc::DigitToChar(digit));
+ mask_local = mask_local >> bits;
+ shift_local = shift_local - bits;
+ }
+ }
+
+ return 0;
+ }
+
+
+ /*!
+ an auxiliary method for converting into the string
+ */
+ template<class string_type, class char_type>
+ bool ToString_RoundMantissaWouldBeInteger(string_type & new_man, const Conv & conv, Int<exp+1> & new_exp) const
+ {
+ // if new_exp is greater or equal to zero then we have an integer value,
+ // if new_exp is equal -1 then we have only one digit after the comma
+ // and after rounding it would be an integer value
+ if( !new_exp.IsSign() || new_exp == -1 )
+ return true;
+
+ if( new_man.size() >= TTMATH_UINT_HIGHEST_BIT || new_man.size() < 2 )
+ return true; // oops, the mantissa is too large for calculating (or too small) - we are not doing the base rounding
+
+ uint i = 0;
+ char_type digit;
+
+ if( new_exp >= -sint(new_man.size()) )
+ {
+ uint new_exp_abs = -new_exp.ToInt();
+ i = new_man.size() - new_exp_abs; // start from the first digit after the comma operator
+ }
+
+ if( Misc::CharToDigit(new_man[new_man.size()-1]) >= conv.base/2 )
+ {
+ if( new_exp < -sint(new_man.size()) )
+ {
+ // there are some zeroes after the comma operator
+ // (between the comma and the first digit from the mantissa)
+ // and the result value will never be an integer
+ return false;
+ }
+
+ digit = static_cast<char_type>( Misc::DigitToChar(conv.base-1) );
+ }
+ else
+ {
+ digit = '0';
+ }
+
+ for( ; i < new_man.size()-1 ; ++i)
+ if( new_man[i] != digit )
+ return false; // it will not be an integer
+
+ return true; // it will be integer after rounding
+ }
+
+
+ /*!
+ an auxiliary method for converting into the string
+
+ this method is used for base!=2, base!=4, base!=8 and base!=16
+ we do the rounding when the value has fraction (is not an integer)
+ */
+ template<class string_type, class char_type>
+ uint ToString_BaseRound(string_type & new_man, const Conv & conv, Int<exp+1> & new_exp) const
+ {
+ // we must have minimum two characters
+ if( new_man.size() < 2 )
+ return 0;
+
+ // assert that there will not be an integer after rounding
+ if( ToString_RoundMantissaWouldBeInteger<string_type, char_type>(new_man, conv, new_exp) )
+ return 0;
+
+ typename string_type::size_type i = new_man.length() - 1;
+
+ // we're erasing the last character
+ uint digit = Misc::CharToDigit( new_man[i] );
+ new_man.erase(i, 1);
+ uint c = new_exp.AddOne();
+
+ // if the last character is greater or equal 'base/2'
+ // we are adding one into the new mantissa
+ if( digit >= conv.base / 2 )
+ ToString_RoundMantissa_AddOneIntoMantissa<string_type, char_type>(new_man, conv);
+
+ return c;
+ }
+
+
+ /*!
+ an auxiliary method for converting into the string
+
+ this method addes one into the new mantissa
+ */
+ template<class string_type, class char_type>
+ void ToString_RoundMantissa_AddOneIntoMantissa(string_type & new_man, const Conv & conv) const
+ {
+ if( new_man.empty() )
+ return;
+
+ sint i = sint( new_man.length() ) - 1;
+ bool was_carry = true;
+
+ for( ; i>=0 && was_carry ; --i )
+ {
+ // we can have the comma as well because
+ // we're using this method later in ToString_CorrectDigitsAfterComma_Round()
+ // (we're only ignoring it)
+ if( new_man[i] == static_cast<char_type>(conv.comma) )
+ continue;
+
+ // we're adding one
+ uint digit = Misc::CharToDigit( new_man[i] ) + 1;
+
+ if( digit == conv.base )
+ digit = 0;
+ else
+ was_carry = false;
+
+ new_man[i] = static_cast<char_type>( Misc::DigitToChar(digit) );
+ }
+
+ if( i<0 && was_carry )
+ new_man.insert( new_man.begin() , '1' );
+ }
+
+
+
+ /*!
+ an auxiliary method for converting into the string
+
+ this method sets the comma operator and/or puts the exponent
+ into the string
+ */
+ template<class string_type, class char_type>
+ uint ToString_SetCommaAndExponent(string_type & new_man, const Conv & conv, Int<exp+1> & new_exp) const
+ {
+ uint carry = 0;
+
+ if( new_man.empty() )
+ return carry;
+
+ Int<exp+1> scientific_exp( new_exp );
+
+ // 'new_exp' depends on the 'new_man' which is stored like this e.g:
+ // 32342343234 (the comma is at the end)
+ // we'd like to show it in this way:
+ // 3.2342343234 (the 'scientific_exp' is connected with this example)
+
+ sint offset = sint( new_man.length() ) - 1;
+ carry += scientific_exp.Add( offset );
+ // there shouldn't have been a carry because we're using
+ // a greater type -- 'Int<exp+1>' instead of 'Int<exp>'
+
+ bool print_scientific = conv.scient;
+
+ if( !print_scientific )
+ {
+ if( scientific_exp > conv.scient_from || scientific_exp < -sint(conv.scient_from) )
+ print_scientific = true;
+ }
+
+ if( !print_scientific )
+ ToString_SetCommaAndExponent_Normal<string_type, char_type>(new_man, conv, new_exp);
+ else
+ // we're passing the 'scientific_exp' instead of 'new_exp' here
+ ToString_SetCommaAndExponent_Scientific<string_type, char_type>(new_man, conv, scientific_exp);
+
+ return (carry==0)? 0 : 1;
+ }
+
+
+ /*!
+ an auxiliary method for converting into the string
+ */
+ template<class string_type, class char_type>
+ void ToString_SetCommaAndExponent_Normal(string_type & new_man, const Conv & conv, Int<exp+1> & new_exp ) const
+ {
+ if( !new_exp.IsSign() ) // it means: if( new_exp >= 0 )
+ ToString_SetCommaAndExponent_Normal_AddingZero<string_type, char_type>(new_man, new_exp);
+ else
+ ToString_SetCommaAndExponent_Normal_SetCommaInside<string_type, char_type>(new_man, conv, new_exp);
+
+
+ ToString_Group_man<string_type, char_type>(new_man, conv);
+ }
+
+
+ /*!
+ an auxiliary method for converting into the string
+ */
+ template<class string_type, class char_type>
+ void ToString_SetCommaAndExponent_Normal_AddingZero(string_type & new_man,
+ Int<exp+1> & new_exp) const
+ {
+ // we're adding zero characters at the end
+ // 'i' will be smaller than 'when_scientific' (or equal)
+ uint i = new_exp.ToInt();
+
+ if( new_man.length() + i > new_man.capacity() )
+ // about 6 characters more (we'll need it for the comma or something)
+ new_man.reserve( new_man.length() + i + 6 );
+
+ for( ; i>0 ; --i)
+ new_man += '0';
+ }
+
+
+ /*!
+ an auxiliary method for converting into the string
+ */
+ template<class string_type, class char_type>
+ void ToString_SetCommaAndExponent_Normal_SetCommaInside(
+ string_type & new_man,
+ const Conv & conv,
+ Int<exp+1> & new_exp ) const
+ {
+ // new_exp is < 0
+
+ sint new_man_len = sint(new_man.length()); // 'new_man_len' with a sign
+ sint e = -( new_exp.ToInt() ); // 'e' will be positive
+
+ if( new_exp > -new_man_len )
+ {
+ // we're setting the comma within the mantissa
+
+ sint index = new_man_len - e;
+ new_man.insert( new_man.begin() + index, static_cast<char_type>(conv.comma));
+ }
+ else
+ {
+ // we're adding zero characters before the mantissa
+
+ uint how_many = e - new_man_len;
+ string_type man_temp(how_many+1, '0');
+
+ man_temp.insert( man_temp.begin()+1, static_cast<char_type>(conv.comma));
+ new_man.insert(0, man_temp);
+ }
+
+ ToString_CorrectDigitsAfterComma<string_type, char_type>(new_man, conv);
+ }
+
+
+ /*!
+ an auxiliary method for converting into the string
+ */
+ template<class string_type, class char_type>
+ void ToString_SetCommaAndExponent_Scientific( string_type & new_man,
+ const Conv & conv,
+ Int<exp+1> & scientific_exp ) const
+ {
+ if( new_man.empty() )
+ return;
+
+ if( new_man.size() > 1 )
+ {
+ new_man.insert( new_man.begin()+1, static_cast<char_type>(conv.comma) );
+ ToString_CorrectDigitsAfterComma<string_type, char_type>(new_man, conv);
+ }
+
+ ToString_Group_man<string_type, char_type>(new_man, conv);
+
+ if( conv.base == 10 )
+ {
+ new_man += 'e';
+
+ if( !scientific_exp.IsSign() )
+ new_man += '+';
+ }
+ else
+ {
+ // the 10 here is meant as the base 'base'
+ // (no matter which 'base' we're using there'll always be 10 here)
+ Misc::AddString(new_man, "*10^");
+ }
+
+ string_type temp_exp;
+ scientific_exp.ToString( temp_exp, conv.base );
+
+ new_man += temp_exp;
+ }
+
+
+ /*!
+ an auxiliary method for converting into the string
+ */
+ template<class string_type, class char_type>
+ void ToString_Group_man(string_type & new_man, const Conv & conv) const
+ {
+ typedef typename string_type::size_type StrSize;
+
+ if( conv.group == 0 )
+ return;
+
+ // first we're looking for the comma operator
+ StrSize index = new_man.find(static_cast<char_type>(conv.comma), 0);
+
+ if( index == string_type::npos )
+ index = new_man.size();
+
+ ToString_Group_man_before_comma<string_type, char_type>(new_man, conv, index);
+ ToString_Group_man_after_comma<string_type, char_type>(new_man, conv, index+1);
+ }
+
+
+
+ /*!
+ an auxiliary method for converting into the string
+ */
+ template<class string_type, class char_type>
+ void ToString_Group_man_before_comma( string_type & new_man, const Conv & conv,
+ typename string_type::size_type & index) const
+ {
+ typedef typename string_type::size_type StrSize;
+ uint group = 0;
+
+ StrSize i = index;
+
+ // adding group characters before the comma operator
+ // i>0 because on the first position we don't put any additional grouping characters
+ for( ; i>0 ; --i, ++group)
+ {
+ if( group >= 3 )
+ {
+ group = 0;
+ new_man.insert(i, 1, static_cast<char_type>(conv.group));
+ ++index;
+ }
+ }
+ }
+
+
+ /*!
+ an auxiliary method for converting into the string
+ */
+ template<class string_type, class char_type>
+ void ToString_Group_man_after_comma(string_type & new_man, const Conv & conv,
+ typename string_type::size_type index) const
+ {
+ uint group = 0;
+
+ for( ; index<new_man.size() ; ++index, ++group)
+ {
+ if( group >= 3 )
+ {
+ group = 0;
+ new_man.insert(index, 1, static_cast<char_type>(conv.group));
+ ++index;
+ }
+ }
+ }
+
+
+ /*!
+ an auxiliary method for converting into the string
+ */
+ template<class string_type, class char_type>
+ void ToString_CorrectDigitsAfterComma( string_type & new_man,
+ const Conv & conv ) const
+ {
+ if( conv.round >= 0 )
+ ToString_CorrectDigitsAfterComma_Round<string_type, char_type>(new_man, conv);
+
+ if( conv.trim_zeroes )
+ ToString_CorrectDigitsAfterComma_CutOffZeroCharacters<string_type, char_type>(new_man, conv);
+ }
+
+
+ /*!
+ an auxiliary method for converting into the string
+ */
+ template<class string_type, class char_type>
+ void ToString_CorrectDigitsAfterComma_CutOffZeroCharacters(
+ string_type & new_man,
+ const Conv & conv) const
+ {
+ // minimum two characters
+ if( new_man.length() < 2 )
+ return;
+
+ // we're looking for the index of the last character which is not zero
+ uint i = uint( new_man.length() ) - 1;
+ for( ; i>0 && new_man[i]=='0' ; --i );
+
+ // if there is another character than zero at the end
+ // we're finishing
+ if( i == new_man.length() - 1 )
+ return;
+
+ // we must have a comma
+ // (the comma can be removed by ToString_CorrectDigitsAfterComma_Round
+ // which is called before)
+ if( new_man.find_last_of(static_cast<char_type>(conv.comma), i) == string_type::npos )
+ return;
+
+ // if directly before the first zero is the comma operator
+ // we're cutting it as well
+ if( i>0 && new_man[i]==static_cast<char_type>(conv.comma) )
+ --i;
+
+ new_man.erase(i+1, new_man.length()-i-1);
+ }
+
+
+ /*!
+ an auxiliary method for converting into the string
+ */
+ template<class string_type, class char_type>
+ void ToString_CorrectDigitsAfterComma_Round(
+ string_type & new_man,
+ const Conv & conv ) const
+ {
+ typedef typename string_type::size_type StrSize;
+
+ // first we're looking for the comma operator
+ StrSize index = new_man.find(static_cast<char_type>(conv.comma), 0);
+
+ if( index == string_type::npos )
+ // nothing was found (actually there can't be this situation)
+ return;
+
+ // we're calculating how many digits there are at the end (after the comma)
+ // 'after_comma' will be greater than zero because at the end
+ // we have at least one digit
+ StrSize after_comma = new_man.length() - index - 1;
+
+ // if 'max_digit_after_comma' is greater than 'after_comma' (or equal)
+ // we don't have anything for cutting
+ if( static_cast<StrSize>(conv.round) >= after_comma )
+ return;
+
+ uint last_digit = Misc::CharToDigit( new_man[ index + conv.round + 1 ], conv.base );
+
+ // we're cutting the rest of the string
+ new_man.erase(index + conv.round + 1, after_comma - conv.round);
+
+ if( conv.round == 0 )
+ {
+ // we're cutting the comma operator as well
+ // (it's not needed now because we've cut the whole rest after the comma)
+ new_man.erase(index, 1);
+ }
+
+ if( last_digit >= conv.base / 2 )
+ // we must round here
+ ToString_RoundMantissa_AddOneIntoMantissa<string_type, char_type>(new_man, conv);
+ }
+
+
+
+public:
+
+ /*!
+ a method for converting a string into its value
+
+ it returns 1 if the value is too big -- we cannot pass it into the range
+ of our class Big<exp,man> (or if the base is incorrect)
+
+ that means only digits before the comma operator can make this value too big,
+ all digits after the comma we can ignore
+
+ 'source' - pointer to the string for parsing
+
+ if 'after_source' is set that when this method finishes
+ it sets the pointer to the new first character after parsed value
+
+ 'value_read' - if the pointer is provided that means the value_read will be true
+ only when a value has been actually read, there can be situation where only such
+ a string '-' or '+' will be parsed -- 'after_source' will be different from 'source' but
+ no value has been read (there are no digits)
+ on other words if 'value_read' is true -- there is at least one digit in the string
+ */
+ uint FromString(const char * source, uint base = 10, const char ** after_source = 0, bool * value_read = 0)
+ {
+ Conv conv;
+ conv.base = base;
+
+ return FromStringBase(source, conv, after_source, value_read);
+ }
+
+
+ /*!
+ a method for converting a string into its value
+ */
+ uint FromString(const wchar_t * source, uint base = 10, const wchar_t ** after_source = 0, bool * value_read = 0)
+ {
+ Conv conv;
+ conv.base = base;
+
+ return FromStringBase(source, conv, after_source, value_read);
+ }
+
+
+ /*!
+ a method for converting a string into its value
+ */
+ uint FromString(const char * source, const Conv & conv, const char ** after_source = 0, bool * value_read = 0)
+ {
+ return FromStringBase(source, conv, after_source, value_read);
+ }
+
+
+ /*!
+ a method for converting a string into its value
+ */
+ uint FromString(const wchar_t * source, const Conv & conv, const wchar_t ** after_source = 0, bool * value_read = 0)
+ {
+ return FromStringBase(source, conv, after_source, value_read);
+ }
+
+
+ /*!
+ a method for converting a string into its value
+ */
+ uint FromString(const std::string & string, uint base = 10, const wchar_t ** after_source = 0, bool * value_read = 0)
+ {
+ return FromString(string.c_str(), base, after_source, value_read);
+ }
+
+
+ /*!
+ a method for converting a string into its value
+ */
+ uint FromString(const std::wstring & string, uint base = 10, const wchar_t ** after_source = 0, bool * value_read = 0)
+ {
+ return FromString(string.c_str(), base, after_source, value_read);
+ }
+
+
+ /*!
+ a method for converting a string into its value
+ */
+ uint FromString(const std::string & string, const Conv & conv, const wchar_t ** after_source = 0, bool * value_read = 0)
+ {
+ return FromString(string.c_str(), conv, after_source, value_read);
+ }
+
+
+ /*!
+ a method for converting a string into its value
+ */
+ uint FromString(const std::wstring & string, const Conv & conv, const wchar_t ** after_source = 0, bool * value_read = 0)
+ {
+ return FromString(string.c_str(), conv, after_source, value_read);
+ }
+
+private:
+
+
+ /*!
+ an auxiliary method for converting from a string
+ */
+ template<class char_type>
+ uint FromStringBase(const char_type * source, const Conv & conv, const char_type ** after_source = 0, bool * value_read = 0)
+ {
+ bool is_sign;
+ bool value_read_temp = false;
+
+ if( conv.base<2 || conv.base>16 )
+ {
+ SetNan();
+
+ if( after_source )
+ *after_source = source;
+
+ if( value_read )
+ *value_read = value_read_temp;
+
+ return 1;
+ }
+
+ SetZero();
+ FromString_TestSign( source, is_sign );
+
+ uint c = FromString_ReadPartBeforeComma( source, conv, value_read_temp );
+
+ if( FromString_TestCommaOperator(source, conv) )
+ c += FromString_ReadPartAfterComma( source, conv, value_read_temp );
+
+ if( value_read_temp && conv.base == 10 )
+ c += FromString_ReadScientificIfExists( source );
+
+ if( is_sign && !IsZero() )
+ ChangeSign();
+
+ if( after_source )
+ *after_source = source;
+
+ if( value_read )
+ *value_read = value_read_temp;
+
+ return CheckCarry(c);
+ }
+
+
+ /*!
+ we're testing whether the value is with the sign
+
+ (this method is used from 'FromString_ReadPartScientific' too)
+ */
+ template<class char_type>
+ void FromString_TestSign( const char_type * & source, bool & is_sign )
+ {
+ Misc::SkipWhiteCharacters(source);
+
+ is_sign = false;
+
+ if( *source == '-' )
+ {
+ is_sign = true;
+ ++source;
+ }
+ else
+ if( *source == '+' )
+ {
+ ++source;
+ }
+ }
+
+
+ /*!
+ we're testing whether there's a comma operator
+ */
+ template<class char_type>
+ bool FromString_TestCommaOperator(const char_type * & source, const Conv & conv)
+ {
+ if( (*source == static_cast<char_type>(conv.comma)) ||
+ (*source == static_cast<char_type>(conv.comma2) && conv.comma2 != 0 ) )
+ {
+ ++source;
+
+ return true;
+ }
+
+ return false;
+ }
+
+
+ /*!
+ this method reads the first part of a string
+ (before the comma operator)
+ */
+ template<class char_type>
+ uint FromString_ReadPartBeforeComma( const char_type * & source, const Conv & conv, bool & value_read )
+ {
+ sint character;
+ Big<exp, man> temp;
+ Big<exp, man> base_( conv.base );
+
+ Misc::SkipWhiteCharacters( source );
+
+ for( ; true ; ++source )
+ {
+ if( conv.group!=0 && *source==static_cast<char>(conv.group) )
+ continue;
+
+ character = Misc::CharToDigit(*source, conv.base);
+
+ if( character == -1 )
+ break;
+
+ value_read = true;
+ temp = character;
+
+ if( Mul(base_) )
+ return 1;
+
+ if( Add(temp) )
+ return 1;
+ }
+
+ return 0;
+ }
+
+
+ /*!
+ this method reads the second part of a string
+ (after the comma operator)
+ */
+ template<class char_type>
+ uint FromString_ReadPartAfterComma( const char_type * & source, const Conv & conv, bool & value_read )
+ {
+ sint character;
+ uint c = 0, index = 1;
+ Big<exp, man> sum, part, power, old_value, base_( conv.base );
+
+ // we don't remove any white characters here
+
+ // this is only to avoid getting a warning about an uninitialized object 'old_value' which GCC reports
+ // (in fact we will initialize it later when the condition 'testing' is fulfilled)
+ old_value.SetZero();
+
+ power.SetOne();
+ sum.SetZero();
+
+ for( ; true ; ++source, ++index )
+ {
+ if( conv.group!=0 && *source==static_cast<char>(conv.group) )
+ continue;
+
+ character = Misc::CharToDigit(*source, conv.base);
+
+ if( character == -1 )
+ break;
+
+ value_read = true;
+
+ part = character;
+
+ if( power.Mul( base_ ) )
+ // there's no sens to add the next parts, but we can't report this
+ // as an error (this is only inaccuracy)
+ break;
+
+ if( part.Div( power ) )
+ break;
+
+ // every 5 iteration we make a test whether the value will be changed or not
+ // (character must be different from zero to this test)
+ bool testing = (character != 0 && (index % 5) == 0);
+
+ if( testing )
+ old_value = sum;
+
+ // there actually shouldn't be a carry here
+ c += sum.Add( part );
+
+ if( testing && old_value == sum )
+ // after adding 'part' the value has not been changed
+ // there's no sense to add any next parts
+ break;
+ }
+
+ // we could break the parsing somewhere in the middle of the string,
+ // but the result (value) still can be good
+ // we should set a correct value of 'source' now
+ for( ; Misc::CharToDigit(*source, conv.base) != -1 ; ++source );
+
+ c += Add(sum);
+
+ return (c==0)? 0 : 1;
+ }
+
+
+ /*!
+ this method checks whether there is a scientific part: [e|E][-|+]value
+
+ it is called when the base is 10 and some digits were read before
+ */
+ template<class char_type>
+ uint FromString_ReadScientificIfExists(const char_type * & source)
+ {
+ uint c = 0;
+
+ bool scientific_read = false;
+ const char_type * before_scientific = source;
+
+ if( FromString_TestScientific(source) )
+ c += FromString_ReadPartScientific( source, scientific_read );
+
+ if( !scientific_read )
+ source = before_scientific;
+
+ return (c==0)? 0 : 1;
+ }
+
+
+
+ /*!
+ we're testing whether is there the character 'e'
+
+ this character is only allowed when we're using the base equals 10
+ */
+ template<class char_type>
+ bool FromString_TestScientific(const char_type * & source)
+ {
+ Misc::SkipWhiteCharacters(source);
+
+ if( *source=='e' || *source=='E' )
+ {
+ ++source;
+
+ return true;
+ }
+
+ return false;
+ }
+
+
+ /*!
+ this method reads the exponent (after 'e' character) when there's a scientific
+ format of value and only when we're using the base equals 10
+ */
+ template<class char_type>
+ uint FromString_ReadPartScientific( const char_type * & source, bool & scientific_read )
+ {
+ uint c = 0;
+ Big<exp, man> new_exponent, temp;
+ bool was_sign = false;
+
+ FromString_TestSign( source, was_sign );
+ c += FromString_ReadPartScientific_ReadExponent( source, new_exponent, scientific_read );
+
+ if( scientific_read )
+ {
+ if( was_sign )
+ new_exponent.ChangeSign();
+
+ temp = 10;
+ c += temp.Pow( new_exponent );
+ c += Mul(temp);
+ }
+
+ return (c==0)? 0 : 1;
+ }
+
+
+ /*!
+ this method reads the value of the extra exponent when scientific format is used
+ (only when base == 10)
+ */
+ template<class char_type>
+ uint FromString_ReadPartScientific_ReadExponent( const char_type * & source, Big<exp, man> & new_exponent, bool & scientific_read )
+ {
+ sint character;
+ Big<exp, man> base, temp;
+
+ Misc::SkipWhiteCharacters(source);
+
+ new_exponent.SetZero();
+ base = 10;
+
+ for( ; (character=Misc::CharToDigit(*source, 10)) != -1 ; ++source )
+ {
+ scientific_read = true;
+
+ temp = character;
+
+ if( new_exponent.Mul(base) )
+ return 1;
+
+ if( new_exponent.Add(temp) )
+ return 1;
+ }
+
+ return 0;
+ }
+
+
+public:
+
+
+ /*!
+ a constructor for converting a string into this class
+ */
+ Big(const char * string)
+ {
+ FromString( string );
+ }
+
+
+ /*!
+ a constructor for converting a string into this class
+ */
+ Big(const wchar_t * string)
+ {
+ FromString( string );
+ }
+
+
+ /*!
+ a constructor for converting a string into this class
+ */
+ Big(const std::string & string)
+ {
+ FromString( string.c_str() );
+ }
+
+
+ /*!
+ a constructor for converting a string into this class
+ */
+ Big(const std::wstring & string)
+ {
+ FromString( string.c_str() );
+ }
+
+
+ /*!
+ an operator= for converting a string into its value
+ */
+ Big<exp, man> & operator=(const char * string)
+ {
+ FromString( string );
+
+ return *this;
+ }
+
+
+ /*!
+ an operator= for converting a string into its value
+ */
+ Big<exp, man> & operator=(const wchar_t * string)
+ {
+ FromString( string );
+
+ return *this;
+ }
+
+
+ /*!
+ an operator= for converting a string into its value
+ */
+ Big<exp, man> & operator=(const std::string & string)
+ {
+ FromString( string.c_str() );
+
+ return *this;
+ }
+
+
+ /*!
+ an operator= for converting a string into its value
+ */
+ Big<exp, man> & operator=(const std::wstring & string)
+ {
+ FromString( string.c_str() );
+
+ return *this;
+ }
+
+
+
+ /*!
+ *
+ * methods for comparing
+ *
+ */
+
+
+ /*!
+ this method performs the formula 'abs(this) < abs(ss2)'
+ and returns the result
+
+ (in other words it treats 'this' and 'ss2' as values without a sign)
+ we don't check the NaN flag
+ */
+ bool SmallerWithoutSignThan(const Big<exp,man> & ss2) const
+ {
+ if( IsZero() )
+ {
+ if( ss2.IsZero() )
+ // we've got two zeroes
+ return false;
+ else
+ // this==0 and ss2!=0
+ return true;
+ }
+
+ if( ss2.IsZero() )
+ // this!=0 and ss2==0
+ return false;
+
+ // we're using the fact that all bits in mantissa are pushed
+ // into the left side -- Standardizing()
+ if( exponent == ss2.exponent )
+ return mantissa < ss2.mantissa;
+
+ return exponent < ss2.exponent;
+ }
+
+
+ /*!
+ this method performs the formula 'abs(this) > abs(ss2)'
+ and returns the result
+
+ (in other words it treats 'this' and 'ss2' as values without a sign)
+ we don't check the NaN flag
+ */
+ bool GreaterWithoutSignThan(const Big<exp,man> & ss2) const
+ {
+ if( IsZero() )
+ {
+ if( ss2.IsZero() )
+ // we've got two zeroes
+ return false;
+ else
+ // this==0 and ss2!=0
+ return false;
+ }
+
+ if( ss2.IsZero() )
+ // this!=0 and ss2==0
+ return true;
+
+ // we're using the fact that all bits in mantissa are pushed
+ // into the left side -- Standardizing()
+ if( exponent == ss2.exponent )
+ return mantissa > ss2.mantissa;
+
+ return exponent > ss2.exponent;
+ }
+
+
+ /*!
+ this method performs the formula 'abs(this) == abs(ss2)'
+ and returns the result
+
+ (in other words it treats 'this' and 'ss2' as values without a sign)
+ we don't check the NaN flag
+ */
+ bool EqualWithoutSign(const Big<exp,man> & ss2) const
+ {
+ if( IsZero() )
+ {
+ if( ss2.IsZero() )
+ // we've got two zeroes
+ return true;
+ else
+ // this==0 and ss2!=0
+ return false;
+ }
+
+ if( ss2.IsZero() )
+ // this!=0 and ss2==0
+ return false;
+
+ if( exponent==ss2.exponent && mantissa==ss2.mantissa )
+ return true;
+
+ return false;
+ }
+
+
+ bool operator<(const Big<exp,man> & ss2) const
+ {
+ if( IsSign() && !ss2.IsSign() )
+ // this<0 and ss2>=0
+ return true;
+
+ if( !IsSign() && ss2.IsSign() )
+ // this>=0 and ss2<0
+ return false;
+
+ // both signs are the same
+
+ if( IsSign() )
+ return ss2.SmallerWithoutSignThan( *this );
+
+ return SmallerWithoutSignThan( ss2 );
+ }
+
+
+ bool operator==(const Big<exp,man> & ss2) const
+ {
+ if( IsSign() != ss2.IsSign() )
+ return false;
+
+ return EqualWithoutSign( ss2 );
+ }
+
+
+ bool operator>(const Big<exp,man> & ss2) const
+ {
+ if( IsSign() && !ss2.IsSign() )
+ // this<0 and ss2>=0
+ return false;
+
+ if( !IsSign() && ss2.IsSign() )
+ // this>=0 and ss2<0
+ return true;
+
+ // both signs are the same
+
+ if( IsSign() )
+ return ss2.GreaterWithoutSignThan( *this );
+
+ return GreaterWithoutSignThan( ss2 );
+ }
+
+
+ bool operator>=(const Big<exp,man> & ss2) const
+ {
+ return !operator<( ss2 );
+ }
+
+
+ bool operator<=(const Big<exp,man> & ss2) const
+ {
+ return !operator>( ss2 );
+ }
+
+
+ bool operator!=(const Big<exp,man> & ss2) const
+ {
+ return !operator==(ss2);
+ }
+
+
+
+
+
+ /*!
+ *
+ * standard mathematical operators
+ *
+ */
+
+
+ /*!
+ an operator for changing the sign
+
+ this method is not changing 'this' but the changed value is returned
+ */
+ Big<exp,man> operator-() const
+ {
+ Big<exp,man> temp(*this);
+
+ temp.ChangeSign();
+
+ return temp;
+ }
+
+
+ Big<exp,man> operator-(const Big<exp,man> & ss2) const
+ {
+ Big<exp,man> temp(*this);
+
+ temp.Sub(ss2);
+
+ return temp;
+ }
+
+ Big<exp,man> & operator-=(const Big<exp,man> & ss2)
+ {
+ Sub(ss2);
+
+ return *this;
+ }
+
+
+ Big<exp,man> operator+(const Big<exp,man> & ss2) const
+ {
+ Big<exp,man> temp(*this);
+
+ temp.Add(ss2);
+
+ return temp;
+ }
+
+
+ Big<exp,man> & operator+=(const Big<exp,man> & ss2)
+ {
+ Add(ss2);
+
+ return *this;
+ }
+
+
+ Big<exp,man> operator*(const Big<exp,man> & ss2) const
+ {
+ Big<exp,man> temp(*this);
+
+ temp.Mul(ss2);
+
+ return temp;
+ }
+
+
+ Big<exp,man> & operator*=(const Big<exp,man> & ss2)
+ {
+ Mul(ss2);
+
+ return *this;
+ }
+
+
+ Big<exp,man> operator/(const Big<exp,man> & ss2) const
+ {
+ Big<exp,man> temp(*this);
+
+ temp.Div(ss2);
+
+ return temp;
+ }
+
+
+ Big<exp,man> & operator/=(const Big<exp,man> & ss2)
+ {
+ Div(ss2);
+
+ return *this;
+ }
+
+
+ /*!
+ this method makes an integer value by skipping any fractions
+
+ for example:
+ 10.7 will be 10
+ 12.1 -- 12
+ -20.2 -- 20
+ -20.9 -- 20
+ -0.7 -- 0
+ 0.8 -- 0
+ */
+ void SkipFraction()
+ {
+ if( IsNan() || IsZero() )
+ return;
+
+ if( !exponent.IsSign() )
+ // exponent >=0 -- the value don't have any fractions
+ return;
+
+ if( exponent <= -sint(man*TTMATH_BITS_PER_UINT) )
+ {
+ // the value is from (-1,1), we return zero
+ SetZero();
+ return;
+ }
+
+ // exponent is in range (-man*TTMATH_BITS_PER_UINT, 0)
+ sint e = exponent.ToInt();
+
+ mantissa.ClearFirstBits( -e );
+
+ // we don't have to standardize 'Standardizing()' the value because
+ // there's at least one bit in the mantissa
+ // (the highest bit which we didn't touch)
+ }
+
+
+ /*!
+ this method remains only a fraction from the value
+
+ for example:
+ 30.56 will be 0.56
+ -12.67 -- -0.67
+ */
+ void RemainFraction()
+ {
+ if( IsNan() || IsZero() )
+ return;
+
+ if( !exponent.IsSign() )
+ {
+ // exponent >= 0 -- the value doesn't have any fractions
+ // we return zero
+ SetZero();
+ return;
+ }
+
+ if( exponent <= -sint(man*TTMATH_BITS_PER_UINT) )
+ {
+ // the value is from (-1,1)
+ // we don't make anything with the value
+ return;
+ }
+
+ // e will be from (-man*TTMATH_BITS_PER_UINT, 0)
+ sint e = exponent.ToInt();
+
+ sint how_many_bits_leave = sint(man*TTMATH_BITS_PER_UINT) + e; // there'll be a subtraction -- e is negative
+ mantissa.Rcl( how_many_bits_leave, 0);
+
+ // there'll not be a carry because the exponent is too small
+ exponent.Sub( how_many_bits_leave );
+
+ // we must call Standardizing() here
+ Standardizing();
+ }
+
+
+
+ /*!
+ this method returns true if the value is integer
+ (there is no a fraction)
+
+ (we don't check nan)
+ */
+ bool IsInteger() const
+ {
+ if( IsZero() )
+ return true;
+
+ if( !exponent.IsSign() )
+ // exponent >=0 -- the value don't have any fractions
+ return true;
+
+ if( exponent <= -sint(man*TTMATH_BITS_PER_UINT) )
+ // the value is from (-1,1)
+ return false;
+
+ // exponent is in range (-man*TTMATH_BITS_PER_UINT, 0)
+ sint e = exponent.ToInt();
+ e = -e; // e means how many bits we must check
+
+ uint len = e / TTMATH_BITS_PER_UINT;
+ uint rest = e % TTMATH_BITS_PER_UINT;
+ uint i = 0;
+
+ for( ; i<len ; ++i )
+ if( mantissa.table[i] != 0 )
+ return false;
+
+ if( rest > 0 )
+ {
+ uint rest_mask = TTMATH_UINT_MAX_VALUE >> (TTMATH_BITS_PER_UINT - rest);
+ if( (mantissa.table[i] & rest_mask) != 0 )
+ return false;
+ }
+
+ return true;
+ }
+
+
+ /*!
+ this method rounds to the nearest integer value
+ (it returns a carry if it was)
+
+ for example:
+ 2.3 = 2
+ 2.8 = 3
+
+ -2.3 = -2
+ -2.8 = 3
+ */
+ uint Round()
+ {
+ Big<exp,man> half;
+ uint c;
+
+ if( IsNan() )
+ return 1;
+
+ if( IsZero() )
+ return 0;
+
+ half.Set05();
+
+ if( IsSign() )
+ {
+ // 'this' is < 0
+ c = Sub( half );
+ }
+ else
+ {
+ // 'this' is > 0
+ c = Add( half );
+ }
+
+ SkipFraction();
+
+ return CheckCarry(c);
+ }
+
+
+
+ /*!
+ *
+ * input/output operators for standard streams
+ *
+ */
+
+private:
+
+ /*!
+ an auxiliary method for outputing to standard streams
+ */
+ template<class ostream_type, class string_type>
+ static ostream_type & OutputToStream(ostream_type & s, const Big<exp,man> & l)
+ {
+ string_type ss;
+
+ l.ToString(ss);
+ s << ss;
+
+ return s;
+ }
+
+
+public:
+
+
+ /*!
+ output to standard streams
+ */
+ friend std::ostream & operator<<(std::ostream & s, const Big<exp,man> & l)
+ {
+ return OutputToStream<std::ostream, std::string>(s, l);
+ }
+
+
+
+
+private:
+
+ /*!
+ an auxiliary method for converting from a string
+ */
+ template<class istream_type, class string_type, class char_type>
+ static istream_type & InputFromStream(istream_type & s, Big<exp,man> & l)
+ {
+ string_type ss;
+
+ // char or wchar_t for operator>>
+ char_type z, old_z;
+ bool was_comma = false;
+ bool was_e = false;
+
+
+ // operator>> omits white characters if they're set for ommiting
+ s >> z;
+
+ if( z=='-' || z=='+' )
+ {
+ ss += z;
+ s >> z; // we're reading a next character (white characters can be ommited)
+ }
+
+ old_z = 0;
+
+ // we're reading only digits (base=10) and only one comma operator
+ for( ; s.good() ; z=static_cast<char_type>(s.get()) )
+ {
+ if( z=='.' || z==',' )
+ {
+ if( was_comma || was_e )
+ // second comma operator or comma operator after 'e' character
+ break;
+
+ was_comma = true;
+ }
+ else
+ if( z == 'e' || z == 'E' )
+ {
+ if( was_e )
+ // second 'e' character
+ break;
+
+ was_e = true;
+ }
+ else
+ if( z == '+' || z == '-' )
+ {
+ if( old_z != 'e' && old_z != 'E' )
+ // '+' or '-' is allowed only after 'e' character
+ break;
+ }
+ else
+ if( Misc::CharToDigit(z, 10) < 0 )
+ break;
+
+
+ ss += z;
+ old_z = z;
+ }
+
+ // we're leaving the last read character
+ // (it's not belonging to the value)
+ s.unget();
+
+ l.FromString( ss );
+
+ return s;
+ }
+
+
+
+public:
+
+ /*!
+ input from standard streams
+ */
+ friend std::istream & operator>>(std::istream & s, Big<exp,man> & l)
+ {
+ return InputFromStream<std::istream, std::string, char>(s, l);
+ }
+
+
+
+};
+
+
+} // namespace
+
+#endif
Added: sandbox/geometry/boost/geometry/extensions/contrib/ttmath/ttmathint.h
==============================================================================
--- (empty file)
+++ sandbox/geometry/boost/geometry/extensions/contrib/ttmath/ttmathint.h 2010-07-05 13:06:03 EDT (Mon, 05 Jul 2010)
@@ -0,0 +1,1533 @@
+/*
+ * This file is a part of TTMath Bignum Library
+ * and is distributed under the (new) BSD licence.
+ * Author: Tomasz Sowa <t.sowa_at_[hidden]>
+ */
+
+/*
+ * Copyright (c) 2006-2009, Tomasz Sowa
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are met:
+ *
+ * * Redistributions of source code must retain the above copyright notice,
+ * this list of conditions and the following disclaimer.
+ *
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * * Neither the name Tomasz Sowa nor the names of contributors to this
+ * project may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
+ * THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+
+
+#ifndef headerfilettmathint
+#define headerfilettmathint
+
+/*!
+ \file ttmathint.h
+ \brief template class Int<uint>
+*/
+
+#include "ttmathuint.h"
+
+namespace ttmath
+{
+
+
+/*!
+ \brief Int implements a big integer value with a sign
+
+ value_size - how many bytes specify our value
+ on 32bit platforms: value_size=1 -> 4 bytes -> 32 bits
+ on 64bit platforms: value_size=1 -> 8 bytes -> 64 bits
+ value_size = 1,2,3,4,5,6....
+*/
+template<uint value_size>
+class Int : public UInt<value_size>
+{
+public:
+
+ /*!
+ this method sets the max value which this class can hold
+ (all bits will be one besides the last one)
+ */
+ void SetMax()
+ {
+ UInt<value_size>::SetMax();
+ UInt<value_size>::table[value_size-1] = ~ TTMATH_UINT_HIGHEST_BIT;
+ }
+
+
+ /*!
+ this method sets the min value which this class can hold
+ (all bits will be zero besides the last one which is one)
+ */
+ void SetMin()
+ {
+ UInt<value_size>::SetZero();
+ UInt<value_size>::table[value_size-1] = TTMATH_UINT_HIGHEST_BIT;
+ }
+
+
+ /*!
+ this method sets -1 as the value
+ (-1 is equal the max value in an unsigned type)
+ */
+ void SetSignOne()
+ {
+ UInt<value_size>::SetMax();
+ }
+
+
+ /*!
+ we change the sign of the value
+
+ if it isn't possible to change the sign this method returns 1
+ else return 0 and changing the sign
+ */
+ uint ChangeSign()
+ {
+ Int<value_size> temp;
+
+ temp.SetMin();
+
+ /*
+ if the value is equal that one which has been returned from SetMin
+ that means we can't change sign because the value is too big (bigger about one)
+
+ e.g. when value_size = 1 and value is -2147483648 we can't change it to the
+ 2147483648 because the max value which can be held is 2147483647
+
+ we don't change the value and we're using this fact somewhere in some methods
+ (if we look on our value without the sign we get the correct value
+ eg. -2147483648 in Int<1> will be 2147483648 on the UInt<1> type)
+ */
+ if( operator==(temp) )
+ return 1;
+
+ temp.SetZero();
+ temp.UInt<value_size>::Sub(*this);
+
+ operator=(temp);
+
+ return 0;
+ }
+
+
+
+ /*!
+ this method sets the sign
+
+ e.g. 1 -> -1
+ -2 -> -2
+
+ from a positive value we make a negative value,
+ if the value is negative we do nothing
+ */
+ void SetSign()
+ {
+ if( IsSign() )
+ return;
+
+ ChangeSign();
+ }
+
+
+
+ /*!
+ this method returns true if there's the sign
+
+ (the highest bit will be converted to the bool)
+ */
+ bool IsSign() const
+ {
+ return UInt<value_size>::IsTheHighestBitSet();
+ }
+
+
+
+ /*!
+ it sets an absolute value
+
+ it can return carry (1) (look on ChangeSign() for details)
+ */
+ uint Abs()
+ {
+ if( !IsSign() )
+ return 0;
+
+ return ChangeSign();
+ }
+
+
+
+
+ /*!
+ *
+ * basic mathematic functions
+ *
+ */
+
+private:
+
+ uint CorrectCarryAfterAdding(bool p1_is_sign, bool p2_is_sign)
+ {
+ if( !p1_is_sign && !p2_is_sign )
+ {
+ if( UInt<value_size>::IsTheHighestBitSet() )
+ return 1;
+ }
+
+ if( p1_is_sign && p2_is_sign )
+ {
+ if( ! UInt<value_size>::IsTheHighestBitSet() )
+ return 1;
+ }
+
+ return 0;
+ }
+
+
+public:
+
+ /*!
+ this method adds two value with a sign and returns a carry
+
+ we're using methods from the base class because values are stored with U2
+ we must only make the carry correction
+
+ this = p1(=this) + p2
+
+ when p1>=0 i p2>=0 carry is set when the highest bit of value is set
+ when p1<0 i p2<0 carry is set when the highest bit of value is clear
+ when p1>=0 i p2<0 carry will never be set
+ when p1<0 i p2>=0 carry will never be set
+ */
+ uint Add(const Int<value_size> & ss2)
+ {
+ bool p1_is_sign = IsSign();
+ bool p2_is_sign = ss2.IsSign();
+
+ UInt<value_size>::Add(ss2);
+
+ return CorrectCarryAfterAdding(p1_is_sign, p2_is_sign);
+ }
+
+
+ /*!
+ this method adds one *unsigned* word (at a specific position)
+ and returns a carry (if it was)
+
+ look at a description in UInt<>::AddInt(...)
+ */
+ uint AddInt(uint value, uint index = 0)
+ {
+ bool p1_is_sign = IsSign();
+
+ UInt<value_size>::AddInt(value, index);
+
+ return CorrectCarryAfterAdding(p1_is_sign, false);
+ }
+
+
+ /*!
+ this method adds two *unsigned* words to the existing value
+ and these words begin on the 'index' position
+
+ index should be equal or smaller than value_size-2 (index <= value_size-2)
+ x1 - lower word, x2 - higher word
+
+ look at a description in UInt<>::AddTwoInts(...)
+ */
+ uint AddTwoInts(uint x2, uint x1, uint index)
+ {
+ bool p1_is_sign = IsSign();
+
+ UInt<value_size>::AddTwoInts(x2, x1, index);
+
+ return CorrectCarryAfterAdding(p1_is_sign, false);
+ }
+
+private:
+
+ uint CorrectCarryAfterSubtracting(bool p1_is_sign, bool p2_is_sign)
+ {
+ if( !p1_is_sign && p2_is_sign )
+ {
+ if( UInt<value_size>::IsTheHighestBitSet() )
+ return 1;
+ }
+
+ if( p1_is_sign && !p2_is_sign )
+ {
+ if( ! UInt<value_size>::IsTheHighestBitSet() )
+ return 1;
+ }
+
+ return 0;
+ }
+
+public:
+
+ /*!
+ this method subtracts two values with a sign
+
+ we don't use the previous Add because the method ChangeSign can
+ sometimes return carry
+
+ this = p1(=this) - p2
+
+ when p1>=0 i p2>=0 carry will never be set
+ when p1<0 i p2<0 carry will never be set
+ when p1>=0 i p2<0 carry is set when the highest bit of value is set
+ when p1<0 i p2>=0 carry is set when the highest bit of value is clear
+ */
+ uint Sub(const Int<value_size> & ss2)
+ {
+ bool p1_is_sign = IsSign();
+ bool p2_is_sign = ss2.IsSign();
+
+ UInt<value_size>::Sub(ss2);
+
+ return CorrectCarryAfterSubtracting(p1_is_sign, p2_is_sign);
+ }
+
+
+ /*!
+ this method subtracts one *unsigned* word (at a specific position)
+ and returns a carry (if it was)
+ */
+ uint SubInt(uint value, uint index = 0)
+ {
+ bool p1_is_sign = IsSign();
+
+ UInt<value_size>::SubInt(value, index);
+
+ return CorrectCarryAfterSubtracting(p1_is_sign, false);
+ }
+
+
+ /*!
+ this method adds one to the value and returns carry
+ */
+ uint AddOne()
+ {
+ bool p1_is_sign = IsSign();
+
+ UInt<value_size>::AddOne();
+
+ return CorrectCarryAfterAdding(p1_is_sign, false);
+ }
+
+
+ /*!
+ this method subtracts one from the value and returns carry
+ */
+ uint SubOne()
+ {
+ bool p1_is_sign = IsSign();
+
+ UInt<value_size>::SubOne();
+
+ return CorrectCarryAfterSubtracting(p1_is_sign, false);
+ }
+
+
+
+ /*!
+ multiplication this = this * ss2
+
+ it returns carry if the result is too big
+ (we're using the method from the base class but we have to make
+ one correction in account of signs)
+ */
+ uint Mul(Int<value_size> ss2)
+ {
+ bool ss1_is_sign, ss2_is_sign;
+
+ ss1_is_sign = IsSign();
+ ss2_is_sign = ss2.IsSign();
+
+ /*
+ we don't have to check the carry from Abs (values will be correct
+ because next we're using the method Mul from the base class UInt
+ which is without a sign)
+ */
+ Abs();
+ ss2.Abs();
+
+ if( UInt<value_size>::Mul(ss2) )
+ return 1;
+
+
+ /*
+ we have to examine the sign of the result now
+ but if the result is with the sign then:
+ 1. if the signs were the same that means the result is too big
+ (the result must be without a sign)
+ 2. if the signs were different that means if the result
+ is different from that one which has been returned from SetMin()
+ that is carry (result too big) but if the result is equal SetMin()
+ there'll be ok (and the next SetSign will has no effect because
+ the value is actually negative -- look at description of that case
+ in ChangeSign())
+ */
+ if( IsSign() )
+ {
+ /*
+ there can be one case where signs are different and
+ the result will be equal the value from SetMin()
+ (this situation is ok)
+ */
+ if( ss1_is_sign != ss2_is_sign )
+ {
+ Int<value_size> temp;
+ temp.SetMin();
+
+ if( operator!=(temp) )
+ /*
+ the result is too big
+ */
+ return 1;
+ }
+ else
+ {
+ /*
+ the result is too big
+ */
+ return 1;
+ }
+ }
+
+ if( ss1_is_sign != ss2_is_sign )
+ SetSign();
+
+
+ return 0;
+ }
+
+
+ /*!
+ division this = this / ss2
+ returned values:
+ 0 - ok
+ 1 - division by zero
+
+ for example: (result means 'this')
+ 20 / 3 --> result: 6 remainder: 2
+ -20 / 3 --> result: -6 remainder: -2
+ 20 / -3 --> result: -6 remainder: 2
+ -20 / -3 --> result: 6 remainder: -2
+
+ in other words: this(old) = ss2 * this(new)(result) + remainder
+ */
+ uint Div(Int<value_size> ss2, Int<value_size> * remainder = 0)
+ {
+ bool ss1_is_sign, ss2_is_sign;
+
+ ss1_is_sign = IsSign();
+ ss2_is_sign = ss2.IsSign();
+
+ /*
+ we don't have to test the carry from Abs as well as in Mul
+ */
+ Abs();
+ ss2.Abs();
+
+ uint c = UInt<value_size>::Div(ss2, remainder);
+
+ if( ss1_is_sign != ss2_is_sign )
+ SetSign();
+
+ if( ss1_is_sign && remainder )
+ remainder->SetSign();
+
+ return c;
+ }
+
+ uint Div(const Int<value_size> & ss2, Int<value_size> & remainder)
+ {
+ return Div(ss2, &remainder);
+ }
+
+
+ /*!
+ division this = this / ss2 (ss2 is int)
+ returned values:
+ 0 - ok
+ 1 - division by zero
+
+ for example: (result means 'this')
+ 20 / 3 --> result: 6 remainder: 2
+ -20 / 3 --> result: -6 remainder: -2
+ 20 / -3 --> result: -6 remainder: 2
+ -20 / -3 --> result: 6 remainder: -2
+
+ in other words: this(old) = ss2 * this(new)(result) + remainder
+ */
+ uint DivInt(sint ss2, sint * remainder = 0)
+ {
+ bool ss1_is_sign, ss2_is_sign;
+
+ ss1_is_sign = IsSign();
+
+ /*
+ we don't have to test the carry from Abs as well as in Mul
+ */
+ Abs();
+
+ if( ss2 < 0 )
+ {
+ ss2 = -ss2;
+ ss2_is_sign = true;
+ }
+ else
+ {
+ ss2_is_sign = false;
+ }
+
+ uint rem;
+ uint c = UInt<value_size>::DivInt((uint)ss2, &rem);
+
+ if( ss1_is_sign != ss2_is_sign )
+ SetSign();
+
+ if( remainder )
+ {
+ if( ss1_is_sign )
+ *remainder = -sint(rem);
+ else
+ *remainder = sint(rem);
+ }
+
+ return c;
+ }
+
+
+ uint DivInt(sint ss2, sint & remainder)
+ {
+ return DivInt(ss2, &remainder);
+ }
+
+
+private:
+
+
+ /*!
+ power this = this ^ pow
+ this can be negative
+ pow is >= 0
+ */
+ uint Pow2(const Int<value_size> & pow)
+ {
+ bool was_sign = IsSign();
+ uint c = 0;
+
+ if( was_sign )
+ c += Abs();
+
+ uint c_temp = UInt<value_size>::Pow(pow);
+ if( c_temp > 0 )
+ return c_temp; // c_temp can be: 0, 1 or 2
+
+ if( was_sign && (pow.table[0] & 1) == 1 )
+ // negative value to the power of odd number is negative
+ c += ChangeSign();
+
+ return (c==0)? 0 : 1;
+ }
+
+
+public:
+
+
+ /*!
+ power this = this ^ pow
+
+ return values:
+ 0 - ok
+ 1 - carry
+ 2 - incorrect arguments 0^0 or 0^(-something)
+ */
+ uint Pow(Int<value_size> pow)
+ {
+ if( !pow.IsSign() )
+ return Pow2(pow);
+
+ if( UInt<value_size>::IsZero() )
+ // if 'pow' is negative then
+ // 'this' must be different from zero
+ return 2;
+
+ if( pow.ChangeSign() )
+ return 1;
+
+ Int<value_size> t(*this);
+ uint c_temp = t.Pow2(pow);
+ if( c_temp > 0 )
+ return c_temp;
+
+ UInt<value_size>::SetOne();
+ if( Div(t) )
+ return 1;
+
+ return 0;
+ }
+
+
+
+ /*!
+ *
+ * convertion methods
+ *
+ */
+private:
+
+
+ /*!
+ an auxiliary method for converting both from UInt and Int
+ */
+ template<uint argument_size>
+ uint FromUIntOrInt(const UInt<argument_size> & p, bool UInt_type)
+ {
+ uint min_size = (value_size < argument_size)? value_size : argument_size;
+ uint i;
+
+ for(i=0 ; i<min_size ; ++i)
+ UInt<value_size>::table[i] = p.table[i];
+
+
+ if( value_size > argument_size )
+ {
+ uint fill;
+
+ if( UInt_type )
+ fill = 0;
+ else
+ fill = (p.table[argument_size-1] & TTMATH_UINT_HIGHEST_BIT)?
+ TTMATH_UINT_MAX_VALUE : 0;
+
+ // 'this' is longer than 'p'
+ for( ; i<value_size ; ++i)
+ UInt<value_size>::table[i] = fill;
+ }
+ else
+ {
+ uint test = (UInt<value_size>::table[value_size-1] & TTMATH_UINT_HIGHEST_BIT)?
+ TTMATH_UINT_MAX_VALUE : 0;
+
+ if( UInt_type && test!=0 )
+ return 1;
+
+ for( ; i<argument_size ; ++i)
+ if( p.table[i] != test )
+ return 1;
+ }
+
+ return 0;
+ }
+
+public:
+
+ /*!
+ this method converts an Int<another_size> type into this class
+
+ this operation has mainly sense if the value from p
+ can be held in this type
+
+ it returns a carry if the value 'p' is too big
+ */
+ template<uint argument_size>
+ uint FromInt(const Int<argument_size> & p)
+ {
+ return FromUIntOrInt(p, false);
+ }
+
+
+ /*!
+ this method converts the sint type into this class
+ */
+ uint FromInt(sint value)
+ {
+ uint fill = ( value<0 ) ? TTMATH_UINT_MAX_VALUE : 0;
+
+ for(uint i=1 ; i<value_size ; ++i)
+ UInt<value_size>::table[i] = fill;
+
+ UInt<value_size>::table[0] = uint(value);
+
+ // there'll never be a carry here
+ return 0;
+ }
+
+
+ /*!
+ this method converts UInt<another_size> into this class
+ */
+ template<uint argument_size>
+ uint FromUInt(const UInt<argument_size> & p)
+ {
+ return FromUIntOrInt(p, true);
+ }
+
+
+ /*!
+ this method converts the uint type into this class
+ */
+ uint FromUInt(uint value)
+ {
+ for(uint i=1 ; i<value_size ; ++i)
+ UInt<value_size>::table[i] = 0;
+
+ UInt<value_size>::table[0] = value;
+
+ // there can be a carry here when the size of this value is equal one word
+ // and the 'value' has the highest bit set
+ if( value_size==1 && (value & TTMATH_UINT_HIGHEST_BIT)!=0 )
+ return 1;
+
+ return 0;
+ }
+
+
+
+ /*!
+ the default assignment operator
+ */
+ Int<value_size> & operator=(const Int<value_size> & p)
+ {
+ FromInt(p);
+
+ return *this;
+ }
+
+
+ /*!
+ this operator converts an Int<another_size> type to this class
+
+ it doesn't return a carry
+ */
+ template<uint argument_size>
+ Int<value_size> & operator=(const Int<argument_size> & p)
+ {
+ FromInt(p);
+
+ return *this;
+ }
+
+
+ /*!
+ this method converts the sint type to this class
+ */
+ Int<value_size> & operator=(sint i)
+ {
+ FromInt(i);
+
+ return *this;
+ }
+
+
+ /*!
+ a constructor for converting the uint to this class
+ */
+ Int(sint i)
+ {
+ FromInt(i);
+ }
+
+
+ /*!
+ a copy constructor
+ */
+ Int(const Int<value_size> & u)
+ {
+ FromInt(u);
+ }
+
+
+ /*!
+ a constructor for copying from another types
+ */
+ template<uint argument_size>
+ Int(const Int<argument_size> & u)
+ {
+ // look that 'size' we still set as 'value_size' and not as u.value_size
+ FromInt(u);
+ }
+
+
+
+ /*!
+ this operator converts an UInt<another_size> type to this class
+
+ it doesn't return a carry
+ */
+ template<uint argument_size>
+ Int<value_size> & operator=(const UInt<argument_size> & p)
+ {
+ FromUInt(p);
+
+ return *this;
+ }
+
+
+ /*!
+ this method converts the Uint type to this class
+ */
+ Int<value_size> & operator=(uint i)
+ {
+ FromUInt(i);
+
+ return *this;
+ }
+
+
+ /*!
+ a constructor for converting the uint to this class
+ */
+ Int(uint i)
+ {
+ FromUInt(i);
+ }
+
+
+ /*!
+ a constructor for copying from another types
+ */
+ template<uint argument_size>
+ Int(const UInt<argument_size> & u)
+ {
+ // look that 'size' we still set as 'value_size' and not as u.value_size
+ FromUInt(u);
+ }
+
+
+
+
+#ifdef TTMATH_PLATFORM64
+
+ /*!
+ this method converts the signed int type to this class
+
+ ***this operator is created only on a 64bit platform***
+ it takes one argument of 32bit
+ */
+ Int<value_size> & operator=(signed int i)
+ {
+ FromInt(sint(i));
+
+ return *this;
+ }
+
+
+ /*!
+ a constructor for converting the signed int to this class
+
+ ***this constructor is created only on a 64bit platform***
+ it takes one argument of 32bit
+ */
+ Int(signed int i)
+ {
+ FromInt(sint(i));
+ }
+
+
+ /*!
+ this method converts the unsigned int type to this class
+
+ ***this operator is created only on a 64bit platform***
+ it takes one argument of 32bit
+ */
+ Int<value_size> & operator=(unsigned int i)
+ {
+ FromUInt(uint(i));
+
+ return *this;
+ }
+
+
+ /*!
+ a constructor for converting the unsigned int to this class
+
+ ***this constructor is created only on a 64bit platform***
+ it takes one argument of 32bit
+ */
+ Int(unsigned int i)
+ {
+ FromUInt(uint(i));
+ }
+
+#endif
+
+
+ /*!
+ a constructor for converting string to this class (with the base=10)
+ */
+ Int(const char * s)
+ {
+ FromString(s);
+ }
+
+
+ /*!
+ a constructor for converting string to this class (with the base=10)
+ */
+ Int(const wchar_t * s)
+ {
+ FromString(s);
+ }
+
+
+ /*!
+ a constructor for converting a string to this class (with the base=10)
+ */
+ Int(const std::string & s)
+ {
+ FromString( s.c_str() );
+ }
+
+
+ /*!
+ a constructor for converting a string to this class (with the base=10)
+ */
+ Int(const std::wstring & s)
+ {
+ FromString( s.c_str() );
+ }
+
+
+ /*!
+ a default constructor
+
+ we don't clear table etc.
+ */
+ Int()
+ {
+ }
+
+
+ /*!
+ the destructor
+ */
+ ~Int()
+ {
+ }
+
+
+ /*!
+ this method returns the lowest value from table with a sign
+
+ we must be sure when we using this method whether the value
+ will hold in an sint type or not (the rest value from table must be zero or -1)
+ */
+ sint ToInt() const
+ {
+ return sint( UInt<value_size>::table[0] );
+ }
+
+
+private:
+
+ /*!
+ an auxiliary method for converting to a string
+ */
+ template<class string_type>
+ void ToStringBase(string_type & result, uint b = 10) const
+ {
+ if( IsSign() )
+ {
+ Int<value_size> temp(*this);
+ temp.Abs();
+
+ temp.UInt<value_size>::ToString(result, b);
+ result.insert(result.begin(), '-');
+ }
+ else
+ {
+ UInt<value_size>::ToString(result, b);
+ }
+ }
+
+public:
+
+ /*!
+ this method converts the value to a string with a base equal 'b'
+ */
+ void ToString(std::string & result, uint b = 10) const
+ {
+ return ToStringBase(result, b);
+ }
+
+
+ /*!
+ this method converts the value to a string with a base equal 'b'
+ */
+ void ToString(std::wstring & result, uint b = 10) const
+ {
+ return ToStringBase(result, b);
+ }
+
+
+ /*!
+ this method converts the value to a string with a base equal 'b'
+ */
+ std::string ToString(uint b = 10) const
+ {
+ std::string result;
+ ToStringBase(result, b);
+
+ return result;
+ }
+
+
+ /*!
+ this method converts the value to a string with a base equal 'b'
+ */
+ std::wstring ToWString(uint b = 10) const
+ {
+ std::wstring result;
+ ToStringBase(result, b);
+
+ return result;
+ }
+
+
+private:
+
+ /*!
+ an auxiliary method for converting from a string
+ */
+ template<class char_type>
+ uint FromStringBase(const char_type * s, uint b = 10, const char_type ** after_source = 0, bool * value_read = 0)
+ {
+ bool is_sign = false;
+
+ Misc::SkipWhiteCharacters(s);
+
+ if( *s == '-' )
+ {
+ is_sign = true;
+ Misc::SkipWhiteCharacters(++s);
+ }
+ else
+ if( *s == '+' )
+ {
+ Misc::SkipWhiteCharacters(++s);
+ }
+
+ if( UInt<value_size>::FromString(s,b,after_source,value_read) )
+ return 1;
+
+ if( is_sign )
+ {
+ Int<value_size> mmin;
+
+ mmin.SetMin();
+
+ /*
+ the reference to mmin will be automatically converted to the reference
+ to UInt type
+ (this value can be equal mmin -- look at a description in ChangeSign())
+ */
+ if( UInt<value_size>::operator>( mmin ) )
+ return 1;
+
+ /*
+ if the value is equal mmin the method ChangeSign() does nothing (only returns 1 but we ignore it)
+ */
+ ChangeSign();
+ }
+ else
+ {
+ Int<value_size> mmax;
+
+ mmax.SetMax();
+
+ if( UInt<value_size>::operator>( mmax ) )
+ return 1;
+ }
+
+ return 0;
+ }
+
+
+public:
+
+ /*!
+ this method converts a string into its value
+ it returns carry=1 if the value will be too big or an incorrect base 'b' is given
+
+ string is ended with a non-digit value, for example:
+ "-12" will be translated to -12
+ as well as:
+ "- 12foo" will be translated to -12 too
+
+ existing first white characters will be ommited
+ (between '-' and a first digit can be white characters too)
+
+ after_source (if exists) is pointing at the end of the parsed string
+
+ value_read (if exists) tells whether something has actually been read (at least one digit)
+ */
+ uint FromString(const char * s, uint b = 10, const char ** after_source = 0, bool * value_read = 0)
+ {
+ return FromStringBase(s, b, after_source, value_read);
+ }
+
+
+ /*!
+ this method converts a string into its value
+ */
+ uint FromString(const wchar_t * s, uint b = 10, const wchar_t ** after_source = 0, bool * value_read = 0)
+ {
+ return FromStringBase(s, b, after_source, value_read);
+ }
+
+
+ /*!
+ this method converts a string into its value
+ it returns carry=1 if the value will be too big or an incorrect base 'b' is given
+ */
+ uint FromString(const std::string & s, uint b = 10)
+ {
+ return FromString( s.c_str(), b );
+ }
+
+
+ /*!
+ this method converts a string into its value
+ it returns carry=1 if the value will be too big or an incorrect base 'b' is given
+ */
+ uint FromString(const std::wstring & s, uint b = 10)
+ {
+ return FromString( s.c_str(), b );
+ }
+
+
+ /*!
+ this operator converts a string into its value (with base = 10)
+ */
+ Int<value_size> & operator=(const char * s)
+ {
+ FromString(s);
+
+ return *this;
+ }
+
+
+ /*!
+ this operator converts a string into its value (with base = 10)
+ */
+ Int<value_size> & operator=(const wchar_t * s)
+ {
+ FromString(s);
+
+ return *this;
+ }
+
+
+ /*!
+ this operator converts a string into its value (with base = 10)
+ */
+ Int<value_size> & operator=(const std::string & s)
+ {
+ FromString( s.c_str() );
+
+ return *this;
+ }
+
+
+ /*!
+ this operator converts a string into its value (with base = 10)
+ */
+ Int<value_size> & operator=(const std::wstring & s)
+ {
+ FromString( s.c_str() );
+
+ return *this;
+ }
+
+
+ /*!
+ *
+ * methods for comparing
+ *
+ *
+ */
+
+ bool operator==(const Int<value_size> & l) const
+ {
+ return UInt<value_size>::operator==(l);
+ }
+
+ bool operator!=(const Int<value_size> & l) const
+ {
+ return UInt<value_size>::operator!=(l);
+ }
+
+ bool operator<(const Int<value_size> & l) const
+ {
+ sint i=value_size-1;
+
+ sint a1 = sint(UInt<value_size>::table[i]);
+ sint a2 = sint(l.table[i]);
+
+ if( a1 != a2 )
+ return a1 < a2;
+
+
+ for(--i ; i>=0 ; --i)
+ {
+ if( UInt<value_size>::table[i] != l.table[i] )
+ // comparison as unsigned int
+ return UInt<value_size>::table[i] < l.table[i];
+ }
+
+ // they're equal
+ return false;
+ }
+
+
+ bool operator>(const Int<value_size> & l) const
+ {
+ sint i=value_size-1;
+
+ sint a1 = sint(UInt<value_size>::table[i]);
+ sint a2 = sint(l.table[i]);
+
+ if( a1 != a2 )
+ return a1 > a2;
+
+
+ for(--i ; i>=0 ; --i)
+ {
+ if( UInt<value_size>::table[i] != l.table[i] )
+ // comparison as unsigned int
+ return UInt<value_size>::table[i] > l.table[i];
+ }
+
+ // they're equal
+ return false;
+ }
+
+
+ bool operator<=(const Int<value_size> & l) const
+ {
+ sint i=value_size-1;
+
+ sint a1 = sint(UInt<value_size>::table[i]);
+ sint a2 = sint(l.table[i]);
+
+ if( a1 != a2 )
+ return a1 < a2;
+
+
+ for(--i ; i>=0 ; --i)
+ {
+ if( UInt<value_size>::table[i] != l.table[i] )
+ // comparison as unsigned int
+ return UInt<value_size>::table[i] < l.table[i];
+ }
+
+ // they're equal
+ return true;
+ }
+
+
+ bool operator>=(const Int<value_size> & l) const
+ {
+ sint i=value_size-1;
+
+ sint a1 = sint(UInt<value_size>::table[i]);
+ sint a2 = sint(l.table[i]);
+
+ if( a1 != a2 )
+ return a1 > a2;
+
+
+ for(--i ; i>=0 ; --i)
+ {
+ if( UInt<value_size>::table[i] != l.table[i] )
+ // comparison as unsigned int
+ return UInt<value_size>::table[i] > l.table[i];
+ }
+
+ // they're equal
+ return true;
+ }
+
+
+
+ /*!
+ *
+ * standard mathematical operators
+ *
+ */
+
+
+ /*!
+ an operator for changing the sign
+
+ it's not changing 'this' but the changed value will be returned
+ */
+ Int<value_size> operator-() const
+ {
+ Int<value_size> temp(*this);
+
+ temp.ChangeSign();
+
+ return temp;
+ }
+
+
+ Int<value_size> operator-(const Int<value_size> & p2) const
+ {
+ Int<value_size> temp(*this);
+
+ temp.Sub(p2);
+
+ return temp;
+ }
+
+
+ Int<value_size> & operator-=(const Int<value_size> & p2)
+ {
+ Sub(p2);
+
+ return *this;
+ }
+
+
+ Int<value_size> operator+(const Int<value_size> & p2) const
+ {
+ Int<value_size> temp(*this);
+
+ temp.Add(p2);
+
+ return temp;
+ }
+
+
+ Int<value_size> & operator+=(const Int<value_size> & p2)
+ {
+ Add(p2);
+
+ return *this;
+ }
+
+
+ Int<value_size> operator*(const Int<value_size> & p2) const
+ {
+ Int<value_size> temp(*this);
+
+ temp.Mul(p2);
+
+ return temp;
+ }
+
+
+ Int<value_size> & operator*=(const Int<value_size> & p2)
+ {
+ Mul(p2);
+
+ return *this;
+ }
+
+
+ Int<value_size> operator/(const Int<value_size> & p2) const
+ {
+ Int<value_size> temp(*this);
+
+ temp.Div(p2);
+
+ return temp;
+ }
+
+
+ Int<value_size> & operator/=(const Int<value_size> & p2)
+ {
+ Div(p2);
+
+ return *this;
+ }
+
+
+ Int<value_size> operator%(const Int<value_size> & p2) const
+ {
+ Int<value_size> temp(*this);
+ Int<value_size> remainder;
+
+ temp.Div(p2, remainder);
+
+ return remainder;
+ }
+
+
+ Int<value_size> & operator%=(const Int<value_size> & p2)
+ {
+ Int<value_size> temp(*this);
+ Int<value_size> remainder;
+
+ temp.Div(p2, remainder);
+
+ operator=(remainder);
+
+ return *this;
+ }
+
+
+ /*!
+ Prefix operator e.g. ++variable
+ */
+ UInt<value_size> & operator++()
+ {
+ AddOne();
+
+ return *this;
+ }
+
+
+ /*!
+ Postfix operator e.g. variable++
+ */
+ UInt<value_size> operator++(int)
+ {
+ UInt<value_size> temp( *this );
+
+ AddOne();
+
+ return temp;
+ }
+
+
+ UInt<value_size> & operator--()
+ {
+ SubOne();
+
+ return *this;
+ }
+
+
+ UInt<value_size> operator--(int)
+ {
+ UInt<value_size> temp( *this );
+
+ SubOne();
+
+ return temp;
+ }
+
+
+
+ /*!
+ *
+ * input/output operators for standard streams
+ *
+ */
+
+private:
+
+ /*!
+ an auxiliary method for outputing to standard streams
+ */
+ template<class ostream_type, class string_type>
+ static ostream_type & OutputToStream(ostream_type & s, const Int<value_size> & l)
+ {
+ string_type ss;
+
+ l.ToString(ss);
+ s << ss;
+
+ return s;
+ }
+
+
+
+public:
+
+
+ /*!
+ output to standard streams
+ */
+ friend std::ostream & operator<<(std::ostream & s, const Int<value_size> & l)
+ {
+ return OutputToStream<std::ostream, std::string>(s, l);
+ }
+
+
+
+
+
+private:
+
+ /*!
+ an auxiliary method for converting from a string
+ */
+ template<class istream_type, class string_type, class char_type>
+ static istream_type & InputFromStream(istream_type & s, Int<value_size> & l)
+ {
+ string_type ss;
+
+ // char or wchar_t for operator>>
+ char_type z;
+
+ // operator>> omits white characters if they're set for ommiting
+ s >> z;
+
+ if( z=='-' || z=='+' )
+ {
+ ss += z;
+ s >> z; // we're reading a next character (white characters can be ommited)
+ }
+
+ // we're reading only digits (base=10)
+ while( s.good() && Misc::CharToDigit(z, 10)>=0 )
+ {
+ ss += z;
+ z = static_cast<char_type>(s.get());
+ }
+
+ // we're leaving the last readed character
+ // (it's not belonging to the value)
+ s.unget();
+
+ l.FromString(ss);
+
+ return s;
+ }
+
+
+public:
+
+ /*!
+ input from standard streams
+ */
+ friend std::istream & operator>>(std::istream & s, Int<value_size> & l)
+ {
+ return InputFromStream<std::istream, std::string, char>(s, l);
+ }
+
+
+
+};
+
+} // namespace
+
+#endif
Added: sandbox/geometry/boost/geometry/extensions/contrib/ttmath/ttmathmisc.h
==============================================================================
--- (empty file)
+++ sandbox/geometry/boost/geometry/extensions/contrib/ttmath/ttmathmisc.h 2010-07-05 13:06:03 EDT (Mon, 05 Jul 2010)
@@ -0,0 +1,243 @@
+/*
+ * This file is a part of TTMath Bignum Library
+ * and is distributed under the (new) BSD licence.
+ * Author: Tomasz Sowa <t.sowa_at_[hidden]>
+ */
+
+/*
+ * Copyright (c) 2006-2009, Tomasz Sowa
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are met:
+ *
+ * * Redistributions of source code must retain the above copyright notice,
+ * this list of conditions and the following disclaimer.
+ *
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * * Neither the name Tomasz Sowa nor the names of contributors to this
+ * project may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
+ * THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#ifndef headerfilettmathmisc
+#define headerfilettmathmisc
+
+
+/*!
+ \file ttmathmisc.h
+ \brief some helpful functions
+*/
+
+
+#include <string>
+
+
+namespace ttmath
+{
+
+/*!
+ some helpful functions
+*/
+class Misc
+{
+public:
+
+
+/*
+ *
+ * AssignString(result, str)
+ * result = str
+ *
+ */
+
+/*!
+ result = str
+*/
+static void AssignString(std::string & result, const char * str)
+{
+ result = str;
+}
+
+
+/*!
+ result = str
+*/
+static void AssignString(std::wstring & result, const char * str)
+{
+ result.clear();
+
+ for( ; *str ; ++str )
+ result += *str;
+}
+
+
+/*!
+ result = str
+*/
+static void AssignString(std::wstring & result, const std::string & str)
+{
+ return AssignString(result, str.c_str());
+}
+
+
+/*!
+ result = str
+*/
+static void AssignString(std::string & result, const wchar_t * str)
+{
+ result.clear();
+
+ for( ; *str ; ++str )
+ result += static_cast<char>(*str);
+}
+
+
+/*!
+ result = str
+*/
+static void AssignString(std::string & result, const std::wstring & str)
+{
+ return AssignString(result, str.c_str());
+}
+
+
+/*
+ *
+ * AddString(result, str)
+ * result += str
+ *
+ */
+
+
+/*!
+ result += str
+*/
+static void AddString(std::string & result, const char * str)
+{
+ result += str;
+}
+
+
+/*!
+ result += str
+*/
+static void AddString(std::wstring & result, const char * str)
+{
+ for( ; *str ; ++str )
+ result += *str;
+}
+
+
+
+/*
+ this method omits any white characters from the string
+ char_type is char or wchar_t
+*/
+template<class char_type>
+static void SkipWhiteCharacters(const char_type * & c)
+{
+ // 13 is at the end in a DOS text file (\r\n)
+ while( (*c==' ' ) || (*c=='\t') || (*c==13 ) || (*c=='\n') )
+ ++c;
+}
+
+
+
+
+/*!
+ this static method converts one character into its value
+
+ for example:
+ 1 -> 1
+ 8 -> 8
+ A -> 10
+ f -> 15
+
+ this method don't check whether c is correct or not
+*/
+static uint CharToDigit(uint c)
+{
+ if(c>='0' && c<='9')
+ return c-'0';
+
+ if(c>='a' && c<='z')
+ return c-'a'+10;
+
+return c-'A'+10;
+}
+
+
+/*!
+ this method changes a character 'c' into its value
+ (if there can't be a correct value it returns -1)
+
+ for example:
+ c=2, base=10 -> function returns 2
+ c=A, base=10 -> function returns -1
+ c=A, base=16 -> function returns 10
+*/
+static sint CharToDigit(uint c, uint base)
+{
+ if( c>='0' && c<='9' )
+ c=c-'0';
+ else
+ if( c>='a' && c<='z' )
+ c=c-'a'+10;
+ else
+ if( c>='A' && c<='Z' )
+ c=c-'A'+10;
+ else
+ return -1;
+
+
+ if( c >= base )
+ return -1;
+
+
+return sint(c);
+}
+
+
+
+/*!
+ this method converts a digit into a char
+ digit should be from <0,F>
+ (we don't have to get a base)
+
+ for example:
+ 1 -> 1
+ 8 -> 8
+ 10 -> A
+ 15 -> F
+*/
+static uint DigitToChar(uint digit)
+{
+ if( digit < 10 )
+ return digit + '0';
+
+return digit - 10 + 'A';
+}
+
+
+}; // struct Misc
+
+}
+
+
+#endif
Added: sandbox/geometry/boost/geometry/extensions/contrib/ttmath/ttmathobjects.h
==============================================================================
--- (empty file)
+++ sandbox/geometry/boost/geometry/extensions/contrib/ttmath/ttmathobjects.h 2010-07-05 13:06:03 EDT (Mon, 05 Jul 2010)
@@ -0,0 +1,766 @@
+/*
+ * This file is a part of TTMath Mathematical Library
+ * and is distributed under the (new) BSD licence.
+ * Author: Tomasz Sowa <t.sowa_at_[hidden]>
+ */
+
+/*
+ * Copyright (c) 2006-2009, Tomasz Sowa
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are met:
+ *
+ * * Redistributions of source code must retain the above copyright notice,
+ * this list of conditions and the following disclaimer.
+ *
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * * Neither the name Tomasz Sowa nor the names of contributors to this
+ * project may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
+ * THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+
+#ifndef headerfilettmathobject
+#define headerfilettmathobject
+
+/*!
+ \file ttmathobjects.h
+ \brief Mathematic functions.
+*/
+
+#include <string>
+#include <vector>
+#include <list>
+#include <map>
+
+#include "ttmathtypes.h"
+#include "ttmathmisc.h"
+
+
+namespace ttmath
+{
+
+/*!
+ objects of this class are used with the mathematical parser
+ they hold variables or functions defined by a user
+
+ each object has its own table in which we're keeping variables or functions
+*/
+class Objects
+{
+public:
+
+
+ /*!
+ one item (variable or function)
+ 'items' will be on the table
+ */
+ struct Item
+ {
+ // name of a variable of a function
+ // internally we store variables and funcions as std::string (not std::wstring even when wide characters are used)
+ std::string value;
+
+ // number of parameters required by the function
+ // (if there's a variable this 'param' is ignored)
+ int param;
+
+ Item() {}
+ Item(const std::string & v, int p) : value(v), param(p) {}
+ };
+
+ // 'Table' is the type of our table
+ typedef std::map<std::string, Item> Table;
+ typedef Table::iterator Iterator;
+ typedef Table::const_iterator CIterator;
+
+
+
+ /*!
+ this method returns true if a character 'c' is a character
+ which can be in a name
+
+ if 'can_be_digit' is true that means when the 'c' is a digit this
+ method returns true otherwise it returns false
+ */
+ static bool CorrectCharacter(wchar_t c, bool can_be_digit)
+ {
+ if( (c>='a' && c<='z') || (c>='A' && c<='Z') )
+ return true;
+
+ if( can_be_digit && ((c>='0' && c<='9') || c=='_') )
+ return true;
+
+ return false;
+ }
+
+
+ /*!
+ this method returns true if the name can be as a name of an object
+ */
+ template<class string_type>
+ static bool IsNameCorrect(const string_type & name)
+ {
+ if( name.empty() )
+ return false;
+
+ if( !CorrectCharacter(name[0], false) )
+ return false;
+
+ typename string_type::const_iterator i = name.begin();
+
+ for(++i ; i!=name.end() ; ++i)
+ if( !CorrectCharacter(*i, true) )
+ return false;
+
+ return true;
+ }
+
+
+ /*!
+ this method returns true if such an object is defined (name exists)
+ */
+ bool IsDefined(const std::string & name)
+ {
+ Iterator i = table.find(name);
+
+ if( i != table.end() )
+ // we have this object in our table
+ return true;
+
+ return false;
+ }
+
+
+ /*!
+ this method returns true if such an object is defined (name exists)
+ */
+ bool IsDefined(const std::wstring & name)
+ {
+ // we should check whether the name (in wide characters) are correct
+ // before calling AssignString() function
+ if( !IsNameCorrect(name) )
+ return false;
+
+ Misc::AssignString(str_tmp1, name);
+
+ return IsDefined(str_tmp1);
+ }
+
+
+ /*!
+ this method adds one object (variable of function) into the table
+ */
+ ErrorCode Add(const std::string & name, const std::string & value, int param = 0)
+ {
+ if( !IsNameCorrect(name) )
+ return err_incorrect_name;
+
+ Iterator i = table.find(name);
+
+ if( i != table.end() )
+ // we have this object in our table
+ return err_object_exists;
+
+ table.insert( std::make_pair(name, Item(value, param)) );
+
+ return err_ok;
+ }
+
+
+ /*!
+ this method adds one object (variable of function) into the table
+ */
+ ErrorCode Add(const std::wstring & name, const std::wstring & value, int param = 0)
+ {
+ // we should check whether the name (in wide characters) are correct
+ // before calling AssignString() function
+ if( !IsNameCorrect(name) )
+ return err_incorrect_name;
+
+ Misc::AssignString(str_tmp1, name);
+ Misc::AssignString(str_tmp2, value);
+
+ return Add(str_tmp1, str_tmp2, param);
+ }
+
+
+ /*!
+ this method returns 'true' if the table is empty
+ */
+ bool Empty() const
+ {
+ return table.empty();
+ }
+
+
+ /*!
+ this method clears the table
+ */
+ void Clear()
+ {
+ return table.clear();
+ }
+
+
+ /*!
+ this method returns 'const_iterator' on the first item on the table
+ */
+ CIterator Begin() const
+ {
+ return table.begin();
+ }
+
+
+ /*!
+ this method returns 'const_iterator' pointing at the space after last item
+ (returns table.end())
+ */
+ CIterator End() const
+ {
+ return table.end();
+ }
+
+
+ /*!
+ this method changes the value and the number of parameters for a specific object
+ */
+ ErrorCode EditValue(const std::string & name, const std::string & value, int param = 0)
+ {
+ if( !IsNameCorrect(name) )
+ return err_incorrect_name;
+
+ Iterator i = table.find(name);
+
+ if( i == table.end() )
+ return err_unknown_object;
+
+ i->second.value = value;
+ i->second.param = param;
+
+ return err_ok;
+ }
+
+
+ /*!
+ this method changes the value and the number of parameters for a specific object
+ */
+ ErrorCode EditValue(const std::wstring & name, const std::wstring & value, int param = 0)
+ {
+ // we should check whether the name (in wide characters) are correct
+ // before calling AssignString() function
+ if( !IsNameCorrect(name) )
+ return err_incorrect_name;
+
+ Misc::AssignString(str_tmp1, name);
+ Misc::AssignString(str_tmp2, value);
+
+ return EditValue(str_tmp1, str_tmp2, param);
+ }
+
+
+ /*!
+ this method changes the name of a specific object
+ */
+ ErrorCode EditName(const std::string & old_name, const std::string & new_name)
+ {
+ if( !IsNameCorrect(old_name) || !IsNameCorrect(new_name) )
+ return err_incorrect_name;
+
+ Iterator old_i = table.find(old_name);
+ if( old_i == table.end() )
+ return err_unknown_object;
+
+ if( old_name == new_name )
+ // the new name is the same as the old one
+ // we treat it as a normal situation
+ return err_ok;
+
+ ErrorCode err = Add(new_name, old_i->second.value, old_i->second.param);
+
+ if( err == err_ok )
+ {
+ old_i = table.find(old_name);
+ TTMATH_ASSERT( old_i != table.end() )
+
+ table.erase(old_i);
+ }
+
+ return err;
+ }
+
+
+ /*!
+ this method changes the name of a specific object
+ */
+ ErrorCode EditName(const std::wstring & old_name, const std::wstring & new_name)
+ {
+ // we should check whether the name (in wide characters) are correct
+ // before calling AssignString() function
+ if( !IsNameCorrect(old_name) || !IsNameCorrect(new_name) )
+ return err_incorrect_name;
+
+ Misc::AssignString(str_tmp1, old_name);
+ Misc::AssignString(str_tmp2, new_name);
+
+ return EditName(str_tmp1, str_tmp2);
+ }
+
+
+ /*!
+ this method deletes an object
+ */
+ ErrorCode Delete(const std::string & name)
+ {
+ if( !IsNameCorrect(name) )
+ return err_incorrect_name;
+
+ Iterator i = table.find(name);
+
+ if( i == table.end() )
+ return err_unknown_object;
+
+ table.erase( i );
+
+ return err_ok;
+ }
+
+
+ /*!
+ this method deletes an object
+ */
+ ErrorCode Delete(const std::wstring & name)
+ {
+ // we should check whether the name (in wide characters) are correct
+ // before calling AssignString() function
+ if( !IsNameCorrect(name) )
+ return err_incorrect_name;
+
+ Misc::AssignString(str_tmp1, name);
+
+ return Delete(str_tmp1);
+ }
+
+
+ /*!
+ this method gets the value of a specific object
+ */
+ ErrorCode GetValue(const std::string & name, std::string & value) const
+ {
+ if( !IsNameCorrect(name) )
+ return err_incorrect_name;
+
+ CIterator i = table.find(name);
+
+ if( i == table.end() )
+ {
+ value.clear();
+ return err_unknown_object;
+ }
+
+ value = i->second.value;
+
+ return err_ok;
+ }
+
+
+ /*!
+ this method gets the value of a specific object
+ */
+ ErrorCode GetValue(const std::wstring & name, std::wstring & value)
+ {
+ // we should check whether the name (in wide characters) are correct
+ // before calling AssignString() function
+ if( !IsNameCorrect(name) )
+ return err_incorrect_name;
+
+ Misc::AssignString(str_tmp1, name);
+ ErrorCode err = GetValue(str_tmp1, str_tmp2);
+ Misc::AssignString(value, str_tmp2);
+
+ return err;
+ }
+
+
+ /*!
+ this method gets the value of a specific object
+ (this version is used for not copying the whole string)
+ */
+ ErrorCode GetValue(const std::string & name, const char ** value) const
+ {
+ if( !IsNameCorrect(name) )
+ return err_incorrect_name;
+
+ CIterator i = table.find(name);
+
+ if( i == table.end() )
+ {
+ *value = 0;
+ return err_unknown_object;
+ }
+
+ *value = i->second.value.c_str();
+
+ return err_ok;
+ }
+
+
+ /*!
+ this method gets the value of a specific object
+ (this version is used for not copying the whole string)
+ */
+ ErrorCode GetValue(const std::wstring & name, const char ** value)
+ {
+ // we should check whether the name (in wide characters) are correct
+ // before calling AssignString() function
+ if( !IsNameCorrect(name) )
+ return err_incorrect_name;
+
+ Misc::AssignString(str_tmp1, name);
+
+ return GetValue(str_tmp1, value);
+ }
+
+
+ /*!
+ this method gets the value and the number of parameters
+ of a specific object
+ */
+ ErrorCode GetValueAndParam(const std::string & name, std::string & value, int * param) const
+ {
+ if( !IsNameCorrect(name) )
+ return err_incorrect_name;
+
+ CIterator i = table.find(name);
+
+ if( i == table.end() )
+ {
+ value.empty();
+ *param = 0;
+ return err_unknown_object;
+ }
+
+ value = i->second.value;
+ *param = i->second.param;
+
+ return err_ok;
+ }
+
+
+ /*!
+ this method gets the value and the number of parameters
+ of a specific object
+ */
+ ErrorCode GetValueAndParam(const std::wstring & name, std::wstring & value, int * param)
+ {
+ // we should check whether the name (in wide characters) are correct
+ // before calling AssignString() function
+ if( !IsNameCorrect(name) )
+ return err_incorrect_name;
+
+ Misc::AssignString(str_tmp1, name);
+ ErrorCode err = GetValueAndParam(str_tmp1, str_tmp2, param);
+ Misc::AssignString(value, str_tmp2);
+
+ return err;
+ }
+
+
+ /*!
+ this method sets the value and the number of parameters
+ of a specific object
+ (this version is used for not copying the whole string)
+ */
+ ErrorCode GetValueAndParam(const std::string & name, const char ** value, int * param) const
+ {
+ if( !IsNameCorrect(name) )
+ return err_incorrect_name;
+
+ CIterator i = table.find(name);
+
+ if( i == table.end() )
+ {
+ *value = 0;
+ *param = 0;
+ return err_unknown_object;
+ }
+
+ *value = i->second.value.c_str();
+ *param = i->second.param;
+
+ return err_ok;
+ }
+
+
+ /*!
+ this method sets the value and the number of parameters
+ of a specific object
+ (this version is used for not copying the whole string
+ but in fact we make one copying during AssignString())
+ */
+ ErrorCode GetValueAndParam(const std::wstring & name, const char ** value, int * param)
+ {
+ // we should check whether the name (in wide characters) are correct
+ // before calling AssignString() function
+ if( !IsNameCorrect(name) )
+ return err_incorrect_name;
+
+ Misc::AssignString(str_tmp1, name);
+
+ return GetValueAndParam(str_tmp1, value, param);
+ }
+
+
+ /*!
+ this method returns a pointer into the table
+ */
+ Table * GetTable()
+ {
+ return &table;
+ }
+
+
+private:
+
+ Table table;
+ std::string str_tmp1, str_tmp2;
+
+}; // end of class Objects
+
+
+
+
+
+
+
+/*!
+ objects of the class History are used to keep values in functions
+ which take a lot of time during calculating, for instance in the
+ function Factorial(x)
+
+ it means that when we're calculating e.g. Factorial(1000) and the
+ Factorial finds that we have calculated it before, the value (result)
+ is taken from the history
+*/
+template<class ValueType>
+class History
+{
+ /*!
+ one item in the History's object holds a key, a value for the key
+ and a corresponding error code
+ */
+ struct Item
+ {
+ ValueType key, value;
+ ErrorCode err;
+ };
+
+
+ /*!
+ we use std::list for simply deleting the first item
+ but because we're searching through the whole container
+ (in the method Get) the container should not be too big
+ (linear time of searching)
+ */
+ typedef std::list<Item> buffer_type;
+ buffer_type buffer;
+ typename buffer_type::size_type buffer_max_size;
+
+public:
+
+ /*!
+ default constructor
+ default max size of the History's container is 15 items
+ */
+ History()
+ {
+ buffer_max_size = 15;
+ }
+
+
+ /*!
+ a constructor which takes another value of the max size
+ of the History's container
+ */
+ History(typename buffer_type::size_type new_size)
+ {
+ buffer_max_size = new_size;
+ }
+
+
+ /*!
+ this method adds one item into the History
+ if the size of the container is greater than buffer_max_size
+ the first item will be removed
+ */
+ void Add(const ValueType & key, const ValueType & value, ErrorCode err)
+ {
+ Item item;
+ item.key = key;
+ item.value = value;
+ item.err = err;
+
+ buffer.insert( buffer.end(), item );
+
+ if( buffer.size() > buffer_max_size )
+ buffer.erase(buffer.begin());
+ }
+
+
+ /*!
+ this method checks whether we have an item which has the key equal 'key'
+
+ if there's such item the method sets the 'value' and the 'err'
+ and returns true otherwise it returns false and 'value' and 'err'
+ remain unchanged
+ */
+ bool Get(const ValueType & key, ValueType & value, ErrorCode & err)
+ {
+ typename buffer_type::iterator i = buffer.begin();
+
+ for( ; i != buffer.end() ; ++i )
+ {
+ if( i->key == key )
+ {
+ value = i->value;
+ err = i->err;
+ return true;
+ }
+ }
+
+ return false;
+ }
+
+
+ /*!
+ this methods deletes an item
+
+ we assume that there is only one item with the 'key'
+ (this methods removes the first one)
+ */
+ bool Remove(const ValueType & key)
+ {
+ typename buffer_type::iterator i = buffer.begin();
+
+ for( ; i != buffer.end() ; ++i )
+ {
+ if( i->key == key )
+ {
+ buffer.erase(i);
+ return true;
+ }
+ }
+
+ return false;
+ }
+
+
+}; // end of class History
+
+
+
+/*!
+ this is an auxiliary class used when calculating Gamma() or Factorial()
+
+ in multithreaded environment you can provide an object of this class to
+ the Gamma() or Factorial() function, e.g;
+ typedef Big<1, 3> MyBig;
+ MyBig x = 123456;
+ CGamma<MyBig> cgamma;
+ std::cout << Gamma(x, cgamma);
+ each thread should have its own CGamma<> object
+
+ in a single-thread environment a CGamma<> object is a static variable
+ in a second version of Gamma() and you don't have to explicitly use it, e.g.
+ typedef Big<1, 3> MyBig;
+ MyBig x = 123456;
+ std::cout << Gamma(x);
+*/
+template<class ValueType>
+struct CGamma
+{
+ /*!
+ this table holds factorials
+ 1
+ 1
+ 2
+ 6
+ 24
+ 120
+ 720
+ .......
+ */
+ std::vector<ValueType> fact;
+
+
+ /*!
+ this table holds Bernoulli numbers
+ 1
+ -0.5
+ 0.166666666666666666666666667
+ 0
+ -0.0333333333333333333333333333
+ 0
+ 0.0238095238095238095238095238
+ 0
+ -0.0333333333333333333333333333
+ 0
+ 0.075757575757575757575757576
+ .....
+ */
+ std::vector<ValueType> bern;
+
+
+ /*!
+ here we store some calculated values
+ (this is for speeding up, if the next argument of Gamma() or Factorial()
+ is in the 'history' then the result we are not calculating but simply
+ return from the 'history' object)
+ */
+ History<ValueType> history;
+
+
+ /*!
+ this method prepares some coefficients: factorials and Bernoulli numbers
+ stored in 'fact' and 'bern' objects
+
+ how many values should be depends on the size of the mantissa - if
+ the mantissa is larger then we must calculate more values
+ for a mantissa which consists of 256 bits (8 words on a 32bit platform)
+ we have to calculate about 30 values (the size of fact and bern will be 30),
+ and for a 2048 bits mantissa we have to calculate 306 coefficients
+
+ you don't have to call this method, these coefficients will be automatically calculated
+ when they are needed
+
+ you must note that calculating these coefficients is a little time-consuming operation,
+ (especially when the mantissa is large) and first call to Gamma() or Factorial()
+ can take more time than next calls, and in the end this is the point when InitAll()
+ comes in handy: you can call this method somewhere at the beginning of your program
+ */
+ void InitAll();
+ // definition is in ttmath.h
+};
+
+
+
+
+} // namespace
+
+#endif
Added: sandbox/geometry/boost/geometry/extensions/contrib/ttmath/ttmathparser.h
==============================================================================
--- (empty file)
+++ sandbox/geometry/boost/geometry/extensions/contrib/ttmath/ttmathparser.h 2010-07-05 13:06:03 EDT (Mon, 05 Jul 2010)
@@ -0,0 +1,2754 @@
+/*
+ * This file is a part of TTMath Bignum Library
+ * and is distributed under the (new) BSD licence.
+ * Author: Tomasz Sowa <t.sowa_at_[hidden]>
+ */
+
+/*
+ * Copyright (c) 2006-2010, Tomasz Sowa
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are met:
+ *
+ * * Redistributions of source code must retain the above copyright notice,
+ * this list of conditions and the following disclaimer.
+ *
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * * Neither the name Tomasz Sowa nor the names of contributors to this
+ * project may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
+ * THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+
+
+#ifndef headerfilettmathparser
+#define headerfilettmathparser
+
+/*!
+ \file ttmathparser.h
+ \brief A mathematical parser
+*/
+
+#include <cstdio>
+#include <vector>
+#include <map>
+#include <set>
+
+#include "ttmath.h"
+#include "ttmathobjects.h"
+#include "ttmathmisc.h"
+
+
+
+namespace ttmath
+{
+
+/*!
+ \brief Mathematical parser
+
+ let x will be an input string meaning an expression for converting:
+
+ x = [+|-]Value[operator[+|-]Value][operator[+|-]Value]...
+ where:
+ an operator can be:
+ ^ (pow) (the heighest priority)
+
+ * (mul) (or multiplication without an operator -- short mul)
+ / (div) (* and / have the same priority)
+
+ + (add)
+ - (sub) (+ and - have the same priority)
+
+ < (lower than)
+ > (greater than)
+ <= (lower or equal than)
+ >= (greater or equal than)
+ == (equal)
+ != (not equal) (all above logical operators have the same priority)
+
+ && (logical and)
+
+ || (logical or) (the lowest priority)
+
+ short mul:
+ if the second Value (Var below) is either a variable or function there might not be
+ an operator between them, e.g.
+ "[+|-]Value Var" is treated as "[+|-]Value * Var" and the multiplication
+ has the same priority as a normal multiplication:
+ 4x = 4 * x
+ 2^3m = (2^3)* m
+ 6h^3 = 6 * (h^3)
+ 2sin(pi) = 2 * sin(pi)
+ etc.
+
+ Value can be:
+ constant e.g. 100, can be preceded by operators for changing the base (radix): [#|&]
+ # - hex
+ & - bin
+ sample: #10 = 16
+ &10 = 2
+ variable e.g. pi
+ another expression between brackets e.g (x)
+ function e.g. sin(x)
+
+ for example a correct input string can be:
+ "1"
+ "2.1234"
+ "2,1234" (they are the same, by default we can either use a comma or a dot)
+ "1 + 2"
+ "(1 + 2) * 3"
+ "pi"
+ "sin(pi)"
+ "(1+2)*(2+3)"
+ "log(2;1234)" there's a semicolon here (not a comma), we use it in functions
+ for separating parameters
+ "1 < 2" (the result will be: 1)
+ "4 < 3" (the result will be: 0)
+ "2+x" (of course if the variable 'x' is defined)
+ "4x+10"
+ "#20+10" = 32 + 10 = 42
+ "10 ^ -&101" = 10 ^ -5 = 0.00001
+ "8 * -&10" = 8 * -2 = -16
+ etc.
+
+ we can also use a semicolon for separating any 'x' input strings
+ for example:
+ "1+2;4+5"
+ the result will be on the stack as follows:
+ "3"
+ "9"
+*/
+template<class ValueType>
+class Parser
+{
+private:
+
+/*!
+ there are 5 mathematical operators as follows (with their standard priorities):
+ add (+)
+ sub (-)
+ mul (*)
+ div (/)
+ pow (^)
+ and 'shortmul' used when there is no any operators between
+ a first parameter and a variable or function
+ (the 'shortmul' has the same priority as the normal multiplication )
+*/
+ class MatOperator
+ {
+ public:
+
+ enum Type
+ {
+ none,add,sub,mul,div,pow,lt,gt,let,get,eq,neq,lor,land,shortmul
+ };
+
+ enum Assoc
+ {
+ right, // right-associative
+ non_right // associative or left-associative
+ };
+
+ Type GetType() const { return type; }
+ int GetPriority() const { return priority; }
+ Assoc GetAssoc() const { return assoc; }
+
+ void SetType(Type t)
+ {
+ type = t;
+ assoc = non_right;
+
+ switch( type )
+ {
+ case lor:
+ priority = 4;
+ break;
+
+ case land:
+ priority = 5;
+ break;
+
+ case eq:
+ case neq:
+ case lt:
+ case gt:
+ case let:
+ case get:
+ priority = 7;
+ break;
+
+ case add:
+ case sub:
+ priority = 10;
+ break;
+
+ case mul:
+ case shortmul:
+ case div:
+ priority = 12;
+ break;
+
+ case pow:
+ priority = 14;
+ assoc = right;
+ break;
+
+ default:
+ Error( err_internal_error );
+ break;
+ }
+ }
+
+ MatOperator(): type(none), priority(0), assoc(non_right)
+ {
+ }
+
+ private:
+
+ Type type;
+ int priority;
+ Assoc assoc;
+ }; // end of MatOperator class
+
+
+
+public:
+
+
+
+ /*!
+ Objects of type 'Item' we are keeping on our stack
+ */
+ struct Item
+ {
+ enum Type
+ {
+ none, numerical_value, mat_operator, first_bracket,
+ last_bracket, variable, semicolon
+ };
+
+ // The kind of type which we're keeping
+ Type type;
+
+ // if type == numerical_value
+ ValueType value;
+
+ // if type == mat_operator
+ MatOperator moperator;
+
+ /*
+ if type == first_bracket
+
+ if 'function' is set to true it means that the first recognized bracket
+ was the bracket from function in other words we must call a function when
+ we'll find the 'last' bracket
+ */
+ bool function;
+
+ // if function is true
+ std::string function_name;
+
+ /*
+ the sign of value
+
+ it can be for type==numerical_value or type==first_bracket
+ when it's true it means e.g. that value is equal -value
+ */
+ bool sign;
+
+ Item(): type(none), function(false), sign(false)
+ {
+ }
+
+ }; // end of Item struct
+
+
+/*!
+ stack on which we're keeping the Items
+
+ at the end of parsing we'll have the result on its
+ the result don't have to be one value, it can be a list
+ of values separated by the 'semicolon item'
+*/
+std::vector<Item> stack;
+
+
+private:
+
+
+/*!
+ size of the stack when we're starting parsing of the string
+
+ if it's to small while parsing the stack will be automatically resized
+*/
+const int default_stack_size;
+
+
+
+/*!
+ index of an object in our stack
+ it's pointing on the place behind the last element
+ for example at the beginning of parsing its value is zero
+*/
+unsigned int stack_index;
+
+
+/*!
+ code of the last error
+*/
+ErrorCode error;
+
+
+/*!
+ pointer to the currently reading char
+ it's either char* or wchar_t*
+
+ when an error has occured it may be used to count the index of the wrong character
+*/
+const char * pstring;
+
+
+/*!
+ the base (radix) of the mathematic system (for example it may be '10')
+*/
+int base;
+
+
+/*!
+ the unit of angles used in: sin,cos,tan,cot,asin,acos,atan,acot
+ 0 - deg
+ 1 - rad (default)
+ 2 - grad
+*/
+int deg_rad_grad;
+
+
+
+/*!
+ a pointer to an object which tell us whether we should stop calculating or not
+*/
+const volatile StopCalculating * pstop_calculating;
+
+
+
+/*!
+ a pointer to the user-defined variables' table
+*/
+const Objects * puser_variables;
+
+/*!
+ a pointer to the user-defined functions' table
+*/
+const Objects * puser_functions;
+
+
+typedef std::map<std::string, ValueType> FunctionLocalVariables;
+
+/*!
+ a pointer to the local variables of a function
+*/
+const FunctionLocalVariables * pfunction_local_variables;
+
+
+/*!
+ a temporary set using during parsing user defined variables
+*/
+std::set<std::string> visited_variables;
+
+
+/*!
+ a temporary set using during parsing user defined functions
+*/
+std::set<std::string> visited_functions;
+
+
+
+
+/*!
+ pfunction is the type of pointer to a mathematic function
+
+ these mathematic functions are private members of this class,
+ they are the wrappers for standard mathematics function
+
+ 'pstack' is the pointer to the first argument on our stack
+ 'amount_of_arg' tell us how many argument there are in our stack
+ 'result' is the reference for result of function
+*/
+typedef void (Parser<ValueType>::*pfunction)(int pstack, int amount_of_arg, ValueType & result);
+
+
+/*!
+ pfunction is the type of pointer to a method which returns value of variable
+*/
+typedef void (ValueType::*pfunction_var)();
+
+
+/*!
+ table of mathematic functions
+
+ this map consists of:
+ std::string - function's name
+ pfunction - pointer to specific function
+*/
+typedef std::map<std::string, pfunction> FunctionsTable;
+FunctionsTable functions_table;
+
+
+/*!
+ table of mathematic operators
+
+ this map consists of:
+ std::string - operators's name
+ MatOperator::Type - type of the operator
+*/
+typedef std::map<std::string, typename MatOperator::Type> OperatorsTable;
+OperatorsTable operators_table;
+
+
+/*!
+ table of mathematic variables
+
+ this map consists of:
+ std::string - variable's name
+ pfunction_var - pointer to specific function which returns value of variable
+*/
+typedef std::map<std::string, pfunction_var> VariablesTable;
+VariablesTable variables_table;
+
+
+/*!
+ some coefficients used when calculating the gamma (or factorial) function
+*/
+CGamma<ValueType> cgamma;
+
+
+/*!
+ temporary object for a whole string when Parse(std::wstring) is used
+*/
+std::string wide_to_ansi;
+
+
+/*!
+ group character (used when parsing)
+ default zero (not used)
+*/
+int group;
+
+
+/*!
+ characters used as a comma
+ default: '.' and ','
+ comma2 can be zero (it means it is not used)
+*/
+int comma, comma2;
+
+
+/*!
+ an additional character used as a separator between function parameters
+ (semicolon is used always)
+*/
+int param_sep;
+
+
+/*!
+ true if something was calculated (at least one mathematical operator was used or a function or a variable)
+*/
+bool calculated;
+
+
+
+/*!
+ we're using this method for reporting an error
+*/
+static void Error(ErrorCode code)
+{
+ throw code;
+}
+
+
+/*!
+ this method skips the white character from the string
+
+ it's moving the 'pstring' to the first no-white character
+*/
+void SkipWhiteCharacters()
+{
+ while( (*pstring==' ' ) || (*pstring=='\t') )
+ ++pstring;
+}
+
+
+/*!
+ an auxiliary method for RecurrenceParsingVariablesOrFunction(...)
+*/
+void RecurrenceParsingVariablesOrFunction_CheckStopCondition(bool variable, const std::string & name)
+{
+ if( variable )
+ {
+ if( visited_variables.find(name) != visited_variables.end() )
+ Error( err_variable_loop );
+ }
+ else
+ {
+ if( visited_functions.find(name) != visited_functions.end() )
+ Error( err_functions_loop );
+ }
+}
+
+
+/*!
+ an auxiliary method for RecurrenceParsingVariablesOrFunction(...)
+*/
+void RecurrenceParsingVariablesOrFunction_AddName(bool variable, const std::string & name)
+{
+ if( variable )
+ visited_variables.insert( name );
+ else
+ visited_functions.insert( name );
+}
+
+
+/*!
+ an auxiliary method for RecurrenceParsingVariablesOrFunction(...)
+*/
+void RecurrenceParsingVariablesOrFunction_DeleteName(bool variable, const std::string & name)
+{
+ if( variable )
+ visited_variables.erase( name );
+ else
+ visited_functions.erase( name );
+}
+
+
+/*!
+ this method returns the value of a variable or function
+ by creating a new instance of the mathematical parser
+ and making the standard parsing algorithm on the given string
+
+ this method is used only during parsing user defined variables or functions
+
+ (there can be a recurrence here therefore we're using 'visited_variables'
+ and 'visited_functions' sets to make a stop condition)
+*/
+ValueType RecurrenceParsingVariablesOrFunction(bool variable, const std::string & name, const char * new_string,
+ FunctionLocalVariables * local_variables = 0)
+{
+ RecurrenceParsingVariablesOrFunction_CheckStopCondition(variable, name);
+ RecurrenceParsingVariablesOrFunction_AddName(variable, name);
+
+ Parser<ValueType> NewParser(*this);
+ ErrorCode err;
+
+ NewParser.pfunction_local_variables = local_variables;
+
+ try
+ {
+ err = NewParser.Parse(new_string);
+ }
+ catch(...)
+ {
+ RecurrenceParsingVariablesOrFunction_DeleteName(variable, name);
+
+ throw;
+ }
+
+ RecurrenceParsingVariablesOrFunction_DeleteName(variable, name);
+
+ if( err != err_ok )
+ Error( err );
+
+ if( NewParser.stack.size() != 1 )
+ Error( err_must_be_only_one_value );
+
+ if( NewParser.stack[0].type != Item::numerical_value )
+ // I think there shouldn't be this error here
+ Error( err_incorrect_value );
+
+return NewParser.stack[0].value;
+}
+
+
+public:
+
+
+/*!
+ this method returns the user-defined value of a variable
+*/
+bool GetValueOfUserDefinedVariable(const std::string & variable_name,ValueType & result)
+{
+ if( !puser_variables )
+ return false;
+
+ const char * string_value;
+
+ if( puser_variables->GetValue(variable_name, &string_value) != err_ok )
+ return false;
+
+ result = RecurrenceParsingVariablesOrFunction(true, variable_name, string_value);
+ calculated = true;
+
+return true;
+}
+
+
+/*!
+ this method returns the value of a local variable of a function
+*/
+bool GetValueOfFunctionLocalVariable(const std::string & variable_name, ValueType & result)
+{
+ if( !pfunction_local_variables )
+ return false;
+
+ typename FunctionLocalVariables::const_iterator i = pfunction_local_variables->find(variable_name);
+
+ if( i == pfunction_local_variables->end() )
+ return false;
+
+ result = i->second;
+
+return true;
+}
+
+
+/*!
+ this method returns the value of a variable from variables' table
+
+ we make an object of type ValueType then call a method which
+ sets the correct value in it and finally we'll return the object
+*/
+ValueType GetValueOfVariable(const std::string & variable_name)
+{
+ValueType result;
+
+ if( GetValueOfFunctionLocalVariable(variable_name, result) )
+ return result;
+
+ if( GetValueOfUserDefinedVariable(variable_name, result) )
+ return result;
+
+
+ typename std::map<std::string, pfunction_var>::iterator i =
+ variables_table.find(variable_name);
+
+ if( i == variables_table.end() )
+ Error( err_unknown_variable );
+
+ (result.*(i->second))();
+ calculated = true;
+
+return result;
+}
+
+
+private:
+
+/*!
+ wrappers for mathematic functions
+
+ 'sindex' is pointing on the first argument on our stack
+ (the second argument has 'sindex+2'
+ because 'sindex+1' is guaranted for the 'semicolon' operator)
+ the third artument has of course 'sindex+4' etc.
+
+ 'result' will be the result of the function
+
+ (we're using exceptions here for example when function gets an improper argument)
+*/
+
+
+/*!
+ used by: sin,cos,tan,cot
+*/
+ValueType ConvertAngleToRad(const ValueType & input)
+{
+ if( deg_rad_grad == 1 ) // rad
+ return input;
+
+ ValueType result;
+ ErrorCode err;
+
+ if( deg_rad_grad == 0 ) // deg
+ result = ttmath::DegToRad(input, &err);
+ else // grad
+ result = ttmath::GradToRad(input, &err);
+
+ if( err != err_ok )
+ Error( err );
+
+return result;
+}
+
+
+/*!
+ used by: asin,acos,atan,acot
+*/
+ValueType ConvertRadToAngle(const ValueType & input)
+{
+ if( deg_rad_grad == 1 ) // rad
+ return input;
+
+ ValueType result;
+ ErrorCode err;
+
+ if( deg_rad_grad == 0 ) // deg
+ result = ttmath::RadToDeg(input, &err);
+ else // grad
+ result = ttmath::RadToGrad(input, &err);
+
+ if( err != err_ok )
+ Error( err );
+
+return result;
+}
+
+
+void Gamma(int sindex, int amount_of_args, ValueType & result)
+{
+ if( amount_of_args != 1 )
+ Error( err_improper_amount_of_arguments );
+
+ ErrorCode err;
+
+ result = ttmath::Gamma(stack[sindex].value, cgamma, &err, pstop_calculating);
+
+ if(err != err_ok)
+ Error( err );
+}
+
+
+/*!
+ factorial
+ result = 1 * 2 * 3 * 4 * .... * x
+*/
+void Factorial(int sindex, int amount_of_args, ValueType & result)
+{
+ if( amount_of_args != 1 )
+ Error( err_improper_amount_of_arguments );
+
+ ErrorCode err;
+
+ result = ttmath::Factorial(stack[sindex].value, cgamma, &err, pstop_calculating);
+
+ if(err != err_ok)
+ Error( err );
+}
+
+
+void Abs(int sindex, int amount_of_args, ValueType & result)
+{
+ if( amount_of_args != 1 )
+ Error( err_improper_amount_of_arguments );
+
+ result = ttmath::Abs(stack[sindex].value);
+}
+
+void Sin(int sindex, int amount_of_args, ValueType & result)
+{
+ if( amount_of_args != 1 )
+ Error( err_improper_amount_of_arguments );
+
+ ErrorCode err;
+ result = ttmath::Sin( ConvertAngleToRad(stack[sindex].value), &err );
+
+ if(err != err_ok)
+ Error( err );
+}
+
+void Cos(int sindex, int amount_of_args, ValueType & result)
+{
+ if( amount_of_args != 1 )
+ Error( err_improper_amount_of_arguments );
+
+ ErrorCode err;
+ result = ttmath::Cos( ConvertAngleToRad(stack[sindex].value), &err );
+
+ if(err != err_ok)
+ Error( err );
+}
+
+void Tan(int sindex, int amount_of_args, ValueType & result)
+{
+ if( amount_of_args != 1 )
+ Error( err_improper_amount_of_arguments );
+
+ ErrorCode err;
+ result = ttmath::Tan(ConvertAngleToRad(stack[sindex].value), &err);
+
+ if(err != err_ok)
+ Error( err );
+}
+
+void Cot(int sindex, int amount_of_args, ValueType & result)
+{
+ if( amount_of_args != 1 )
+ Error( err_improper_amount_of_arguments );
+
+ ErrorCode err;
+ result = ttmath::Cot(ConvertAngleToRad(stack[sindex].value), &err);
+
+ if(err != err_ok)
+ Error( err );
+}
+
+void Int(int sindex, int amount_of_args, ValueType & result)
+{
+ if( amount_of_args != 1 )
+ Error( err_improper_amount_of_arguments );
+
+ result = ttmath::SkipFraction(stack[sindex].value);
+}
+
+
+void Round(int sindex, int amount_of_args, ValueType & result)
+{
+ if( amount_of_args != 1 )
+ Error( err_improper_amount_of_arguments );
+
+ result = stack[sindex].value;
+
+ if( result.Round() )
+ Error( err_overflow );
+}
+
+
+void Ln(int sindex, int amount_of_args, ValueType & result)
+{
+ if( amount_of_args != 1 )
+ Error( err_improper_amount_of_arguments );
+
+ ErrorCode err;
+ result = ttmath::Ln(stack[sindex].value, &err);
+
+ if(err != err_ok)
+ Error( err );
+}
+
+void Log(int sindex, int amount_of_args, ValueType & result)
+{
+ if( amount_of_args != 2 )
+ Error( err_improper_amount_of_arguments );
+
+ ErrorCode err;
+ result = ttmath::Log(stack[sindex].value, stack[sindex+2].value, &err);
+
+ if(err != err_ok)
+ Error( err );
+}
+
+void Exp(int sindex, int amount_of_args, ValueType & result)
+{
+ if( amount_of_args != 1 )
+ Error( err_improper_amount_of_arguments );
+
+ ErrorCode err;
+ result = ttmath::Exp(stack[sindex].value, &err);
+
+ if(err != err_ok)
+ Error( err );
+}
+
+
+void Max(int sindex, int amount_of_args, ValueType & result)
+{
+ if( amount_of_args == 0 )
+ {
+ result.SetMax();
+
+ return;
+ }
+
+ result = stack[sindex].value;
+
+ for(int i=1 ; i<amount_of_args ; ++i)
+ {
+ if( result < stack[sindex + i*2].value )
+ result = stack[sindex + i*2].value;
+ }
+}
+
+
+void Min(int sindex, int amount_of_args, ValueType & result)
+{
+ if( amount_of_args == 0 )
+ {
+ result.SetMin();
+
+ return;
+ }
+
+ result = stack[sindex].value;
+
+ for(int i=1 ; i<amount_of_args ; ++i)
+ {
+ if( result > stack[sindex + i*2].value )
+ result = stack[sindex + i*2].value;
+ }
+}
+
+
+void ASin(int sindex, int amount_of_args, ValueType & result)
+{
+ if( amount_of_args != 1 )
+ Error( err_improper_amount_of_arguments );
+
+ ErrorCode err;
+ ValueType temp = ttmath::ASin(stack[sindex].value, &err);
+
+ if(err != err_ok)
+ Error( err );
+
+ result = ConvertRadToAngle(temp);
+}
+
+
+void ACos(int sindex, int amount_of_args, ValueType & result)
+{
+ if( amount_of_args != 1 )
+ Error( err_improper_amount_of_arguments );
+
+ ErrorCode err;
+ ValueType temp = ttmath::ACos(stack[sindex].value, &err);
+
+ if(err != err_ok)
+ Error( err );
+
+ result = ConvertRadToAngle(temp);
+}
+
+
+void ATan(int sindex, int amount_of_args, ValueType & result)
+{
+ if( amount_of_args != 1 )
+ Error( err_improper_amount_of_arguments );
+
+ result = ConvertRadToAngle(ttmath::ATan(stack[sindex].value));
+}
+
+
+void ACot(int sindex, int amount_of_args, ValueType & result)
+{
+ if( amount_of_args != 1 )
+ Error( err_improper_amount_of_arguments );
+
+ result = ConvertRadToAngle(ttmath::ACot(stack[sindex].value));
+}
+
+
+void Sgn(int sindex, int amount_of_args, ValueType & result)
+{
+ if( amount_of_args != 1 )
+ Error( err_improper_amount_of_arguments );
+
+ result = ttmath::Sgn(stack[sindex].value);
+}
+
+
+void Mod(int sindex, int amount_of_args, ValueType & result)
+{
+ if( amount_of_args != 2 )
+ Error( err_improper_amount_of_arguments );
+
+ if( stack[sindex+2].value.IsZero() )
+ Error( err_improper_argument );
+
+ result = stack[sindex].value;
+ uint c = result.Mod(stack[sindex+2].value);
+
+ if( c )
+ Error( err_overflow );
+}
+
+
+void If(int sindex, int amount_of_args, ValueType & result)
+{
+ if( amount_of_args != 3 )
+ Error( err_improper_amount_of_arguments );
+
+
+ if( !stack[sindex].value.IsZero() )
+ result = stack[sindex+2].value;
+ else
+ result = stack[sindex+4].value;
+}
+
+
+void Or(int sindex, int amount_of_args, ValueType & result)
+{
+ if( amount_of_args < 2 )
+ Error( err_improper_amount_of_arguments );
+
+ for(int i=0 ; i<amount_of_args ; ++i)
+ {
+ if( !stack[sindex+i*2].value.IsZero() )
+ {
+ result.SetOne();
+ return;
+ }
+ }
+
+ result.SetZero();
+}
+
+
+void And(int sindex, int amount_of_args, ValueType & result)
+{
+ if( amount_of_args < 2 )
+ Error( err_improper_amount_of_arguments );
+
+ for(int i=0 ; i<amount_of_args ; ++i)
+ {
+ if( stack[sindex+i*2].value.IsZero() )
+ {
+ result.SetZero();
+ return;
+ }
+ }
+
+ result.SetOne();
+}
+
+
+void Not(int sindex, int amount_of_args, ValueType & result)
+{
+ if( amount_of_args != 1 )
+ Error( err_improper_amount_of_arguments );
+
+
+ if( stack[sindex].value.IsZero() )
+ result.SetOne();
+ else
+ result.SetZero();
+}
+
+
+void DegToRad(int sindex, int amount_of_args, ValueType & result)
+{
+ ErrorCode err = err_ok;
+
+ if( amount_of_args == 1 )
+ {
+ result = ttmath::DegToRad(stack[sindex].value, &err);
+ }
+ else
+ if( amount_of_args == 3 )
+ {
+ result = ttmath::DegToRad( stack[sindex].value, stack[sindex+2].value,
+ stack[sindex+4].value, &err);
+ }
+ else
+ Error( err_improper_amount_of_arguments );
+
+
+ if( err != err_ok )
+ Error( err );
+}
+
+
+void RadToDeg(int sindex, int amount_of_args, ValueType & result)
+{
+ ErrorCode err;
+
+ if( amount_of_args != 1 )
+ Error( err_improper_amount_of_arguments );
+
+ result = ttmath::RadToDeg(stack[sindex].value, &err);
+
+ if( err != err_ok )
+ Error( err );
+}
+
+
+void DegToDeg(int sindex, int amount_of_args, ValueType & result)
+{
+ if( amount_of_args != 3 )
+ Error( err_improper_amount_of_arguments );
+
+ ErrorCode err;
+ result = ttmath::DegToDeg( stack[sindex].value, stack[sindex+2].value,
+ stack[sindex+4].value, &err);
+
+ if( err != err_ok )
+ Error( err );
+}
+
+
+void GradToRad(int sindex, int amount_of_args, ValueType & result)
+{
+ ErrorCode err;
+
+ if( amount_of_args != 1 )
+ Error( err_improper_amount_of_arguments );
+
+ result = ttmath::GradToRad(stack[sindex].value, &err);
+
+ if( err != err_ok )
+ Error( err );
+}
+
+
+void RadToGrad(int sindex, int amount_of_args, ValueType & result)
+{
+ ErrorCode err;
+
+ if( amount_of_args != 1 )
+ Error( err_improper_amount_of_arguments );
+
+ result = ttmath::RadToGrad(stack[sindex].value, &err);
+
+ if( err != err_ok )
+ Error( err );
+}
+
+
+void DegToGrad(int sindex, int amount_of_args, ValueType & result)
+{
+ ErrorCode err = err_ok;
+
+ if( amount_of_args == 1 )
+ {
+ result = ttmath::DegToGrad(stack[sindex].value, &err);
+ }
+ else
+ if( amount_of_args == 3 )
+ {
+ result = ttmath::DegToGrad( stack[sindex].value, stack[sindex+2].value,
+ stack[sindex+4].value, &err);
+ }
+ else
+ Error( err_improper_amount_of_arguments );
+
+
+ if( err != err_ok )
+ Error( err );
+}
+
+
+void GradToDeg(int sindex, int amount_of_args, ValueType & result)
+{
+ ErrorCode err;
+
+ if( amount_of_args != 1 )
+ Error( err_improper_amount_of_arguments );
+
+ result = ttmath::GradToDeg(stack[sindex].value, &err);
+
+ if( err != err_ok )
+ Error( err );
+}
+
+
+void Ceil(int sindex, int amount_of_args, ValueType & result)
+{
+ if( amount_of_args != 1 )
+ Error( err_improper_amount_of_arguments );
+
+ ErrorCode err;
+ result = ttmath::Ceil(stack[sindex].value, &err);
+
+ if( err != err_ok )
+ Error( err );
+}
+
+
+void Floor(int sindex, int amount_of_args, ValueType & result)
+{
+ if( amount_of_args != 1 )
+ Error( err_improper_amount_of_arguments );
+
+ ErrorCode err;
+ result = ttmath::Floor(stack[sindex].value, &err);
+
+ if( err != err_ok )
+ Error( err );
+}
+
+void Sqrt(int sindex, int amount_of_args, ValueType & result)
+{
+ if( amount_of_args != 1 )
+ Error( err_improper_amount_of_arguments );
+
+ ErrorCode err;
+ result = ttmath::Sqrt(stack[sindex].value, &err);
+
+ if( err != err_ok )
+ Error( err );
+}
+
+
+void Sinh(int sindex, int amount_of_args, ValueType & result)
+{
+ if( amount_of_args != 1 )
+ Error( err_improper_amount_of_arguments );
+
+ ErrorCode err;
+ result = ttmath::Sinh(stack[sindex].value, &err);
+
+ if( err != err_ok )
+ Error( err );
+}
+
+
+void Cosh(int sindex, int amount_of_args, ValueType & result)
+{
+ if( amount_of_args != 1 )
+ Error( err_improper_amount_of_arguments );
+
+ ErrorCode err;
+ result = ttmath::Cosh(stack[sindex].value, &err);
+
+ if( err != err_ok )
+ Error( err );
+}
+
+
+void Tanh(int sindex, int amount_of_args, ValueType & result)
+{
+ if( amount_of_args != 1 )
+ Error( err_improper_amount_of_arguments );
+
+ ErrorCode err;
+ result = ttmath::Tanh(stack[sindex].value, &err);
+
+ if( err != err_ok )
+ Error( err );
+}
+
+
+void Coth(int sindex, int amount_of_args, ValueType & result)
+{
+ if( amount_of_args != 1 )
+ Error( err_improper_amount_of_arguments );
+
+ ErrorCode err;
+ result = ttmath::Coth(stack[sindex].value, &err);
+
+ if( err != err_ok )
+ Error( err );
+}
+
+
+void Root(int sindex, int amount_of_args, ValueType & result)
+{
+ if( amount_of_args != 2 )
+ Error( err_improper_amount_of_arguments );
+
+ ErrorCode err;
+ result = ttmath::Root(stack[sindex].value, stack[sindex+2].value, &err);
+
+ if( err != err_ok )
+ Error( err );
+}
+
+
+
+void ASinh(int sindex, int amount_of_args, ValueType & result)
+{
+ if( amount_of_args != 1 )
+ Error( err_improper_amount_of_arguments );
+
+ ErrorCode err;
+ result = ttmath::ASinh(stack[sindex].value, &err);
+
+ if( err != err_ok )
+ Error( err );
+}
+
+
+void ACosh(int sindex, int amount_of_args, ValueType & result)
+{
+ if( amount_of_args != 1 )
+ Error( err_improper_amount_of_arguments );
+
+ ErrorCode err;
+ result = ttmath::ACosh(stack[sindex].value, &err);
+
+ if( err != err_ok )
+ Error( err );
+}
+
+
+void ATanh(int sindex, int amount_of_args, ValueType & result)
+{
+ if( amount_of_args != 1 )
+ Error( err_improper_amount_of_arguments );
+
+ ErrorCode err;
+ result = ttmath::ATanh(stack[sindex].value, &err);
+
+ if( err != err_ok )
+ Error( err );
+}
+
+
+void ACoth(int sindex, int amount_of_args, ValueType & result)
+{
+ if( amount_of_args != 1 )
+ Error( err_improper_amount_of_arguments );
+
+ ErrorCode err;
+ result = ttmath::ACoth(stack[sindex].value, &err);
+
+ if( err != err_ok )
+ Error( err );
+}
+
+
+void BitAnd(int sindex, int amount_of_args, ValueType & result)
+{
+ if( amount_of_args != 2 )
+ Error( err_improper_amount_of_arguments );
+
+ uint err;
+ result = stack[sindex].value;
+ err = result.BitAnd(stack[sindex+2].value);
+
+ switch(err)
+ {
+ case 1:
+ Error( err_overflow );
+ break;
+ case 2:
+ Error( err_improper_argument );
+ break;
+ }
+}
+
+void BitOr(int sindex, int amount_of_args, ValueType & result)
+{
+ if( amount_of_args != 2 )
+ Error( err_improper_amount_of_arguments );
+
+ uint err;
+ result = stack[sindex].value;
+ err = result.BitOr(stack[sindex+2].value);
+
+ switch(err)
+ {
+ case 1:
+ Error( err_overflow );
+ break;
+ case 2:
+ Error( err_improper_argument );
+ break;
+ }
+}
+
+
+void BitXor(int sindex, int amount_of_args, ValueType & result)
+{
+ if( amount_of_args != 2 )
+ Error( err_improper_amount_of_arguments );
+
+ uint err;
+ result = stack[sindex].value;
+ err = result.BitXor(stack[sindex+2].value);
+
+ switch(err)
+ {
+ case 1:
+ Error( err_overflow );
+ break;
+ case 2:
+ Error( err_improper_argument );
+ break;
+ }
+}
+
+
+void Sum(int sindex, int amount_of_args, ValueType & result)
+{
+ if( amount_of_args == 0 )
+ Error( err_improper_amount_of_arguments );
+
+ result = stack[sindex].value;
+
+ for(int i=1 ; i<amount_of_args ; ++i )
+ if( result.Add( stack[ sindex + i*2 ].value ) )
+ Error( err_overflow );
+}
+
+void Avg(int sindex, int amount_of_args, ValueType & result)
+{
+ if( amount_of_args == 0 )
+ Error( err_improper_amount_of_arguments );
+
+ result = stack[sindex].value;
+
+ for(int i=1 ; i<amount_of_args ; ++i )
+ if( result.Add( stack[ sindex + i*2 ].value ) )
+ Error( err_overflow );
+
+ if( result.Div( amount_of_args ) )
+ Error( err_overflow );
+}
+
+
+void Frac(int sindex, int amount_of_args, ValueType & result)
+{
+ if( amount_of_args != 1 )
+ Error( err_improper_amount_of_arguments );
+
+ result = stack[sindex].value;
+ result.RemainFraction();
+}
+
+
+
+
+/*!
+ we use such a method because 'wvsprintf' is not everywhere defined
+*/
+void Sprintf(char * buffer, int par)
+{
+char buf[30]; // char, not wchar_t etc.
+int i;
+
+ #ifdef _MSC_VER
+ #pragma warning( disable: 4996 )
+ //warning C4996: 'sprintf': This function or variable may be unsafe.
+ #endif
+
+ sprintf(buf, "%d", par);
+ for(i=0 ; buf[i] != 0 ; ++i)
+ buffer[i] = buf[i];
+
+ buffer[i] = 0;
+
+ #ifdef _MSC_VER
+ #pragma warning( default: 4996 )
+ #endif
+}
+
+
+
+
+/*!
+ this method returns the value from a user-defined function
+
+ (look at the description in 'CallFunction(...)')
+*/
+bool GetValueOfUserDefinedFunction(const std::string & function_name, int amount_of_args, int sindex)
+{
+ if( !puser_functions )
+ return false;
+
+ const char * string_value;
+ int param;
+
+ if( puser_functions->GetValueAndParam(function_name, &string_value, ¶m) != err_ok )
+ return false;
+
+ if( param != amount_of_args )
+ Error( err_improper_amount_of_arguments );
+
+
+ FunctionLocalVariables local_variables;
+
+ if( amount_of_args > 0 )
+ {
+ char buffer[30];
+
+ // x = x1
+ buffer[0] = 'x';
+ buffer[1] = 0;
+ local_variables.insert( std::make_pair(buffer, stack[sindex].value) );
+
+ for(int i=0 ; i<amount_of_args ; ++i)
+ {
+ buffer[0] = 'x';
+ Sprintf(buffer+1, i+1);
+ local_variables.insert( std::make_pair(buffer, stack[sindex + i*2].value) );
+ }
+ }
+
+ stack[sindex-1].value = RecurrenceParsingVariablesOrFunction(false, function_name, string_value, &local_variables);
+ calculated = true;
+
+return true;
+}
+
+
+/*
+ we're calling a specific function
+
+ function_name - name of the function
+ amount_of_args - how many arguments there are on our stack
+ (function must check whether this is a correct value or not)
+ sindex - index of the first argument on the stack (sindex is greater than zero)
+ if there aren't any arguments on the stack 'sindex' pointing on
+ a non existend element (after the first bracket)
+
+ result will be stored in 'stack[sindex-1].value'
+ (we don't have to set the correct type of this element, it'll be set later)
+*/
+void CallFunction(const std::string & function_name, int amount_of_args, int sindex)
+{
+ if( GetValueOfUserDefinedFunction(function_name, amount_of_args, sindex) )
+ return;
+
+ typename FunctionsTable::iterator i = functions_table.find( function_name );
+
+ if( i == functions_table.end() )
+ Error( err_unknown_function );
+
+ /*
+ calling the specify function
+ */
+ (this->*(i->second))(sindex, amount_of_args, stack[sindex-1].value);
+ calculated = true;
+}
+
+
+
+
+
+/*!
+ inserting a function to the functions' table
+
+ function_name - name of the function
+ pf - pointer to the function (to the wrapper)
+*/
+void InsertFunctionToTable(const char * function_name, pfunction pf)
+{
+ std::string str;
+ Misc::AssignString(str, function_name);
+
+ functions_table.insert( std::make_pair(str, pf) );
+}
+
+
+
+/*!
+ inserting a function to the variables' table
+ (this function returns value of variable)
+
+ variable_name - name of the function
+ pf - pointer to the function
+*/
+void InsertVariableToTable(const char * variable_name, pfunction_var pf)
+{
+ std::string str;
+ Misc::AssignString(str, variable_name);
+
+ variables_table.insert( std::make_pair(str, pf) );
+}
+
+
+/*!
+ this method creates the table of functions
+*/
+void CreateFunctionsTable()
+{
+ InsertFunctionToTable("gamma", &Parser<ValueType>::Gamma);
+ InsertFunctionToTable("factorial", &Parser<ValueType>::Factorial);
+ InsertFunctionToTable("abs", &Parser<ValueType>::Abs);
+ InsertFunctionToTable("sin", &Parser<ValueType>::Sin);
+ InsertFunctionToTable("cos", &Parser<ValueType>::Cos);
+ InsertFunctionToTable("tan", &Parser<ValueType>::Tan);
+ InsertFunctionToTable("tg", &Parser<ValueType>::Tan);
+ InsertFunctionToTable("cot", &Parser<ValueType>::Cot);
+ InsertFunctionToTable("ctg", &Parser<ValueType>::Cot);
+ InsertFunctionToTable("int", &Parser<ValueType>::Int);
+ InsertFunctionToTable("round", &Parser<ValueType>::Round);
+ InsertFunctionToTable("ln", &Parser<ValueType>::Ln);
+ InsertFunctionToTable("log", &Parser<ValueType>::Log);
+ InsertFunctionToTable("exp", &Parser<ValueType>::Exp);
+ InsertFunctionToTable("max", &Parser<ValueType>::Max);
+ InsertFunctionToTable("min", &Parser<ValueType>::Min);
+ InsertFunctionToTable("asin", &Parser<ValueType>::ASin);
+ InsertFunctionToTable("acos", &Parser<ValueType>::ACos);
+ InsertFunctionToTable("atan", &Parser<ValueType>::ATan);
+ InsertFunctionToTable("atg", &Parser<ValueType>::ATan);
+ InsertFunctionToTable("acot", &Parser<ValueType>::ACot);
+ InsertFunctionToTable("actg", &Parser<ValueType>::ACot);
+ InsertFunctionToTable("sgn", &Parser<ValueType>::Sgn);
+ InsertFunctionToTable("mod", &Parser<ValueType>::Mod);
+ InsertFunctionToTable("if", &Parser<ValueType>::If);
+ InsertFunctionToTable("or", &Parser<ValueType>::Or);
+ InsertFunctionToTable("and", &Parser<ValueType>::And);
+ InsertFunctionToTable("not", &Parser<ValueType>::Not);
+ InsertFunctionToTable("degtorad", &Parser<ValueType>::DegToRad);
+ InsertFunctionToTable("radtodeg", &Parser<ValueType>::RadToDeg);
+ InsertFunctionToTable("degtodeg", &Parser<ValueType>::DegToDeg);
+ InsertFunctionToTable("gradtorad", &Parser<ValueType>::GradToRad);
+ InsertFunctionToTable("radtograd", &Parser<ValueType>::RadToGrad);
+ InsertFunctionToTable("degtograd", &Parser<ValueType>::DegToGrad);
+ InsertFunctionToTable("gradtodeg", &Parser<ValueType>::GradToDeg);
+ InsertFunctionToTable("ceil", &Parser<ValueType>::Ceil);
+ InsertFunctionToTable("floor", &Parser<ValueType>::Floor);
+ InsertFunctionToTable("sqrt", &Parser<ValueType>::Sqrt);
+ InsertFunctionToTable("sinh", &Parser<ValueType>::Sinh);
+ InsertFunctionToTable("cosh", &Parser<ValueType>::Cosh);
+ InsertFunctionToTable("tanh", &Parser<ValueType>::Tanh);
+ InsertFunctionToTable("tgh", &Parser<ValueType>::Tanh);
+ InsertFunctionToTable("coth", &Parser<ValueType>::Coth);
+ InsertFunctionToTable("ctgh", &Parser<ValueType>::Coth);
+ InsertFunctionToTable("root", &Parser<ValueType>::Root);
+ InsertFunctionToTable("asinh", &Parser<ValueType>::ASinh);
+ InsertFunctionToTable("acosh", &Parser<ValueType>::ACosh);
+ InsertFunctionToTable("atanh", &Parser<ValueType>::ATanh);
+ InsertFunctionToTable("atgh", &Parser<ValueType>::ATanh);
+ InsertFunctionToTable("acoth", &Parser<ValueType>::ACoth);
+ InsertFunctionToTable("actgh", &Parser<ValueType>::ACoth);
+ InsertFunctionToTable("bitand", &Parser<ValueType>::BitAnd);
+ InsertFunctionToTable("bitor", &Parser<ValueType>::BitOr);
+ InsertFunctionToTable("bitxor", &Parser<ValueType>::BitXor);
+ InsertFunctionToTable("band", &Parser<ValueType>::BitAnd);
+ InsertFunctionToTable("bor", &Parser<ValueType>::BitOr);
+ InsertFunctionToTable("bxor", &Parser<ValueType>::BitXor);
+ InsertFunctionToTable("sum", &Parser<ValueType>::Sum);
+ InsertFunctionToTable("avg", &Parser<ValueType>::Avg);
+ InsertFunctionToTable("frac", &Parser<ValueType>::Frac);
+}
+
+
+/*!
+ this method creates the table of variables
+*/
+void CreateVariablesTable()
+{
+ InsertVariableToTable("pi", &ValueType::SetPi);
+ InsertVariableToTable("e", &ValueType::SetE);
+}
+
+
+/*!
+ converting from a big letter to a small one
+*/
+int ToLowerCase(int c)
+{
+ if( c>='A' && c<='Z' )
+ return c - 'A' + 'a';
+
+return c;
+}
+
+
+/*!
+ this method read the name of a variable or a function
+
+ 'result' will be the name of a variable or a function
+ function return 'false' if this name is the name of a variable
+ or function return 'true' if this name is the name of a function
+
+ what should be returned is tested just by a '(' character that means if there's
+ a '(' character after a name that function returns 'true'
+*/
+bool ReadName(std::string & result)
+{
+int character;
+
+
+ result.erase();
+ character = *pstring;
+
+ /*
+ the first letter must be from range 'a' - 'z' or 'A' - 'Z'
+ */
+ if( ! (( character>='a' && character<='z' ) || ( character>='A' && character<='Z' )) )
+ Error( err_unknown_character );
+
+
+ do
+ {
+ result += static_cast<char>( character );
+ character = * ++pstring;
+ }
+ while( (character>='a' && character<='z') ||
+ (character>='A' && character<='Z') ||
+ (character>='0' && character<='9') ||
+ character=='_' );
+
+
+ SkipWhiteCharacters();
+
+
+ /*
+ if there's a character '(' that means this name is a name of a function
+ */
+ if( *pstring == '(' )
+ {
+ ++pstring;
+ return true;
+ }
+
+
+return false;
+}
+
+
+/*!
+ we're checking whether the first character is '-' or '+'
+ if it is we'll return 'true' and if it is equally '-' we'll set the 'sign' member of 'result'
+*/
+bool TestSign(Item & result)
+{
+ SkipWhiteCharacters();
+ result.sign = false;
+
+ if( *pstring == '-' || *pstring == '+' )
+ {
+ if( *pstring == '-' )
+ result.sign = true;
+
+ ++pstring;
+
+ return true;
+ }
+
+return false;
+}
+
+
+/*!
+ we're reading the name of a variable or a function
+ if is there a function we'll return 'true'
+*/
+bool ReadVariableOrFunction(Item & result)
+{
+std::string name;
+bool is_it_name_of_function = ReadName(name);
+
+ if( is_it_name_of_function )
+ {
+ /*
+ we've read the name of a function
+ */
+ result.function_name = name;
+ result.type = Item::first_bracket;
+ result.function = true;
+ }
+ else
+ {
+ /*
+ we've read the name of a variable and we're getting its value now
+ */
+ result.value = GetValueOfVariable( name );
+ }
+
+return is_it_name_of_function;
+}
+
+
+
+
+/*!
+ we're reading a numerical value directly from the string
+*/
+void ReadValue(Item & result, int reading_base)
+{
+const char * new_stack_pointer;
+bool value_read;
+Conv conv;
+
+ conv.base = reading_base;
+ conv.comma = comma;
+ conv.comma2 = comma2;
+ conv.group = group;
+
+ uint carry = result.value.FromString(pstring, conv, &new_stack_pointer, &value_read);
+ pstring = new_stack_pointer;
+
+ if( carry )
+ Error( err_overflow );
+
+ if( !value_read )
+ Error( err_unknown_character );
+}
+
+
+/*!
+ this method returns true if 'character' is a proper first digit for the value (or a comma -- can be first too)
+*/
+bool ValueStarts(int character, int base)
+{
+ if( character == comma )
+ return true;
+
+ if( comma2!=0 && character==comma2 )
+ return true;
+
+ if( Misc::CharToDigit(character, base) != -1 )
+ return true;
+
+return false;
+}
+
+
+/*!
+ we're reading the item
+
+ return values:
+ 0 - all ok, the item is successfully read
+ 1 - the end of the string (the item is not read)
+ 2 - the final bracket ')'
+*/
+int ReadValueVariableOrFunction(Item & result)
+{
+bool it_was_sign = false;
+int character;
+
+
+ if( TestSign(result) )
+ // 'result.sign' was set as well
+ it_was_sign = true;
+
+ SkipWhiteCharacters();
+ character = ToLowerCase( *pstring );
+
+
+ if( character == 0 )
+ {
+ if( it_was_sign )
+ // at the end of the string a character like '-' or '+' has left
+ Error( err_unexpected_end );
+
+ // there's the end of the string here
+ return 1;
+ }
+ else
+ if( character == '(' )
+ {
+ // we've got a normal bracket (not a function)
+ result.type = Item::first_bracket;
+ result.function = false;
+ ++pstring;
+
+ return 0;
+ }
+ else
+ if( character == ')' )
+ {
+ // we've got a final bracket
+ // (in this place we can find a final bracket only when there are empty brackets
+ // without any values inside or with a sign '-' or '+' inside)
+
+ if( it_was_sign )
+ Error( err_unexpected_final_bracket );
+
+ result.type = Item::last_bracket;
+
+ // we don't increment 'pstring', this final bracket will be read next by the
+ // 'ReadOperatorAndCheckFinalBracket(...)' method
+
+ return 2;
+ }
+ else
+ if( character == '#' )
+ {
+ ++pstring;
+ SkipWhiteCharacters();
+
+ // after '#' character we do not allow '-' or '+' (can be white characters)
+ if( ValueStarts(*pstring, 16) )
+ ReadValue( result, 16 );
+ else
+ Error( err_unknown_character );
+ }
+ else
+ if( character == '&' )
+ {
+ ++pstring;
+ SkipWhiteCharacters();
+
+ // after '&' character we do not allow '-' or '+' (can be white characters)
+ if( ValueStarts(*pstring, 2) )
+ ReadValue( result, 2 );
+ else
+ Error( err_unknown_character );
+ }
+ else
+ if( ValueStarts(character, base) )
+ {
+ ReadValue( result, base );
+ }
+ else
+ if( character>='a' && character<='z' )
+ {
+ if( ReadVariableOrFunction(result) )
+ // we've read the name of a function
+ return 0;
+ }
+ else
+ Error( err_unknown_character );
+
+
+
+ /*
+ we've got a value in the 'result'
+ this value is from a variable or directly from the string
+ */
+ result.type = Item::numerical_value;
+
+ if( result.sign )
+ {
+ result.value.ChangeSign();
+ result.sign = false;
+ }
+
+
+return 0;
+}
+
+
+void InsertOperatorToTable(const char * name, typename MatOperator::Type type)
+{
+ operators_table.insert( std::make_pair(std::string(name), type) );
+}
+
+
+/*!
+ this method creates the table of operators
+*/
+void CreateMathematicalOperatorsTable()
+{
+ InsertOperatorToTable("||", MatOperator::lor);
+ InsertOperatorToTable("&&", MatOperator::land);
+ InsertOperatorToTable("!=", MatOperator::neq);
+ InsertOperatorToTable("==", MatOperator::eq);
+ InsertOperatorToTable(">=", MatOperator::get);
+ InsertOperatorToTable("<=", MatOperator::let);
+ InsertOperatorToTable(">", MatOperator::gt);
+ InsertOperatorToTable("<", MatOperator::lt);
+ InsertOperatorToTable("-", MatOperator::sub);
+ InsertOperatorToTable("+", MatOperator::add);
+ InsertOperatorToTable("/", MatOperator::div);
+ InsertOperatorToTable("*", MatOperator::mul);
+ InsertOperatorToTable("^", MatOperator::pow);
+}
+
+
+/*!
+ returns true if 'str2' is the substring of str1
+
+ e.g.
+ true when str1="test" and str2="te"
+*/
+bool IsSubstring(const std::string & str1, const std::string & str2)
+{
+ if( str2.length() > str1.length() )
+ return false;
+
+ for(typename std::string::size_type i=0 ; i<str2.length() ; ++i)
+ if( str1[i] != str2[i] )
+ return false;
+
+return true;
+}
+
+
+/*!
+ this method reads a mathematical (or logical) operator
+*/
+void ReadMathematicalOperator(Item & result)
+{
+std::string oper;
+typename OperatorsTable::iterator iter_old, iter_new;
+
+ iter_old = operators_table.end();
+
+ for( ; true ; ++pstring )
+ {
+ oper += *pstring;
+ iter_new = operators_table.lower_bound(oper);
+
+ if( iter_new == operators_table.end() || !IsSubstring(iter_new->first, oper) )
+ {
+ oper.erase( --oper.end() ); // we've got mininum one element
+
+ if( iter_old != operators_table.end() && iter_old->first == oper )
+ {
+ result.type = Item::mat_operator;
+ result.moperator.SetType( iter_old->second );
+ break;
+ }
+
+ Error( err_unknown_operator );
+ }
+
+ iter_old = iter_new;
+ }
+}
+
+
+/*!
+ this method makes a calculation for the percentage operator
+ e.g.
+ 1000-50% = 1000-(1000*0,5) = 500
+*/
+void OperatorPercentage()
+{
+ if( stack_index < 3 ||
+ stack[stack_index-1].type != Item::numerical_value ||
+ stack[stack_index-2].type != Item::mat_operator ||
+ stack[stack_index-3].type != Item::numerical_value )
+ Error(err_percent_from);
+
+ ++pstring;
+ SkipWhiteCharacters();
+
+ uint c = 0;
+ c += stack[stack_index-1].value.Div(100);
+ c += stack[stack_index-1].value.Mul(stack[stack_index-3].value);
+
+ if( c )
+ Error(err_overflow);
+}
+
+
+/*!
+ this method reads a mathematic operators
+ or the final bracket or the semicolon operator
+
+ return values:
+ 0 - ok
+ 1 - the string is finished
+*/
+int ReadOperator(Item & result)
+{
+ SkipWhiteCharacters();
+
+ if( *pstring == '%' )
+ OperatorPercentage();
+
+
+ if( *pstring == 0 )
+ return 1;
+ else
+ if( *pstring == ')' )
+ {
+ result.type = Item::last_bracket;
+ ++pstring;
+ }
+ else
+ if( *pstring == ';' || (param_sep!=0 && *pstring==param_sep) )
+ {
+ result.type = Item::semicolon;
+ ++pstring;
+ }
+ else
+ if( (*pstring>='a' && *pstring<='z') || (*pstring>='A' && *pstring<='Z') )
+ {
+ // short mul (without any operators)
+
+ result.type = Item::mat_operator;
+ result.moperator.SetType( MatOperator::shortmul );
+ }
+ else
+ ReadMathematicalOperator(result);
+
+return 0;
+}
+
+
+
+/*!
+ this method is making the standard mathematic operation like '-' '+' '*' '/' and '^'
+
+ the operation is made between 'value1' and 'value2'
+ the result of this operation is stored in the 'value1'
+*/
+void MakeStandardMathematicOperation(ValueType & value1, typename MatOperator::Type mat_operator,
+ const ValueType & value2)
+{
+uint res;
+
+ calculated = true;
+
+ switch( mat_operator )
+ {
+ case MatOperator::land:
+ (!value1.IsZero() && !value2.IsZero()) ? value1.SetOne() : value1.SetZero();
+ break;
+
+ case MatOperator::lor:
+ (!value1.IsZero() || !value2.IsZero()) ? value1.SetOne() : value1.SetZero();
+ break;
+
+ case MatOperator::eq:
+ (value1 == value2) ? value1.SetOne() : value1.SetZero();
+ break;
+
+ case MatOperator::neq:
+ (value1 != value2) ? value1.SetOne() : value1.SetZero();
+ break;
+
+ case MatOperator::lt:
+ (value1 < value2) ? value1.SetOne() : value1.SetZero();
+ break;
+
+ case MatOperator::gt:
+ (value1 > value2) ? value1.SetOne() : value1.SetZero();
+ break;
+
+ case MatOperator::let:
+ (value1 <= value2) ? value1.SetOne() : value1.SetZero();
+ break;
+
+ case MatOperator::get:
+ (value1 >= value2) ? value1.SetOne() : value1.SetZero();
+ break;
+
+ case MatOperator::sub:
+ if( value1.Sub(value2) ) Error( err_overflow );
+ break;
+
+ case MatOperator::add:
+ if( value1.Add(value2) ) Error( err_overflow );
+ break;
+
+ case MatOperator::mul:
+ case MatOperator::shortmul:
+ if( value1.Mul(value2) ) Error( err_overflow );
+ break;
+
+ case MatOperator::div:
+ if( value2.IsZero() ) Error( err_division_by_zero );
+ if( value1.Div(value2) ) Error( err_overflow );
+ break;
+
+ case MatOperator::pow:
+ res = value1.Pow( value2 );
+
+ if( res == 1 ) Error( err_overflow );
+ else
+ if( res == 2 ) Error( err_improper_argument );
+
+ break;
+
+ default:
+ /*
+ on the stack left an unknown operator but we had to recognize its before
+ that means there's an error in our algorithm
+ */
+ Error( err_internal_error );
+ }
+}
+
+
+
+
+/*!
+ this method is trying to roll the stack up with the operator's priority
+
+ for example if there are:
+ "1 - 2 +"
+ we can subtract "1-2" and the result store on the place where is '1' and copy the last
+ operator '+', that means there'll be '-1+' on our stack
+
+ but if there are:
+ "1 - 2 *"
+ we can't roll the stack up because the operator '*' has greater priority than '-'
+*/
+void TryRollingUpStackWithOperatorPriority()
+{
+ while( stack_index>=4 &&
+ stack[stack_index-4].type == Item::numerical_value &&
+ stack[stack_index-3].type == Item::mat_operator &&
+ stack[stack_index-2].type == Item::numerical_value &&
+ stack[stack_index-1].type == Item::mat_operator &&
+ (
+ (
+ // the first operator has greater priority
+ stack[stack_index-3].moperator.GetPriority() > stack[stack_index-1].moperator.GetPriority()
+ ) ||
+ (
+ // or both operators have the same priority and the first operator is not right associative
+ stack[stack_index-3].moperator.GetPriority() == stack[stack_index-1].moperator.GetPriority() &&
+ stack[stack_index-3].moperator.GetAssoc() == MatOperator::non_right
+ )
+ )
+ )
+ {
+ MakeStandardMathematicOperation(stack[stack_index-4].value,
+ stack[stack_index-3].moperator.GetType(),
+ stack[stack_index-2].value);
+
+
+ /*
+ copying the last operator and setting the stack pointer to the correct value
+ */
+ stack[stack_index-3] = stack[stack_index-1];
+ stack_index -= 2;
+ }
+}
+
+
+/*!
+ this method is trying to roll the stack up without testing any operators
+
+ for example if there are:
+ "1 - 2"
+ there'll be "-1" on our stack
+*/
+void TryRollingUpStack()
+{
+ while( stack_index >= 3 &&
+ stack[stack_index-3].type == Item::numerical_value &&
+ stack[stack_index-2].type == Item::mat_operator &&
+ stack[stack_index-1].type == Item::numerical_value )
+ {
+ MakeStandardMathematicOperation( stack[stack_index-3].value,
+ stack[stack_index-2].moperator.GetType(),
+ stack[stack_index-1].value );
+
+ stack_index -= 2;
+ }
+}
+
+
+/*!
+ this method is reading a value or a variable or a function
+ (the normal first bracket as well) and push it into the stack
+*/
+int ReadValueVariableOrFunctionAndPushItIntoStack(Item & temp)
+{
+int code = ReadValueVariableOrFunction( temp );
+
+ if( code == 0 )
+ {
+ if( stack_index < stack.size() )
+ stack[stack_index] = temp;
+ else
+ stack.push_back( temp );
+
+ ++stack_index;
+ }
+
+ if( code == 2 )
+ // there was a final bracket, we didn't push it into the stack
+ // (it'll be read by the 'ReadOperatorAndCheckFinalBracket' method next)
+ code = 0;
+
+
+return code;
+}
+
+
+
+/*!
+ this method calculate how many parameters there are on the stack
+ and the index of the first parameter
+
+ if there aren't any parameters on the stack this method returns
+ 'size' equals zero and 'index' pointing after the first bracket
+ (on non-existend element)
+*/
+void HowManyParameters(int & size, int & index)
+{
+ size = 0;
+ index = stack_index;
+
+ if( index == 0 )
+ // we haven't put a first bracket on the stack
+ Error( err_unexpected_final_bracket );
+
+
+ if( stack[index-1].type == Item::first_bracket )
+ // empty brackets
+ return;
+
+ for( --index ; index>=1 ; index-=2 )
+ {
+ if( stack[index].type != Item::numerical_value )
+ {
+ /*
+ this element must be 'numerical_value', if not that means
+ there's an error in our algorithm
+ */
+ Error( err_internal_error );
+ }
+
+ ++size;
+
+ if( stack[index-1].type != Item::semicolon )
+ break;
+ }
+
+ if( index<1 || stack[index-1].type != Item::first_bracket )
+ {
+ /*
+ we haven't put a first bracket on the stack
+ */
+ Error( err_unexpected_final_bracket );
+ }
+}
+
+
+/*!
+ this method is being called when the final bracket ')' is being found
+
+ this method's rolling the stack up, counting how many parameters there are
+ on the stack and if there was a function it's calling the function
+*/
+void RollingUpFinalBracket()
+{
+int amount_of_parameters;
+int index;
+
+
+ if( stack_index<1 ||
+ (stack[stack_index-1].type != Item::numerical_value &&
+ stack[stack_index-1].type != Item::first_bracket)
+ )
+ Error( err_unexpected_final_bracket );
+
+
+ TryRollingUpStack();
+ HowManyParameters(amount_of_parameters, index);
+
+ // 'index' will be greater than zero
+ // 'amount_of_parameters' can be zero
+
+
+ if( amount_of_parameters==0 && !stack[index-1].function )
+ Error( err_unexpected_final_bracket );
+
+
+ bool was_sign = stack[index-1].sign;
+
+
+ if( stack[index-1].function )
+ {
+ // the result of a function will be on 'stack[index-1]'
+ // and then at the end we'll set the correct type (numerical value) of this element
+ CallFunction(stack[index-1].function_name, amount_of_parameters, index);
+ }
+ else
+ {
+ /*
+ there was a normal bracket (not a funcion)
+ */
+ if( amount_of_parameters != 1 )
+ Error( err_unexpected_semicolon_operator );
+
+
+ /*
+ in the place where is the bracket we put the result
+ */
+ stack[index-1] = stack[index];
+ }
+
+
+ /*
+ if there was a '-' character before the first bracket
+ we change the sign of the expression
+ */
+ stack[index-1].sign = false;
+
+ if( was_sign )
+ stack[index-1].value.ChangeSign();
+
+ stack[index-1].type = Item::numerical_value;
+
+
+ /*
+ the pointer of the stack will be pointing on the next (non-existing now) element
+ */
+ stack_index = index;
+}
+
+
+/*!
+ this method is putting the operator on the stack
+*/
+
+void PushOperatorIntoStack(Item & temp)
+{
+ if( stack_index < stack.size() )
+ stack[stack_index] = temp;
+ else
+ stack.push_back( temp );
+
+ ++stack_index;
+}
+
+
+
+/*!
+ this method is reading a operator and if it's a final bracket
+ it's calling RollingUpFinalBracket() and reading a operator again
+*/
+int ReadOperatorAndCheckFinalBracket(Item & temp)
+{
+ do
+ {
+ if( ReadOperator(temp) == 1 )
+ {
+ /*
+ the string is finished
+ */
+ return 1;
+ }
+
+ if( temp.type == Item::last_bracket )
+ RollingUpFinalBracket();
+
+ }
+ while( temp.type == Item::last_bracket );
+
+return 0;
+}
+
+
+/*!
+ we check wheter there are only numerical value's or 'semicolon' operators on the stack
+*/
+void CheckIntegrityOfStack()
+{
+ for(unsigned int i=0 ; i<stack_index; ++i)
+ {
+ if( stack[i].type != Item::numerical_value &&
+ stack[i].type != Item::semicolon)
+ {
+ /*
+ on the stack we must only have 'numerical_value' or 'semicolon' operator
+ if there is something another that means
+ we probably didn't close any of the 'first' bracket
+ */
+ Error( err_stack_not_clear );
+ }
+ }
+}
+
+
+
+/*!
+ the main loop of parsing
+*/
+void Parse()
+{
+Item item;
+int result_code;
+
+
+ while( true )
+ {
+ if( pstop_calculating && pstop_calculating->WasStopSignal() )
+ Error( err_interrupt );
+
+ result_code = ReadValueVariableOrFunctionAndPushItIntoStack( item );
+
+ if( result_code == 0 )
+ {
+ if( item.type == Item::first_bracket )
+ continue;
+
+ result_code = ReadOperatorAndCheckFinalBracket( item );
+ }
+
+
+ if( result_code==1 || item.type==Item::semicolon )
+ {
+ /*
+ the string is finished or the 'semicolon' operator has appeared
+ */
+
+ if( stack_index == 0 )
+ Error( err_nothing_has_read );
+
+ TryRollingUpStack();
+
+ if( result_code == 1 )
+ {
+ CheckIntegrityOfStack();
+
+ return;
+ }
+ }
+
+
+ PushOperatorIntoStack( item );
+ TryRollingUpStackWithOperatorPriority();
+ }
+}
+
+/*!
+ this method is called at the end of the parsing process
+
+ on our stack we can have another value than 'numerical_values' for example
+ when someone use the operator ';' in the global scope or there was an error during
+ parsing and the parser hasn't finished its job
+
+ if there was an error the stack is cleaned up now
+ otherwise we resize stack and leave on it only 'numerical_value' items
+*/
+void NormalizeStack()
+{
+ if( error!=err_ok || stack_index==0 )
+ {
+ stack.clear();
+ return;
+ }
+
+
+ /*
+ 'stack_index' tell us how many elements there are on the stack,
+ we must resize the stack now because 'stack_index' is using only for parsing
+ and stack has more (or equal) elements than value of 'stack_index'
+ */
+ stack.resize( stack_index );
+
+ for(uint i=stack_index-1 ; i!=uint(-1) ; --i)
+ {
+ if( stack[i].type != Item::numerical_value )
+ stack.erase( stack.begin() + i );
+ }
+}
+
+
+public:
+
+
+/*!
+ the default constructor
+*/
+Parser(): default_stack_size(100)
+{
+ pstop_calculating = 0;
+ puser_variables = 0;
+ puser_functions = 0;
+ pfunction_local_variables = 0;
+ base = 10;
+ deg_rad_grad = 1;
+ error = err_ok;
+ group = 0;
+ comma = '.';
+ comma2 = ',';
+ param_sep = 0;
+
+ CreateFunctionsTable();
+ CreateVariablesTable();
+ CreateMathematicalOperatorsTable();
+}
+
+
+/*!
+ the assignment operator
+*/
+Parser<ValueType> & operator=(const Parser<ValueType> & p)
+{
+ pstop_calculating = p.pstop_calculating;
+ puser_variables = p.puser_variables;
+ puser_functions = p.puser_functions;
+ pfunction_local_variables = 0;
+ base = p.base;
+ deg_rad_grad = p.deg_rad_grad;
+ error = p.error;
+ group = p.group;
+ comma = p.comma;
+ comma2 = p.comma2;
+ param_sep = p.param_sep;
+
+ /*
+ we don't have to call 'CreateFunctionsTable()' etc.
+ we can only copy these tables
+ */
+ functions_table = p.functions_table;
+ variables_table = p.variables_table;
+ operators_table = p.operators_table;
+
+ visited_variables = p.visited_variables;
+ visited_functions = p.visited_functions;
+
+return *this;
+}
+
+
+/*!
+ the copying constructor
+*/
+Parser(const Parser<ValueType> & p): default_stack_size(p.default_stack_size)
+{
+ operator=(p);
+}
+
+
+/*!
+ the new base of mathematic system
+ default is 10
+*/
+void SetBase(int b)
+{
+ if( b>=2 && b<=16 )
+ base = b;
+}
+
+
+/*!
+ the unit of angles used in: sin,cos,tan,cot,asin,acos,atan,acot
+ 0 - deg
+ 1 - rad (default)
+ 2 - grad
+*/
+void SetDegRadGrad(int angle)
+{
+ if( angle >= 0 || angle <= 2 )
+ deg_rad_grad = angle;
+}
+
+/*!
+ this method sets a pointer to the object which tell us whether we should stop
+ calculations
+*/
+void SetStopObject(const volatile StopCalculating * ps)
+{
+ pstop_calculating = ps;
+}
+
+
+/*!
+ this method sets the new table of user-defined variables
+ if you don't want any other variables just put zero value into the 'puser_variables' variable
+
+ (you can have only one table at the same time)
+*/
+void SetVariables(const Objects * pv)
+{
+ puser_variables = pv;
+}
+
+
+/*!
+ this method sets the new table of user-defined functions
+ if you don't want any other functions just put zero value into the 'puser_functions' variable
+
+ (you can have only one table at the same time)
+*/
+void SetFunctions(const Objects * pf)
+{
+ puser_functions = pf;
+}
+
+
+/*!
+ setting the group character
+ default zero (not used)
+*/
+void SetGroup(int g)
+{
+ group = g;
+}
+
+
+/*!
+ setting the main comma operator and the additional comma operator
+ the additional operator can be zero (which means it is not used)
+ default are: '.' and ','
+*/
+void SetComma(int c, int c2 = 0)
+{
+ comma = c;
+ comma2 = c2;
+}
+
+
+/*!
+ setting an additional character which is used as a parameters separator
+ the main parameters separator is a semicolon (is used always)
+
+ this character is used also as a global separator
+*/
+void SetParamSep(int s)
+{
+ param_sep = s;
+}
+
+
+/*!
+ the main method using for parsing string
+*/
+ErrorCode Parse(const char * str)
+{
+ stack_index = 0;
+ pstring = str;
+ error = err_ok;
+ calculated = false;
+
+ stack.resize( default_stack_size );
+
+ try
+ {
+ Parse();
+ }
+ catch(ErrorCode c)
+ {
+ error = c;
+ calculated = false;
+ }
+
+ NormalizeStack();
+
+return error;
+}
+
+
+/*!
+ the main method using for parsing string
+*/
+ErrorCode Parse(const std::string & str)
+{
+ return Parse(str.c_str());
+}
+
+
+/*!
+ the main method using for parsing string
+*/
+ErrorCode Parse(const wchar_t * str)
+{
+ Misc::AssignString(wide_to_ansi, str);
+
+return Parse(wide_to_ansi.c_str());
+}
+
+
+/*!
+ the main method using for parsing string
+*/
+ErrorCode Parse(const std::wstring & str)
+{
+ return Parse(str.c_str());
+}
+
+
+/*!
+ this method returns true is something was calculated
+ (at least one mathematical operator was used or a function or variable)
+ e.g. true if the string to Parse() looked like this:
+ "1+1"
+ "2*3"
+ "sin(5)"
+
+ if the string was e.g. "678" the result is false
+*/
+bool Calculated()
+{
+ return calculated;
+}
+
+
+};
+
+
+
+} // namespace
+
+
+#endif
Added: sandbox/geometry/boost/geometry/extensions/contrib/ttmath/ttmaththreads.h
==============================================================================
--- (empty file)
+++ sandbox/geometry/boost/geometry/extensions/contrib/ttmath/ttmaththreads.h 2010-07-05 13:06:03 EDT (Mon, 05 Jul 2010)
@@ -0,0 +1,250 @@
+/*
+ * This file is a part of TTMath Bignum Library
+ * and is distributed under the (new) BSD licence.
+ * Author: Tomasz Sowa <t.sowa_at_[hidden]>
+ */
+
+/*
+ * Copyright (c) 2006-2009, Tomasz Sowa
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are met:
+ *
+ * * Redistributions of source code must retain the above copyright notice,
+ * this list of conditions and the following disclaimer.
+ *
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * * Neither the name Tomasz Sowa nor the names of contributors to this
+ * project may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
+ * THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+
+
+#ifndef headerfilettmaththreads
+#define headerfilettmaththreads
+
+#include "ttmathtypes.h"
+
+#ifdef TTMATH_WIN32_THREADS
+#include <windows.h>
+#include <cstdio>
+#endif
+
+#ifdef TTMATH_POSIX_THREADS
+#include <pthread.h>
+#endif
+
+
+
+/*!
+ \file ttmaththreads.h
+ \brief Some objects used in multithreads environment
+*/
+
+
+/*
+ this is a simple skeleton of a program in multithreads environment:
+
+ #define TTMATH_MULTITHREADS
+ #include<ttmath/ttmath.h>
+
+ TTMATH_MULTITHREADS_HELPER
+
+ int main()
+ {
+ [...]
+ }
+
+ make sure that macro TTMATH_MULTITHREADS is defined and (somewhere in *.cpp file)
+ use TTMATH_MULTITHREADS_HELPER macro (outside of any classes/functions/namespaces scope)
+*/
+
+
+namespace ttmath
+{
+
+
+#ifdef TTMATH_WIN32_THREADS
+
+ /*
+ we use win32 threads
+ */
+
+
+ /*!
+ in multithreads environment you should use TTMATH_MULTITHREADS_HELPER macro
+ somewhere in *.cpp file
+
+ (at the moment in win32 this macro does nothing)
+ */
+ #define TTMATH_MULTITHREADS_HELPER
+
+
+ /*!
+ objects of this class are used to synchronize
+ */
+ class ThreadLock
+ {
+ HANDLE mutex_handle;
+
+
+ void CreateName(char * buffer) const
+ {
+ #ifdef _MSC_VER
+ #pragma warning (disable : 4996)
+ // warning C4996: 'sprintf': This function or variable may be unsafe. Consider using sprintf_s instead.
+ #endif
+
+ sprintf(buffer, "TTMATH_LOCK_%ul", (unsigned long)GetCurrentProcessId());
+
+ #ifdef _MSC_VER
+ #pragma warning (default : 4996)
+ #endif
+ }
+
+
+ public:
+
+ bool Lock()
+ {
+ char buffer[50];
+
+ CreateName(buffer);
+ mutex_handle = CreateMutexA(0, false, buffer);
+
+ if( mutex_handle == 0 )
+ return false;
+
+ WaitForSingleObject(mutex_handle, INFINITE);
+
+ return true;
+ }
+
+
+ ThreadLock()
+ {
+ mutex_handle = 0;
+ }
+
+
+ ~ThreadLock()
+ {
+ if( mutex_handle != 0 )
+ {
+ ReleaseMutex(mutex_handle);
+ CloseHandle(mutex_handle);
+ }
+ }
+ };
+
+#endif // #ifdef TTMATH_WIN32_THREADS
+
+
+
+
+
+#ifdef TTMATH_POSIX_THREADS
+
+ /*
+ we use posix threads
+ */
+
+
+ /*!
+ in multithreads environment you should use TTMATH_MULTITHREADS_HELPER macro
+ somewhere in *.cpp file
+ (this macro defines a pthread_mutex_t object used by TTMath library)
+ */
+ #define TTMATH_MULTITHREADS_HELPER \
+ namespace ttmath \
+ { \
+ pthread_mutex_t ttmath_mutex = PTHREAD_MUTEX_INITIALIZER; \
+ }
+
+
+ /*!
+ ttmath_mutex will be defined by TTMATH_MULTITHREADS_HELPER macro
+ */
+ extern pthread_mutex_t ttmath_mutex;
+
+
+ /*!
+ objects of this class are used to synchronize
+ */
+ class ThreadLock
+ {
+ public:
+
+ bool Lock()
+ {
+ if( pthread_mutex_lock(&ttmath_mutex) != 0 )
+ return false;
+
+ return true;
+ }
+
+
+ ~ThreadLock()
+ {
+ pthread_mutex_unlock(&ttmath_mutex);
+ }
+ };
+
+#endif // #ifdef TTMATH_POSIX_THREADS
+
+
+
+
+#if !defined(TTMATH_POSIX_THREADS) && !defined(TTMATH_WIN32_THREADS)
+
+ /*!
+ we don't use win32 and pthreads
+ */
+
+ /*!
+ */
+ #define TTMATH_MULTITHREADS_HELPER
+
+
+ /*!
+ objects of this class are used to synchronize
+ actually we don't synchronize, the method Lock() returns always 'false'
+ */
+ class ThreadLock
+ {
+ public:
+
+ bool Lock()
+ {
+ return false;
+ }
+ };
+
+
+#endif // #if !defined(TTMATH_POSIX_THREADS) && !defined(TTMATH_WIN32_THREADS)
+
+
+
+
+
+} // namespace
+
+#endif
+
Added: sandbox/geometry/boost/geometry/extensions/contrib/ttmath/ttmathtypes.h
==============================================================================
--- (empty file)
+++ sandbox/geometry/boost/geometry/extensions/contrib/ttmath/ttmathtypes.h 2010-07-05 13:06:03 EDT (Mon, 05 Jul 2010)
@@ -0,0 +1,646 @@
+/*
+ * This file is a part of TTMath Bignum Library
+ * and is distributed under the (new) BSD licence.
+ * Author: Tomasz Sowa <t.sowa_at_[hidden]>
+ */
+
+/*
+ * Copyright (c) 2006-2010, Tomasz Sowa
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are met:
+ *
+ * * Redistributions of source code must retain the above copyright notice,
+ * this list of conditions and the following disclaimer.
+ *
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * * Neither the name Tomasz Sowa nor the names of contributors to this
+ * project may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
+ * THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+
+#ifndef headerfilettmathtypes
+#define headerfilettmathtypes
+
+/*!
+ \file ttmathtypes.h
+ \brief constants used in the library
+
+ As our library is written in header files (templates) we cannot use
+ constants like 'const int' etc. because we should have some source files
+ *.cpp to define this variables. Only what we can have are constants
+ defined by #define preprocessor macros.
+
+ All macros are preceded by TTMATH_ prefix
+*/
+
+
+#include <stdexcept>
+#include <sstream>
+#include <vector>
+
+/*!
+ the version of the library
+
+ TTMATH_PRERELEASE_VER is either zero or one
+ if zero that means this is the release version of the library
+*/
+#define TTMATH_MAJOR_VER 0
+#define TTMATH_MINOR_VER 9
+#define TTMATH_REVISION_VER 1
+#define TTMATH_PRERELEASE_VER 0
+
+
+/*!
+ TTMATH_DEBUG
+ this macro enables further testing during writing your code
+ you don't have to define it in a release mode
+
+ if this macro is set then macros TTMATH_ASSERT and TTMATH_REFERENCE_ASSERT
+ are set as well and these macros can throw an exception if a condition in it
+ is not fulfilled (look at the definition of TTMATH_ASSERT and TTMATH_REFERENCE_ASSERT)
+
+ TTMATH_RELEASE
+ if you are confident that your code is perfect you can define TTMATH_RELEASE
+ macro for example by using -D option in gcc
+ gcc -DTTMATH_RELEASE -o myprogram myprogram.cpp
+ or by defining this macro in your code before using any header files of this library
+
+ if TTMATH_RELEASE is not set then TTMATH_DEBUG is set automatically
+*/
+#ifndef TTMATH_RELEASE
+ #define TTMATH_DEBUG
+#endif
+
+
+
+namespace ttmath
+{
+
+#if !defined _M_X64 && !defined __x86_64__
+
+ /*!
+ we're using a 32bit platform
+ */
+ #define TTMATH_PLATFORM32
+
+#else
+
+ /*!
+ we're using a 64bit platform
+ */
+ #define TTMATH_PLATFORM64
+
+#endif
+
+
+
+/*!
+ another compilers than MS VC or GCC by default use no asm version (TTMATH_NOASM)
+*/
+#if !defined _MSC_VER && !defined __GNUC__
+ #define TTMATH_NOASM
+#endif
+
+
+
+#ifdef TTMATH_PLATFORM32
+
+ /*!
+ on 32bit platforms one word (uint, sint) will be equal 32bits
+ */
+ typedef unsigned int uint;
+ typedef signed int sint;
+
+ /*!
+ this type is twice bigger than uint
+ (64bit on a 32bit platforms)
+
+ although C++ Standard - ANSI ISO IEC 14882:2003 doesn't define such a type (long long)
+ but it is defined in C99 and in upcoming C++0x /3.9.1 (2)/ and many compilers support it
+
+ this type is used in UInt::MulTwoWords and UInt::DivTwoWords when macro TTMATH_NOASM is defined
+ but only on a 32bit platform
+ */
+ #ifdef TTMATH_NOASM
+ typedef unsigned long long int ulint;
+ #endif
+
+ /*!
+ how many bits there are in the uint type
+ */
+ #define TTMATH_BITS_PER_UINT 32u
+
+ /*!
+ the mask for the highest bit in the unsigned 32bit word (2^31)
+ */
+ #define TTMATH_UINT_HIGHEST_BIT 2147483648u
+
+ /*!
+ the max value of the unsigned 32bit word (2^32 - 1)
+ (all bits equal one)
+ */
+ #define TTMATH_UINT_MAX_VALUE 4294967295u
+
+ /*!
+ the number of words (32bit words on 32bit platform)
+ which are kept in built-in variables for a Big<> type
+ (these variables are defined in ttmathbig.h)
+ */
+ #define TTMATH_BUILTIN_VARIABLES_SIZE 256u
+
+ /*!
+ this macro returns the number of machine words
+ capable to hold min_bits bits
+ e.g. TTMATH_BITS(128) returns 4
+ */
+ #define TTMATH_BITS(min_bits) ((min_bits-1)/32 + 1)
+
+#else
+
+ /*!
+ on 64bit platforms one word (uint, sint) will be equal 64bits
+ */
+ #ifdef _MSC_VER
+ /* in VC 'long' type has 32 bits, __int64 is VC extension */
+ typedef unsigned __int64 uint;
+ typedef signed __int64 sint;
+ #else
+ typedef unsigned long uint;
+ typedef signed long sint;
+ #endif
+
+ /*!
+ on 64bit platform we do not define ulint
+ sizeof(long long) is 8 (64bit) but we need 128bit
+
+ on 64 bit platform (when there is defined TTMATH_NOASM macro)
+ methods UInt::MulTwoWords and UInt::DivTwoWords are using other algorithms than those on 32 bit
+ */
+ //typedef unsigned long long int ulint;
+
+ /*!
+ how many bits there are in the uint type
+ */
+ #define TTMATH_BITS_PER_UINT 64ul
+
+ /*!
+ the mask for the highest bit in the unsigned 64bit word (2^63)
+ */
+ #define TTMATH_UINT_HIGHEST_BIT 9223372036854775808ul
+
+ /*!
+ the max value of the unsigned 64bit word (2^64 - 1)
+ (all bits equal one)
+ */
+ #define TTMATH_UINT_MAX_VALUE 18446744073709551615ul
+
+ /*!
+ the number of words (64bit words on 64bit platforms)
+ which are kept in built-in variables for a Big<> type
+ (these variables are defined in ttmathbig.h)
+ */
+ #define TTMATH_BUILTIN_VARIABLES_SIZE 128ul
+
+ /*!
+ this macro returns the number of machine words
+ capable to hold min_bits bits
+ e.g. TTMATH_BITS(128) returns 2
+ */
+ #define TTMATH_BITS(min_bits) ((min_bits-1)/64 + 1)
+
+#endif
+}
+
+
+#if defined(TTMATH_MULTITHREADS) && !defined(TTMATH_MULTITHREADS_NOSYNC)
+ #if !defined(TTMATH_POSIX_THREADS) && !defined(TTMATH_WIN32_THREADS)
+
+ #if defined(_WIN32)
+ #define TTMATH_WIN32_THREADS
+ #elif defined(unix) || defined(__unix__) || defined(__unix)
+ #define TTMATH_POSIX_THREADS
+ #endif
+
+ #endif
+#endif
+
+
+
+/*!
+ this variable defines how many iterations are performed
+ during some kind of calculating when we're making any long formulas
+ (for example Taylor series)
+
+ it's used in ExpSurrounding0(...), LnSurrounding1(...), Sin0pi05(...), etc.
+
+ note! there'll not be so many iterations, iterations are stopped when
+ there is no sense to continue calculating (for example when the result
+ still remains unchanged after adding next series and we know that the next
+ series are smaller than previous ones)
+*/
+#define TTMATH_ARITHMETIC_MAX_LOOP 10000
+
+
+
+/*!
+ this is a limit when calculating Karatsuba multiplication
+ if the size of a vector is smaller than TTMATH_USE_KARATSUBA_MULTIPLICATION_FROM_SIZE
+ the Karatsuba algorithm will use standard schoolbook multiplication
+*/
+#ifdef TTMATH_DEBUG_LOG
+ // if TTMATH_DEBUG_LOG is defined then we should use the same size regardless of the compiler
+ #define TTMATH_USE_KARATSUBA_MULTIPLICATION_FROM_SIZE 3
+#else
+ #ifdef __GNUC__
+ #define TTMATH_USE_KARATSUBA_MULTIPLICATION_FROM_SIZE 3
+ #else
+ #define TTMATH_USE_KARATSUBA_MULTIPLICATION_FROM_SIZE 5
+ #endif
+#endif
+
+
+/*!
+ this is a special value used when calculating the Gamma(x) function
+ if x is greater than this value then the Gamma(x) will be calculated using
+ some kind of series
+
+ don't use smaller values than about 100
+*/
+#define TTMATH_GAMMA_BOUNDARY 2000
+
+
+
+
+
+namespace ttmath
+{
+
+ /*!
+ lib type codes:
+ asm_vc_32 - with asm code designed for Microsoft Visual C++ (32 bits)
+ asm_gcc_32 - with asm code designed for GCC (32 bits)
+ asm_vc_64 - with asm for VC (64 bit)
+ asm_gcc_64 - with asm for GCC (64 bit)
+ no_asm_32 - pure C++ version (32 bit) - without any asm code
+ no_asm_64 - pure C++ version (64 bit) - without any asm code
+ */
+ enum LibTypeCode
+ {
+ asm_vc_32 = 0,
+ asm_gcc_32,
+ asm_vc_64,
+ asm_gcc_64,
+ no_asm_32,
+ no_asm_64
+ };
+
+
+ /*!
+ error codes
+ */
+ enum ErrorCode
+ {
+ err_ok = 0,
+ err_nothing_has_read,
+ err_unknown_character,
+ err_unexpected_final_bracket,
+ err_stack_not_clear,
+ err_unknown_variable,
+ err_division_by_zero,
+ err_interrupt,
+ err_overflow,
+ err_unknown_function,
+ err_unknown_operator,
+ err_unexpected_semicolon_operator,
+ err_improper_amount_of_arguments,
+ err_improper_argument,
+ err_unexpected_end,
+ err_internal_error,
+ err_incorrect_name,
+ err_incorrect_value,
+ err_variable_exists,
+ err_variable_loop,
+ err_functions_loop,
+ err_must_be_only_one_value,
+ err_object_exists,
+ err_unknown_object,
+ err_still_calculating,
+ err_in_short_form_used_function,
+ err_percent_from
+ };
+
+
+ /*!
+ this struct is used when converting to/from a string
+ /temporarily only in Big::ToString() and Big::FromString()/
+ */
+ struct Conv
+ {
+ /*!
+ base (radix) on which the value will be shown (or read)
+ default: 10
+ */
+ uint base;
+
+
+ /*!
+ used only in Big::ToString()
+ if true the value will be always shown in the scientific mode, e.g: 123e+30
+ default: false
+ */
+ bool scient;
+
+
+ /*!
+ used only in Big::ToString()
+ if scient is false then the value will be print in the scientific mode
+ only if the exponent is greater than scien_from
+ default: 15
+ */
+ sint scient_from;
+
+
+ /*!
+ if 'base_round' is true and 'base' is different from 2, 4, 8, or 16
+ and the result value is not an integer then we make an additional rounding
+ (after converting the last digit from the result is skipped)
+ default: true
+
+ e.g.
+ Conv c;
+ c.base_round = false;
+ Big<1, 1> a = "0.1"; // decimal input
+ std::cout << a.ToString(c) << std::endl; // the result is: 0.099999999
+ */
+ bool base_round;
+
+
+ /*!
+ used only in Big::ToString()
+ tells how many digits after comma are possible
+ default: -1 which means all digits are printed
+
+ set it to zero if you want integer value only
+
+ for example when the value is:
+ 12.345678 and 'round' is 4
+ then the result will be
+ 12.3457 (the last digit was rounded)
+ */
+ sint round;
+
+
+ /*!
+ if true that not mattered digits in the mantissa will be cut off
+ (zero characters at the end -- after the comma operator)
+ e.g. 1234,78000 will be: 1234,78
+ default: true
+ */
+ bool trim_zeroes;
+
+
+ /*!
+ the main comma operator (used when reading and writing)
+ default is a dot '.'
+ */
+ uint comma;
+
+
+ /*!
+ additional comma operator (used only when reading)
+ if you don't want it just set it to zero
+ default is a comma ','
+
+ this allowes you to convert from a value:
+ 123.45 as well as from 123,45
+ */
+ uint comma2;
+
+
+ /*!
+ it sets the character which is used for grouping
+ if group=' ' then: 1234,56789 will be printed as: 1 234,567 89
+
+ if you don't want grouping just set it to zero (which is default)
+ */
+ uint group;
+
+
+ /*!
+ */
+ uint group_exp; // not implemented yet
+
+
+
+
+ Conv()
+ {
+ // default values
+ base = 10;
+ scient = false;
+ scient_from = 15;
+ base_round = true;
+ round = -1;
+ trim_zeroes = true;
+ comma = '.';
+ comma2 = ',';
+ group = 0;
+ group_exp = 0;
+ }
+ };
+
+
+
+ /*!
+ this simple class can be used in multithreading model
+ (you can write your own class derived from this one)
+
+ for example: in some functions like Factorial()
+ /at the moment only Factorial/ you can give a pointer to
+ the 'stop object', if the method WasStopSignal() of this
+ object returns true that means we should break the calculating
+ and return
+ */
+ class StopCalculating
+ {
+ public:
+ virtual bool WasStopSignal() const volatile { return false; }
+ virtual ~StopCalculating(){}
+ };
+
+
+ /*!
+ a small class which is useful when compiling with gcc
+
+ object of this type holds the name and the line of a file
+ in which the macro TTMATH_ASSERT or TTMATH_REFERENCE_ASSERT was used
+ */
+ class ExceptionInfo
+ {
+ const char * file;
+ int line;
+
+ public:
+ ExceptionInfo() : file(0), line(0) {}
+ ExceptionInfo(const char * f, int l) : file(f), line(l) {}
+
+ std::string Where() const
+ {
+ if( !file )
+ return "unknown";
+
+ std::ostringstream result;
+ result << file << ":" << line;
+
+ return result.str();
+ }
+ };
+
+
+ /*!
+ A small class used for reporting 'reference' errors
+
+ In the library is used macro TTMATH_REFERENCE_ASSERT which
+ can throw an exception of this type
+
+ If you compile with gcc you can get a small benefit
+ from using method Where() (it returns std::string) with
+ the name and the line of a file where the macro TTMATH_REFERENCE_ASSERT
+ was used)
+
+ What is the 'reference' error?
+ Some kind of methods use a reference as their argument to another object,
+ and the another object not always can be the same which is calling, e.g.
+ Big<1,2> foo(10);
+ foo.Mul(foo); // this is incorrect
+ above method Mul is making something more with 'this' object and
+ 'this' cannot be passed as the argument because the result will be undefined
+
+ macro TTMATH_REFERENCE_ASSERT helps us to solve the above problem
+
+ note! some methods can use 'this' object as the argument
+ for example this code is correct:
+ UInt<2> foo(10);
+ foo.Add(foo);
+ but there are only few methods which can do that
+ */
+ class ReferenceError : public std::logic_error, public ExceptionInfo
+ {
+ public:
+
+ ReferenceError() : std::logic_error("reference error")
+ {
+ }
+
+ ReferenceError(const char * f, int l) :
+ std::logic_error("reference error"), ExceptionInfo(f,l)
+ {
+ }
+
+ std::string Where() const
+ {
+ return ExceptionInfo::Where();
+ }
+ };
+
+
+ /*!
+ a small class used for reporting errors
+
+ in the library is used macro TTMATH_ASSERT which
+ (if the condition in it is false) throw an exception
+ of this type
+
+ if you compile with gcc you can get a small benefit
+ from using method Where() (it returns std::string) with
+ the name and the line of a file where the macro TTMATH_ASSERT
+ was used)
+ */
+ class RuntimeError : public std::runtime_error, public ExceptionInfo
+ {
+ public:
+
+ RuntimeError() : std::runtime_error("internal error")
+ {
+ }
+
+ RuntimeError(const char * f, int l) :
+ std::runtime_error("internal error"), ExceptionInfo(f,l)
+ {
+ }
+
+ std::string Where() const
+ {
+ return ExceptionInfo::Where();
+ }
+ };
+
+
+
+ /*!
+ look at the description of macros TTMATH_RELEASE and TTMATH_DEBUG
+ */
+ #ifdef TTMATH_DEBUG
+
+ #if defined(__FILE__) && defined(__LINE__)
+
+ #define TTMATH_REFERENCE_ASSERT(expression) \
+ if( &(expression) == this ) throw ttmath::ReferenceError(__FILE__, __LINE__);
+
+ #define TTMATH_ASSERT(expression) \
+ if( !(expression) ) throw ttmath::RuntimeError(__FILE__, __LINE__);
+
+ #else
+
+ #define TTMATH_REFERENCE_ASSERT(expression) \
+ if( &(expression) == this ) throw ReferenceError();
+
+ #define TTMATH_ASSERT(expression) \
+ if( !(expression) ) throw RuntimeError();
+ #endif
+
+ #else
+ #define TTMATH_REFERENCE_ASSERT(expression)
+ #define TTMATH_ASSERT(expression)
+ #endif
+
+
+
+ #ifdef TTMATH_DEBUG_LOG
+ #define TTMATH_LOG(msg) PrintLog(msg, std::cout);
+ #define TTMATH_LOGC(msg, carry) PrintLog(msg, carry, std::cout);
+ #define TTMATH_VECTOR_LOG(msg, vector, len) PrintVectorLog(msg, std::cout, vector, len);
+ #define TTMATH_VECTOR_LOGC(msg, carry, vector, len) PrintVectorLog(msg, carry, std::cout, vector, len);
+ #else
+ #define TTMATH_LOG(msg)
+ #define TTMATH_LOGC(msg, carry)
+ #define TTMATH_VECTOR_LOG(msg, vector, len)
+ #define TTMATH_VECTOR_LOGC(msg, carry, vector, len)
+ #endif
+
+
+
+
+} // namespace
+
+
+#endif
+
Added: sandbox/geometry/boost/geometry/extensions/contrib/ttmath/ttmathuint.h
==============================================================================
--- (empty file)
+++ sandbox/geometry/boost/geometry/extensions/contrib/ttmath/ttmathuint.h 2010-07-05 13:06:03 EDT (Mon, 05 Jul 2010)
@@ -0,0 +1,3506 @@
+/*
+ * This file is a part of TTMath Bignum Library
+ * and is distributed under the (new) BSD licence.
+ * Author: Tomasz Sowa <t.sowa_at_[hidden]>
+ */
+
+/*
+ * Copyright (c) 2006-2009, Tomasz Sowa
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are met:
+ *
+ * * Redistributions of source code must retain the above copyright notice,
+ * this list of conditions and the following disclaimer.
+ *
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * * Neither the name Tomasz Sowa nor the names of contributors to this
+ * project may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
+ * THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+
+
+#ifndef headerfilettmathuint
+#define headerfilettmathuint
+
+
+/*!
+ \file ttmathuint.h
+ \brief template class UInt<uint>
+*/
+
+#include <iostream>
+#include <iomanip>
+
+
+#include "ttmathtypes.h"
+#include "ttmathmisc.h"
+
+
+
+/*!
+ \brief a namespace for the TTMath library
+*/
+namespace ttmath
+{
+
+/*!
+ \brief UInt implements a big integer value without a sign
+
+ value_size - how many bytes specify our value
+ on 32bit platforms: value_size=1 -> 4 bytes -> 32 bits
+ on 64bit platforms: value_size=1 -> 8 bytes -> 64 bits
+ value_size = 1,2,3,4,5,6....
+*/
+template<uint value_size>
+class UInt
+{
+public:
+
+ /*!
+ buffer for the integer value
+ table[0] - the lowest word of the value
+ */
+ uint table[value_size];
+
+
+
+ /*!
+ some methods used for debugging purposes
+ */
+
+
+ /*!
+ this method is only for debugging purposes or when we want to make
+ a table of a variable (constant) in ttmathbig.h
+
+ it prints the table in a nice form of several columns
+ */
+ template<class ostream_type>
+ void PrintTable(ostream_type & output) const
+ {
+ // how many columns there'll be
+ const int columns = 8;
+
+ int c = 1;
+ for(int i=value_size-1 ; i>=0 ; --i)
+ {
+ output << "0x" << std::setfill('0');
+
+ #ifdef TTMATH_PLATFORM32
+ output << std::setw(8);
+ #else
+ output << std::setw(16);
+ #endif
+
+ output << std::hex << table[i];
+
+ if( i>0 )
+ {
+ output << ", ";
+
+ if( ++c > columns )
+ {
+ output << std::endl;
+ c = 1;
+ }
+ }
+ }
+
+ output << std::dec << std::endl;
+ }
+
+
+ /*!
+ this method is used when macro TTMATH_DEBUG_LOG is defined
+ */
+ template<class char_type, class ostream_type>
+ static void PrintVectorLog(const char_type * msg, ostream_type & output, const uint * vector, uint vector_len)
+ {
+ output << msg << std::endl;
+
+ for(uint i=0 ; i<vector_len ; ++i)
+ output << " table[" << i << "]: " << vector[i] << std::endl;
+ }
+
+
+ /*!
+ this method is used when macro TTMATH_DEBUG_LOG is defined
+ */
+ template<class char_type, class ostream_type>
+ static void PrintVectorLog(const char_type * msg, uint carry, ostream_type & output, const uint * vector, uint vector_len)
+ {
+ PrintVectorLog(msg, output, vector, vector_len);
+ output << " carry: " << carry << std::endl;
+ }
+
+
+ /*!
+ this method is used when macro TTMATH_DEBUG_LOG is defined
+ */
+ template<class char_type, class ostream_type>
+ void PrintLog(const char_type * msg, ostream_type & output) const
+ {
+ PrintVectorLog(msg, output, table, value_size);
+ }
+
+
+ /*!
+ this method is used when macro TTMATH_DEBUG_LOG is defined
+ */
+ template<class char_type, class ostream_type>
+ void PrintLog(const char_type * msg, uint carry, ostream_type & output) const
+ {
+ PrintVectorLog(msg, output, table, value_size);
+ output << " carry: " << carry << std::endl;
+ }
+
+
+ /*!
+ this method returns the size of the table
+ */
+ uint Size() const
+ {
+ return value_size;
+ }
+
+
+ /*!
+ this method sets zero
+ */
+ void SetZero()
+ {
+ // in the future here can be 'memset'
+
+ for(uint i=0 ; i<value_size ; ++i)
+ table[i] = 0;
+
+ TTMATH_LOG("UInt::SetZero")
+ }
+
+
+ /*!
+ this method sets one
+ */
+ void SetOne()
+ {
+ SetZero();
+ table[0] = 1;
+
+ TTMATH_LOG("UInt::SetOne")
+ }
+
+
+ /*!
+ this method sets the max value which this class can hold
+ (all bits will be one)
+ */
+ void SetMax()
+ {
+ for(uint i=0 ; i<value_size ; ++i)
+ table[i] = TTMATH_UINT_MAX_VALUE;
+
+ TTMATH_LOG("UInt::SetMax")
+ }
+
+
+ /*!
+ this method sets the min value which this class can hold
+ (for an unsigned integer value the zero is the smallest value)
+ */
+ void SetMin()
+ {
+ SetZero();
+
+ TTMATH_LOG("UInt::SetMin")
+ }
+
+
+
+#ifdef TTMATH_PLATFORM32
+
+ /*!
+ this method copies the value stored in an another table
+ (warning: first values in temp_table are the highest words -- it's different
+ from our table)
+
+ we copy as many words as it is possible
+
+ if temp_table_len is bigger than value_size we'll try to round
+ the lowest word from table depending on the last not used bit in temp_table
+ (this rounding isn't a perfect rounding -- look at the description below)
+
+ and if temp_table_len is smaller than value_size we'll clear the rest words
+ in the table
+ */
+ void SetFromTable(const uint * temp_table, uint temp_table_len)
+ {
+ uint temp_table_index = 0;
+ sint i; // 'i' with a sign
+
+ for(i=value_size-1 ; i>=0 && temp_table_index<temp_table_len; --i, ++temp_table_index)
+ table[i] = temp_table[ temp_table_index ];
+
+
+ // rounding mantissa
+ if( temp_table_index < temp_table_len )
+ {
+ if( (temp_table[temp_table_index] & TTMATH_UINT_HIGHEST_BIT) != 0 )
+ {
+ /*
+ very simply rounding
+ if the bit from not used last word from temp_table is set to one
+ we're rouding the lowest word in the table
+
+ in fact there should be a normal addition but
+ we don't use Add() or AddTwoInts() because these methods
+ can set a carry and then there'll be a small problem
+ for optimization
+ */
+ if( table[0] != TTMATH_UINT_MAX_VALUE )
+ ++table[0];
+ }
+ }
+
+ // cleaning the rest of the mantissa
+ for( ; i>=0 ; --i)
+ table[i] = 0;
+
+
+ TTMATH_LOG("UInt::SetFromTable")
+ }
+
+#endif
+
+
+#ifdef TTMATH_PLATFORM64
+ /*!
+ this method copies the value stored in an another table
+ (warning: first values in temp_table are the highest words -- it's different
+ from our table)
+
+ ***this method is created only on a 64bit platform***
+
+ we copy as many words as it is possible
+
+ if temp_table_len is bigger than value_size we'll try to round
+ the lowest word from table depending on the last not used bit in temp_table
+ (this rounding isn't a perfect rounding -- look at the description below)
+
+ and if temp_table_len is smaller than value_size we'll clear the rest words
+ in the table
+
+ warning: we're using 'temp_table' as a pointer at 32bit words
+ */
+ void SetFromTable(const unsigned int * temp_table, uint temp_table_len)
+ {
+ uint temp_table_index = 0;
+ sint i; // 'i' with a sign
+
+ for(i=value_size-1 ; i>=0 && temp_table_index<temp_table_len; --i, ++temp_table_index)
+ {
+ table[i] = uint(temp_table[ temp_table_index ]) << 32;
+
+ ++temp_table_index;
+
+ if( temp_table_index<temp_table_len )
+ table[i] |= temp_table[ temp_table_index ];
+ }
+
+
+ // rounding mantissa
+ if( temp_table_index < temp_table_len )
+ {
+ if( (temp_table[temp_table_index] & TTMATH_UINT_HIGHEST_BIT) != 0 )
+ {
+ /*
+ very simply rounding
+ if the bit from not used last word from temp_table is set to one
+ we're rouding the lowest word in the table
+
+ in fact there should be a normal addition but
+ we don't use Add() or AddTwoInts() because these methods
+ can set a carry and then there'll be a small problem
+ for optimization
+ */
+ if( table[0] != TTMATH_UINT_MAX_VALUE )
+ ++table[0];
+ }
+ }
+
+ // cleaning the rest of the mantissa
+ for( ; i >= 0 ; --i)
+ table[i] = 0;
+
+ TTMATH_LOG("UInt::SetFromTable")
+ }
+
+#endif
+
+
+
+
+
+ /*!
+ *
+ * basic mathematic functions
+ *
+ */
+
+
+
+
+ /*!
+ this method adds one to the existing value
+ */
+ uint AddOne()
+ {
+ return AddInt(1);
+ }
+
+
+ /*!
+ this method subtracts one from the existing value
+ */
+ uint SubOne()
+ {
+ return SubInt(1);
+ }
+
+
+private:
+
+
+ /*!
+ an auxiliary method for moving bits into the left hand side
+
+ this method moves only words
+ */
+ void RclMoveAllWords(uint & rest_bits, uint & last_c, uint bits, uint c)
+ {
+ rest_bits = bits % TTMATH_BITS_PER_UINT;
+ uint all_words = bits / TTMATH_BITS_PER_UINT;
+ uint mask = ( c ) ? TTMATH_UINT_MAX_VALUE : 0;
+
+
+ if( all_words >= value_size )
+ {
+ if( all_words == value_size && rest_bits == 0 )
+ last_c = table[0] & 1;
+ // else: last_c is default set to 0
+
+ // clearing
+ for(uint i = 0 ; i<value_size ; ++i)
+ table[i] = mask;
+
+ rest_bits = 0;
+ }
+ else
+ if( all_words > 0 )
+ {
+ // 0 < all_words < value_size
+
+ sint first, second;
+ last_c = table[value_size - all_words] & 1; // all_words is greater than 0
+
+ // copying the first part of the value
+ for(first = value_size-1, second=first-all_words ; second>=0 ; --first, --second)
+ table[first] = table[second];
+
+ // setting the rest to 'c'
+ for( ; first>=0 ; --first )
+ table[first] = mask;
+ }
+
+ TTMATH_LOG("UInt::RclMoveAllWords")
+ }
+
+public:
+
+ /*!
+ moving all bits into the left side 'bits' times
+ return value <- this <- C
+
+ bits is from a range of <0, man * TTMATH_BITS_PER_UINT>
+ or it can be even bigger then all bits will be set to 'c'
+
+ the value c will be set into the lowest bits
+ and the method returns state of the last moved bit
+ */
+ uint Rcl(uint bits, uint c=0)
+ {
+ uint last_c = 0;
+ uint rest_bits = bits;
+
+ if( bits == 0 )
+ return 0;
+
+ if( bits >= TTMATH_BITS_PER_UINT )
+ RclMoveAllWords(rest_bits, last_c, bits, c);
+
+ if( rest_bits == 0 )
+ {
+ TTMATH_LOG("UInt::Rcl")
+ return last_c;
+ }
+
+ // rest_bits is from 1 to TTMATH_BITS_PER_UINT-1 now
+ if( rest_bits == 1 )
+ {
+ last_c = Rcl2_one(c);
+ }
+ else if( rest_bits == 2 )
+ {
+ // performance tests showed that for rest_bits==2 it's better to use Rcl2_one twice instead of Rcl2(2,c)
+ Rcl2_one(c);
+ last_c = Rcl2_one(c);
+ }
+ else
+ {
+ last_c = Rcl2(rest_bits, c);
+ }
+
+ TTMATH_LOGC("UInt::Rcl", last_c)
+
+ return last_c;
+ }
+
+private:
+
+ /*!
+ an auxiliary method for moving bits into the right hand side
+
+ this method moves only words
+ */
+ void RcrMoveAllWords(uint & rest_bits, uint & last_c, uint bits, uint c)
+ {
+ rest_bits = bits % TTMATH_BITS_PER_UINT;
+ uint all_words = bits / TTMATH_BITS_PER_UINT;
+ uint mask = ( c ) ? TTMATH_UINT_MAX_VALUE : 0;
+
+
+ if( all_words >= value_size )
+ {
+ if( all_words == value_size && rest_bits == 0 )
+ last_c = (table[value_size-1] & TTMATH_UINT_HIGHEST_BIT) ? 1 : 0;
+ // else: last_c is default set to 0
+
+ // clearing
+ for(uint i = 0 ; i<value_size ; ++i)
+ table[i] = mask;
+
+ rest_bits = 0;
+ }
+ else if( all_words > 0 )
+ {
+ // 0 < all_words < value_size
+
+ uint first, second;
+ last_c = (table[all_words - 1] & TTMATH_UINT_HIGHEST_BIT) ? 1 : 0; // all_words is > 0
+
+ // copying the first part of the value
+ for(first=0, second=all_words ; second<value_size ; ++first, ++second)
+ table[first] = table[second];
+
+ // setting the rest to 'c'
+ for( ; first<value_size ; ++first )
+ table[first] = mask;
+ }
+
+ TTMATH_LOG("UInt::RcrMoveAllWords")
+ }
+
+public:
+
+ /*!
+ moving all bits into the right side 'bits' times
+ c -> this -> return value
+
+ bits is from a range of <0, man * TTMATH_BITS_PER_UINT>
+ or it can be even bigger then all bits will be set to 'c'
+
+ the value c will be set into the highest bits
+ and the method returns state of the last moved bit
+ */
+ uint Rcr(uint bits, uint c=0)
+ {
+ uint last_c = 0;
+ uint rest_bits = bits;
+
+ if( bits == 0 )
+ return 0;
+
+ if( bits >= TTMATH_BITS_PER_UINT )
+ RcrMoveAllWords(rest_bits, last_c, bits, c);
+
+ if( rest_bits == 0 )
+ {
+ TTMATH_LOG("UInt::Rcr")
+ return last_c;
+ }
+
+ // rest_bits is from 1 to TTMATH_BITS_PER_UINT-1 now
+ if( rest_bits == 1 )
+ {
+ last_c = Rcr2_one(c);
+ }
+ else if( rest_bits == 2 )
+ {
+ // performance tests showed that for rest_bits==2 it's better to use Rcr2_one twice instead of Rcr2(2,c)
+ Rcr2_one(c);
+ last_c = Rcr2_one(c);
+ }
+ else
+ {
+ last_c = Rcr2(rest_bits, c);
+ }
+
+ TTMATH_LOGC("UInt::Rcr", last_c)
+
+ return last_c;
+ }
+
+
+ /*!
+ this method moves all bits into the left side
+ (it returns value how many bits have been moved)
+ */
+ uint CompensationToLeft()
+ {
+ uint moving = 0;
+
+ // a - index a last word which is different from zero
+ sint a;
+ for(a=value_size-1 ; a>=0 && table[a]==0 ; --a);
+
+ if( a < 0 )
+ return moving; // all words in table have zero
+
+ if( a != value_size-1 )
+ {
+ moving += ( value_size-1 - a ) * TTMATH_BITS_PER_UINT;
+
+ // moving all words
+ sint i;
+ for(i=value_size-1 ; a>=0 ; --i, --a)
+ table[i] = table[a];
+
+ // setting the rest word to zero
+ for(; i>=0 ; --i)
+ table[i] = 0;
+ }
+
+ uint moving2 = FindLeadingBitInWord( table[value_size-1] );
+ // moving2 is different from -1 because the value table[value_size-1]
+ // is not zero
+
+ moving2 = TTMATH_BITS_PER_UINT - moving2 - 1;
+ Rcl(moving2);
+
+ TTMATH_LOG("UInt::CompensationToLeft")
+
+ return moving + moving2;
+ }
+
+
+ /*!
+ this method looks for the highest set bit
+
+ result:
+ if 'this' is not zero:
+ return value - true
+ 'table_id' - the index of a word <0..value_size-1>
+ 'index' - the index of this set bit in the word <0..TTMATH_BITS_PER_UINT)
+
+ if 'this' is zero:
+ return value - false
+ both 'table_id' and 'index' are zero
+ */
+ bool FindLeadingBit(uint & table_id, uint & index) const
+ {
+ for(table_id=value_size-1 ; table_id!=0 && table[table_id]==0 ; --table_id);
+
+ if( table_id==0 && table[table_id]==0 )
+ {
+ // is zero
+ index = 0;
+
+ return false;
+ }
+
+ // table[table_id] is different from 0
+ index = FindLeadingBitInWord( table[table_id] );
+
+ return true;
+ }
+
+
+ /*!
+ this method looks for the smallest set bit
+
+ result:
+ if 'this' is not zero:
+ return value - true
+ 'table_id' - the index of a word <0..value_size-1>
+ 'index' - the index of this set bit in the word <0..TTMATH_BITS_PER_UINT)
+
+ if 'this' is zero:
+ return value - false
+ both 'table_id' and 'index' are zero
+ */
+ bool FindLowestBit(uint & table_id, uint & index) const
+ {
+ for(table_id=0 ; table_id<value_size && table[table_id]==0 ; ++table_id);
+
+ if( table_id >= value_size )
+ {
+ // is zero
+ index = 0;
+ table_id = 0;
+
+ return false;
+ }
+
+ // table[table_id] is different from 0
+ index = FindLowestBitInWord( table[table_id] );
+
+ return true;
+ }
+
+
+ /*!
+ getting the 'bit_index' bit
+
+ bit_index bigger or equal zero
+ */
+ uint GetBit(uint bit_index) const
+ {
+ TTMATH_ASSERT( bit_index < value_size * TTMATH_BITS_PER_UINT )
+
+ uint index = bit_index / TTMATH_BITS_PER_UINT;
+ uint bit = bit_index % TTMATH_BITS_PER_UINT;
+
+ uint temp = table[index];
+ uint res = SetBitInWord(temp, bit);
+
+ return res;
+ }
+
+
+ /*!
+ setting the 'bit_index' bit
+ and returning the last state of the bit
+
+ bit_index bigger or equal zero
+ */
+ uint SetBit(uint bit_index)
+ {
+ TTMATH_ASSERT( bit_index < value_size * TTMATH_BITS_PER_UINT )
+
+ uint index = bit_index / TTMATH_BITS_PER_UINT;
+ uint bit = bit_index % TTMATH_BITS_PER_UINT;
+ uint res = SetBitInWord(table[index], bit);
+
+ TTMATH_LOG("UInt::SetBit")
+
+ return res;
+ }
+
+
+ /*!
+ this method performs a bitwise operation AND
+ */
+ void BitAnd(const UInt<value_size> & ss2)
+ {
+ for(uint x=0 ; x<value_size ; ++x)
+ table[x] &= ss2.table[x];
+
+ TTMATH_LOG("UInt::BitAnd")
+ }
+
+
+ /*!
+ this method performs a bitwise operation OR
+ */
+ void BitOr(const UInt<value_size> & ss2)
+ {
+ for(uint x=0 ; x<value_size ; ++x)
+ table[x] |= ss2.table[x];
+
+ TTMATH_LOG("UInt::BitOr")
+ }
+
+
+ /*!
+ this method performs a bitwise operation XOR
+ */
+ void BitXor(const UInt<value_size> & ss2)
+ {
+ for(uint x=0 ; x<value_size ; ++x)
+ table[x] ^= ss2.table[x];
+
+ TTMATH_LOG("UInt::BitXor")
+ }
+
+
+ /*!
+ this method performs a bitwise operation NOT
+ */
+ void BitNot()
+ {
+ for(uint x=0 ; x<value_size ; ++x)
+ table[x] = ~table[x];
+
+ TTMATH_LOG("UInt::BitNot")
+ }
+
+
+ /*!
+ this method performs a bitwise operation NOT but only
+ on the range of <0, leading_bit>
+
+ for example:
+ BitNot2(8) = BitNot2( 1000(bin) ) = 111(bin) = 7
+ */
+ void BitNot2()
+ {
+ uint table_id, index;
+
+ if( FindLeadingBit(table_id, index) )
+ {
+ for(uint x=0 ; x<table_id ; ++x)
+ table[x] = ~table[x];
+
+ uint mask = TTMATH_UINT_MAX_VALUE;
+ uint shift = TTMATH_BITS_PER_UINT - index - 1;
+
+ if(shift)
+ mask >>= shift;
+
+ table[table_id] ^= mask;
+ }
+ else
+ table[0] = 1;
+
+
+ TTMATH_LOG("UInt::BitNot2")
+ }
+
+
+
+ /*!
+ *
+ * Multiplication
+ *
+ *
+ */
+
+public:
+
+ /*!
+ multiplication: this = this * ss2
+
+ it can return a carry
+ */
+ uint MulInt(uint ss2)
+ {
+ uint r1, r2, x1;
+ uint c = 0;
+
+ UInt<value_size> u(*this);
+ SetZero();
+
+ if( ss2 == 0 )
+ {
+ TTMATH_LOGC("UInt::MulInt(uint)", 0)
+ return 0;
+ }
+
+ for(x1=0 ; x1<value_size-1 ; ++x1)
+ {
+ MulTwoWords(u.table[x1], ss2, &r2, &r1);
+ c += AddTwoInts(r2,r1,x1);
+ }
+
+ // x1 = value_size-1 (last word)
+ MulTwoWords(u.table[x1], ss2, &r2, &r1);
+ c += (r2!=0) ? 1 : 0;
+ c += AddInt(r1, x1);
+
+ TTMATH_LOGC("UInt::MulInt(uint)", c)
+
+ return (c==0)? 0 : 1;
+ }
+
+
+ /*!
+ multiplication: result = this * ss2
+
+ we're using this method only when result_size is greater than value_size
+ if so there will not be a carry
+ */
+ template<uint result_size>
+ void MulInt(uint ss2, UInt<result_size> & result) const
+ {
+ TTMATH_ASSERT( result_size > value_size )
+
+ uint r2,r1;
+ uint x1size=value_size;
+ uint x1start=0;
+
+ result.SetZero();
+
+ if( ss2 == 0 )
+ {
+ TTMATH_VECTOR_LOG("UInt::MulInt(uint, UInt<>)", result.table, result_size)
+ return;
+ }
+
+ if( value_size > 2 )
+ {
+ // if the value_size is smaller than or equal to 2
+ // there is no sense to set x1size and x1start to another values
+
+ for(x1size=value_size ; x1size>0 && table[x1size-1]==0 ; --x1size);
+
+ if( x1size == 0 )
+ {
+ TTMATH_VECTOR_LOG("UInt::MulInt(uint, UInt<>)", result.table, result_size)
+ return;
+ }
+
+ for(x1start=0 ; x1start<x1size && table[x1start]==0 ; ++x1start);
+ }
+
+ for(uint x1=x1start ; x1<x1size ; ++x1)
+ {
+ MulTwoWords(table[x1], ss2, &r2, &r1 );
+ result.AddTwoInts(r2,r1,x1);
+ }
+
+ TTMATH_VECTOR_LOG("UInt::MulInt(uint, UInt<>)", result.table, result_size)
+
+ return;
+ }
+
+
+
+ /*!
+ the multiplication 'this' = 'this' * ss2
+
+ algorithm: 100 - means automatically choose the fastest algorithm
+ */
+ uint Mul(const UInt<value_size> & ss2, uint algorithm = 100)
+ {
+ switch( algorithm )
+ {
+ case 1:
+ return Mul1(ss2);
+
+ case 2:
+ return Mul2(ss2);
+
+ case 3:
+ return Mul3(ss2);
+
+ case 100:
+ default:
+ return MulFastest(ss2);
+ }
+ }
+
+
+ /*!
+ the multiplication 'result' = 'this' * ss2
+
+ since the 'result' is twice bigger than 'this' and 'ss2'
+ this method never returns a carry
+
+ algorithm: 100 - means automatically choose the fastest algorithm
+ */
+ void MulBig(const UInt<value_size> & ss2,
+ UInt<value_size*2> & result,
+ uint algorithm = 100)
+ {
+ switch( algorithm )
+ {
+ case 1:
+ return Mul1Big(ss2, result);
+
+ case 2:
+ return Mul2Big(ss2, result);
+
+ case 3:
+ return Mul3Big(ss2, result);
+
+ case 100:
+ default:
+ return MulFastestBig(ss2, result);
+ }
+ }
+
+
+
+ /*!
+ the first version of the multiplication algorithm
+ */
+
+ /*!
+ multiplication: this = this * ss2
+
+ it returns carry if it has been
+ */
+ uint Mul1(const UInt<value_size> & ss2)
+ {
+ TTMATH_REFERENCE_ASSERT( ss2 )
+
+ UInt<value_size> ss1( *this );
+ SetZero();
+
+ for(uint i=0; i < value_size*TTMATH_BITS_PER_UINT ; ++i)
+ {
+ if( Add(*this) )
+ {
+ TTMATH_LOGC("UInt::Mul1", 1)
+ return 1;
+ }
+
+ if( ss1.Rcl(1) )
+ if( Add(ss2) )
+ {
+ TTMATH_LOGC("UInt::Mul1", 1)
+ return 1;
+ }
+ }
+
+ TTMATH_LOGC("UInt::Mul1", 0)
+
+ return 0;
+ }
+
+
+ /*!
+ multiplication: result = this * ss2
+
+ result is twice bigger than 'this' and 'ss2'
+ this method never returns carry
+ */
+ void Mul1Big(const UInt<value_size> & ss2_, UInt<value_size*2> & result)
+ {
+ UInt<value_size*2> ss2;
+ uint i;
+
+ // copying *this into result and ss2_ into ss2
+ for(i=0 ; i<value_size ; ++i)
+ {
+ result.table[i] = table[i];
+ ss2.table[i] = ss2_.table[i];
+ }
+
+ // cleaning the highest bytes in result and ss2
+ for( ; i < value_size*2 ; ++i)
+ {
+ result.table[i] = 0;
+ ss2.table[i] = 0;
+ }
+
+ // multiply
+ // (there will not be a carry)
+ result.Mul1( ss2 );
+
+ TTMATH_LOG("UInt::Mul1Big")
+ }
+
+
+
+ /*!
+ the second version of the multiplication algorithm
+
+ this algorithm is similar to the 'schoolbook method' which is done by hand
+ */
+
+ /*!
+ multiplication: this = this * ss2
+
+ it returns carry if it has been
+ */
+ uint Mul2(const UInt<value_size> & ss2)
+ {
+ UInt<value_size*2> result;
+ uint i, c = 0;
+
+ Mul2Big(ss2, result);
+
+ // copying result
+ for(i=0 ; i<value_size ; ++i)
+ table[i] = result.table[i];
+
+ // testing carry
+ for( ; i<value_size*2 ; ++i)
+ if( result.table[i] != 0 )
+ {
+ c = 1;
+ break;
+ }
+
+ TTMATH_LOGC("UInt::Mul2", c)
+
+ return c;
+ }
+
+
+ /*!
+ multiplication: result = this * ss2
+
+ result is twice bigger than this and ss2
+ this method never returns carry
+ */
+ void Mul2Big(const UInt<value_size> & ss2, UInt<value_size*2> & result)
+ {
+ Mul2Big2<value_size>(table, ss2.table, result);
+
+ TTMATH_LOG("UInt::Mul2Big")
+ }
+
+
+private:
+
+ /*!
+ an auxiliary method for calculating the multiplication
+
+ arguments we're taking as pointers (this is to improve the Mul3Big2()- avoiding
+ unnecessary copying objects), the result should be taken as a pointer too,
+ but at the moment there is no method AddTwoInts() which can operate on pointers
+ */
+ template<uint ss_size>
+ void Mul2Big2(const uint * ss1, const uint * ss2, UInt<ss_size*2> & result)
+ {
+ uint x1size = ss_size, x2size = ss_size;
+ uint x1start = 0, x2start = 0;
+
+ if( ss_size > 2 )
+ {
+ // if the ss_size is smaller than or equal to 2
+ // there is no sense to set x1size (and others) to another values
+
+ for(x1size=ss_size ; x1size>0 && ss1[x1size-1]==0 ; --x1size);
+ for(x2size=ss_size ; x2size>0 && ss2[x2size-1]==0 ; --x2size);
+
+ for(x1start=0 ; x1start<x1size && ss1[x1start]==0 ; ++x1start);
+ for(x2start=0 ; x2start<x2size && ss2[x2start]==0 ; ++x2start);
+ }
+
+ Mul2Big3<ss_size>(ss1, ss2, result, x1start, x1size, x2start, x2size);
+ }
+
+
+
+ /*!
+ an auxiliary method for calculating the multiplication
+ */
+ template<uint ss_size>
+ void Mul2Big3(const uint * ss1, const uint * ss2, UInt<ss_size*2> & result, uint x1start, uint x1size, uint x2start, uint x2size)
+ {
+ uint r2, r1;
+
+ result.SetZero();
+
+ if( x1size==0 || x2size==0 )
+ return;
+
+ for(uint x1=x1start ; x1<x1size ; ++x1)
+ {
+ for(uint x2=x2start ; x2<x2size ; ++x2)
+ {
+ MulTwoWords(ss1[x1], ss2[x2], &r2, &r1);
+ result.AddTwoInts(r2, r1, x2+x1);
+ // here will never be a carry
+ }
+ }
+ }
+
+
+public:
+
+
+ /*!
+ multiplication: this = this * ss2
+
+ This is Karatsuba Multiplication algorithm, we're using it when value_size is greater than
+ or equal to TTMATH_USE_KARATSUBA_MULTIPLICATION_FROM_SIZE macro (defined in ttmathuint.h).
+ If value_size is smaller then we're using Mul2Big() instead.
+
+ Karatsuba multiplication:
+ Assume we have:
+ this = x = x1*B^m + x0
+ ss2 = y = y1*B^m + y0
+ where x0 and y0 are less than B^m
+ the product from multiplication we can show as:
+ x*y = (x1*B^m + x0)(y1*B^m + y0) = z2*B^(2m) + z1*B^m + z0
+ where
+ z2 = x1*y1
+ z1 = x1*y0 + x0*y1
+ z0 = x0*y0
+ this is standard schoolbook algorithm with O(n^2), Karatsuba observed that z1 can be given in other form:
+ z1 = (x1 + x0)*(y1 + y0) - z2 - z0 / z1 = (x1*y1 + x1*y0 + x0*y1 + x0*y0) - x1*y1 - x0*y0 = x1*y0 + x0*y1 /
+ and to calculate the multiplication we need only three multiplications (with some additions and subtractions)
+
+ Our objects 'this' and 'ss2' we divide into two parts and by using recurrence we calculate the multiplication.
+ Karatsuba multiplication has O( n^(ln(3)/ln(2)) )
+ */
+ uint Mul3(const UInt<value_size> & ss2)
+ {
+ UInt<value_size*2> result;
+ uint i, c = 0;
+
+ Mul3Big(ss2, result);
+
+ // copying result
+ for(i=0 ; i<value_size ; ++i)
+ table[i] = result.table[i];
+
+ // testing carry
+ for( ; i<value_size*2 ; ++i)
+ if( result.table[i] != 0 )
+ {
+ c = 1;
+ break;
+ }
+
+ TTMATH_LOGC("UInt::Mul3", c)
+
+ return c;
+ }
+
+
+
+ /*!
+ multiplication: result = this * ss2
+
+ result is twice bigger than this and ss2,
+ this method never returns carry,
+ (Karatsuba multiplication)
+ */
+ void Mul3Big(const UInt<value_size> & ss2, UInt<value_size*2> & result)
+ {
+ Mul3Big2<value_size>(table, ss2.table, result.table);
+
+ TTMATH_LOG("UInt::Mul3Big")
+ }
+
+
+
+private:
+
+ /*!
+ an auxiliary method for calculating the Karatsuba multiplication
+
+ result_size is equal ss_size*2
+ */
+ template<uint ss_size>
+ void Mul3Big2(const uint * ss1, const uint * ss2, uint * result)
+ {
+ const uint * x1, * x0, * y1, * y0;
+
+
+ if( ss_size>1 && ss_size<TTMATH_USE_KARATSUBA_MULTIPLICATION_FROM_SIZE )
+ {
+ UInt<ss_size*2> res;
+ Mul2Big2<ss_size>(ss1, ss2, res);
+
+ for(uint i=0 ; i<ss_size*2 ; ++i)
+ result[i] = res.table[i];
+
+ return;
+ }
+ else
+ if( ss_size == 1 )
+ {
+ return MulTwoWords(*ss1, *ss2, &result[1], &result[0]);
+ }
+
+
+ if( (ss_size & 1) == 1 )
+ {
+ // ss_size is odd
+ x0 = ss1;
+ y0 = ss2;
+ x1 = ss1 + ss_size / 2 + 1;
+ y1 = ss2 + ss_size / 2 + 1;
+
+ // the second vectors (x1 and y1) are smaller about one from the first ones (x0 and y0)
+ Mul3Big3<ss_size/2 + 1, ss_size/2, ss_size*2>(x1, x0, y1, y0, result);
+ }
+ else
+ {
+ // ss_size is even
+ x0 = ss1;
+ y0 = ss2;
+ x1 = ss1 + ss_size / 2;
+ y1 = ss2 + ss_size / 2;
+
+ // all four vectors (x0 x1 y0 y1) are equal in size
+ Mul3Big3<ss_size/2, ss_size/2, ss_size*2>(x1, x0, y1, y0, result);
+ }
+ }
+
+
+
+#ifdef _MSC_VER
+#pragma warning (disable : 4717)
+//warning C4717: recursive on all control paths, function will cause runtime stack overflow
+//we have the stop point in Mul3Big2() method
+#endif
+
+
+ /*!
+ an auxiliary method for calculating the Karatsuba multiplication
+
+ x = x1*B^m + x0
+ y = y1*B^m + y0
+
+ first_size - is the size of vectors: x0 and y0
+ second_size - is the size of vectors: x1 and y1 (can be either equal first_size or smaller about one from first_size)
+
+ x*y = (x1*B^m + x0)(y1*B^m + y0) = z2*B^(2m) + z1*B^m + z0
+ where
+ z0 = x0*y0
+ z2 = x1*y1
+ z1 = (x1 + x0)*(y1 + y0) - z2 - z0
+ */
+ template<uint first_size, uint second_size, uint result_size>
+ void Mul3Big3(const uint * x1, const uint * x0, const uint * y1, const uint * y0, uint * result)
+ {
+ uint i, c, xc, yc;
+
+ UInt<first_size> temp, temp2;
+ UInt<first_size*3> z1;
+
+ // z0 and z2 we store directly in the result (we don't use any temporary variables)
+ Mul3Big2<first_size>(x0, y0, result); // z0
+ Mul3Big2<second_size>(x1, y1, result+first_size*2); // z2
+
+ // now we calculate z1
+ // temp = (x0 + x1)
+ // temp2 = (y0 + y1)
+ // we're using temp and temp2 with UInt<first_size>, although there can be a carry but
+ // we simple remember it in xc and yc (xc and yc can be either 0 or 1),
+ // and (x0 + x1)*(y0 + y1) we calculate in this way (schoolbook algorithm):
+ //
+ // xc | temp
+ // yc | temp2
+ // --------------------
+ // (temp * temp2)
+ // xc*temp2 |
+ // yc*temp |
+ // xc*yc |
+ // ---------- z1 --------
+ //
+ // and the result is never larger in size than 3*first_size
+
+ xc = AddVector(x0, x1, first_size, second_size, temp.table);
+ yc = AddVector(y0, y1, first_size, second_size, temp2.table);
+
+ Mul3Big2<first_size>(temp.table, temp2.table, z1.table);
+
+ // clearing the rest of z1
+ for(i=first_size*2 ; i<first_size*3 ; ++i)
+ z1.table[i] = 0;
+
+
+ if( xc )
+ {
+ c = AddVector(z1.table+first_size, temp2.table, first_size*3-first_size, first_size, z1.table+first_size);
+ TTMATH_ASSERT( c==0 )
+ }
+
+ if( yc )
+ {
+ c = AddVector(z1.table+first_size, temp.table, first_size*3-first_size, first_size, z1.table+first_size);
+ TTMATH_ASSERT( c==0 )
+ }
+
+
+ if( xc && yc )
+ {
+ for( i=first_size*2 ; i<first_size*3 ; ++i )
+ if( ++z1.table[i] != 0 )
+ break; // break if there was no carry
+ }
+
+ // z1 = z1 - z2
+ c = SubVector(z1.table, result+first_size*2, first_size*3, second_size*2, z1.table);
+ TTMATH_ASSERT(c==0)
+
+ // z1 = z1 - z0
+ c = SubVector(z1.table, result, first_size*3, first_size*2, z1.table);
+ TTMATH_ASSERT(c==0)
+
+ // here we've calculated the z1
+ // now we're adding it to the result
+
+ if( first_size > second_size )
+ {
+ uint z1_size = result_size - first_size;
+ TTMATH_ASSERT( z1_size <= first_size*3 )
+
+ for(i=z1_size ; i<first_size*3 ; ++i)
+ TTMATH_ASSERT( z1.table[i] == 0 )
+ ;
+
+ c = AddVector(result+first_size, z1.table, result_size-first_size, z1_size, result+first_size);
+ TTMATH_ASSERT(c==0)
+ }
+ else
+ {
+ c = AddVector(result+first_size, z1.table, result_size-first_size, first_size*3, result+first_size);
+ TTMATH_ASSERT(c==0)
+ }
+ }
+
+
+#ifdef _MSC_VER
+#pragma warning (default : 4717)
+#endif
+
+
+public:
+
+
+ /*!
+ multiplication this = this * ss2
+ */
+ uint MulFastest(const UInt<value_size> & ss2)
+ {
+ UInt<value_size*2> result;
+ uint i, c = 0;
+
+ MulFastestBig(ss2, result);
+
+ // copying result
+ for(i=0 ; i<value_size ; ++i)
+ table[i] = result.table[i];
+
+ // testing carry
+ for( ; i<value_size*2 ; ++i)
+ if( result.table[i] != 0 )
+ {
+ c = 1;
+ break;
+ }
+
+ TTMATH_LOGC("UInt::MulFastest", c)
+
+ return c;
+ }
+
+
+ /*!
+ multiplication result = this * ss2
+
+ this method is trying to select the fastest algorithm
+ (in the future this method can be improved)
+ */
+ void MulFastestBig(const UInt<value_size> & ss2, UInt<value_size*2> & result)
+ {
+ if( value_size < TTMATH_USE_KARATSUBA_MULTIPLICATION_FROM_SIZE )
+ return Mul2Big(ss2, result);
+
+ uint x1size = value_size, x2size = value_size;
+ uint x1start = 0, x2start = 0;
+
+ for(x1size=value_size ; x1size>0 && table[x1size-1]==0 ; --x1size);
+ for(x2size=value_size ; x2size>0 && ss2.table[x2size-1]==0 ; --x2size);
+
+ if( x1size==0 || x2size==0 )
+ {
+ // either 'this' or 'ss2' is equal zero - the result is zero too
+ result.SetZero();
+ return;
+ }
+
+ for(x1start=0 ; x1start<x1size && table[x1start]==0 ; ++x1start);
+ for(x2start=0 ; x2start<x2size && ss2.table[x2start]==0 ; ++x2start);
+
+ uint distancex1 = x1size - x1start;
+ uint distancex2 = x2size - x2start;
+
+ if( distancex1 < 3 || distancex2 < 3 )
+ // either 'this' or 'ss2' have only 2 (or 1) items different from zero (side by side)
+ // (this condition in the future can be improved)
+ return Mul2Big3<value_size>(table, ss2.table, result, x1start, x1size, x2start, x2size);
+
+
+ // Karatsuba multiplication
+ Mul3Big(ss2, result);
+
+ TTMATH_LOG("UInt::MulFastestBig")
+ }
+
+
+ /*!
+ *
+ * Division
+ *
+ *
+ */
+
+public:
+
+
+ /*!
+ division by one unsigned word
+
+ returns 1 when divisor is zero
+ */
+ uint DivInt(uint divisor, uint * remainder = 0)
+ {
+ if( divisor == 0 )
+ {
+ if( remainder )
+ *remainder = 0; // this is for convenience, without it the compiler can report that 'remainder' is uninitialized
+
+ TTMATH_LOG("UInt::DivInt")
+
+ return 1;
+ }
+
+ if( divisor == 1 )
+ {
+ if( remainder )
+ *remainder = 0;
+
+ TTMATH_LOG("UInt::DivInt")
+
+ return 0;
+ }
+
+ UInt<value_size> dividend(*this);
+ SetZero();
+
+ sint i; // i must be with a sign
+ uint r = 0;
+
+ // we're looking for the last word in ss1
+ for(i=value_size-1 ; i>0 && dividend.table[i]==0 ; --i);
+
+ for( ; i>=0 ; --i)
+ DivTwoWords(r, dividend.table[i], divisor, &table[i], &r);
+
+ if( remainder )
+ *remainder = r;
+
+ TTMATH_LOG("UInt::DivInt")
+
+ return 0;
+ }
+
+ uint DivInt(uint divisor, uint & remainder)
+ {
+ return DivInt(divisor, &remainder);
+ }
+
+
+
+ /*!
+ division this = this / ss2
+
+ return values:
+ 0 - ok
+ 1 - division by zero
+ 'this' will be the quotient
+ 'remainder' - remainder
+ */
+ uint Div( const UInt<value_size> & divisor,
+ UInt<value_size> * remainder = 0,
+ uint algorithm = 3)
+ {
+ switch( algorithm )
+ {
+ case 1:
+ return Div1(divisor, remainder);
+
+ case 2:
+ return Div2(divisor, remainder);
+
+ case 3:
+ default:
+ return Div3(divisor, remainder);
+ }
+ }
+
+ uint Div(const UInt<value_size> & divisor, UInt<value_size> & remainder, uint algorithm = 3)
+ {
+ return Div(divisor, &remainder, algorithm);
+ }
+
+
+
+private:
+
+ /*!
+ return values:
+ 0 - none has to be done
+ 1 - division by zero
+ 2 - division should be made
+ */
+ uint Div_StandardTest( const UInt<value_size> & v,
+ uint & m, uint & n,
+ UInt<value_size> * remainder = 0)
+ {
+ switch( Div_CalculatingSize(v, m, n) )
+ {
+ case 4: // 'this' is equal v
+ if( remainder )
+ remainder->SetZero();
+
+ SetOne();
+ TTMATH_LOG("UInt::Div_StandardTest")
+ return 0;
+
+ case 3: // 'this' is smaller than v
+ if( remainder )
+ *remainder = *this;
+
+ SetZero();
+ TTMATH_LOG("UInt::Div_StandardTest")
+ return 0;
+
+ case 2: // 'this' is zero
+ if( remainder )
+ remainder->SetZero();
+
+ SetZero();
+ TTMATH_LOG("UInt::Div_StandardTest")
+ return 0;
+
+ case 1: // v is zero
+ TTMATH_LOG("UInt::Div_StandardTest")
+ return 1;
+ }
+
+ TTMATH_LOG("UInt::Div_StandardTest")
+
+ return 2;
+ }
+
+
+
+ /*!
+ return values:
+ 0 - ok
+ 'm' - is the index (from 0) of last non-zero word in table ('this')
+ 'n' - is the index (from 0) of last non-zero word in v.table
+ 1 - v is zero
+ 2 - 'this' is zero
+ 3 - 'this' is smaller than v
+ 4 - 'this' is equal v
+
+ if the return value is different than zero the 'm' and 'n' are undefined
+ */
+ uint Div_CalculatingSize(const UInt<value_size> & v, uint & m, uint & n)
+ {
+ m = n = value_size-1;
+
+ for( ; n!=0 && v.table[n]==0 ; --n);
+
+ if( n==0 && v.table[n]==0 )
+ return 1;
+
+ for( ; m!=0 && table[m]==0 ; --m);
+
+ if( m==0 && table[m]==0 )
+ return 2;
+
+ if( m < n )
+ return 3;
+ else
+ if( m == n )
+ {
+ uint i;
+ for(i = n ; i!=0 && table[i]==v.table[i] ; --i);
+
+ if( table[i] < v.table[i] )
+ return 3;
+ else
+ if (table[i] == v.table[i] )
+ return 4;
+ }
+
+ return 0;
+ }
+
+
+public:
+
+ /*!
+ the first division algorithm
+ radix 2
+ */
+ uint Div1(const UInt<value_size> & divisor, UInt<value_size> * remainder = 0)
+ {
+ uint m,n, test;
+
+ test = Div_StandardTest(divisor, m, n, remainder);
+ if( test < 2 )
+ return test;
+
+ if( !remainder )
+ {
+ UInt<value_size> rem;
+
+ return Div1_Calculate(divisor, rem);
+ }
+
+ return Div1_Calculate(divisor, *remainder);
+ }
+
+
+private:
+
+
+ uint Div1_Calculate(const UInt<value_size> & divisor, UInt<value_size> & rest)
+ {
+ TTMATH_REFERENCE_ASSERT( divisor )
+
+ sint loop;
+ sint c;
+
+ rest.SetZero();
+ loop = value_size * TTMATH_BITS_PER_UINT;
+ c = 0;
+
+
+ div_a:
+ c = Rcl(1, c);
+ c = rest.Add(rest,c);
+ c = rest.Sub(divisor,c);
+
+ c = !c;
+
+ if(!c)
+ goto div_d;
+
+
+ div_b:
+ --loop;
+ if(loop)
+ goto div_a;
+
+ c = Rcl(1, c);
+ TTMATH_LOG("UInt::Div1_Calculate")
+ return 0;
+
+
+ div_c:
+ c = Rcl(1, c);
+ c = rest.Add(rest,c);
+ c = rest.Add(divisor);
+
+ if(c)
+ goto div_b;
+
+
+ div_d:
+ --loop;
+ if(loop)
+ goto div_c;
+
+ c = Rcl(1, c);
+ c = rest.Add(divisor);
+
+ TTMATH_LOG("UInt::Div1_Calculate")
+
+ return 0;
+ }
+
+
+public:
+
+
+ /*!
+ the second division algorithm
+
+ return values:
+ 0 - ok
+ 1 - division by zero
+ */
+ uint Div2(const UInt<value_size> & divisor, UInt<value_size> * remainder = 0)
+ {
+ TTMATH_REFERENCE_ASSERT( divisor )
+
+ uint bits_diff;
+ uint status = Div2_Calculate(divisor, remainder, bits_diff);
+ if( status < 2 )
+ return status;
+
+ if( CmpBiggerEqual(divisor) )
+ {
+ Div2(divisor, remainder);
+ SetBit(bits_diff);
+ }
+ else
+ {
+ if( remainder )
+ *remainder = *this;
+
+ SetZero();
+ SetBit(bits_diff);
+ }
+
+ TTMATH_LOG("UInt::Div2")
+
+ return 0;
+ }
+
+
+ uint Div2(const UInt<value_size> & divisor, UInt<value_size> & remainder)
+ {
+ return Div2(divisor, &remainder);
+ }
+
+
+private:
+
+ /*!
+ return values:
+ 0 - we've calculated the division
+ 1 - division by zero
+ 2 - we have to still calculate
+
+ */
+ uint Div2_Calculate(const UInt<value_size> & divisor, UInt<value_size> * remainder,
+ uint & bits_diff)
+ {
+ uint table_id, index;
+ uint divisor_table_id, divisor_index;
+
+ uint status = Div2_FindLeadingBitsAndCheck( divisor, remainder,
+ table_id, index,
+ divisor_table_id, divisor_index);
+
+ if( status < 2 )
+ {
+ TTMATH_LOG("UInt::Div2_Calculate")
+ return status;
+ }
+
+ // here we know that 'this' is greater than divisor
+ // then 'index' is greater or equal 'divisor_index'
+ bits_diff = index - divisor_index;
+
+ UInt<value_size> divisor_copy(divisor);
+ divisor_copy.Rcl(bits_diff, 0);
+
+ if( CmpSmaller(divisor_copy, table_id) )
+ {
+ divisor_copy.Rcr(1);
+ --bits_diff;
+ }
+
+ Sub(divisor_copy, 0);
+
+ TTMATH_LOG("UInt::Div2_Calculate")
+
+ return 2;
+ }
+
+
+ /*!
+ return values:
+ 0 - we've calculated the division
+ 1 - division by zero
+ 2 - we have to still calculate
+ */
+ uint Div2_FindLeadingBitsAndCheck( const UInt<value_size> & divisor,
+ UInt<value_size> * remainder,
+ uint & table_id, uint & index,
+ uint & divisor_table_id, uint & divisor_index)
+ {
+ if( !divisor.FindLeadingBit(divisor_table_id, divisor_index) )
+ {
+ // division by zero
+ TTMATH_LOG("UInt::Div2_FindLeadingBitsAndCheck")
+ return 1;
+ }
+
+ if( !FindLeadingBit(table_id, index) )
+ {
+ // zero is divided by something
+
+ SetZero();
+
+ if( remainder )
+ remainder->SetZero();
+
+ TTMATH_LOG("UInt::Div2_FindLeadingBitsAndCheck")
+
+ return 0;
+ }
+
+ divisor_index += divisor_table_id * TTMATH_BITS_PER_UINT;
+ index += table_id * TTMATH_BITS_PER_UINT;
+
+ if( divisor_table_id == 0 )
+ {
+ // dividor has only one 32-bit word
+
+ uint r;
+ DivInt(divisor.table[0], &r);
+
+ if( remainder )
+ {
+ remainder->SetZero();
+ remainder->table[0] = r;
+ }
+
+ TTMATH_LOG("UInt::Div2_FindLeadingBitsAndCheck")
+
+ return 0;
+ }
+
+
+ if( Div2_DivisorGreaterOrEqual( divisor, remainder,
+ table_id, index,
+ divisor_index) )
+ {
+ TTMATH_LOG("UInt::Div2_FindLeadingBitsAndCheck")
+ return 0;
+ }
+
+
+ TTMATH_LOG("UInt::Div2_FindLeadingBitsAndCheck")
+
+ return 2;
+ }
+
+
+ /*!
+ return values:
+ true if divisor is equal or greater than 'this'
+ */
+ bool Div2_DivisorGreaterOrEqual( const UInt<value_size> & divisor,
+ UInt<value_size> * remainder,
+ uint table_id, uint index,
+ uint divisor_index )
+ {
+ if( divisor_index > index )
+ {
+ // divisor is greater than this
+
+ if( remainder )
+ *remainder = *this;
+
+ SetZero();
+
+ TTMATH_LOG("UInt::Div2_DivisorGreaterOrEqual")
+
+ return true;
+ }
+
+ if( divisor_index == index )
+ {
+ // table_id == divisor_table_id as well
+
+ uint i;
+ for(i = table_id ; i!=0 && table[i]==divisor.table[i] ; --i);
+
+ if( table[i] < divisor.table[i] )
+ {
+ // divisor is greater than 'this'
+
+ if( remainder )
+ *remainder = *this;
+
+ SetZero();
+
+ TTMATH_LOG("UInt::Div2_DivisorGreaterOrEqual")
+
+ return true;
+ }
+ else
+ if( table[i] == divisor.table[i] )
+ {
+ // divisor is equal 'this'
+
+ if( remainder )
+ remainder->SetZero();
+
+ SetOne();
+
+ TTMATH_LOG("UInt::Div2_DivisorGreaterOrEqual")
+
+ return true;
+ }
+ }
+
+ TTMATH_LOG("UInt::Div2_DivisorGreaterOrEqual")
+
+ return false;
+ }
+
+
+public:
+
+ /*!
+ the third division algorithm
+
+ this algorithm is described in the following book:
+ "The art of computer programming 2" (4.3.1 page 272)
+ Donald E. Knuth
+ */
+ uint Div3(const UInt<value_size> & v, UInt<value_size> * remainder = 0)
+ {
+ TTMATH_REFERENCE_ASSERT( v )
+
+ uint m,n, test;
+
+ test = Div_StandardTest(v, m, n, remainder);
+ if( test < 2 )
+ return test;
+
+ if( n == 0 )
+ {
+ uint r;
+ DivInt( v.table[0], &r );
+
+ if( remainder )
+ {
+ remainder->SetZero();
+ remainder->table[0] = r;
+ }
+
+ TTMATH_LOG("UInt::Div3")
+
+ return 0;
+ }
+
+
+ // we can only use the third division algorithm when
+ // the divisor is greater or equal 2^32 (has more than one 32-bit word)
+ ++m;
+ ++n;
+ m = m - n;
+ Div3_Division(v, remainder, m, n);
+
+ TTMATH_LOG("UInt::Div3")
+
+ return 0;
+ }
+
+
+
+private:
+
+
+ void Div3_Division(UInt<value_size> v, UInt<value_size> * remainder, uint m, uint n)
+ {
+ TTMATH_ASSERT( n>=2 )
+
+ UInt<value_size+1> uu, vv;
+ UInt<value_size> q;
+ uint d, u_value_size, u0, u1, u2, v1, v0, j=m;
+
+ u_value_size = Div3_Normalize(v, n, d);
+
+ if( j+n == value_size )
+ u2 = u_value_size;
+ else
+ u2 = table[j+n];
+
+ Div3_MakeBiggerV(v, vv);
+
+ for(uint i = j+1 ; i<value_size ; ++i)
+ q.table[i] = 0;
+
+ while( true )
+ {
+ u1 = table[j+n-1];
+ u0 = table[j+n-2];
+ v1 = v.table[n-1];
+ v0 = v.table[n-2];
+
+ uint qp = Div3_Calculate(u2,u1,u0, v1,v0);
+
+ Div3_MakeNewU(uu, j, n, u2);
+ Div3_MultiplySubtract(uu, vv, qp);
+ Div3_CopyNewU(uu, j, n);
+
+ q.table[j] = qp;
+
+ // the next loop
+ if( j-- == 0 )
+ break;
+
+ u2 = table[j+n];
+ }
+
+ if( remainder )
+ Div3_Unnormalize(remainder, n, d);
+
+ *this = q;
+
+ TTMATH_LOG("UInt::Div3_Division")
+ }
+
+
+ void Div3_MakeNewU(UInt<value_size+1> & uu, uint j, uint n, uint u_max)
+ {
+ uint i;
+
+ for(i=0 ; i<n ; ++i, ++j)
+ uu.table[i] = table[j];
+
+ // 'n' is from <1..value_size> so and 'i' is from <0..value_size>
+ // then table[i] is always correct (look at the declaration of 'uu')
+ uu.table[i] = u_max;
+
+ for( ++i ; i<value_size+1 ; ++i)
+ uu.table[i] = 0;
+
+ TTMATH_LOG("UInt::Div3_MakeNewU")
+ }
+
+
+ void Div3_CopyNewU(const UInt<value_size+1> & uu, uint j, uint n)
+ {
+ uint i;
+
+ for(i=0 ; i<n ; ++i)
+ table[i+j] = uu.table[i];
+
+ if( i+j < value_size )
+ table[i+j] = uu.table[i];
+
+ TTMATH_LOG("UInt::Div3_CopyNewU")
+ }
+
+
+ /*!
+ we're making the new 'vv'
+ the value is actually the same but the 'table' is bigger (value_size+1)
+ */
+ void Div3_MakeBiggerV(const UInt<value_size> & v, UInt<value_size+1> & vv)
+ {
+ for(uint i=0 ; i<value_size ; ++i)
+ vv.table[i] = v.table[i];
+
+ vv.table[value_size] = 0;
+
+ TTMATH_LOG("UInt::Div3_MakeBiggerV")
+ }
+
+
+ /*!
+ we're moving all bits from 'v' into the left side of the n-1 word
+ (the highest bit at v.table[n-1] will be equal one,
+ the bits from 'this' we're moving the same times as 'v')
+
+ return values:
+ d - how many times we've moved
+ return - the next-left value from 'this' (that after table[value_size-1])
+ */
+ uint Div3_Normalize(UInt<value_size> & v, uint n, uint & d)
+ {
+ // v.table[n-1] is != 0
+
+ uint bit = (uint)FindLeadingBitInWord(v.table[n-1]);
+ uint move = (TTMATH_BITS_PER_UINT - bit - 1);
+ uint res = table[value_size-1];
+ d = move;
+
+ if( move > 0 )
+ {
+ v.Rcl(move, 0);
+ Rcl(move, 0);
+ res = res >> (bit + 1);
+ }
+ else
+ {
+ res = 0;
+ }
+
+ TTMATH_LOG("UInt::Div3_Normalize")
+
+ return res;
+ }
+
+
+ void Div3_Unnormalize(UInt<value_size> * remainder, uint n, uint d)
+ {
+ for(uint i=n ; i<value_size ; ++i)
+ table[i] = 0;
+
+ Rcr(d,0);
+
+ *remainder = *this;
+
+ TTMATH_LOG("UInt::Div3_Unnormalize")
+ }
+
+
+ uint Div3_Calculate(uint u2, uint u1, uint u0, uint v1, uint v0)
+ {
+ UInt<2> u_temp;
+ uint rp;
+ bool next_test;
+
+ TTMATH_ASSERT( v1 != 0 )
+
+ u_temp.table[1] = u2;
+ u_temp.table[0] = u1;
+ u_temp.DivInt(v1, &rp);
+
+ TTMATH_ASSERT( u_temp.table[1]==0 || u_temp.table[1]==1 )
+
+ do
+ {
+ bool decrease = false;
+
+ if( u_temp.table[1] == 1 )
+ decrease = true;
+ else
+ {
+ UInt<2> temp1, temp2;
+
+ UInt<2>::MulTwoWords(u_temp.table[0], v0, temp1.table+1, temp1.table);
+ temp2.table[1] = rp;
+ temp2.table[0] = u0;
+
+ if( temp1 > temp2 )
+ decrease = true;
+ }
+
+ next_test = false;
+
+ if( decrease )
+ {
+ u_temp.SubOne();
+
+ rp += v1;
+
+ if( rp >= v1 ) // it means that there wasn't a carry (r<b from the book)
+ next_test = true;
+ }
+ }
+ while( next_test );
+
+ TTMATH_LOG("UInt::Div3_Calculate")
+
+ return u_temp.table[0];
+ }
+
+
+
+ void Div3_MultiplySubtract( UInt<value_size+1> & uu,
+ const UInt<value_size+1> & vv, uint & qp)
+ {
+ // D4 (in the book)
+
+ UInt<value_size+1> vv_temp(vv);
+ vv_temp.MulInt(qp);
+
+ if( uu.Sub(vv_temp) )
+ {
+ // there was a carry
+
+ //
+ // !!! this part of code was not tested
+ //
+
+ --qp;
+ uu.Add(vv);
+
+ // can be a carry from this additions but it should be ignored
+ // because it cancels with the borrow from uu.Sub(vv_temp)
+ }
+
+ TTMATH_LOG("UInt::Div3_MultiplySubtract")
+ }
+
+
+
+
+
+
+public:
+
+
+ /*!
+ power this = this ^ pow
+ binary algorithm (r-to-l)
+
+ return values:
+ 0 - ok
+ 1 - carry
+ 2 - incorrect argument (0^0)
+ */
+ uint Pow(UInt<value_size> pow)
+ {
+ if(pow.IsZero() && IsZero())
+ // we don't define zero^zero
+ return 2;
+
+ UInt<value_size> start(*this), start_temp;
+ UInt<value_size> result;
+ result.SetOne();
+ uint c = 0;
+
+ while( !c )
+ {
+ if( pow.table[0] & 1 )
+ c += result.Mul(start);
+
+ pow.Rcr2_one(0);
+ if( pow.IsZero() )
+ break;
+
+ start_temp = start;
+ // in the second Mul algorithm we can use start.Mul(start) directly (there is no TTMATH_ASSERT_REFERENCE there)
+ c += start.Mul(start_temp);
+ }
+
+ *this = result;
+
+ TTMATH_LOGC("UInt::Pow(UInt<>)", c)
+
+ return (c==0)? 0 : 1;
+ }
+
+
+ /*!
+ square root
+ e.g. Sqrt(9) = 3
+ ('digit-by-digit' algorithm)
+ */
+ void Sqrt()
+ {
+ UInt<value_size> bit, temp;
+
+ if( IsZero() )
+ return;
+
+ UInt<value_size> value(*this);
+
+ SetZero();
+ bit.SetZero();
+ bit.table[value_size-1] = (TTMATH_UINT_HIGHEST_BIT >> 1);
+
+ while( bit > value )
+ bit.Rcr(2);
+
+ while( !bit.IsZero() )
+ {
+ temp = *this;
+ temp.Add(bit);
+
+ if( value >= temp )
+ {
+ value.Sub(temp);
+ Rcr(1);
+ Add(bit);
+ }
+ else
+ {
+ Rcr(1);
+ }
+
+ bit.Rcr(2);
+ }
+
+ TTMATH_LOG("UInt::Sqrt")
+ }
+
+
+
+ /*!
+ this method sets n first bits to value zero
+
+ For example:
+ let n=2 then if there's a value 111 (bin) there'll be '100' (bin)
+ */
+ void ClearFirstBits(uint n)
+ {
+ if( n >= value_size*TTMATH_BITS_PER_UINT )
+ {
+ SetZero();
+ TTMATH_LOG("UInt::ClearFirstBits")
+ return;
+ }
+
+ uint * p = table;
+
+ // first we're clearing the whole words
+ while( n >= TTMATH_BITS_PER_UINT )
+ {
+ *p++ = 0;
+ n -= TTMATH_BITS_PER_UINT;
+ }
+
+ if( n == 0 )
+ {
+ TTMATH_LOG("UInt::ClearFirstBits")
+ return;
+ }
+
+ // and then we're clearing one word which has left
+ // mask -- all bits are set to one
+ uint mask = TTMATH_UINT_MAX_VALUE;
+
+ mask = mask << n;
+
+ (*p) &= mask;
+
+ TTMATH_LOG("UInt::ClearFirstBits")
+ }
+
+
+ /*!
+ this method returns true if the highest bit of the value is set
+ */
+ bool IsTheHighestBitSet() const
+ {
+ return (table[value_size-1] & TTMATH_UINT_HIGHEST_BIT) != 0;
+ }
+
+
+ /*!
+ this method returns true if the lowest bit of the value is set
+ */
+ bool IsTheLowestBitSet() const
+ {
+ return (*table & 1) != 0;
+ }
+
+
+ /*!
+ this method returns true if the value is equal zero
+ */
+ bool IsZero() const
+ {
+ for(uint i=0 ; i<value_size ; ++i)
+ if(table[i] != 0)
+ return false;
+
+ return true;
+ }
+
+
+ /*!
+ returning true if first 'bits' bits are equal zero
+ */
+ bool AreFirstBitsZero(uint bits) const
+ {
+ TTMATH_ASSERT( bits <= value_size * TTMATH_BITS_PER_UINT )
+
+ uint index = bits / TTMATH_BITS_PER_UINT;
+ uint rest = bits % TTMATH_BITS_PER_UINT;
+ uint i;
+
+ for(i=0 ; i<index ; ++i)
+ if(table[i] != 0 )
+ return false;
+
+ if( rest == 0 )
+ return true;
+
+ uint mask = TTMATH_UINT_MAX_VALUE >> (TTMATH_BITS_PER_UINT - rest);
+
+ return (table[i] & mask) == 0;
+ }
+
+
+
+ /*!
+ *
+ * conversion methods
+ *
+ */
+
+
+
+ /*!
+ this method converts an UInt<another_size> type to this class
+
+ this operation has mainly sense if the value from p is
+ equal or smaller than that one which is returned from UInt<value_size>::SetMax()
+
+ it returns a carry if the value 'p' is too big
+ */
+ template<uint argument_size>
+ uint FromUInt(const UInt<argument_size> & p)
+ {
+ uint min_size = (value_size < argument_size)? value_size : argument_size;
+ uint i;
+
+ for(i=0 ; i<min_size ; ++i)
+ table[i] = p.table[i];
+
+
+ if( value_size > argument_size )
+ {
+ // 'this' is longer than 'p'
+
+ for( ; i<value_size ; ++i)
+ table[i] = 0;
+ }
+ else
+ {
+ for( ; i<argument_size ; ++i)
+ if( p.table[i] != 0 )
+ {
+ TTMATH_LOGC("UInt::FromUInt(UInt<>)", 1)
+ return 1;
+ }
+ }
+
+ TTMATH_LOGC("UInt::FromUInt(UInt<>)", 0)
+
+ return 0;
+ }
+
+
+ /*!
+ this method converts the uint type to this class
+ */
+ void FromUInt(uint value)
+ {
+ for(uint i=1 ; i<value_size ; ++i)
+ table[i] = 0;
+
+ table[0] = value;
+
+ TTMATH_LOG("UInt::FromUInt(uint)")
+ }
+
+
+ /*!
+ this operator converts an UInt<another_size> type to this class
+
+ it doesn't return a carry
+ */
+ template<uint argument_size>
+ UInt<value_size> & operator=(const UInt<argument_size> & p)
+ {
+ FromUInt(p);
+
+ return *this;
+ }
+
+
+ /*!
+ the assignment operator
+ */
+ UInt<value_size> & operator=(const UInt<value_size> & p)
+ {
+ for(uint i=0 ; i<value_size ; ++i)
+ table[i] = p.table[i];
+
+ TTMATH_LOG("UInt::operator=(UInt<>)")
+
+ return *this;
+ }
+
+
+ /*!
+ this method converts the uint type to this class
+ */
+ UInt<value_size> & operator=(uint i)
+ {
+ FromUInt(i);
+
+ return *this;
+ }
+
+
+ /*!
+ a constructor for converting the uint to this class
+ */
+ UInt(uint i)
+ {
+ FromUInt(i);
+ }
+
+
+ /*!
+ this method converts the sint type to this class
+
+ we provide operator(sint) and the constructor(sint) in order to allow
+ the programmer do that:
+ UInt<..> type = 10;
+
+ above "10" constant has the int type (signed int), if we don't give such
+ operators and constructors the compiler will not compile the program,
+ because it has to make a conversion and doesn't know into which type
+ (the UInt class has operator=(const char*), operator=(uint) etc.)
+ */
+ UInt<value_size> & operator=(sint i)
+ {
+ FromUInt(uint(i));
+
+ return *this;
+ }
+
+
+ /*!
+ a constructor for converting the sint to this class
+
+ look at the description of UInt::operator=(sint)
+ */
+ UInt(sint i)
+ {
+ FromUInt(uint(i));
+ }
+
+
+
+#ifdef TTMATH_PLATFORM64
+
+ /*!
+ in 64bit platforms we must define additional operators and contructors
+ in order to allow a user initializing the objects in this way:
+ UInt<...> type = 20;
+ or
+ UInt<...> type;
+ type = 30;
+
+ decimal constants such as 20, 30 etc. are integer literal of type int,
+ if the value is greater it can even be long int,
+ 0 is an octal integer of type int
+ (ISO 14882 p2.13.1 Integer literals)
+ */
+
+ /*!
+ this operator converts the unsigned int type to this class
+
+ ***this operator is created only on a 64bit platform***
+ it takes one argument of 32bit
+ */
+ UInt<value_size> & operator=(unsigned int i)
+ {
+ FromUInt(uint(i));
+
+ return *this;
+ }
+
+
+ /*!
+ a constructor for converting the unsigned int to this class
+
+ ***this constructor is created only on a 64bit platform***
+ it takes one argument of 32bit
+ */
+ UInt(unsigned int i)
+ {
+ FromUInt(uint(i));
+ }
+
+
+ /*!
+ an operator for converting the signed int to this class
+
+ ***this constructor is created only on a 64bit platform***
+ it takes one argument of 32bit
+
+ look at the description of UInt::operator=(sint)
+ */
+ UInt<value_size> & operator=(signed int i)
+ {
+ FromUInt(uint(i));
+
+ return *this;
+ }
+
+
+ /*!
+ a constructor for converting the signed int to this class
+
+ ***this constructor is created only on a 64bit platform***
+ it takes one argument of 32bit
+
+ look at the description of UInt::operator=(sint)
+ */
+ UInt(signed int i)
+ {
+ FromUInt(uint(i));
+ }
+
+
+#endif
+
+
+
+
+
+ /*!
+ a constructor for converting a string to this class (with the base=10)
+ */
+ UInt(const char * s)
+ {
+ FromString(s);
+ }
+
+
+ /*!
+ a constructor for converting a string to this class (with the base=10)
+ */
+ UInt(const wchar_t * s)
+ {
+ FromString(s);
+ }
+
+
+ /*!
+ a constructor for converting a string to this class (with the base=10)
+ */
+ UInt(const std::string & s)
+ {
+ FromString( s.c_str() );
+ }
+
+
+ /*!
+ a constructor for converting a string to this class (with the base=10)
+ */
+ UInt(const std::wstring & s)
+ {
+ FromString( s.c_str() );
+ }
+
+
+ /*!
+ a default constructor
+
+ we don't clear the table
+ */
+ UInt()
+ {
+ // when macro TTMATH_DEBUG_LOG is defined
+ // we set special values to the table
+ // in order to be everywhere the same value of the UInt object
+ // without this it would be difficult to analyse the log file
+ #ifdef TTMATH_DEBUG_LOG
+ #ifdef TTMATH_PLATFORM32
+ for(uint i=0 ; i<value_size ; ++i)
+ table[i] = 0xc1c1c1c1;
+ #else
+ for(uint i=0 ; i<value_size ; ++i)
+ table[i] = 0xc1c1c1c1c1c1c1c1;
+ #endif
+ #endif
+ }
+
+
+ /*!
+ a copy constructor
+ */
+ UInt(const UInt<value_size> & u)
+ {
+ for(uint i=0 ; i<value_size ; ++i)
+ table[i] = u.table[i];
+
+ TTMATH_LOG("UInt::UInt(UInt<>)")
+ }
+
+
+
+ /*!
+ a template for producting constructors for copying from another types
+ */
+ template<uint argument_size>
+ UInt(const UInt<argument_size> & u)
+ {
+ // look that 'size' we still set as 'value_size' and not as u.value_size
+ FromUInt(u);
+ }
+
+
+
+
+ /*!
+ a destructor
+ */
+ ~UInt()
+ {
+ }
+
+
+ /*!
+ this method returns the lowest value from table
+
+ we must be sure when we using this method whether the value
+ will hold in an uint type or not (the rest value from the table must be zero)
+ */
+ uint ToUInt() const
+ {
+ return table[0];
+ }
+
+
+private:
+
+ /*!
+ an auxiliary method for converting to a string
+ */
+ template<class string_type>
+ void ToStringBase(string_type & result, uint b = 10) const
+ {
+ UInt<value_size> temp( *this );
+ char character;
+ uint rem;
+
+ result.clear();
+
+ if( b<2 || b>16 )
+ return;
+
+ do
+ {
+ temp.DivInt(b, &rem);
+ character = static_cast<char>( Misc::DigitToChar(rem) );
+ result.insert(result.begin(), character);
+ }
+ while( !temp.IsZero() );
+
+ return;
+ }
+
+
+public:
+
+ /*!
+ this method converts the value to a string with a base equal 'b'
+ */
+ void ToString(std::string & result, uint b = 10) const
+ {
+ return ToStringBase(result, b);
+ }
+
+ void ToString(std::wstring & result, uint b = 10) const
+ {
+ return ToStringBase(result, b);
+ }
+
+ std::string ToString(uint b = 10) const
+ {
+ std::string result;
+ ToStringBase(result, b);
+
+ return result;
+ }
+
+ std::wstring ToWString(uint b = 10) const
+ {
+ std::wstring result;
+ ToStringBase(result, b);
+
+ return result;
+ }
+
+
+private:
+
+ /*!
+ an auxiliary method for converting from a string
+ */
+ template<class char_type>
+ uint FromStringBase(const char_type * s, uint b = 10, const char_type ** after_source = 0, bool * value_read = 0)
+ {
+ UInt<value_size> base( b );
+ UInt<value_size> temp;
+ sint z;
+ uint c = 0;
+
+ SetZero();
+ temp.SetZero();
+ Misc::SkipWhiteCharacters(s);
+
+ if( after_source )
+ *after_source = s;
+
+ if( value_read )
+ *value_read = false;
+
+ if( b<2 || b>16 )
+ return 1;
+
+
+ for( ; (z=Misc::CharToDigit(*s, b)) != -1 ; ++s)
+ {
+ if( value_read )
+ *value_read = true;
+
+ if( c == 0 )
+ {
+ temp.table[0] = z;
+
+ c += Mul(base);
+ c += Add(temp);
+ }
+ }
+
+ if( after_source )
+ *after_source = s;
+
+ TTMATH_LOGC("UInt::FromString", c)
+
+ return (c==0)? 0 : 1;
+ }
+
+
+public:
+
+
+ /*!
+ this method converts a string into its value
+ it returns carry=1 if the value will be too big or an incorrect base 'b' is given
+
+ string is ended with a non-digit value, for example:
+ "12" will be translated to 12
+ as well as:
+ "12foo" will be translated to 12 too
+
+ existing first white characters will be ommited
+
+ if the value from s is too large the rest digits will be skipped
+
+ after_source (if exists) is pointing at the end of the parsed string
+
+ value_read (if exists) tells whether something has actually been read (at least one digit)
+ */
+ uint FromString(const char * s, uint b = 10, const char ** after_source = 0, bool * value_read = 0)
+ {
+ return FromStringBase(s, b, after_source, value_read);
+ }
+
+
+ /*!
+ this method converts a string into its value
+ */
+ uint FromString(const wchar_t * s, uint b = 10, const wchar_t ** after_source = 0, bool * value_read = 0)
+ {
+ return FromStringBase(s, b, after_source, value_read);
+ }
+
+
+ /*!
+ this method converts a string into its value
+
+ (it returns carry=1 if the value will be too big or an incorrect base 'b' is given)
+ */
+ uint FromString(const std::string & s, uint b = 10)
+ {
+ return FromString( s.c_str(), b );
+ }
+
+
+ /*!
+ this method converts a string into its value
+
+ (it returns carry=1 if the value will be too big or an incorrect base 'b' is given)
+ */
+ uint FromString(const std::wstring & s, uint b = 10)
+ {
+ return FromString( s.c_str(), b );
+ }
+
+
+ /*!
+ this operator converts a string into its value (with base = 10)
+ */
+ UInt<value_size> & operator=(const char * s)
+ {
+ FromString(s);
+
+ return *this;
+ }
+
+
+ /*!
+ this operator converts a string into its value (with base = 10)
+ */
+ UInt<value_size> & operator=(const wchar_t * s)
+ {
+ FromString(s);
+
+ return *this;
+ }
+
+
+ /*!
+ this operator converts a string into its value (with base = 10)
+ */
+ UInt<value_size> & operator=(const std::string & s)
+ {
+ FromString( s.c_str() );
+
+ return *this;
+ }
+
+
+ /*!
+ this operator converts a string into its value (with base = 10)
+ */
+ UInt<value_size> & operator=(const std::wstring & s)
+ {
+ FromString( s.c_str() );
+
+ return *this;
+ }
+
+
+ /*!
+ *
+ * methods for comparing
+ *
+ */
+
+
+ /*!
+ this method returns true if 'this' is smaller than 'l'
+
+ 'index' is an index of the first word from will be the comparison performed
+ (note: we start the comparison from back - from the last word, when index is -1 /default/
+ it is automatically set into the last word)
+ I introduced it for some kind of optimization made in the second division algorithm (Div2)
+ */
+ bool CmpSmaller(const UInt<value_size> & l, sint index = -1) const
+ {
+ sint i;
+
+ if( index==-1 || index>=sint(value_size) )
+ i = value_size - 1;
+ else
+ i = index;
+
+
+ for( ; i>=0 ; --i)
+ {
+ if( table[i] != l.table[i] )
+ return table[i] < l.table[i];
+ }
+
+ // they're equal
+ return false;
+ }
+
+
+
+ /*!
+ this method returns true if 'this' is bigger than 'l'
+
+ 'index' is an index of the first word from will be the comparison performed
+ (note: we start the comparison from back - from the last word, when index is -1 /default/
+ it is automatically set into the last word)
+
+ I introduced it for some kind of optimization made in the second division algorithm (Div2)
+ */
+ bool CmpBigger(const UInt<value_size> & l, sint index = -1) const
+ {
+ sint i;
+
+ if( index==-1 || index>=sint(value_size) )
+ i = value_size - 1;
+ else
+ i = index;
+
+
+ for( ; i>=0 ; --i)
+ {
+ if( table[i] != l.table[i] )
+ return table[i] > l.table[i];
+ }
+
+ // they're equal
+ return false;
+ }
+
+
+ /*!
+ this method returns true if 'this' is equal 'l'
+
+ 'index' is an index of the first word from will be the comparison performed
+ (note: we start the comparison from back - from the last word, when index is -1 /default/
+ it is automatically set into the last word)
+ */
+ bool CmpEqual(const UInt<value_size> & l, sint index = -1) const
+ {
+ sint i;
+
+ if( index==-1 || index>=sint(value_size) )
+ i = value_size - 1;
+ else
+ i = index;
+
+
+ for( ; i>=0 ; --i)
+ if( table[i] != l.table[i] )
+ return false;
+
+ return true;
+ }
+
+
+
+ /*!
+ this method returns true if 'this' is smaller than or equal 'l'
+
+ 'index' is an index of the first word from will be the comparison performed
+ (note: we start the comparison from back - from the last word, when index is -1 /default/
+ it is automatically set into the last word)
+ */
+ bool CmpSmallerEqual(const UInt<value_size> & l, sint index=-1) const
+ {
+ sint i;
+
+ if( index==-1 || index>=sint(value_size) )
+ i = value_size - 1;
+ else
+ i = index;
+
+
+ for( ; i>=0 ; --i)
+ {
+ if( table[i] != l.table[i] )
+ return table[i] < l.table[i];
+ }
+
+ // they're equal
+ return true;
+ }
+
+
+
+ /*!
+ this method returns true if 'this' is bigger than or equal 'l'
+
+ 'index' is an index of the first word from will be the comparison performed
+ (note: we start the comparison from back - from the last word, when index is -1 /default/
+ it is automatically set into the last word)
+ */
+ bool CmpBiggerEqual(const UInt<value_size> & l, sint index=-1) const
+ {
+ sint i;
+
+ if( index==-1 || index>=sint(value_size) )
+ i = value_size - 1;
+ else
+ i = index;
+
+
+ for( ; i>=0 ; --i)
+ {
+ if( table[i] != l.table[i] )
+ return table[i] > l.table[i];
+ }
+
+ // they're equal
+ return true;
+ }
+
+
+ /*
+ operators for comparising
+ */
+
+ bool operator<(const UInt<value_size> & l) const
+ {
+ return CmpSmaller(l);
+ }
+
+
+ bool operator>(const UInt<value_size> & l) const
+ {
+ return CmpBigger(l);
+ }
+
+
+ bool operator==(const UInt<value_size> & l) const
+ {
+ return CmpEqual(l);
+ }
+
+
+ bool operator!=(const UInt<value_size> & l) const
+ {
+ return !operator==(l);
+ }
+
+
+ bool operator<=(const UInt<value_size> & l) const
+ {
+ return CmpSmallerEqual(l);
+ }
+
+ bool operator>=(const UInt<value_size> & l) const
+ {
+ return CmpBiggerEqual(l);
+ }
+
+
+ /*!
+ *
+ * standard mathematical operators
+ *
+ */
+
+ UInt<value_size> operator-(const UInt<value_size> & p2) const
+ {
+ UInt<value_size> temp(*this);
+
+ temp.Sub(p2);
+
+ return temp;
+ }
+
+ UInt<value_size> & operator-=(const UInt<value_size> & p2)
+ {
+ Sub(p2);
+
+ return *this;
+ }
+
+ UInt<value_size> operator+(const UInt<value_size> & p2) const
+ {
+ UInt<value_size> temp(*this);
+
+ temp.Add(p2);
+
+ return temp;
+ }
+
+ UInt<value_size> & operator+=(const UInt<value_size> & p2)
+ {
+ Add(p2);
+
+ return *this;
+ }
+
+
+ UInt<value_size> operator*(const UInt<value_size> & p2) const
+ {
+ UInt<value_size> temp(*this);
+
+ temp.Mul(p2);
+
+ return temp;
+ }
+
+
+ UInt<value_size> & operator*=(const UInt<value_size> & p2)
+ {
+ Mul(p2);
+
+ return *this;
+ }
+
+
+ UInt<value_size> operator/(const UInt<value_size> & p2) const
+ {
+ UInt<value_size> temp(*this);
+
+ temp.Div(p2);
+
+ return temp;
+ }
+
+
+ UInt<value_size> & operator/=(const UInt<value_size> & p2)
+ {
+ Div(p2);
+
+ return *this;
+ }
+
+
+ UInt<value_size> operator%(const UInt<value_size> & p2) const
+ {
+ UInt<value_size> temp(*this);
+ UInt<value_size> remainder;
+
+ temp.Div( p2, remainder );
+
+ return remainder;
+ }
+
+
+ UInt<value_size> & operator%=(const UInt<value_size> & p2)
+ {
+ UInt<value_size> temp(*this);
+ UInt<value_size> remainder;
+
+ temp.Div( p2, remainder );
+
+ operator=(remainder);
+
+ return *this;
+ }
+
+
+ /*!
+ Prefix operator e.g ++variable
+ */
+ UInt<value_size> & operator++()
+ {
+ AddOne();
+
+ return *this;
+ }
+
+
+ /*!
+ Postfix operator e.g variable++
+ */
+ UInt<value_size> operator++(int)
+ {
+ UInt<value_size> temp( *this );
+
+ AddOne();
+
+ return temp;
+ }
+
+
+ UInt<value_size> & operator--()
+ {
+ SubOne();
+
+ return *this;
+ }
+
+
+ UInt<value_size> operator--(int)
+ {
+ UInt<value_size> temp( *this );
+
+ SubOne();
+
+ return temp;
+ }
+
+
+ UInt<value_size> operator>>(int move)
+ {
+ UInt<value_size> temp( *this );
+
+ temp.Rcr(move);
+
+ return temp;
+ }
+
+
+ UInt<value_size> & operator>>=(int move)
+ {
+ Rcr(move);
+
+ return *this;
+ }
+
+
+ UInt<value_size> operator<<(int move)
+ {
+ UInt<value_size> temp( *this );
+
+ temp.Rcl(move);
+
+ return temp;
+ }
+
+
+ UInt<value_size> & operator<<=(int move)
+ {
+ Rcl(move);
+
+ return *this;
+ }
+
+
+ /*!
+ *
+ * input/output operators for standard streams
+ *
+ * (they are very simple, in the future they should be changed)
+ *
+ */
+
+
+private:
+
+
+ /*!
+ an auxiliary method for outputing to standard streams
+ */
+ template<class ostream_type, class string_type>
+ static ostream_type & OutputToStream(ostream_type & s, const UInt<value_size> & l)
+ {
+ string_type ss;
+
+ l.ToString(ss);
+ s << ss;
+
+ return s;
+ }
+
+
+public:
+
+
+ /*!
+ output to standard streams
+ */
+ friend std::ostream & operator<<(std::ostream & s, const UInt<value_size> & l)
+ {
+ return OutputToStream<std::ostream, std::string>(s, l);
+ }
+
+
+
+
+private:
+
+ /*!
+ an auxiliary method for reading from standard streams
+ */
+ template<class istream_type, class string_type, class char_type>
+ static istream_type & InputFromStream(istream_type & s, UInt<value_size> & l)
+ {
+ string_type ss;
+
+ // char or wchar_t for operator>>
+ char_type z;
+
+ // operator>> omits white characters if they're set for ommiting
+ s >> z;
+
+ // we're reading only digits (base=10)
+ while( s.good() && Misc::CharToDigit(z, 10)>=0 )
+ {
+ ss += z;
+ z = static_cast<char_type>(s.get());
+ }
+
+ // we're leaving the last read character
+ // (it's not belonging to the value)
+ s.unget();
+
+ l.FromString(ss);
+
+ return s;
+ }
+
+public:
+
+
+ /*!
+ input from standard streams
+ */
+ friend std::istream & operator>>(std::istream & s, UInt<value_size> & l)
+ {
+ return InputFromStream<std::istream, std::string, char>(s, l);
+ }
+
+
+
+
+ /*
+ following methods are defined in:
+ ttmathuint_x86.h
+ ttmathuint_x86_64.h
+ ttmathuint_noasm.h
+ */
+
+#ifdef TTMATH_NOASM
+ static uint AddTwoWords(uint a, uint b, uint carry, uint * result);
+ static uint SubTwoWords(uint a, uint b, uint carry, uint * result);
+
+#ifdef TTMATH_PLATFORM64
+
+ union uint_
+ {
+ struct
+ {
+ unsigned int low; // 32 bit
+ unsigned int high; // 32 bit
+ } u_;
+
+ uint u; // 64 bit
+ };
+
+
+ static void DivTwoWords2(uint a,uint b, uint c, uint * r, uint * rest);
+ static uint DivTwoWordsNormalize(uint_ & a_, uint_ & b_, uint_ & c_);
+ static uint DivTwoWordsUnnormalize(uint u, uint d);
+ static unsigned int DivTwoWordsCalculate(uint_ u_, unsigned int u3, uint_ v_);
+ static void MultiplySubtract(uint_ & u_, unsigned int & u3, unsigned int & q, uint_ v_);
+
+#endif // TTMATH_PLATFORM64
+#endif // TTMATH_NOASM
+
+
+private:
+ uint Rcl2_one(uint c);
+ uint Rcr2_one(uint c);
+ uint Rcl2(uint bits, uint c);
+ uint Rcr2(uint bits, uint c);
+
+public:
+ static const char * LibTypeStr();
+ static LibTypeCode LibType();
+ uint Add(const UInt<value_size> & ss2, uint c=0);
+ uint AddInt(uint value, uint index = 0);
+ uint AddTwoInts(uint x2, uint x1, uint index);
+ static uint AddVector(const uint * ss1, const uint * ss2, uint ss1_size, uint ss2_size, uint * result);
+ uint Sub(const UInt<value_size> & ss2, uint c=0);
+ uint SubInt(uint value, uint index = 0);
+ static uint SubVector(const uint * ss1, const uint * ss2, uint ss1_size, uint ss2_size, uint * result);
+ static sint FindLeadingBitInWord(uint x);
+ static sint FindLowestBitInWord(uint x);
+ static uint SetBitInWord(uint & value, uint bit);
+ static void MulTwoWords(uint a, uint b, uint * result_high, uint * result_low);
+ static void DivTwoWords(uint a,uint b, uint c, uint * r, uint * rest);
+
+};
+
+
+
+/*!
+ this specialization is needed in order to not confused the compiler "error: ISO C++ forbids zero-size array"
+ when compiling Mul3Big2() method
+*/
+template<>
+class UInt<0>
+{
+public:
+ uint table[1];
+
+ void Mul2Big(const UInt<0> &, UInt<0> &) { TTMATH_ASSERT(false) };
+ void SetZero() { TTMATH_ASSERT(false) };
+ uint AddTwoInts(uint, uint, uint) { TTMATH_ASSERT(false) return 0; };
+};
+
+
+} //namespace
+
+
+#include "ttmathuint_x86.h"
+#include "ttmathuint_x86_64.h"
+#include "ttmathuint_noasm.h"
+
+#endif
Added: sandbox/geometry/boost/geometry/extensions/contrib/ttmath/ttmathuint_noasm.h
==============================================================================
--- (empty file)
+++ sandbox/geometry/boost/geometry/extensions/contrib/ttmath/ttmathuint_noasm.h 2010-07-05 13:06:03 EDT (Mon, 05 Jul 2010)
@@ -0,0 +1,1013 @@
+/*
+ * This file is a part of TTMath Bignum Library
+ * and is distributed under the (new) BSD licence.
+ * Author: Tomasz Sowa <t.sowa_at_[hidden]>
+ */
+
+/*
+ * Copyright (c) 2006-2009, Tomasz Sowa
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are met:
+ *
+ * * Redistributions of source code must retain the above copyright notice,
+ * this list of conditions and the following disclaimer.
+ *
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * * Neither the name Tomasz Sowa nor the names of contributors to this
+ * project may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
+ * THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#ifndef headerfilettmathuint_noasm
+#define headerfilettmathuint_noasm
+
+
+#ifdef TTMATH_NOASM
+
+/*!
+ \file ttmathuint_noasm.h
+ \brief template class UInt<uint> with methods without any assembler code
+
+ this file is included at the end of ttmathuint.h
+*/
+
+
+namespace ttmath
+{
+
+ /*!
+ returning the string represents the currect type of the library
+ we have following types:
+ asm_vc_32 - with asm code designed for Microsoft Visual C++ (32 bits)
+ asm_gcc_32 - with asm code designed for GCC (32 bits)
+ asm_vc_64 - with asm for VC (64 bit)
+ asm_gcc_64 - with asm for GCC (64 bit)
+ no_asm_32 - pure C++ version (32 bit) - without any asm code
+ no_asm_64 - pure C++ version (64 bit) - without any asm code
+ */
+ template<uint value_size>
+ const char * UInt<value_size>::LibTypeStr()
+ {
+ #ifdef TTMATH_PLATFORM32
+ static const char info[] = "no_asm_32";
+ #endif
+
+ #ifdef TTMATH_PLATFORM64
+ static const char info[] = "no_asm_64";
+ #endif
+
+ return info;
+ }
+
+
+ /*!
+ returning the currect type of the library
+ */
+ template<uint value_size>
+ LibTypeCode UInt<value_size>::LibType()
+ {
+ #ifdef TTMATH_PLATFORM32
+ LibTypeCode info = no_asm_32;
+ #endif
+
+ #ifdef TTMATH_PLATFORM64
+ LibTypeCode info = no_asm_64;
+ #endif
+
+ return info;
+ }
+
+
+ /*!
+ this method adds two words together
+ returns carry
+
+ this method is created only when TTMATH_NOASM macro is defined
+ */
+ template<uint value_size>
+ uint UInt<value_size>::AddTwoWords(uint a, uint b, uint carry, uint * result)
+ {
+ uint temp;
+
+ if( carry == 0 )
+ {
+ temp = a + b;
+
+ if( temp < a )
+ carry = 1;
+ }
+ else
+ {
+ carry = 1;
+ temp = a + b + carry;
+
+ if( temp > a ) // !(temp<=a)
+ carry = 0;
+ }
+
+ *result = temp;
+
+ return carry;
+ }
+
+
+
+ /*!
+ this method adding ss2 to the this and adding carry if it's defined
+ (this = this + ss2 + c)
+
+ c must be zero or one (might be a bigger value than 1)
+ function returns carry (1) (if it was)
+ */
+
+ template<uint value_size>
+ uint UInt<value_size>::Add(const UInt<value_size> & ss2, uint c)
+ {
+ uint i;
+
+ for(i=0 ; i<value_size ; ++i)
+ c = AddTwoWords(table[i], ss2.table[i], c, &table[i]);
+
+ TTMATH_LOGC("UInt::Add", c)
+
+ return c;
+ }
+
+
+ /*!
+ this method adds one word (at a specific position)
+ and returns a carry (if it was)
+
+ if we've got (value_size=3):
+ table[0] = 10;
+ table[1] = 30;
+ table[2] = 5;
+ and we call:
+ AddInt(2,1)
+ then it'll be:
+ table[0] = 10;
+ table[1] = 30 + 2;
+ table[2] = 5;
+
+ of course if there was a carry from table[2] it would be returned
+ */
+ template<uint value_size>
+ uint UInt<value_size>::AddInt(uint value, uint index)
+ {
+ uint i, c;
+
+ TTMATH_ASSERT( index < value_size )
+
+
+ c = AddTwoWords(table[index], value, 0, &table[index]);
+
+ for(i=index+1 ; i<value_size && c ; ++i)
+ c = AddTwoWords(table[i], 0, c, &table[i]);
+
+ TTMATH_LOGC("UInt::AddInt", c)
+
+ return c;
+ }
+
+
+
+
+
+ /*!
+ this method adds only two unsigned words to the existing value
+ and these words begin on the 'index' position
+ (it's used in the multiplication algorithm 2)
+
+ index should be equal or smaller than value_size-2 (index <= value_size-2)
+ x1 - lower word, x2 - higher word
+
+ for example if we've got value_size equal 4 and:
+ table[0] = 3
+ table[1] = 4
+ table[2] = 5
+ table[3] = 6
+ then let
+ x1 = 10
+ x2 = 20
+ and
+ index = 1
+
+ the result of this method will be:
+ table[0] = 3
+ table[1] = 4 + x1 = 14
+ table[2] = 5 + x2 = 25
+ table[3] = 6
+
+ and no carry at the end of table[3]
+
+ (of course if there was a carry in table[2](5+20) then
+ this carry would be passed to the table[3] etc.)
+ */
+ template<uint value_size>
+ uint UInt<value_size>::AddTwoInts(uint x2, uint x1, uint index)
+ {
+ uint i, c;
+
+ TTMATH_ASSERT( index < value_size - 1 )
+
+
+ c = AddTwoWords(table[index], x1, 0, &table[index]);
+ c = AddTwoWords(table[index+1], x2, c, &table[index+1]);
+
+ for(i=index+2 ; i<value_size && c ; ++i)
+ c = AddTwoWords(table[i], 0, c, &table[i]);
+
+ TTMATH_LOGC("UInt::AddTwoInts", c)
+
+ return c;
+ }
+
+
+
+ /*!
+ this static method addes one vector to the other
+ 'ss1' is larger in size or equal to 'ss2'
+
+ ss1 points to the first (larger) vector
+ ss2 points to the second vector
+ ss1_size - size of the ss1 (and size of the result too)
+ ss2_size - size of the ss2
+ result - is the result vector (which has size the same as ss1: ss1_size)
+
+ Example: ss1_size is 5, ss2_size is 3
+ ss1: ss2: result (output):
+ 5 1 5+1
+ 4 3 4+3
+ 2 7 2+7
+ 6 6
+ 9 9
+ of course the carry is propagated and will be returned from the last item
+ (this method is used by the Karatsuba multiplication algorithm)
+ */
+ template<uint value_size>
+ uint UInt<value_size>::AddVector(const uint * ss1, const uint * ss2, uint ss1_size, uint ss2_size, uint * result)
+ {
+ uint i, c = 0;
+
+ TTMATH_ASSERT( ss1_size >= ss2_size )
+
+ for(i=0 ; i<ss2_size ; ++i)
+ c = AddTwoWords(ss1[i], ss2[i], c, &result[i]);
+
+ for( ; i<ss1_size ; ++i)
+ c = AddTwoWords(ss1[i], 0, c, &result[i]);
+
+ TTMATH_VECTOR_LOGC("UInt::AddVector", c, result, ss1_size)
+
+ return c;
+ }
+
+
+
+
+ /*!
+ this method subtractes one word from the other
+ returns carry
+
+ this method is created only when TTMATH_NOASM macro is defined
+ */
+ template<uint value_size>
+ uint UInt<value_size>::SubTwoWords(uint a, uint b, uint carry, uint * result)
+ {
+ if( carry == 0 )
+ {
+ *result = a - b;
+
+ if( a < b )
+ carry = 1;
+ }
+ else
+ {
+ carry = 1;
+ *result = a - b - carry;
+
+ if( a > b ) // !(a <= b )
+ carry = 0;
+ }
+
+ return carry;
+ }
+
+
+
+
+ /*!
+ this method's subtracting ss2 from the 'this' and subtracting
+ carry if it has been defined
+ (this = this - ss2 - c)
+
+ c must be zero or one (might be a bigger value than 1)
+ function returns carry (1) (if it was)
+ */
+ template<uint value_size>
+ uint UInt<value_size>::Sub(const UInt<value_size> & ss2, uint c)
+ {
+ uint i;
+
+ for(i=0 ; i<value_size ; ++i)
+ c = SubTwoWords(table[i], ss2.table[i], c, &table[i]);
+
+ TTMATH_LOGC("UInt::Sub", c)
+
+ return c;
+ }
+
+
+
+
+ /*!
+ this method subtracts one word (at a specific position)
+ and returns a carry (if it was)
+
+ if we've got (value_size=3):
+ table[0] = 10;
+ table[1] = 30;
+ table[2] = 5;
+ and we call:
+ SubInt(2,1)
+ then it'll be:
+ table[0] = 10;
+ table[1] = 30 - 2;
+ table[2] = 5;
+
+ of course if there was a carry from table[2] it would be returned
+ */
+ template<uint value_size>
+ uint UInt<value_size>::SubInt(uint value, uint index)
+ {
+ uint i, c;
+
+ TTMATH_ASSERT( index < value_size )
+
+
+ c = SubTwoWords(table[index], value, 0, &table[index]);
+
+ for(i=index+1 ; i<value_size && c ; ++i)
+ c = SubTwoWords(table[i], 0, c, &table[i]);
+
+ TTMATH_LOGC("UInt::SubInt", c)
+
+ return c;
+ }
+
+
+ /*!
+ this static method subtractes one vector from the other
+ 'ss1' is larger in size or equal to 'ss2'
+
+ ss1 points to the first (larger) vector
+ ss2 points to the second vector
+ ss1_size - size of the ss1 (and size of the result too)
+ ss2_size - size of the ss2
+ result - is the result vector (which has size the same as ss1: ss1_size)
+
+ Example: ss1_size is 5, ss2_size is 3
+ ss1: ss2: result (output):
+ 5 1 5-1
+ 4 3 4-3
+ 2 7 2-7
+ 6 6-1 (the borrow from previous item)
+ 9 9
+ return (carry): 0
+ of course the carry (borrow) is propagated and will be returned from the last item
+ (this method is used by the Karatsuba multiplication algorithm)
+ */
+ template<uint value_size>
+ uint UInt<value_size>::SubVector(const uint * ss1, const uint * ss2, uint ss1_size, uint ss2_size, uint * result)
+ {
+ uint i, c = 0;
+
+ TTMATH_ASSERT( ss1_size >= ss2_size )
+
+ for(i=0 ; i<ss2_size ; ++i)
+ c = SubTwoWords(ss1[i], ss2[i], c, &result[i]);
+
+ for( ; i<ss1_size ; ++i)
+ c = SubTwoWords(ss1[i], 0, c, &result[i]);
+
+ TTMATH_VECTOR_LOGC("UInt::SubVector", c, result, ss1_size)
+
+ return c;
+ }
+
+
+
+ /*!
+ this method moves all bits into the left hand side
+ return value <- this <- c
+
+ the lowest *bit* will be held the 'c' and
+ the state of one additional bit (on the left hand side)
+ will be returned
+
+ for example:
+ let this is 001010000
+ after Rcl2_one(1) there'll be 010100001 and Rcl2_one returns 0
+ */
+ template<uint value_size>
+ uint UInt<value_size>::Rcl2_one(uint c)
+ {
+ uint i, new_c;
+
+ if( c != 0 )
+ c = 1;
+
+ for(i=0 ; i<value_size ; ++i)
+ {
+ new_c = (table[i] & TTMATH_UINT_HIGHEST_BIT) ? 1 : 0;
+ table[i] = (table[i] << 1) | c;
+ c = new_c;
+ }
+
+ TTMATH_LOGC("UInt::Rcl2_one", c)
+
+ return c;
+ }
+
+
+
+
+
+
+
+ /*!
+ this method moves all bits into the right hand side
+ c -> this -> return value
+
+ the highest *bit* will be held the 'c' and
+ the state of one additional bit (on the right hand side)
+ will be returned
+
+ for example:
+ let this is 000000010
+ after Rcr2_one(1) there'll be 100000001 and Rcr2_one returns 0
+ */
+ template<uint value_size>
+ uint UInt<value_size>::Rcr2_one(uint c)
+ {
+ sint i; // signed i
+ uint new_c;
+
+ if( c != 0 )
+ c = TTMATH_UINT_HIGHEST_BIT;
+
+ for(i=sint(value_size)-1 ; i>=0 ; --i)
+ {
+ new_c = (table[i] & 1) ? TTMATH_UINT_HIGHEST_BIT : 0;
+ table[i] = (table[i] >> 1) | c;
+ c = new_c;
+ }
+
+ TTMATH_LOGC("UInt::Rcr2_one", c)
+
+ return c;
+ }
+
+
+
+
+ /*!
+ this method moves all bits into the left hand side
+ return value <- this <- c
+
+ the lowest *bits* will be held the 'c' and
+ the state of one additional bit (on the left hand side)
+ will be returned
+
+ for example:
+ let this is 001010000
+ after Rcl2(3, 1) there'll be 010000111 and Rcl2 returns 1
+ */
+ template<uint value_size>
+ uint UInt<value_size>::Rcl2(uint bits, uint c)
+ {
+ TTMATH_ASSERT( bits>0 && bits<TTMATH_BITS_PER_UINT )
+
+ uint move = TTMATH_BITS_PER_UINT - bits;
+ uint i, new_c;
+
+ if( c != 0 )
+ c = TTMATH_UINT_MAX_VALUE >> move;
+
+ for(i=0 ; i<value_size ; ++i)
+ {
+ new_c = table[i] >> move;
+ table[i] = (table[i] << bits) | c;
+ c = new_c;
+ }
+
+ TTMATH_LOGC("UInt::Rcl2", c)
+
+ return (c & 1);
+ }
+
+
+
+
+ /*!
+ this method moves all bits into the right hand side
+ C -> this -> return value
+
+ the highest *bits* will be held the 'c' and
+ the state of one additional bit (on the right hand side)
+ will be returned
+
+ for example:
+ let this is 000000010
+ after Rcr2(2, 1) there'll be 110000000 and Rcr2 returns 1
+ */
+ template<uint value_size>
+ uint UInt<value_size>::Rcr2(uint bits, uint c)
+ {
+ TTMATH_ASSERT( bits>0 && bits<TTMATH_BITS_PER_UINT )
+
+ uint move = TTMATH_BITS_PER_UINT - bits;
+ sint i; // signed
+ uint new_c;
+
+ if( c != 0 )
+ c = TTMATH_UINT_MAX_VALUE << move;
+
+ for(i=value_size-1 ; i>=0 ; --i)
+ {
+ new_c = table[i] << move;
+ table[i] = (table[i] >> bits) | c;
+ c = new_c;
+ }
+
+ TTMATH_LOGC("UInt::Rcr2", c)
+
+ return (c & TTMATH_UINT_HIGHEST_BIT) ? 1 : 0;
+ }
+
+
+
+
+ /*!
+ this method returns the number of the highest set bit in x
+ if the 'x' is zero this method returns '-1'
+ */
+ template<uint value_size>
+ sint UInt<value_size>::FindLeadingBitInWord(uint x)
+ {
+ if( x == 0 )
+ return -1;
+
+ uint bit = TTMATH_BITS_PER_UINT - 1;
+
+ while( (x & TTMATH_UINT_HIGHEST_BIT) == 0 )
+ {
+ x = x << 1;
+ --bit;
+ }
+
+ return bit;
+ }
+
+
+
+ /*!
+ this method returns the number of the highest set bit in x
+ if the 'x' is zero this method returns '-1'
+ */
+ template<uint value_size>
+ sint UInt<value_size>::FindLowestBitInWord(uint x)
+ {
+ if( x == 0 )
+ return -1;
+
+ uint bit = 0;
+
+ while( (x & 1) == 0 )
+ {
+ x = x >> 1;
+ ++bit;
+ }
+
+ return bit;
+ }
+
+
+
+ /*!
+ this method sets a special bit in the 'value'
+ and returns the last state of the bit (zero or one)
+
+ bit is from <0,TTMATH_BITS_PER_UINT-1>
+
+ e.g.
+ uint x = 100;
+ uint bit = SetBitInWord(x, 3);
+ now: x = 108 and bit = 0
+ */
+ template<uint value_size>
+ uint UInt<value_size>::SetBitInWord(uint & value, uint bit)
+ {
+ TTMATH_ASSERT( bit < TTMATH_BITS_PER_UINT )
+
+ uint mask = 1;
+
+ if( bit > 0 )
+ mask = mask << bit;
+
+ uint last = value & mask;
+ value = value | mask;
+
+ return (last != 0) ? 1 : 0;
+ }
+
+
+
+
+
+
+ /*!
+ *
+ * Multiplication
+ *
+ *
+ */
+
+
+ /*!
+ multiplication: result_high:result_low = a * b
+ result_high - higher word of the result
+ result_low - lower word of the result
+
+ this methos never returns a carry
+ this method is used in the second version of the multiplication algorithms
+ */
+ template<uint value_size>
+ void UInt<value_size>::MulTwoWords(uint a, uint b, uint * result_high, uint * result_low)
+ {
+ #ifdef TTMATH_PLATFORM32
+
+ /*
+ on 32bit platforms we have defined 'unsigned long long int' type known as 'ulint' in ttmath namespace
+ this type has 64 bits, then we're using only one multiplication: 32bit * 32bit = 64bit
+ */
+
+ union uint_
+ {
+ struct
+ {
+ uint low; // 32 bits
+ uint high; // 32 bits
+ } u_;
+
+ ulint u; // 64 bits
+ } res;
+
+ res.u = ulint(a) * ulint(b); // multiply two 32bit words, the result has 64 bits
+
+ *result_high = res.u_.high;
+ *result_low = res.u_.low;
+
+ #else
+
+ /*
+ 64 bits platforms
+
+ we don't have a native type which has 128 bits
+ then we're splitting 'a' and 'b' to 4 parts (high and low halves)
+ and using 4 multiplications (with additions and carry correctness)
+ */
+
+ uint_ a_;
+ uint_ b_;
+ uint_ res_high1, res_high2;
+ uint_ res_low1, res_low2;
+
+ a_.u = a;
+ b_.u = b;
+
+ /*
+ the multiplication is as follows (schoolbook algorithm with O(n^2) ):
+
+ 32 bits 32 bits
+
+ +--------------------------------+
+ | a_.u_.high | a_.u_.low |
+ +--------------------------------+
+ | b_.u_.high | b_.u_.low |
+ +--------------------------------+--------------------------------+
+ | res_high1.u | res_low1.u |
+ +--------------------------------+--------------------------------+
+ | res_high2.u | res_low2.u |
+ +--------------------------------+--------------------------------+
+
+ 64 bits 64 bits
+ */
+
+
+ uint_ temp;
+
+ res_low1.u = uint(b_.u_.low) * uint(a_.u_.low);
+
+ temp.u = uint(res_low1.u_.high) + uint(b_.u_.low) * uint(a_.u_.high);
+ res_low1.u_.high = temp.u_.low;
+ res_high1.u_.low = temp.u_.high;
+ res_high1.u_.high = 0;
+
+ res_low2.u_.low = 0;
+ temp.u = uint(b_.u_.high) * uint(a_.u_.low);
+ res_low2.u_.high = temp.u_.low;
+
+ res_high2.u = uint(b_.u_.high) * uint(a_.u_.high) + uint(temp.u_.high);
+
+ uint c = AddTwoWords(res_low1.u, res_low2.u, 0, &res_low2.u);
+ AddTwoWords(res_high1.u, res_high2.u, c, &res_high2.u); // there is no carry from here
+
+ *result_high = res_high2.u;
+ *result_low = res_low2.u;
+
+ #endif
+ }
+
+
+
+
+ /*!
+ *
+ * Division
+ *
+ *
+ */
+
+
+ /*!
+ this method calculates 64bits word a:b / 32bits c (a higher, b lower word)
+ r = a:b / c and rest - remainder
+
+ *
+ * WARNING:
+ * the c has to be suitably large for the result being keeped in one word,
+ * if c is equal zero there'll be a hardware interruption (0)
+ * and probably the end of your program
+ *
+ */
+ template<uint value_size>
+ void UInt<value_size>::DivTwoWords(uint a, uint b, uint c, uint * r, uint * rest)
+ {
+ // (a < c ) for the result to be one word
+ TTMATH_ASSERT( c != 0 && a < c )
+
+ #ifdef TTMATH_PLATFORM32
+
+ union
+ {
+ struct
+ {
+ uint low; // 32 bits
+ uint high; // 32 bits
+ } u_;
+
+ ulint u; // 64 bits
+ } ab;
+
+ ab.u_.high = a;
+ ab.u_.low = b;
+
+ *r = uint(ab.u / c);
+ *rest = uint(ab.u % c);
+
+ #else
+
+ uint_ c_;
+ c_.u = c;
+
+
+ if( a == 0 )
+ {
+ *r = b / c;
+ *rest = b % c;
+ }
+ else
+ if( c_.u_.high == 0 )
+ {
+ // higher half of 'c' is zero
+ // then higher half of 'a' is zero too (look at the asserts at the beginning - 'a' is smaller than 'c')
+ uint_ a_, b_, res_, temp1, temp2;
+
+ a_.u = a;
+ b_.u = b;
+
+ temp1.u_.high = a_.u_.low;
+ temp1.u_.low = b_.u_.high;
+
+ res_.u_.high = (unsigned int)(temp1.u / c);
+ temp2.u_.high = (unsigned int)(temp1.u % c);
+ temp2.u_.low = b_.u_.low;
+
+ res_.u_.low = (unsigned int)(temp2.u / c);
+ *rest = temp2.u % c;
+
+ *r = res_.u;
+ }
+ else
+ {
+ return DivTwoWords2(a, b, c, r, rest);
+ }
+
+ #endif
+ }
+
+
+#ifdef TTMATH_PLATFORM64
+
+
+ /*!
+ this method is available only on 64bit platforms
+
+ the same algorithm like the third division algorithm in ttmathuint.h
+ but now with the radix=2^32
+ */
+ template<uint value_size>
+ void UInt<value_size>::DivTwoWords2(uint a, uint b, uint c, uint * r, uint * rest)
+ {
+ // a is not zero
+ // c_.u_.high is not zero
+
+ uint_ a_, b_, c_, u_, q_;
+ unsigned int u3; // 32 bit
+
+ a_.u = a;
+ b_.u = b;
+ c_.u = c;
+
+ // normalizing
+ uint d = DivTwoWordsNormalize(a_, b_, c_);
+
+ // loop from j=1 to j=0
+ // the first step (for j=2) is skipped because our result is only in one word,
+ // (first 'q' were 0 and nothing would be changed)
+ u_.u_.high = a_.u_.high;
+ u_.u_.low = a_.u_.low;
+ u3 = b_.u_.high;
+ q_.u_.high = DivTwoWordsCalculate(u_, u3, c_);
+ MultiplySubtract(u_, u3, q_.u_.high, c_);
+
+ u_.u_.high = u_.u_.low;
+ u_.u_.low = u3;
+ u3 = b_.u_.low;
+ q_.u_.low = DivTwoWordsCalculate(u_, u3, c_);
+ MultiplySubtract(u_, u3, q_.u_.low, c_);
+
+ *r = q_.u;
+
+ // unnormalizing for the remainder
+ u_.u_.high = u_.u_.low;
+ u_.u_.low = u3;
+ *rest = DivTwoWordsUnnormalize(u_.u, d);
+ }
+
+
+
+
+ template<uint value_size>
+ uint UInt<value_size>::DivTwoWordsNormalize(uint_ & a_, uint_ & b_, uint_ & c_)
+ {
+ uint d = 0;
+
+ for( ; (c_.u & TTMATH_UINT_HIGHEST_BIT) == 0 ; ++d )
+ {
+ c_.u = c_.u << 1;
+
+ uint bc = b_.u & TTMATH_UINT_HIGHEST_BIT; // carry from 'b'
+
+ b_.u = b_.u << 1;
+ a_.u = a_.u << 1; // carry bits from 'a' are simply skipped
+
+ if( bc )
+ a_.u = a_.u | 1;
+ }
+
+ return d;
+ }
+
+
+ template<uint value_size>
+ uint UInt<value_size>::DivTwoWordsUnnormalize(uint u, uint d)
+ {
+ if( d == 0 )
+ return u;
+
+ u = u >> d;
+
+ return u;
+ }
+
+
+ template<uint value_size>
+ unsigned int UInt<value_size>::DivTwoWordsCalculate(uint_ u_, unsigned int u3, uint_ v_)
+ {
+ bool next_test;
+ uint_ qp_, rp_, temp_;
+
+ qp_.u = u_.u / uint(v_.u_.high);
+ rp_.u = u_.u % uint(v_.u_.high);
+
+ TTMATH_ASSERT( qp_.u_.high==0 || qp_.u_.high==1 )
+
+ do
+ {
+ bool decrease = false;
+
+ if( qp_.u_.high == 1 )
+ decrease = true;
+ else
+ {
+ temp_.u_.high = rp_.u_.low;
+ temp_.u_.low = u3;
+
+ if( qp_.u * uint(v_.u_.low) > temp_.u )
+ decrease = true;
+ }
+
+ next_test = false;
+
+ if( decrease )
+ {
+ --qp_.u;
+ rp_.u += v_.u_.high;
+
+ if( rp_.u_.high == 0 )
+ next_test = true;
+ }
+ }
+ while( next_test );
+
+ return qp_.u_.low;
+ }
+
+
+ template<uint value_size>
+ void UInt<value_size>::MultiplySubtract(uint_ & u_, unsigned int & u3, unsigned int & q, uint_ v_)
+ {
+ uint_ temp_;
+
+ uint res_high;
+ uint res_low;
+
+ MulTwoWords(v_.u, q, &res_high, &res_low);
+
+ uint_ sub_res_high_;
+ uint_ sub_res_low_;
+
+ temp_.u_.high = u_.u_.low;
+ temp_.u_.low = u3;
+
+ uint c = SubTwoWords(temp_.u, res_low, 0, &sub_res_low_.u);
+
+ temp_.u_.high = 0;
+ temp_.u_.low = u_.u_.high;
+ c = SubTwoWords(temp_.u, res_high, c, &sub_res_high_.u);
+
+ if( c )
+ {
+ --q;
+
+ c = AddTwoWords(sub_res_low_.u, v_.u, 0, &sub_res_low_.u);
+ AddTwoWords(sub_res_high_.u, 0, c, &sub_res_high_.u);
+ }
+
+ u_.u_.high = sub_res_high_.u_.low;
+ u_.u_.low = sub_res_low_.u_.high;
+ u3 = sub_res_low_.u_.low;
+ }
+
+#endif // #ifdef TTMATH_PLATFORM64
+
+
+
+} //namespace
+
+
+#endif //ifdef TTMATH_NOASM
+#endif
+
+
+
+
Added: sandbox/geometry/boost/geometry/extensions/contrib/ttmath/ttmathuint_x86.h
==============================================================================
--- (empty file)
+++ sandbox/geometry/boost/geometry/extensions/contrib/ttmath/ttmathuint_x86.h 2010-07-05 13:06:03 EDT (Mon, 05 Jul 2010)
@@ -0,0 +1,1602 @@
+/*
+ * This file is a part of TTMath Bignum Library
+ * and is distributed under the (new) BSD licence.
+ * Author: Tomasz Sowa <t.sowa_at_[hidden]>
+ */
+
+/*
+ * Copyright (c) 2006-2009, Tomasz Sowa
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are met:
+ *
+ * * Redistributions of source code must retain the above copyright notice,
+ * this list of conditions and the following disclaimer.
+ *
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * * Neither the name Tomasz Sowa nor the names of contributors to this
+ * project may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
+ * THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+
+
+#ifndef headerfilettmathuint_x86
+#define headerfilettmathuint_x86
+
+
+#ifndef TTMATH_NOASM
+#ifdef TTMATH_PLATFORM32
+
+
+/*!
+ \file ttmathuint_x86.h
+ \brief template class UInt<uint> with assembler code for 32bit x86 processors
+
+ this file is included at the end of ttmathuint.h
+*/
+
+
+
+/*!
+ \brief a namespace for the TTMath library
+*/
+namespace ttmath
+{
+
+ /*!
+ returning the string represents the currect type of the library
+ we have following types:
+ asm_vc_32 - with asm code designed for Microsoft Visual C++ (32 bits)
+ asm_gcc_32 - with asm code designed for GCC (32 bits)
+ asm_vc_64 - with asm for VC (64 bit)
+ asm_gcc_64 - with asm for GCC (64 bit)
+ no_asm_32 - pure C++ version (32 bit) - without any asm code
+ no_asm_64 - pure C++ version (64 bit) - without any asm code
+ */
+ template<uint value_size>
+ const char * UInt<value_size>::LibTypeStr()
+ {
+ #ifndef __GNUC__
+ static const char info[] = "asm_vc_32";
+ #endif
+
+ #ifdef __GNUC__
+ static const char info[] = "asm_gcc_32";
+ #endif
+
+ return info;
+ }
+
+
+ /*!
+ returning the currect type of the library
+ */
+ template<uint value_size>
+ LibTypeCode UInt<value_size>::LibType()
+ {
+ #ifndef __GNUC__
+ LibTypeCode info = asm_vc_32;
+ #endif
+
+ #ifdef __GNUC__
+ LibTypeCode info = asm_gcc_32;
+ #endif
+
+ return info;
+ }
+
+
+
+ /*!
+ *
+ * basic mathematic functions
+ *
+ */
+
+
+ /*!
+ adding ss2 to the this and adding carry if it's defined
+ (this = this + ss2 + c)
+
+ c must be zero or one (might be a bigger value than 1)
+ function returns carry (1) (if it has been)
+ */
+ template<uint value_size>
+ uint UInt<value_size>::Add(const UInt<value_size> & ss2, uint c)
+ {
+ uint b = value_size;
+ uint * p1 = table;
+ uint * p2 = const_cast<uint*>(ss2.table);
+
+ // we don't have to use TTMATH_REFERENCE_ASSERT here
+ // this algorithm doesn't require it
+
+ #ifndef __GNUC__
+
+ // this part might be compiled with for example visual c
+
+ __asm
+ {
+ push eax
+ push ebx
+ push ecx
+ push edx
+ push esi
+
+ mov ecx,[b]
+
+ mov ebx,[p1]
+ mov esi,[p2]
+
+ xor edx,edx // edx=0
+ mov eax,[c]
+ neg eax // CF=1 if rax!=0 , CF=0 if rax==0
+
+ ttmath_loop:
+ mov eax,[esi+edx*4]
+ adc [ebx+edx*4],eax
+
+ inc edx
+ dec ecx
+ jnz ttmath_loop
+
+ adc ecx, ecx
+ mov [c], ecx
+
+ pop esi
+ pop edx
+ pop ecx
+ pop ebx
+ pop eax
+ }
+
+
+
+ #endif
+
+
+ #ifdef __GNUC__
+ uint dummy, dummy2;
+ // this part should be compiled with gcc
+
+ __asm__ __volatile__(
+
+ "xorl %%edx, %%edx \n"
+ "negl %%eax \n" // CF=1 if rax!=0 , CF=0 if rax==0
+
+ "1: \n"
+ "movl (%%esi,%%edx,4), %%eax \n"
+ "adcl %%eax, (%%ebx,%%edx,4) \n"
+
+ "incl %%edx \n"
+ "decl %%ecx \n"
+ "jnz 1b \n"
+
+ "adc %%ecx, %%ecx \n"
+
+ : "=c" (c), "=a" (dummy), "=d" (dummy2)
+ : "0" (b), "1" (c), "b" (p1), "S" (p2)
+ : "cc", "memory" );
+ #endif
+
+ TTMATH_LOGC("UInt::Add", c)
+
+ return c;
+ }
+
+
+
+ /*!
+ adding one word (at a specific position)
+ and returning a carry (if it has been)
+
+ e.g.
+
+ if we've got (value_size=3):
+ table[0] = 10;
+ table[1] = 30;
+ table[2] = 5;
+ and we call:
+ AddInt(2,1)
+ then it'll be:
+ table[0] = 10;
+ table[1] = 30 + 2;
+ table[2] = 5;
+
+ of course if there was a carry from table[2] it would be returned
+ */
+ template<uint value_size>
+ uint UInt<value_size>::AddInt(uint value, uint index)
+ {
+ uint b = value_size;
+ uint * p1 = table;
+ uint c;
+
+ TTMATH_ASSERT( index < value_size )
+
+ #ifndef __GNUC__
+
+ __asm
+ {
+ push eax
+ push ebx
+ push ecx
+ push edx
+
+ mov ecx, [b]
+ sub ecx, [index]
+
+ mov edx, [index]
+ mov ebx, [p1]
+
+ mov eax, [value]
+
+ ttmath_loop:
+ add [ebx+edx*4], eax
+ jnc ttmath_end
+
+ mov eax, 1
+ inc edx
+ dec ecx
+ jnz ttmath_loop
+
+ ttmath_end:
+ setc al
+ movzx edx, al
+ mov [c], edx
+
+ pop edx
+ pop ecx
+ pop ebx
+ pop eax
+ }
+
+ #endif
+
+
+ #ifdef __GNUC__
+ uint dummy, dummy2;
+
+ __asm__ __volatile__(
+
+ "subl %%edx, %%ecx \n"
+
+ "1: \n"
+ "addl %%eax, (%%ebx,%%edx,4) \n"
+ "jnc 2f \n"
+
+ "movl $1, %%eax \n"
+ "incl %%edx \n"
+ "decl %%ecx \n"
+ "jnz 1b \n"
+
+ "2: \n"
+ "setc %%al \n"
+ "movzx %%al, %%edx \n"
+
+ : "=d" (c), "=a" (dummy), "=c" (dummy2)
+ : "0" (index), "1" (value), "2" (b), "b" (p1)
+ : "cc", "memory" );
+
+ #endif
+
+ TTMATH_LOGC("UInt::AddInt", c)
+
+ return c;
+ }
+
+
+
+
+ /*!
+ adding only two unsigned words to the existing value
+ and these words begin on the 'index' position
+ (it's used in the multiplication algorithm 2)
+
+ index should be equal or smaller than value_size-2 (index <= value_size-2)
+ x1 - lower word, x2 - higher word
+
+ for example if we've got value_size equal 4 and:
+ table[0] = 3
+ table[1] = 4
+ table[2] = 5
+ table[3] = 6
+ then let
+ x1 = 10
+ x2 = 20
+ and
+ index = 1
+
+ the result of this method will be:
+ table[0] = 3
+ table[1] = 4 + x1 = 14
+ table[2] = 5 + x2 = 25
+ table[3] = 6
+
+ and no carry at the end of table[3]
+
+ (of course if there was a carry in table[2](5+20) then
+ this carry would be passed to the table[3] etc.)
+ */
+ template<uint value_size>
+ uint UInt<value_size>::AddTwoInts(uint x2, uint x1, uint index)
+ {
+ uint b = value_size;
+ uint * p1 = table;
+ uint c;
+
+ TTMATH_ASSERT( index < value_size - 1 )
+
+ #ifndef __GNUC__
+ __asm
+ {
+ push eax
+ push ebx
+ push ecx
+ push edx
+
+ mov ecx, [b]
+ sub ecx, [index]
+
+ mov ebx, [p1]
+ mov edx, [index]
+
+ mov eax, [x1]
+ add [ebx+edx*4], eax
+ inc edx
+ dec ecx
+
+ mov eax, [x2]
+
+ ttmath_loop:
+ adc [ebx+edx*4], eax
+ jnc ttmath_end
+
+ mov eax, 0
+ inc edx
+ dec ecx
+ jnz ttmath_loop
+
+ ttmath_end:
+ setc al
+ movzx edx, al
+ mov [c], edx
+
+ pop edx
+ pop ecx
+ pop ebx
+ pop eax
+
+ }
+ #endif
+
+
+ #ifdef __GNUC__
+ uint dummy, dummy2;
+
+ __asm__ __volatile__(
+
+ "subl %%edx, %%ecx \n"
+
+ "addl %%esi, (%%ebx,%%edx,4) \n"
+ "incl %%edx \n"
+ "decl %%ecx \n"
+
+ "1: \n"
+ "adcl %%eax, (%%ebx,%%edx,4) \n"
+ "jnc 2f \n"
+
+ "mov $0, %%eax \n"
+ "incl %%edx \n"
+ "decl %%ecx \n"
+ "jnz 1b \n"
+
+ "2: \n"
+ "setc %%al \n"
+ "movzx %%al, %%eax \n"
+
+ : "=a" (c), "=c" (dummy), "=d" (dummy2)
+ : "0" (x2), "1" (b), "2" (index), "b" (p1), "S" (x1)
+ : "cc", "memory" );
+
+ #endif
+
+ TTMATH_LOGC("UInt::AddTwoInts", c)
+
+ return c;
+ }
+
+
+
+ /*!
+ this static method addes one vector to the other
+ 'ss1' is larger in size or equal to 'ss2'
+
+ ss1 points to the first (larger) vector
+ ss2 points to the second vector
+ ss1_size - size of the ss1 (and size of the result too)
+ ss2_size - size of the ss2
+ result - is the result vector (which has size the same as ss1: ss1_size)
+
+ Example: ss1_size is 5, ss2_size is 3
+ ss1: ss2: result (output):
+ 5 1 5+1
+ 4 3 4+3
+ 2 7 2+7
+ 6 6
+ 9 9
+ of course the carry is propagated and will be returned from the last item
+ (this method is used by the Karatsuba multiplication algorithm)
+ */
+ template<uint value_size>
+ uint UInt<value_size>::AddVector(const uint * ss1, const uint * ss2, uint ss1_size, uint ss2_size, uint * result)
+ {
+ TTMATH_ASSERT( ss1_size >= ss2_size )
+
+ uint rest = ss1_size - ss2_size;
+ uint c;
+
+ #ifndef __GNUC__
+
+ // this part might be compiled with for example visual c
+ __asm
+ {
+ pushad
+
+ mov ecx, [ss2_size]
+ xor edx, edx // edx = 0, cf = 0
+
+ mov esi, [ss1]
+ mov ebx, [ss2]
+ mov edi, [result]
+
+ ttmath_loop:
+ mov eax, [esi+edx*4]
+ adc eax, [ebx+edx*4]
+ mov [edi+edx*4], eax
+
+ inc edx
+ dec ecx
+ jnz ttmath_loop
+
+ adc ecx, ecx // ecx has the cf state
+
+ mov ebx, [rest]
+ or ebx, ebx
+ jz ttmath_end
+
+ xor ebx, ebx // ebx = 0
+ neg ecx // setting cf from ecx
+ mov ecx, [rest] // ecx is != 0
+
+ ttmath_loop2:
+ mov eax, [esi+edx*4]
+ adc eax, ebx
+ mov [edi+edx*4], eax
+
+ inc edx
+ dec ecx
+ jnz ttmath_loop2
+
+ adc ecx, ecx
+
+ ttmath_end:
+ mov [c], ecx
+
+ popad
+ }
+
+ #endif
+
+
+ #ifdef __GNUC__
+
+ // this part should be compiled with gcc
+ uint dummy1, dummy2, dummy3;
+
+ __asm__ __volatile__(
+ "push %%edx \n"
+ "xor %%edx, %%edx \n" // edx = 0, cf = 0
+ "1: \n"
+ "mov (%%esi,%%edx,4), %%eax \n"
+ "adc (%%ebx,%%edx,4), %%eax \n"
+ "mov %%eax, (%%edi,%%edx,4) \n"
+
+ "inc %%edx \n"
+ "dec %%ecx \n"
+ "jnz 1b \n"
+
+ "adc %%ecx, %%ecx \n" // ecx has the cf state
+ "pop %%eax \n" // eax = rest
+
+ "or %%eax, %%eax \n"
+ "jz 3f \n"
+
+ "xor %%ebx, %%ebx \n" // ebx = 0
+ "neg %%ecx \n" // setting cf from ecx
+ "mov %%eax, %%ecx \n" // ecx=rest and is != 0
+ "2: \n"
+ "mov (%%esi, %%edx, 4), %%eax \n"
+ "adc %%ebx, %%eax \n"
+ "mov %%eax, (%%edi, %%edx, 4) \n"
+
+ "inc %%edx \n"
+ "dec %%ecx \n"
+ "jnz 2b \n"
+
+ "adc %%ecx, %%ecx \n"
+ "3: \n"
+
+ : "=a" (dummy1), "=b" (dummy2), "=c" (c), "=d" (dummy3)
+ : "1" (ss2), "2" (ss2_size), "3" (rest), "S" (ss1), "D" (result)
+ : "cc", "memory" );
+
+ #endif
+
+ TTMATH_VECTOR_LOGC("UInt::AddVector", c, result, ss1_size)
+
+ return c;
+ }
+
+
+ /*!
+ subtracting ss2 from the 'this' and subtracting
+ carry if it has been defined
+ (this = this - ss2 - c)
+
+ c must be zero or one (might be a bigger value than 1)
+ function returns carry (1) (if it has been)
+ */
+ template<uint value_size>
+ uint UInt<value_size>::Sub(const UInt<value_size> & ss2, uint c)
+ {
+ uint b = value_size;
+ uint * p1 = table;
+ uint * p2 = const_cast<uint*>(ss2.table);
+
+ // we don't have to use TTMATH_REFERENCE_ASSERT here
+ // this algorithm doesn't require it
+
+ #ifndef __GNUC__
+
+ __asm
+ {
+ push eax
+ push ebx
+ push ecx
+ push edx
+ push esi
+
+ mov ecx,[b]
+
+ mov ebx,[p1]
+ mov esi,[p2]
+
+ xor edx,edx // edx=0
+ mov eax,[c]
+ neg eax // CF=1 if rax!=0 , CF=0 if rax==0
+
+ ttmath_loop:
+ mov eax,[esi+edx*4]
+ sbb [ebx+edx*4],eax
+
+ inc edx
+ dec ecx
+ jnz ttmath_loop
+
+ adc ecx, ecx
+ mov [c], ecx
+
+ pop esi
+ pop edx
+ pop ecx
+ pop ebx
+ pop eax
+ }
+
+ #endif
+
+
+ #ifdef __GNUC__
+ uint dummy, dummy2;
+
+ __asm__ __volatile__(
+
+ "xorl %%edx, %%edx \n"
+ "negl %%eax \n" // CF=1 if rax!=0 , CF=0 if rax==0
+
+ "1: \n"
+ "movl (%%esi,%%edx,4), %%eax \n"
+ "sbbl %%eax, (%%ebx,%%edx,4) \n"
+
+ "incl %%edx \n"
+ "decl %%ecx \n"
+ "jnz 1b \n"
+
+ "adc %%ecx, %%ecx \n"
+
+ : "=c" (c), "=a" (dummy), "=d" (dummy2)
+ : "0" (b), "1" (c), "b" (p1), "S" (p2)
+ : "cc", "memory" );
+
+ #endif
+
+ TTMATH_LOGC("UInt::Sub", c)
+
+ return c;
+ }
+
+
+
+
+ /*!
+ this method subtracts one word (at a specific position)
+ and returns a carry (if it was)
+
+ e.g.
+
+ if we've got (value_size=3):
+ table[0] = 10;
+ table[1] = 30;
+ table[2] = 5;
+ and we call:
+ SubInt(2,1)
+ then it'll be:
+ table[0] = 10;
+ table[1] = 30 - 2;
+ table[2] = 5;
+
+ of course if there was a carry from table[2] it would be returned
+ */
+ template<uint value_size>
+ uint UInt<value_size>::SubInt(uint value, uint index)
+ {
+ uint b = value_size;
+ uint * p1 = table;
+ uint c;
+
+ TTMATH_ASSERT( index < value_size )
+
+ #ifndef __GNUC__
+
+ __asm
+ {
+ push eax
+ push ebx
+ push ecx
+ push edx
+
+ mov ecx, [b]
+ sub ecx, [index]
+
+ mov edx, [index]
+ mov ebx, [p1]
+
+ mov eax, [value]
+
+ ttmath_loop:
+ sub [ebx+edx*4], eax
+ jnc ttmath_end
+
+ mov eax, 1
+ inc edx
+ dec ecx
+ jnz ttmath_loop
+
+ ttmath_end:
+ setc al
+ movzx edx, al
+ mov [c], edx
+
+ pop edx
+ pop ecx
+ pop ebx
+ pop eax
+ }
+
+ #endif
+
+
+ #ifdef __GNUC__
+ uint dummy, dummy2;
+
+ __asm__ __volatile__(
+
+ "subl %%edx, %%ecx \n"
+
+ "1: \n"
+ "subl %%eax, (%%ebx,%%edx,4) \n"
+ "jnc 2f \n"
+
+ "movl $1, %%eax \n"
+ "incl %%edx \n"
+ "decl %%ecx \n"
+ "jnz 1b \n"
+
+ "2: \n"
+ "setc %%al \n"
+ "movzx %%al, %%edx \n"
+
+ : "=d" (c), "=a" (dummy), "=c" (dummy2)
+ : "0" (index), "1" (value), "2" (b), "b" (p1)
+ : "cc", "memory" );
+
+ #endif
+
+ TTMATH_LOGC("UInt::SubInt", c)
+
+ return c;
+ }
+
+
+
+ /*!
+ this static method subtractes one vector from the other
+ 'ss1' is larger in size or equal to 'ss2'
+
+ ss1 points to the first (larger) vector
+ ss2 points to the second vector
+ ss1_size - size of the ss1 (and size of the result too)
+ ss2_size - size of the ss2
+ result - is the result vector (which has size the same as ss1: ss1_size)
+
+ Example: ss1_size is 5, ss2_size is 3
+ ss1: ss2: result (output):
+ 5 1 5-1
+ 4 3 4-3
+ 2 7 2-7
+ 6 6-1 (the borrow from previous item)
+ 9 9
+ return (carry): 0
+ of course the carry (borrow) is propagated and will be returned from the last item
+ (this method is used by the Karatsuba multiplication algorithm)
+ */
+ template<uint value_size>
+ uint UInt<value_size>::SubVector(const uint * ss1, const uint * ss2, uint ss1_size, uint ss2_size, uint * result)
+ {
+ TTMATH_ASSERT( ss1_size >= ss2_size )
+
+ uint rest = ss1_size - ss2_size;
+ uint c;
+
+ #ifndef __GNUC__
+
+ // this part might be compiled with for example visual c
+
+ /*
+ the asm code is nearly the same as in AddVector
+ only two instructions 'adc' are changed to 'sbb'
+ */
+ __asm
+ {
+ pushad
+
+ mov ecx, [ss2_size]
+ xor edx, edx // edx = 0, cf = 0
+
+ mov esi, [ss1]
+ mov ebx, [ss2]
+ mov edi, [result]
+
+ ttmath_loop:
+ mov eax, [esi+edx*4]
+ sbb eax, [ebx+edx*4]
+ mov [edi+edx*4], eax
+
+ inc edx
+ dec ecx
+ jnz ttmath_loop
+
+ adc ecx, ecx // ecx has the cf state
+
+ mov ebx, [rest]
+ or ebx, ebx
+ jz ttmath_end
+
+ xor ebx, ebx // ebx = 0
+ neg ecx // setting cf from ecx
+ mov ecx, [rest] // ecx is != 0
+
+ ttmath_loop2:
+ mov eax, [esi+edx*4]
+ sbb eax, ebx
+ mov [edi+edx*4], eax
+
+ inc edx
+ dec ecx
+ jnz ttmath_loop2
+
+ adc ecx, ecx
+
+ ttmath_end:
+ mov [c], ecx
+
+ popad
+ }
+
+ #endif
+
+
+ #ifdef __GNUC__
+
+ // this part should be compiled with gcc
+ uint dummy1, dummy2, dummy3;
+
+ __asm__ __volatile__(
+ "push %%edx \n"
+ "xor %%edx, %%edx \n" // edx = 0, cf = 0
+ "1: \n"
+ "mov (%%esi,%%edx,4), %%eax \n"
+ "sbb (%%ebx,%%edx,4), %%eax \n"
+ "mov %%eax, (%%edi,%%edx,4) \n"
+
+ "inc %%edx \n"
+ "dec %%ecx \n"
+ "jnz 1b \n"
+
+ "adc %%ecx, %%ecx \n" // ecx has the cf state
+ "pop %%eax \n" // eax = rest
+
+ "or %%eax, %%eax \n"
+ "jz 3f \n"
+
+ "xor %%ebx, %%ebx \n" // ebx = 0
+ "neg %%ecx \n" // setting cf from ecx
+ "mov %%eax, %%ecx \n" // ecx=rest and is != 0
+ "2: \n"
+ "mov (%%esi, %%edx, 4), %%eax \n"
+ "sbb %%ebx, %%eax \n"
+ "mov %%eax, (%%edi, %%edx, 4) \n"
+
+ "inc %%edx \n"
+ "dec %%ecx \n"
+ "jnz 2b \n"
+
+ "adc %%ecx, %%ecx \n"
+ "3: \n"
+
+ : "=a" (dummy1), "=b" (dummy2), "=c" (c), "=d" (dummy3)
+ : "1" (ss2), "2" (ss2_size), "3" (rest), "S" (ss1), "D" (result)
+ : "cc", "memory" );
+
+ #endif
+
+ TTMATH_VECTOR_LOGC("UInt::SubVector", c, result, ss1_size)
+
+ return c;
+ }
+
+
+
+ /*!
+ this method moves all bits into the left hand side
+ return value <- this <- c
+
+ the lowest *bit* will be held the 'c' and
+ the state of one additional bit (on the left hand side)
+ will be returned
+
+ for example:
+ let this is 001010000
+ after Rcl2_one(1) there'll be 010100001 and Rcl2_one returns 0
+ */
+ template<uint value_size>
+ uint UInt<value_size>::Rcl2_one(uint c)
+ {
+ uint b = value_size;
+ uint * p1 = table;
+
+ #ifndef __GNUC__
+ __asm
+ {
+ push ebx
+ push ecx
+ push edx
+
+ mov ebx, [p1]
+ xor edx, edx
+ mov ecx, [c]
+ neg ecx
+ mov ecx, [b]
+
+ ttmath_loop:
+ rcl dword ptr [ebx+edx*4], 1
+
+ inc edx
+ dec ecx
+ jnz ttmath_loop
+
+ adc ecx, ecx
+ mov [c], ecx
+
+ pop edx
+ pop ecx
+ pop ebx
+ }
+ #endif
+
+
+ #ifdef __GNUC__
+ uint dummy, dummy2;
+
+ __asm__ __volatile__(
+
+ "xorl %%edx, %%edx \n" // edx=0
+ "negl %%eax \n" // CF=1 if eax!=0 , CF=0 if eax==0
+
+ "1: \n"
+ "rcll $1, (%%ebx, %%edx, 4) \n"
+
+ "incl %%edx \n"
+ "decl %%ecx \n"
+ "jnz 1b \n"
+
+ "adcl %%ecx, %%ecx \n"
+
+ : "=c" (c), "=a" (dummy), "=d" (dummy2)
+ : "0" (b), "1" (c), "b" (p1)
+ : "cc", "memory" );
+
+ #endif
+
+ TTMATH_LOGC("UInt::Rcl2_one", c)
+
+ return c;
+ }
+
+
+
+ /*!
+ this method moves all bits into the right hand side
+ c -> this -> return value
+
+ the highest *bit* will be held the 'c' and
+ the state of one additional bit (on the right hand side)
+ will be returned
+
+ for example:
+ let this is 000000010
+ after Rcr2_one(1) there'll be 100000001 and Rcr2_one returns 0
+ */
+ template<uint value_size>
+ uint UInt<value_size>::Rcr2_one(uint c)
+ {
+ uint b = value_size;
+ uint * p1 = table;
+
+ #ifndef __GNUC__
+ __asm
+ {
+ push ebx
+ push ecx
+
+ mov ebx, [p1]
+ mov ecx, [c]
+ neg ecx
+ mov ecx, [b]
+
+ ttmath_loop:
+ rcr dword ptr [ebx+ecx*4-4], 1
+
+ dec ecx
+ jnz ttmath_loop
+
+ adc ecx, ecx
+ mov [c], ecx
+
+ pop ecx
+ pop ebx
+ }
+ #endif
+
+
+ #ifdef __GNUC__
+ uint dummy;
+
+ __asm__ __volatile__(
+
+ "negl %%eax \n" // CF=1 if eax!=0 , CF=0 if eax==0
+
+ "1: \n"
+ "rcrl $1, -4(%%ebx, %%ecx, 4) \n"
+
+ "decl %%ecx \n"
+ "jnz 1b \n"
+
+ "adcl %%ecx, %%ecx \n"
+
+ : "=c" (c), "=a" (dummy)
+ : "0" (b), "1" (c), "b" (p1)
+ : "cc", "memory" );
+
+ #endif
+
+ TTMATH_LOGC("UInt::Rcr2_one", c)
+
+ return c;
+ }
+
+
+
+#ifdef _MSC_VER
+#pragma warning (disable : 4731)
+//warning C4731: frame pointer register 'ebp' modified by inline assembly code
+#endif
+
+
+
+ /*!
+ this method moves all bits into the left hand side
+ return value <- this <- c
+
+ the lowest *bits* will be held the 'c' and
+ the state of one additional bit (on the left hand side)
+ will be returned
+
+ for example:
+ let this is 001010000
+ after Rcl2(3, 1) there'll be 010000111 and Rcl2 returns 1
+ */
+ template<uint value_size>
+ uint UInt<value_size>::Rcl2(uint bits, uint c)
+ {
+ TTMATH_ASSERT( bits>0 && bits<TTMATH_BITS_PER_UINT )
+
+ uint b = value_size;
+ uint * p1 = table;
+
+ #ifndef __GNUC__
+ __asm
+ {
+ push eax
+ push ebx
+ push ecx
+ push edx
+ push esi
+ push edi
+ push ebp
+
+ mov edi, [b]
+
+ mov ecx, 32
+ sub ecx, [bits]
+ mov edx, -1
+ shr edx, cl
+
+ mov ecx, [bits]
+ mov ebx, [p1]
+ mov eax, [c]
+
+ mov ebp, edx // ebp = mask (modified ebp - don't read/write to variables)
+
+ xor edx, edx // edx = 0
+ mov esi, edx
+ or eax, eax
+ cmovnz esi, ebp // if(c) esi=mask else esi=0
+
+ ttmath_loop:
+ rol dword ptr [ebx+edx*4], cl
+
+ mov eax, [ebx+edx*4]
+ and eax, ebp
+ xor [ebx+edx*4], eax // clearing bits
+ or [ebx+edx*4], esi // saving old value
+ mov esi, eax
+
+ inc edx
+ dec edi
+ jnz ttmath_loop
+
+ pop ebp // restoring ebp
+
+ and eax, 1
+ mov [c], eax
+
+ pop edi
+ pop esi
+ pop edx
+ pop ecx
+ pop ebx
+ pop eax
+ }
+ #endif
+
+
+ #ifdef __GNUC__
+ uint dummy, dummy2, dummy3;
+
+ __asm__ __volatile__(
+
+ "push %%ebp \n"
+
+ "movl %%ecx, %%esi \n"
+ "movl $32, %%ecx \n"
+ "subl %%esi, %%ecx \n" // ecx = 32 - bits
+ "movl $-1, %%edx \n" // edx = -1 (all bits set to one)
+ "shrl %%cl, %%edx \n" // shifting (0 -> edx -> cf) (cl times)
+ "movl %%edx, %%ebp \n" // ebp = edx = mask
+ "movl %%esi, %%ecx \n"
+
+ "xorl %%edx, %%edx \n"
+ "movl %%edx, %%esi \n"
+ "orl %%eax, %%eax \n"
+ "cmovnz %%ebp, %%esi \n" // if(c) esi=mask else esi=0
+
+ "1: \n"
+ "roll %%cl, (%%ebx,%%edx,4) \n"
+
+ "movl (%%ebx,%%edx,4), %%eax \n"
+ "andl %%ebp, %%eax \n"
+ "xorl %%eax, (%%ebx,%%edx,4) \n"
+ "orl %%esi, (%%ebx,%%edx,4) \n"
+ "movl %%eax, %%esi \n"
+
+ "incl %%edx \n"
+ "decl %%edi \n"
+ "jnz 1b \n"
+
+ "and $1, %%eax \n"
+
+ "pop %%ebp \n"
+
+ : "=a" (c), "=D" (dummy), "=S" (dummy2), "=d" (dummy3)
+ : "0" (c), "1" (b), "b" (p1), "c" (bits)
+ : "cc", "memory" );
+
+ #endif
+
+ TTMATH_LOGC("UInt::Rcl2", c)
+
+ return c;
+ }
+
+
+
+
+ /*!
+ this method moves all bits into the right hand side
+ C -> this -> return value
+
+ the highest *bits* will be held the 'c' and
+ the state of one additional bit (on the right hand side)
+ will be returned
+
+ for example:
+ let this is 000000010
+ after Rcr2(2, 1) there'll be 110000000 and Rcr2 returns 1
+ */
+ template<uint value_size>
+ uint UInt<value_size>::Rcr2(uint bits, uint c)
+ {
+ TTMATH_ASSERT( bits>0 && bits<TTMATH_BITS_PER_UINT )
+
+ uint b = value_size;
+ uint * p1 = table;
+
+ #ifndef __GNUC__
+ __asm
+ {
+ push eax
+ push ebx
+ push ecx
+ push edx
+ push esi
+ push edi
+ push ebp
+
+ mov edi, [b]
+
+ mov ecx, 32
+ sub ecx, [bits]
+ mov edx, -1
+ shl edx, cl
+
+ mov ecx, [bits]
+ mov ebx, [p1]
+ mov eax, [c]
+
+ mov ebp, edx // ebp = mask (modified ebp - don't read/write to variables)
+
+ xor edx, edx // edx = 0
+ mov esi, edx
+ add edx, edi
+ dec edx // edx is pointing at the end of the table (on last word)
+ or eax, eax
+ cmovnz esi, ebp // if(c) esi=mask else esi=0
+
+ ttmath_loop:
+ ror dword ptr [ebx+edx*4], cl
+
+ mov eax, [ebx+edx*4]
+ and eax, ebp
+ xor [ebx+edx*4], eax // clearing bits
+ or [ebx+edx*4], esi // saving old value
+ mov esi, eax
+
+ dec edx
+ dec edi
+ jnz ttmath_loop
+
+ pop ebp // restoring ebp
+
+ rol eax, 1 // 31bit will be first
+ and eax, 1
+ mov [c], eax
+
+ pop edi
+ pop esi
+ pop edx
+ pop ecx
+ pop ebx
+ pop eax
+ }
+ #endif
+
+
+ #ifdef __GNUC__
+ uint dummy, dummy2, dummy3;
+
+ __asm__ __volatile__(
+
+ "push %%ebp \n"
+
+ "movl %%ecx, %%esi \n"
+ "movl $32, %%ecx \n"
+ "subl %%esi, %%ecx \n" // ecx = 32 - bits
+ "movl $-1, %%edx \n" // edx = -1 (all bits set to one)
+ "shll %%cl, %%edx \n" // shifting (cf <- edx <- 0) (cl times)
+ "movl %%edx, %%ebp \n" // ebp = edx = mask
+ "movl %%esi, %%ecx \n"
+
+ "xorl %%edx, %%edx \n"
+ "movl %%edx, %%esi \n"
+ "addl %%edi, %%edx \n"
+ "decl %%edx \n" // edx is pointing at the end of the table (on last word)
+ "orl %%eax, %%eax \n"
+ "cmovnz %%ebp, %%esi \n" // if(c) esi=mask else esi=0
+
+ "1: \n"
+ "rorl %%cl, (%%ebx,%%edx,4) \n"
+
+ "movl (%%ebx,%%edx,4), %%eax \n"
+ "andl %%ebp, %%eax \n"
+ "xorl %%eax, (%%ebx,%%edx,4) \n"
+ "orl %%esi, (%%ebx,%%edx,4) \n"
+ "movl %%eax, %%esi \n"
+
+ "decl %%edx \n"
+ "decl %%edi \n"
+ "jnz 1b \n"
+
+ "roll $1, %%eax \n"
+ "andl $1, %%eax \n"
+
+ "pop %%ebp \n"
+
+ : "=a" (c), "=D" (dummy), "=S" (dummy2), "=d" (dummy3)
+ : "0" (c), "1" (b), "b" (p1), "c" (bits)
+ : "cc", "memory" );
+
+ #endif
+
+ TTMATH_LOGC("UInt::Rcr2", c)
+
+ return c;
+ }
+
+
+#ifdef _MSC_VER
+#pragma warning (default : 4731)
+#endif
+
+
+ /*
+ this method returns the number of the highest set bit in one 32-bit word
+ if the 'x' is zero this method returns '-1'
+ */
+ template<uint value_size>
+ sint UInt<value_size>::FindLeadingBitInWord(uint x)
+ {
+ sint result;
+
+ #ifndef __GNUC__
+ __asm
+ {
+ push eax
+ push edx
+
+ mov edx,-1
+ bsr eax,[x]
+ cmovz eax,edx
+ mov [result], eax
+
+ pop edx
+ pop eax
+ }
+ #endif
+
+
+ #ifdef __GNUC__
+ uint dummy;
+
+ __asm__ (
+
+ "movl $-1, %1 \n"
+ "bsrl %2, %0 \n"
+ "cmovz %1, %0 \n"
+
+ : "=r" (result), "=&r" (dummy)
+ : "r" (x)
+ : "cc" );
+
+ #endif
+
+ return result;
+ }
+
+
+
+ /*
+ this method returns the number of the smallest set bit in one 32-bit word
+ if the 'x' is zero this method returns '-1'
+ */
+ template<uint value_size>
+ sint UInt<value_size>::FindLowestBitInWord(uint x)
+ {
+ sint result;
+
+ #ifndef __GNUC__
+ __asm
+ {
+ push eax
+ push edx
+
+ mov edx,-1
+ bsf eax,[x]
+ cmovz eax,edx
+ mov [result], eax
+
+ pop edx
+ pop eax
+ }
+ #endif
+
+
+ #ifdef __GNUC__
+ uint dummy;
+
+ __asm__ (
+
+ "movl $-1, %1 \n"
+ "bsfl %2, %0 \n"
+ "cmovz %1, %0 \n"
+
+ : "=r" (result), "=&r" (dummy)
+ : "r" (x)
+ : "cc" );
+
+ #endif
+
+ return result;
+ }
+
+
+
+ /*!
+ this method sets a special bit in the 'value'
+ and returns the last state of the bit (zero or one)
+
+ bit is from <0,31>
+ e.g.
+ uint x = 100;
+ uint bit = SetBitInWord(x, 3);
+ now: x = 108 and bit = 0
+ */
+ template<uint value_size>
+ uint UInt<value_size>::SetBitInWord(uint & value, uint bit)
+ {
+ TTMATH_ASSERT( bit < TTMATH_BITS_PER_UINT )
+
+ uint old_bit;
+ uint v = value;
+
+ #ifndef __GNUC__
+ __asm
+ {
+ push ebx
+ push eax
+
+ mov eax, [v]
+ mov ebx, [bit]
+ bts eax, ebx
+ mov [v], eax
+
+ setc bl
+ movzx ebx, bl
+ mov [old_bit], ebx
+
+ pop eax
+ pop ebx
+ }
+ #endif
+
+
+ #ifdef __GNUC__
+ __asm__ (
+
+ "btsl %%ebx, %%eax \n"
+ "setc %%bl \n"
+ "movzx %%bl, %%ebx \n"
+
+ : "=a" (v), "=b" (old_bit)
+ : "0" (v), "1" (bit)
+ : "cc" );
+
+ #endif
+
+ value = v;
+
+ return old_bit;
+ }
+
+
+
+
+ /*!
+ multiplication: result_high:result_low = a * b
+ result_high - higher word of the result
+ result_low - lower word of the result
+
+ this methos never returns a carry
+ this method is used in the second version of the multiplication algorithms
+ */
+ template<uint value_size>
+ void UInt<value_size>::MulTwoWords(uint a, uint b, uint * result_high, uint * result_low)
+ {
+ /*
+ we must use these temporary variables in order to inform the compilator
+ that value pointed with result1 and result2 has changed
+
+ this has no effect in visual studio but it's useful when
+ using gcc and options like -Ox
+ */
+ uint result1_;
+ uint result2_;
+
+ #ifndef __GNUC__
+
+ __asm
+ {
+ push eax
+ push edx
+
+ mov eax, [a]
+ mul dword ptr [b]
+
+ mov [result2_], edx
+ mov [result1_], eax
+
+ pop edx
+ pop eax
+ }
+
+ #endif
+
+
+ #ifdef __GNUC__
+
+ __asm__ (
+
+ "mull %%edx \n"
+
+ : "=a" (result1_), "=d" (result2_)
+ : "0" (a), "1" (b)
+ : "cc" );
+
+ #endif
+
+
+ *result_low = result1_;
+ *result_high = result2_;
+ }
+
+
+
+
+
+ /*!
+ *
+ * Division
+ *
+ *
+ */
+
+
+
+
+ /*!
+ this method calculates 64bits word a:b / 32bits c (a higher, b lower word)
+ r = a:b / c and rest - remainder
+
+ *
+ * WARNING:
+ * if r (one word) is too small for the result or c is equal zero
+ * there'll be a hardware interruption (0)
+ * and probably the end of your program
+ *
+ */
+ template<uint value_size>
+ void UInt<value_size>::DivTwoWords(uint a, uint b, uint c, uint * r, uint * rest)
+ {
+ uint r_;
+ uint rest_;
+ /*
+ these variables have similar meaning like those in
+ the multiplication algorithm MulTwoWords
+ */
+
+ TTMATH_ASSERT( c != 0 )
+
+ #ifndef __GNUC__
+ __asm
+ {
+ push eax
+ push edx
+
+ mov edx, [a]
+ mov eax, [b]
+ div dword ptr [c]
+
+ mov [r_], eax
+ mov [rest_], edx
+
+ pop edx
+ pop eax
+ }
+ #endif
+
+
+ #ifdef __GNUC__
+
+ __asm__ (
+
+ "divl %%ecx \n"
+
+ : "=a" (r_), "=d" (rest_)
+ : "0" (b), "1" (a), "c" (c)
+ : "cc" );
+
+ #endif
+
+
+ *r = r_;
+ *rest = rest_;
+
+ }
+
+
+
+} //namespace
+
+
+
+#endif //ifdef TTMATH_PLATFORM32
+#endif //ifndef TTMATH_NOASM
+#endif
Added: sandbox/geometry/boost/geometry/extensions/contrib/ttmath/ttmathuint_x86_64.h
==============================================================================
--- (empty file)
+++ sandbox/geometry/boost/geometry/extensions/contrib/ttmath/ttmathuint_x86_64.h 2010-07-05 13:06:03 EDT (Mon, 05 Jul 2010)
@@ -0,0 +1,1222 @@
+/*
+ * This file is a part of TTMath Bignum Library
+ * and is distributed under the (new) BSD licence.
+ * Author: Tomasz Sowa <t.sowa_at_[hidden]>
+ */
+
+/*
+ * Copyright (c) 2006-2009, Tomasz Sowa
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are met:
+ *
+ * * Redistributions of source code must retain the above copyright notice,
+ * this list of conditions and the following disclaimer.
+ *
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * * Neither the name Tomasz Sowa nor the names of contributors to this
+ * project may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
+ * THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+
+#ifndef headerfilettmathuint_x86_64
+#define headerfilettmathuint_x86_64
+
+
+#ifndef TTMATH_NOASM
+#ifdef TTMATH_PLATFORM64
+
+
+/*!
+ \file ttmathuint_x86_64.h
+ \brief template class UInt<uint> with assembler code for 64bit x86_64 processors
+
+ this file is included at the end of ttmathuint.h
+*/
+
+#ifdef _MSC_VER
+#include <intrin.h>
+#endif
+
+
+namespace ttmath
+{
+
+ #ifdef _MSC_VER
+
+ extern "C"
+ {
+ uint __fastcall ttmath_adc_x64(uint* p1, const uint* p2, uint nSize, uint c);
+ uint __fastcall ttmath_addindexed_x64(uint* p1, uint nSize, uint nPos, uint nValue);
+ uint __fastcall ttmath_addindexed2_x64(uint* p1, uint nSize, uint nPos, uint nValue1, uint nValue2);
+ uint __fastcall ttmath_addvector_x64(const uint * ss1, const uint * ss2, uint ss1_size, uint ss2_size, uint * result);
+ uint __fastcall ttmath_sbb_x64(uint* p1, const uint* p2, uint nSize, uint c);
+ uint __fastcall ttmath_subindexed_x64(uint* p1, uint nSize, uint nPos, uint nValue);
+ uint __fastcall ttmath_subvector_x64(const uint * ss1, const uint * ss2, uint ss1_size, uint ss2_size, uint * result);
+ uint __fastcall ttmath_rcl_x64(uint* p1, uint nSize, uint nLowestBit);
+ uint __fastcall ttmath_rcr_x64(uint* p1, uint nSize, uint nLowestBit);
+ uint __fastcall ttmath_div_x64(uint* pnValHi, uint* pnValLo, uint nDiv);
+ uint __fastcall ttmath_rcl2_x64(uint* p1, uint nSize, uint nBits, uint c);
+ uint __fastcall ttmath_rcr2_x64(uint* p1, uint nSize, uint nBits, uint c);
+ };
+ #endif
+
+
+ /*!
+ returning the string represents the currect type of the library
+ we have following types:
+ asm_vc_32 - with asm code designed for Microsoft Visual C++ (32 bits)
+ asm_gcc_32 - with asm code designed for GCC (32 bits)
+ asm_vc_64 - with asm for VC (64 bit)
+ asm_gcc_64 - with asm for GCC (64 bit)
+ no_asm_32 - pure C++ version (32 bit) - without any asm code
+ no_asm_64 - pure C++ version (64 bit) - without any asm code
+ */
+ template<uint value_size>
+ const char * UInt<value_size>::LibTypeStr()
+ {
+ #ifdef _MSC_VER
+ static const char info[] = "asm_vc_64";
+ #endif
+
+ #ifdef __GNUC__
+ static const char info[] = "asm_gcc_64";
+ #endif
+
+ return info;
+ }
+
+
+ /*!
+ returning the currect type of the library
+ */
+ template<uint value_size>
+ LibTypeCode UInt<value_size>::LibType()
+ {
+ #ifdef _MSC_VER
+ LibTypeCode info = asm_vc_64;
+ #endif
+
+ #ifdef __GNUC__
+ LibTypeCode info = asm_gcc_64;
+ #endif
+
+ return info;
+ }
+
+
+ /*!
+ *
+ * basic mathematic functions
+ *
+ */
+
+
+
+ /*!
+ this method adding ss2 to the this and adding carry if it's defined
+ (this = this + ss2 + c)
+
+ ***this method is created only on a 64bit platform***
+
+ c must be zero or one (might be a bigger value than 1)
+ function returns carry (1) (if it was)
+ */
+ template<uint value_size>
+ uint UInt<value_size>::Add(const UInt<value_size> & ss2, uint c)
+ {
+ uint b = value_size;
+ uint * p1 = table;
+ const uint * p2 = ss2.table;
+
+ // we don't have to use TTMATH_REFERENCE_ASSERT here
+ // this algorithm doesn't require it
+
+ #if !defined(__GNUC__) && !defined(_MSC_VER)
+ #error "another compiler than GCC or Microsoft VC is currently not supported in 64bit mode, you can compile with TTMATH_NOASM macro"
+ #endif
+
+ #ifdef _MSC_VER
+ c = ttmath_adc_x64(p1,p2,b,c);
+ #endif
+
+ #ifdef __GNUC__
+ uint dummy, dummy2;
+
+ /*
+ this part should be compiled with gcc
+ */
+ __asm__ __volatile__(
+
+ "xorq %%rdx, %%rdx \n"
+ "negq %%rax \n" // CF=1 if rax!=0 , CF=0 if rax==0
+
+ "1: \n"
+ "movq (%%rsi,%%rdx,8), %%rax \n"
+ "adcq %%rax, (%%rbx,%%rdx,8) \n"
+
+ "incq %%rdx \n"
+ "decq %%rcx \n"
+ "jnz 1b \n"
+
+ "adcq %%rcx, %%rcx \n"
+
+ : "=c" (c), "=a" (dummy), "=d" (dummy2)
+ : "0" (b), "1" (c), "b" (p1), "S" (p2)
+ : "cc", "memory" );
+
+ #endif
+
+ TTMATH_LOGC("UInt::Add", c)
+
+ return c;
+ }
+
+
+
+ /*!
+ this method adds one word (at a specific position)
+ and returns a carry (if it was)
+
+ ***this method is created only on a 64bit platform***
+
+
+ if we've got (value_size=3):
+ table[0] = 10;
+ table[1] = 30;
+ table[2] = 5;
+ and we call:
+ AddInt(2,1)
+ then it'll be:
+ table[0] = 10;
+ table[1] = 30 + 2;
+ table[2] = 5;
+
+ of course if there was a carry from table[2] it would be returned
+ */
+ template<uint value_size>
+ uint UInt<value_size>::AddInt(uint value, uint index)
+ {
+ uint b = value_size;
+ uint * p1 = table;
+ uint c;
+
+ TTMATH_ASSERT( index < value_size )
+
+ #if !defined(__GNUC__) && !defined(_MSC_VER)
+ #error "another compiler than GCC or Microsoft VC is currently not supported in 64bit mode, you can compile with TTMATH_NOASM macro"
+ #endif
+
+
+ #ifdef _MSC_VER
+ c = ttmath_addindexed_x64(p1,b,index,value);
+ #endif
+
+
+ #ifdef __GNUC__
+ uint dummy, dummy2;
+
+ __asm__ __volatile__(
+
+ "subq %%rdx, %%rcx \n"
+
+ "1: \n"
+ "addq %%rax, (%%rbx,%%rdx,8) \n"
+ "jnc 2f \n"
+
+ "movq $1, %%rax \n"
+ "incq %%rdx \n"
+ "decq %%rcx \n"
+ "jnz 1b \n"
+
+ "2: \n"
+ "setc %%al \n"
+ "movzx %%al, %%rdx \n"
+
+ : "=d" (c), "=a" (dummy), "=c" (dummy2)
+ : "0" (index), "1" (value), "2" (b), "b" (p1)
+ : "cc", "memory" );
+
+ #endif
+
+ TTMATH_LOGC("UInt::AddInt", c)
+
+ return c;
+ }
+
+
+
+ /*!
+ this method adds only two unsigned words to the existing value
+ and these words begin on the 'index' position
+ (it's used in the multiplication algorithm 2)
+
+ ***this method is created only on a 64bit platform***
+
+ index should be equal or smaller than value_size-2 (index <= value_size-2)
+ x1 - lower word, x2 - higher word
+
+ for example if we've got value_size equal 4 and:
+ table[0] = 3
+ table[1] = 4
+ table[2] = 5
+ table[3] = 6
+ then let
+ x1 = 10
+ x2 = 20
+ and
+ index = 1
+
+ the result of this method will be:
+ table[0] = 3
+ table[1] = 4 + x1 = 14
+ table[2] = 5 + x2 = 25
+ table[3] = 6
+
+ and no carry at the end of table[3]
+
+ (of course if there was a carry in table[2](5+20) then
+ this carry would be passed to the table[3] etc.)
+ */
+ template<uint value_size>
+ uint UInt<value_size>::AddTwoInts(uint x2, uint x1, uint index)
+ {
+ uint b = value_size;
+ uint * p1 = table;
+ uint c;
+
+ TTMATH_ASSERT( index < value_size - 1 )
+
+ #if !defined(__GNUC__) && !defined(_MSC_VER)
+ #error "another compiler than GCC or Microsoft VC is currently not supported in 64bit mode, you can compile with TTMATH_NOASM macro"
+ #endif
+
+
+ #ifdef _MSC_VER
+ c = ttmath_addindexed2_x64(p1,b,index,x1,x2);
+ #endif
+
+
+ #ifdef __GNUC__
+ uint dummy, dummy2;
+
+ __asm__ __volatile__(
+
+ "subq %%rdx, %%rcx \n"
+
+ "addq %%rsi, (%%rbx,%%rdx,8) \n"
+ "incq %%rdx \n"
+ "decq %%rcx \n"
+
+ "1: \n"
+ "adcq %%rax, (%%rbx,%%rdx,8) \n"
+ "jnc 2f \n"
+
+ "mov $0, %%rax \n"
+ "incq %%rdx \n"
+ "decq %%rcx \n"
+ "jnz 1b \n"
+
+ "2: \n"
+ "setc %%al \n"
+ "movzx %%al, %%rax \n"
+
+ : "=a" (c), "=c" (dummy), "=d" (dummy2)
+ : "0" (x2), "1" (b), "2" (index), "b" (p1), "S" (x1)
+ : "cc", "memory" );
+
+ #endif
+
+ TTMATH_LOGC("UInt::AddTwoInts", c)
+
+ return c;
+ }
+
+
+
+ /*!
+ this static method addes one vector to the other
+ 'ss1' is larger in size or equal to 'ss2'
+
+ ss1 points to the first (larger) vector
+ ss2 points to the second vector
+ ss1_size - size of the ss1 (and size of the result too)
+ ss2_size - size of the ss2
+ result - is the result vector (which has size the same as ss1: ss1_size)
+
+ Example: ss1_size is 5, ss2_size is 3
+ ss1: ss2: result (output):
+ 5 1 5+1
+ 4 3 4+3
+ 2 7 2+7
+ 6 6
+ 9 9
+ of course the carry is propagated and will be returned from the last item
+ (this method is used by the Karatsuba multiplication algorithm)
+ */
+ template<uint value_size>
+ uint UInt<value_size>::AddVector(const uint * ss1, const uint * ss2, uint ss1_size, uint ss2_size, uint * result)
+ {
+ TTMATH_ASSERT( ss1_size >= ss2_size )
+
+ uint c;
+
+ #if !defined(__GNUC__) && !defined(_MSC_VER)
+ #error "another compiler than GCC or Microsoft VC is currently not supported in 64bit mode, you can compile with TTMATH_NOASM macro"
+ #endif
+
+
+ #ifdef _MSC_VER
+ c = ttmath_addvector_x64(ss1, ss2, ss1_size, ss2_size, result);
+ #endif
+
+
+ #ifdef __GNUC__
+ uint dummy1, dummy2, dummy3;
+ uint rest = ss1_size - ss2_size;
+
+ // this part should be compiled with gcc
+
+ __asm__ __volatile__(
+ "mov %%rdx, %%r8 \n"
+ "xor %%rdx, %%rdx \n" // rdx = 0, cf = 0
+ "1: \n"
+ "mov (%%rsi,%%rdx,8), %%rax \n"
+ "adc (%%rbx,%%rdx,8), %%rax \n"
+ "mov %%rax, (%%rdi,%%rdx,8) \n"
+
+ "inc %%rdx \n"
+ "dec %%rcx \n"
+ "jnz 1b \n"
+
+ "adc %%rcx, %%rcx \n" // rcx has the cf state
+
+ "or %%r8, %%r8 \n"
+ "jz 3f \n"
+
+ "xor %%rbx, %%rbx \n" // ebx = 0
+ "neg %%rcx \n" // setting cf from rcx
+ "mov %%r8, %%rcx \n" // rcx=rest and is != 0
+ "2: \n"
+ "mov (%%rsi, %%rdx, 8), %%rax \n"
+ "adc %%rbx, %%rax \n"
+ "mov %%rax, (%%rdi, %%rdx, 8) \n"
+
+ "inc %%rdx \n"
+ "dec %%rcx \n"
+ "jnz 2b \n"
+
+ "adc %%rcx, %%rcx \n"
+ "3: \n"
+
+ : "=a" (dummy1), "=b" (dummy2), "=c" (c), "=d" (dummy3)
+ : "1" (ss2), "2" (ss2_size), "3" (rest), "S" (ss1), "D" (result)
+ : "%r8", "cc", "memory" );
+
+ #endif
+
+ TTMATH_VECTOR_LOGC("UInt::AddVector", c, result, ss1_size)
+
+ return c;
+ }
+
+
+
+ /*!
+ this method's subtracting ss2 from the 'this' and subtracting
+ carry if it has been defined
+ (this = this - ss2 - c)
+
+ ***this method is created only on a 64bit platform***
+
+ c must be zero or one (might be a bigger value than 1)
+ function returns carry (1) (if it was)
+ */
+ template<uint value_size>
+ uint UInt<value_size>::Sub(const UInt<value_size> & ss2, uint c)
+ {
+ uint b = value_size;
+ uint * p1 = table;
+ const uint * p2 = ss2.table;
+
+
+ // we don't have to use TTMATH_REFERENCE_ASSERT here
+ // this algorithm doesn't require it
+
+ #if !defined(__GNUC__) && !defined(_MSC_VER)
+ #error "another compiler than GCC or Microsoft VC is currently not supported in 64bit mode, you can compile with TTMATH_NOASM macro"
+ #endif
+
+
+ #ifdef _MSC_VER
+ c = ttmath_sbb_x64(p1,p2,b,c);
+ #endif
+
+
+ #ifdef __GNUC__
+ uint dummy, dummy2;
+
+ __asm__ __volatile__(
+
+ "xorq %%rdx, %%rdx \n"
+ "negq %%rax \n" // CF=1 if rax!=0 , CF=0 if rax==0
+
+ "1: \n"
+ "movq (%%rsi,%%rdx,8), %%rax \n"
+ "sbbq %%rax, (%%rbx,%%rdx,8) \n"
+
+ "incq %%rdx \n"
+ "decq %%rcx \n"
+ "jnz 1b \n"
+
+ "adcq %%rcx, %%rcx \n"
+
+ : "=c" (c), "=a" (dummy), "=d" (dummy2)
+ : "0" (b), "1" (c), "b" (p1), "S" (p2)
+ : "cc", "memory" );
+
+ #endif
+
+ TTMATH_LOGC("UInt::Sub", c)
+
+ return c;
+ }
+
+
+
+ /*!
+ this method subtracts one word (at a specific position)
+ and returns a carry (if it was)
+
+ ***this method is created only on a 64bit platform***
+
+ if we've got (value_size=3):
+ table[0] = 10;
+ table[1] = 30;
+ table[2] = 5;
+ and we call:
+ SubInt(2,1)
+ then it'll be:
+ table[0] = 10;
+ table[1] = 30 - 2;
+ table[2] = 5;
+
+ of course if there was a carry from table[2] it would be returned
+ */
+ template<uint value_size>
+ uint UInt<value_size>::SubInt(uint value, uint index)
+ {
+ uint b = value_size;
+ uint * p1 = table;
+ uint c;
+
+ TTMATH_ASSERT( index < value_size )
+
+ #if !defined(__GNUC__) && !defined(_MSC_VER)
+ #error "another compiler than GCC or Microsoft VC is currently not supported in 64bit mode, you can compile with TTMATH_NOASM macro"
+ #endif
+
+
+ #ifdef _MSC_VER
+ c = ttmath_subindexed_x64(p1,b,index,value);
+ #endif
+
+
+ #ifdef __GNUC__
+ uint dummy, dummy2;
+
+ __asm__ __volatile__(
+
+ "subq %%rdx, %%rcx \n"
+
+ "1: \n"
+ "subq %%rax, (%%rbx,%%rdx,8) \n"
+ "jnc 2f \n"
+
+ "movq $1, %%rax \n"
+ "incq %%rdx \n"
+ "decq %%rcx \n"
+ "jnz 1b \n"
+
+ "2: \n"
+ "setc %%al \n"
+ "movzx %%al, %%rdx \n"
+
+ : "=d" (c), "=a" (dummy), "=c" (dummy2)
+ : "0" (index), "1" (value), "2" (b), "b" (p1)
+ : "cc", "memory" );
+
+ #endif
+
+ TTMATH_LOGC("UInt::SubInt", c)
+
+ return c;
+ }
+
+
+ /*!
+ this static method subtractes one vector from the other
+ 'ss1' is larger in size or equal to 'ss2'
+
+ ss1 points to the first (larger) vector
+ ss2 points to the second vector
+ ss1_size - size of the ss1 (and size of the result too)
+ ss2_size - size of the ss2
+ result - is the result vector (which has size the same as ss1: ss1_size)
+
+ Example: ss1_size is 5, ss2_size is 3
+ ss1: ss2: result (output):
+ 5 1 5-1
+ 4 3 4-3
+ 2 7 2-7
+ 6 6-1 (the borrow from previous item)
+ 9 9
+ return (carry): 0
+ of course the carry (borrow) is propagated and will be returned from the last item
+ (this method is used by the Karatsuba multiplication algorithm)
+ */
+ template<uint value_size>
+ uint UInt<value_size>::SubVector(const uint * ss1, const uint * ss2, uint ss1_size, uint ss2_size, uint * result)
+ {
+ TTMATH_ASSERT( ss1_size >= ss2_size )
+
+ uint c;
+
+ #if !defined(__GNUC__) && !defined(_MSC_VER)
+ #error "another compiler than GCC or Microsoft VC is currently not supported in 64bit mode, you can compile with TTMATH_NOASM macro"
+ #endif
+
+
+ #ifdef _MSC_VER
+ c = ttmath_subvector_x64(ss1, ss2, ss1_size, ss2_size, result);
+ #endif
+
+
+ #ifdef __GNUC__
+
+ // the asm code is nearly the same as in AddVector
+ // only two instructions 'adc' are changed to 'sbb'
+
+ uint dummy1, dummy2, dummy3;
+ uint rest = ss1_size - ss2_size;
+
+ __asm__ __volatile__(
+ "mov %%rdx, %%r8 \n"
+ "xor %%rdx, %%rdx \n" // rdx = 0, cf = 0
+ "1: \n"
+ "mov (%%rsi,%%rdx,8), %%rax \n"
+ "sbb (%%rbx,%%rdx,8), %%rax \n"
+ "mov %%rax, (%%rdi,%%rdx,8) \n"
+
+ "inc %%rdx \n"
+ "dec %%rcx \n"
+ "jnz 1b \n"
+
+ "adc %%rcx, %%rcx \n" // rcx has the cf state
+
+ "or %%r8, %%r8 \n"
+ "jz 3f \n"
+
+ "xor %%rbx, %%rbx \n" // ebx = 0
+ "neg %%rcx \n" // setting cf from rcx
+ "mov %%r8, %%rcx \n" // rcx=rest and is != 0
+ "2: \n"
+ "mov (%%rsi, %%rdx, 8), %%rax \n"
+ "sbb %%rbx, %%rax \n"
+ "mov %%rax, (%%rdi, %%rdx, 8) \n"
+
+ "inc %%rdx \n"
+ "dec %%rcx \n"
+ "jnz 2b \n"
+
+ "adc %%rcx, %%rcx \n"
+ "3: \n"
+
+ : "=a" (dummy1), "=b" (dummy2), "=c" (c), "=d" (dummy3)
+ : "1" (ss2), "2" (ss2_size), "3" (rest), "S" (ss1), "D" (result)
+ : "%r8", "cc", "memory" );
+
+ #endif
+
+ TTMATH_VECTOR_LOGC("UInt::SubVector", c, result, ss1_size)
+
+ return c;
+ }
+
+
+ /*!
+ this method moves all bits into the left hand side
+ return value <- this <- c
+
+ the lowest *bit* will be held the 'c' and
+ the state of one additional bit (on the left hand side)
+ will be returned
+
+ for example:
+ let this is 001010000
+ after Rcl2_one(1) there'll be 010100001 and Rcl2_one returns 0
+
+ ***this method is created only on a 64bit platform***
+ */
+ template<uint value_size>
+ uint UInt<value_size>::Rcl2_one(uint c)
+ {
+ sint b = value_size;
+ uint * p1 = table;
+
+
+ #if !defined(__GNUC__) && !defined(_MSC_VER)
+ #error "another compiler than GCC or Microsoft VC is currently not supported in 64bit mode, you can compile with TTMATH_NOASM macro"
+ #endif
+
+
+ #ifdef _MSC_VER
+ c = ttmath_rcl_x64(p1,b,c);
+ #endif
+
+
+ #ifdef __GNUC__
+ uint dummy, dummy2;
+
+ __asm__ __volatile__(
+
+ "xorq %%rdx, %%rdx \n" // rdx=0
+ "negq %%rax \n" // CF=1 if rax!=0 , CF=0 if rax==0
+
+ "1: \n"
+ "rclq $1, (%%rbx, %%rdx, 8) \n"
+
+ "incq %%rdx \n"
+ "decq %%rcx \n"
+ "jnz 1b \n"
+
+ "adcq %%rcx, %%rcx \n"
+
+ : "=c" (c), "=a" (dummy), "=d" (dummy2)
+ : "0" (b), "1" (c), "b" (p1)
+ : "cc", "memory" );
+
+ #endif
+
+ TTMATH_LOGC("UInt::Rcl2_one", c)
+
+ return c;
+ }
+
+
+ /*!
+ this method moves all bits into the right hand side
+ c -> this -> return value
+
+ the highest *bit* will be held the 'c' and
+ the state of one additional bit (on the right hand side)
+ will be returned
+
+ for example:
+ let this is 000000010
+ after Rcr2_one(1) there'll be 100000001 and Rcr2_one returns 0
+
+ ***this method is created only on a 64bit platform***
+ */
+ template<uint value_size>
+ uint UInt<value_size>::Rcr2_one(uint c)
+ {
+ sint b = value_size;
+ uint * p1 = table;
+
+
+ #if !defined(__GNUC__) && !defined(_MSC_VER)
+ #error "another compiler than GCC or Microsoft VC is currently not supported in 64bit mode, you can compile with TTMATH_NOASM macro"
+ #endif
+
+
+ #ifdef _MSC_VER
+ c = ttmath_rcr_x64(p1,b,c);
+ #endif
+
+
+ #ifdef __GNUC__
+ uint dummy;
+
+ __asm__ __volatile__(
+
+ "negq %%rax \n" // CF=1 if rax!=0 , CF=0 if rax==0
+
+ "1: \n"
+ "rcrq $1, -8(%%rbx, %%rcx, 8) \n"
+
+ "decq %%rcx \n"
+ "jnz 1b \n"
+
+ "adcq %%rcx, %%rcx \n"
+
+ : "=c" (c), "=a" (dummy)
+ : "0" (b), "1" (c), "b" (p1)
+ : "cc", "memory" );
+
+ #endif
+
+ TTMATH_LOGC("UInt::Rcr2_one", c)
+
+ return c;
+ }
+
+
+
+ /*!
+ this method moves all bits into the left hand side
+ return value <- this <- c
+
+ the lowest *bits* will be held the 'c' and
+ the state of one additional bit (on the left hand side)
+ will be returned
+
+ for example:
+ let this is 001010000
+ after Rcl2(3, 1) there'll be 010000111 and Rcl2 returns 1
+
+ ***this method is created only on a 64bit platform***
+ */
+ template<uint value_size>
+ uint UInt<value_size>::Rcl2(uint bits, uint c)
+ {
+ TTMATH_ASSERT( bits>0 && bits<TTMATH_BITS_PER_UINT )
+
+ uint b = value_size;
+ uint * p1 = table;
+
+
+ #if !defined(__GNUC__) && !defined(_MSC_VER)
+ #error "another compiler than GCC or Microsoft VC is currently not supported in 64bit mode, you can compile with TTMATH_NOASM macro"
+ #endif
+
+
+ #ifdef _MSC_VER
+ c = ttmath_rcl2_x64(p1,b,bits,c);
+ #endif
+
+
+ #ifdef __GNUC__
+ uint dummy, dummy2, dummy3;
+
+ __asm__ __volatile__(
+
+ "movq %%rcx, %%rsi \n"
+ "movq $64, %%rcx \n"
+ "subq %%rsi, %%rcx \n"
+ "movq $-1, %%rdx \n"
+ "shrq %%cl, %%rdx \n"
+ "movq %%rdx, %%r8 \n"
+ "movq %%rsi, %%rcx \n"
+
+ "xorq %%rdx, %%rdx \n"
+ "movq %%rdx, %%rsi \n"
+ "orq %%rax, %%rax \n"
+ "cmovnz %%r8, %%rsi \n"
+
+ "1: \n"
+ "rolq %%cl, (%%rbx,%%rdx,8) \n"
+
+ "movq (%%rbx,%%rdx,8), %%rax \n"
+ "andq %%r8, %%rax \n"
+ "xorq %%rax, (%%rbx,%%rdx,8) \n"
+ "orq %%rsi, (%%rbx,%%rdx,8) \n"
+ "movq %%rax, %%rsi \n"
+
+ "incq %%rdx \n"
+ "decq %%rdi \n"
+ "jnz 1b \n"
+
+ "and $1, %%rax \n"
+
+ : "=a" (c), "=D" (dummy), "=S" (dummy2), "=d" (dummy3)
+ : "0" (c), "1" (b), "b" (p1), "c" (bits)
+ : "%r8", "cc", "memory" );
+
+ #endif
+
+ TTMATH_LOGC("UInt::Rcl2", c)
+
+ return c;
+ }
+
+
+ /*!
+ this method moves all bits into the right hand side
+ C -> this -> return value
+
+ the highest *bits* will be held the 'c' and
+ the state of one additional bit (on the right hand side)
+ will be returned
+
+ for example:
+ let this is 000000010
+ after Rcr2(2, 1) there'll be 110000000 and Rcr2 returns 1
+
+ ***this method is created only on a 64bit platform***
+ */
+ template<uint value_size>
+ uint UInt<value_size>::Rcr2(uint bits, uint c)
+ {
+ TTMATH_ASSERT( bits>0 && bits<TTMATH_BITS_PER_UINT )
+
+ sint b = value_size;
+ uint * p1 = table;
+
+ #if !defined(__GNUC__) && !defined(_MSC_VER)
+ #error "another compiler than GCC or Microsoft VC is currently not supported in 64bit mode, you can compile with TTMATH_NOASM macro"
+ #endif
+
+
+ #ifdef _MSC_VER
+ c = ttmath_rcr2_x64(p1,b,bits,c);
+ #endif
+
+
+ #ifdef __GNUC__
+ uint dummy, dummy2, dummy3;
+
+ __asm__ __volatile__(
+
+ "movq %%rcx, %%rsi \n"
+ "movq $64, %%rcx \n"
+ "subq %%rsi, %%rcx \n"
+ "movq $-1, %%rdx \n"
+ "shlq %%cl, %%rdx \n"
+ "movq %%rdx, %%R8 \n"
+ "movq %%rsi, %%rcx \n"
+
+ "xorq %%rdx, %%rdx \n"
+ "movq %%rdx, %%rsi \n"
+ "addq %%rdi, %%rdx \n"
+ "decq %%rdx \n"
+ "orq %%rax, %%rax \n"
+ "cmovnz %%R8, %%rsi \n"
+
+ "1: \n"
+ "rorq %%cl, (%%rbx,%%rdx,8) \n"
+
+ "movq (%%rbx,%%rdx,8), %%rax \n"
+ "andq %%R8, %%rax \n"
+ "xorq %%rax, (%%rbx,%%rdx,8) \n"
+ "orq %%rsi, (%%rbx,%%rdx,8) \n"
+ "movq %%rax, %%rsi \n"
+
+ "decq %%rdx \n"
+ "decq %%rdi \n"
+ "jnz 1b \n"
+
+ "rolq $1, %%rax \n"
+ "andq $1, %%rax \n"
+
+ : "=a" (c), "=D" (dummy), "=S" (dummy2), "=d" (dummy3)
+ : "0" (c), "1" (b), "b" (p1), "c" (bits)
+ : "%r8", "cc", "memory" );
+
+ #endif
+
+ TTMATH_LOGC("UInt::Rcr2", c)
+
+ return c;
+ }
+
+
+ /*
+ this method returns the number of the highest set bit in one 64-bit word
+ if the 'x' is zero this method returns '-1'
+
+ ***this method is created only on a 64bit platform***
+ */
+ template<uint value_size>
+ sint UInt<value_size>::FindLeadingBitInWord(uint x)
+ {
+ sint result;
+
+
+ #if !defined(__GNUC__) && !defined(_MSC_VER)
+ #error "another compiler than GCC or Microsoft VC is currently not supported in 64bit mode, you can compile with TTMATH_NOASM macro"
+ #endif
+
+
+ #ifdef _MSC_VER
+
+ unsigned long nIndex = 0;
+
+ if( _BitScanReverse64(&nIndex,x) == 0 )
+ result = -1;
+ else
+ result = nIndex;
+
+ #endif
+
+
+ #ifdef __GNUC__
+ uint dummy;
+
+ __asm__ (
+
+ "movq $-1, %1 \n"
+ "bsrq %2, %0 \n"
+ "cmovz %1, %0 \n"
+
+ : "=r" (result), "=&r" (dummy)
+ : "r" (x)
+ : "cc" );
+
+ #endif
+
+
+ return result;
+ }
+
+
+ /*
+ this method returns the number of the highest set bit in one 64-bit word
+ if the 'x' is zero this method returns '-1'
+
+ ***this method is created only on a 64bit platform***
+ */
+ template<uint value_size>
+ sint UInt<value_size>::FindLowestBitInWord(uint x)
+ {
+ sint result;
+
+
+ #if !defined(__GNUC__) && !defined(_MSC_VER)
+ #error "another compiler than GCC or Microsoft VC is currently not supported in 64bit mode, you can compile with TTMATH_NOASM macro"
+ #endif
+
+
+ #ifdef _MSC_VER
+
+ unsigned long nIndex = 0;
+
+ if( _BitScanForward64(&nIndex,x) == 0 )
+ result = -1;
+ else
+ result = nIndex;
+
+ #endif
+
+
+ #ifdef __GNUC__
+ uint dummy;
+
+ __asm__ (
+
+ "movq $-1, %1 \n"
+ "bsfq %2, %0 \n"
+ "cmovz %1, %0 \n"
+
+ : "=r" (result), "=&r" (dummy)
+ : "r" (x)
+ : "cc" );
+
+ #endif
+
+
+ return result;
+ }
+
+
+ /*!
+ this method sets a special bit in the 'value'
+ and returns the last state of the bit (zero or one)
+
+ ***this method is created only on a 64bit platform***
+
+ bit is from <0,63>
+
+ e.g.
+ uint x = 100;
+ uint bit = SetBitInWord(x, 3);
+ now: x = 108 and bit = 0
+ */
+ template<uint value_size>
+ uint UInt<value_size>::SetBitInWord(uint & value, uint bit)
+ {
+ TTMATH_ASSERT( bit < TTMATH_BITS_PER_UINT )
+
+ uint old_bit;
+ uint v = value;
+
+ #if !defined(__GNUC__) && !defined(_MSC_VER)
+ #error "another compiler than GCC or Microsoft VC is currently not supported in 64bit mode, you can compile with TTMATH_NOASM macro"
+ #endif
+
+
+ #ifdef _MSC_VER
+ old_bit = _bittestandset64((__int64*)&value,bit) != 0;
+ #endif
+
+
+ #ifdef __GNUC__
+
+ __asm__ (
+
+ "btsq %%rbx, %%rax \n"
+ "setc %%bl \n"
+ "movzx %%bl, %%rbx \n"
+
+ : "=a" (v), "=b" (old_bit)
+ : "0" (v), "1" (bit)
+ : "cc" );
+
+ #endif
+
+ value = v;
+
+ return old_bit;
+ }
+
+
+ /*!
+ *
+ * Multiplication
+ *
+ *
+ */
+
+
+ /*!
+ multiplication: result_high:result_low = a * b
+ result_high - higher word of the result
+ result_low - lower word of the result
+
+ this methos never returns a carry
+ this method is used in the second version of the multiplication algorithms
+
+ ***this method is created only on a 64bit platform***
+ */
+ template<uint value_size>
+ void UInt<value_size>::MulTwoWords(uint a, uint b, uint * result_high, uint * result_low)
+ {
+ /*
+ we must use these temporary variables in order to inform the compilator
+ that value pointed with result1 and result2 has changed
+
+ this has no effect in visual studio but it's usefull when
+ using gcc and options like -O
+ */
+ uint result1_;
+ uint result2_;
+
+ #if !defined(__GNUC__) && !defined(_MSC_VER)
+ #error "another compiler than GCC or Microsoft VC is currently not supported in 64bit mode, you can compile with TTMATH_NOASM macro"
+ #endif
+
+
+ #ifdef _MSC_VER
+ result1_ = _umul128(a,b,&result2_);
+ #endif
+
+
+ #ifdef __GNUC__
+
+ __asm__ (
+
+ "mulq %%rdx \n"
+
+ : "=a" (result1_), "=d" (result2_)
+ : "0" (a), "1" (b)
+ : "cc" );
+
+ #endif
+
+
+ *result_low = result1_;
+ *result_high = result2_;
+ }
+
+
+
+
+ /*!
+ *
+ * Division
+ *
+ *
+ */
+
+
+ /*!
+ this method calculates 64bits word a:b / 32bits c (a higher, b lower word)
+ r = a:b / c and rest - remainder
+
+ ***this method is created only on a 64bit platform***
+
+ *
+ * WARNING:
+ * if r (one word) is too small for the result or c is equal zero
+ * there'll be a hardware interruption (0)
+ * and probably the end of your program
+ *
+ */
+ template<uint value_size>
+ void UInt<value_size>::DivTwoWords(uint a,uint b, uint c, uint * r, uint * rest)
+ {
+ uint r_;
+ uint rest_;
+ /*
+ these variables have similar meaning like those in
+ the multiplication algorithm MulTwoWords
+ */
+
+ TTMATH_ASSERT( c != 0 )
+
+ #if !defined(__GNUC__) && !defined(_MSC_VER)
+ #error "another compiler than GCC or Microsoft VC is currently not supported in 64bit mode, you can compile with TTMATH_NOASM macro"
+ #endif
+
+
+ #ifdef _MSC_VER
+
+ ttmath_div_x64(&a,&b,c);
+ r_ = a;
+ rest_ = b;
+
+ #endif
+
+
+ #ifdef __GNUC__
+
+ __asm__ (
+
+ "divq %%rcx \n"
+
+ : "=a" (r_), "=d" (rest_)
+ : "d" (a), "a" (b), "c" (c)
+ : "cc" );
+
+ #endif
+
+
+ *r = r_;
+ *rest = rest_;
+ }
+
+} //namespace
+
+
+#endif //ifdef TTMATH_PLATFORM64
+#endif //ifndef TTMATH_NOASM
+#endif
+
+
Added: sandbox/geometry/boost/geometry/extensions/contrib/ttmath/ttmathuint_x86_64_msvc.asm
==============================================================================
--- (empty file)
+++ sandbox/geometry/boost/geometry/extensions/contrib/ttmath/ttmathuint_x86_64_msvc.asm 2010-07-05 13:06:03 EDT (Mon, 05 Jul 2010)
@@ -0,0 +1,548 @@
+;
+; This file is a part of TTMath Bignum Library
+; and is distributed under the (new) BSD licence.
+; Author: Christian Kaiser <chk_at_[hidden]>
+;
+
+;
+; Copyright (c) 2009, Christian Kaiser
+; All rights reserved.
+;
+; Redistribution and use in source and binary forms, with or without
+; modification, are permitted provided that the following conditions are met:
+;
+; * Redistributions of source code must retain the above copyright notice,
+; this list of conditions and the following disclaimer.
+;
+; * Redistributions in binary form must reproduce the above copyright
+; notice, this list of conditions and the following disclaimer in the
+; documentation and/or other materials provided with the distribution.
+;
+; * Neither the name Christian Kaiser nor the names of contributors to this
+; project may be used to endorse or promote products derived
+; from this software without specific prior written permission.
+;
+; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+; AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+; IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+; ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+; LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+; CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+; SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+; INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+; CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+; ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
+; THE POSSIBILITY OF SUCH DAMAGE.
+;
+
+;
+; compile with debug info: ml64.exe /Zd /Zi ttmathuint_x86_64_msvc.asm
+; compile without debug info: ml64.exe ttmathuint_x86_64_msvc.asm
+; this create ttmathuint_x86_64_msvc.obj file which can be linked with your program
+;
+
+PUBLIC ttmath_adc_x64
+PUBLIC ttmath_addindexed_x64
+PUBLIC ttmath_addindexed2_x64
+PUBLIC ttmath_addvector_x64
+
+PUBLIC ttmath_sbb_x64
+PUBLIC ttmath_subindexed_x64
+PUBLIC ttmath_subvector_x64
+
+PUBLIC ttmath_rcl_x64
+PUBLIC ttmath_rcr_x64
+
+PUBLIC ttmath_rcl2_x64
+PUBLIC ttmath_rcr2_x64
+
+PUBLIC ttmath_div_x64
+
+;
+; Microsoft x86_64 convention: http://msdn.microsoft.com/en-us/library/9b372w95.aspx
+;
+; "rax, rcx, rdx, r8-r11 are volatile."
+; "rbx, rbp, rdi, rsi, r12-r15 are nonvolatile."
+;
+
+
+.CODE
+
+
+ ALIGN 8
+
+;----------------------------------------
+
+ttmath_adc_x64 PROC
+ ; rcx = p1
+ ; rdx = p2
+ ; r8 = nSize
+ ; r9 = nCarry
+
+ xor rax, rax
+ xor r11, r11
+ sub rax, r9 ; sets CARRY if r9 != 0
+
+ ALIGN 16
+ loop1:
+ mov rax,qword ptr [rdx + r11 * 8]
+ adc qword ptr [rcx + r11 * 8], rax
+ lea r11, [r11+1]
+ dec r8
+ jnz loop1
+
+ setc al
+ movzx rax, al
+
+ ret
+
+ttmath_adc_x64 ENDP
+
+;----------------------------------------
+
+ ALIGN 8
+
+;----------------------------------------
+
+ttmath_addindexed_x64 PROC
+
+ ; rcx = p1
+ ; rdx = nSize
+ ; r8 = nPos
+ ; r9 = nValue
+
+ xor rax, rax ; rax = result
+ sub rdx, r8 ; rdx = remaining count of uints
+
+ add qword ptr [rcx + r8 * 8], r9
+ jc next1
+
+ ret
+
+next1:
+ mov r9, 1
+
+ ALIGN 16
+loop1:
+ dec rdx
+ jz done_with_cy
+ lea r8, [r8+1]
+ add qword ptr [rcx + r8 * 8], r9
+ jc loop1
+
+ ret
+
+done_with_cy:
+ lea rax, [rax+1] ; rax = 1
+
+ ret
+
+ttmath_addindexed_x64 ENDP
+
+;----------------------------------------
+
+ ALIGN 8
+
+;----------------------------------------
+
+ttmath_addindexed2_x64 PROC
+
+ ; rcx = p1 (pointer)
+ ; rdx = b (value size)
+ ; r8 = nPos
+ ; r9 = nValue1
+ ; [esp+0x28] = nValue2
+
+ xor rax, rax ; return value
+ mov r11, rcx ; table
+ sub rdx, r8 ; rdx = remaining count of uints
+ mov r10, [esp+028h] ; r10 = nValue2
+
+ add qword ptr [r11 + r8 * 8], r9
+ lea r8, [r8+1]
+ lea rdx, [rdx-1]
+ adc qword ptr [r11 + r8 * 8], r10
+ jc next
+ ret
+
+ ALIGN 16
+loop1:
+ lea r8, [r8+1]
+ add qword ptr [r11 + r8 * 8], 1
+ jc next
+ ret
+
+next:
+ dec rdx ; does not modify CY too...
+ jnz loop1
+ lea rax, [rax+1]
+ ret
+
+ttmath_addindexed2_x64 ENDP
+
+
+
+;----------------------------------------
+
+ ALIGN 8
+
+;----------------------------------------
+
+
+ttmath_addvector_x64 PROC
+ ; rcx = ss1
+ ; rdx = ss2
+ ; r8 = ss1_size
+ ; r9 = ss2_size
+ ; [esp+0x28] = result
+
+ mov r10, [esp+028h]
+ sub r8, r9
+ xor r11, r11 ; r11=0, cf=0
+
+ ALIGN 16
+ loop1:
+ mov rax, qword ptr [rcx + r11 * 8]
+ adc rax, qword ptr [rdx + r11 * 8]
+ mov qword ptr [r10 + r11 * 8], rax
+ inc r11
+ dec r9
+ jnz loop1
+
+ adc r9, r9 ; r9 has the cf state
+
+ or r8, r8
+ jz done
+
+ neg r9 ; setting cf from r9
+ mov r9, 0 ; don't use xor here (cf is used)
+ loop2:
+ mov rax, qword ptr [rcx + r11 * 8]
+ adc rax, r9
+ mov qword ptr [r10 + r11 * 8], rax
+ inc r11
+ dec r8
+ jnz loop2
+
+ adc r8, r8
+ mov rax, r8
+
+ ret
+
+done:
+ mov rax, r9
+ ret
+
+ttmath_addvector_x64 ENDP
+
+
+;----------------------------------------
+
+ ALIGN 8
+
+;----------------------------------------
+
+ttmath_sbb_x64 PROC
+
+ ; rcx = p1
+ ; rdx = p2
+ ; r8 = nCount
+ ; r9 = nCarry
+
+ xor rax, rax
+ xor r11, r11
+ sub rax, r9 ; sets CARRY if r9 != 0
+
+ ALIGN 16
+ loop1:
+ mov rax,qword ptr [rdx + r11 * 8]
+ sbb qword ptr [rcx + r11 * 8], rax
+ lea r11, [r11+1]
+ dec r8
+ jnz loop1
+
+ setc al
+ movzx rax, al
+
+ ret
+
+ttmath_sbb_x64 ENDP
+
+;----------------------------------------
+
+ ALIGN 8
+
+;----------------------------------------
+
+ttmath_subindexed_x64 PROC
+ ; rcx = p1
+ ; rdx = nSize
+ ; r8 = nPos
+ ; r9 = nValue
+
+ sub rdx, r8 ; rdx = remaining count of uints
+
+ ALIGN 16
+loop1:
+ sub qword ptr [rcx + r8 * 8], r9
+ jnc done
+
+ lea r8, [r8+1]
+ mov r9, 1
+ dec rdx
+ jnz loop1
+
+ mov rax, 1
+ ret
+
+done:
+ xor rax, rax
+ ret
+
+ttmath_subindexed_x64 ENDP
+
+
+
+;----------------------------------------
+
+ ALIGN 8
+
+;----------------------------------------
+
+; the same asm code as in addvector_x64 only two instructions 'adc' changed to 'sbb'
+
+ttmath_subvector_x64 PROC
+ ; rcx = ss1
+ ; rdx = ss2
+ ; r8 = ss1_size
+ ; r9 = ss2_size
+ ; [esp+0x28] = result
+
+ mov r10, [esp+028h]
+ sub r8, r9
+ xor r11, r11 ; r11=0, cf=0
+
+ ALIGN 16
+ loop1:
+ mov rax, qword ptr [rcx + r11 * 8]
+ sbb rax, qword ptr [rdx + r11 * 8]
+ mov qword ptr [r10 + r11 * 8], rax
+ inc r11
+ dec r9
+ jnz loop1
+
+ adc r9, r9 ; r9 has the cf state
+
+ or r8, r8
+ jz done
+
+ neg r9 ; setting cf from r9
+ mov r9, 0 ; don't use xor here (cf is used)
+ loop2:
+ mov rax, qword ptr [rcx + r11 * 8]
+ sbb rax, r9
+ mov qword ptr [r10 + r11 * 8], rax
+ inc r11
+ dec r8
+ jnz loop2
+
+ adc r8, r8
+ mov rax, r8
+
+ ret
+
+done:
+ mov rax, r9
+ ret
+
+ttmath_subvector_x64 ENDP
+
+
+
+
+;----------------------------------------
+
+ ALIGN 8
+
+;----------------------------------------
+
+ttmath_rcl_x64 PROC
+ ; rcx = p1
+ ; rdx = b
+ ; r8 = nLowestBit
+
+ mov r11, rcx ; table
+ xor r10, r10
+ neg r8 ; CY set if r8 <> 0
+
+ ALIGN 16
+loop1:
+ rcl qword ptr [r11 + r10 * 8], 1
+ lea r10, [r10+1]
+ dec rdx
+ jnz loop1
+
+ setc al
+ movzx rax, al
+
+ ret
+
+ttmath_rcl_x64 ENDP
+
+;----------------------------------------
+
+ ALIGN 8
+
+;----------------------------------------
+
+ttmath_rcr_x64 PROC
+ ; rcx = p1
+ ; rdx = nSize
+ ; r8 = nLowestBit
+
+ xor r10, r10
+ neg r8 ; CY set if r8 <> 0
+
+ ALIGN 16
+loop1:
+ rcr qword ptr -8[rcx + rdx * 8], 1
+ dec rdx
+ jnz loop1
+
+ setc al
+ movzx rax, al
+
+ ret
+
+ttmath_rcr_x64 ENDP
+
+;----------------------------------------
+
+ ALIGN 8
+
+;----------------------------------------
+
+ttmath_div_x64 PROC
+
+ ; rcx = &Hi
+ ; rdx = &Lo
+ ; r8 = nDiv
+
+ mov r11, rcx
+ mov r10, rdx
+
+ mov rdx, qword ptr [r11]
+ mov rax, qword ptr [r10]
+ div r8
+ mov qword ptr [r10], rdx ; remainder
+ mov qword ptr [r11], rax ; value
+
+ ret
+
+ttmath_div_x64 ENDP
+
+;----------------------------------------
+
+ ALIGN 8
+
+;----------------------------------------
+
+ttmath_rcl2_x64 PROC
+ ; rcx = p1
+ ; rdx = nSize
+ ; r8 = bits
+ ; r9 = c
+
+ push rbx
+
+ mov r10, rcx ; r10 = p1
+ xor rax, rax
+
+ mov rcx, 64
+ sub rcx, r8
+
+ mov r11, -1
+ shr r11, cl ; r11 = mask
+
+ mov rcx, r8 ; rcx = count of bits
+
+ mov rbx, rax ; rbx = old value = 0
+ or r9, r9
+ cmovnz rbx, r11 ; if (c) then old value = mask
+
+ mov r9, rax ; r9 = index (0..nSize-1)
+
+ ALIGN 16
+loop1:
+ rol qword ptr [r10+r9*8], cl
+ mov rax, qword ptr [r10+r9*8]
+ and rax, r11
+ xor qword ptr [r10+r9*8], rax
+ or qword ptr [r10+r9*8], rbx
+ mov rbx, rax
+
+ lea r9, [r9+1]
+ dec rdx
+
+ jnz loop1
+
+ and rax, 1
+ pop rbx
+ ret
+
+ttmath_rcl2_x64 ENDP
+
+;----------------------------------------
+
+ ALIGN 8
+
+;----------------------------------------
+
+ttmath_rcr2_x64 PROC
+ ; rcx = p1
+ ; rdx = nSize
+ ; r8 = bits
+ ; r9 = c
+
+ push rbx
+ mov r10, rcx ; r10 = p1
+ xor rax, rax
+
+ mov rcx, 64
+ sub rcx, r8
+
+ mov r11, -1
+ shl r11, cl ; r11 = mask
+
+ mov rcx, r8 ; rcx = count of bits
+
+ mov rbx, rax ; rbx = old value = 0
+ or r9, r9
+ cmovnz rbx, r11 ; if (c) then old value = mask
+
+ mov r9, rdx ; r9 = index (0..nSize-1)
+ lea r9, [r9-1]
+
+ ALIGN 16
+loop1:
+ ror qword ptr [r10+r9*8], cl
+ mov rax, qword ptr [r10+r9*8]
+ and rax, r11
+ xor qword ptr [r10+r9*8], rax
+ or qword ptr [r10+r9*8], rbx
+ mov rbx, rax
+
+ lea r9, [r9-1]
+ dec rdx
+
+ jnz loop1
+
+ rol rax, 1
+ and rax, 1
+ pop rbx
+
+ ret
+
+ttmath_rcr2_x64 ENDP
+
+END
Added: sandbox/geometry/boost/geometry/extensions/contrib/ttmath_stub.hpp
==============================================================================
--- (empty file)
+++ sandbox/geometry/boost/geometry/extensions/contrib/ttmath_stub.hpp 2010-07-05 13:06:03 EDT (Mon, 05 Jul 2010)
@@ -0,0 +1,145 @@
+#ifndef TTMATH_STUB
+#define TTMATH_STUB
+
+#include <boost/math/constants/constants.hpp>
+
+
+#include <ttmath/ttmath.h>
+namespace ttmath
+{
+ template <uint Mantissa, uint Exponent>
+ inline Big<Mantissa, Exponent> sqrt(Big<Mantissa, Exponent> const& v)
+ {
+ return Sqrt(v);
+ }
+
+ template <uint Mantissa, uint Exponent>
+ inline Big<Mantissa, Exponent> abs(Big<Mantissa, Exponent> const& v)
+ {
+ return Abs(v);
+ }
+
+ template <uint Mantissa, uint Exponent>
+ inline Big<Mantissa, Exponent> ceil(Big<Mantissa, Exponent> const& v)
+ {
+ return Ceil(v);
+ }
+
+ template <uint Mantissa, uint Exponent>
+ inline Big<Mantissa, Exponent> floor(Big<Mantissa, Exponent> const& v)
+ {
+ return Floor(v);
+ }
+
+ template <uint Mantissa, uint Exponent>
+ inline Big<Mantissa, Exponent> asin(Big<Mantissa, Exponent> const& v)
+ {
+ return ASin(v);
+ }
+
+ template <uint Mantissa, uint Exponent>
+ inline Big<Mantissa, Exponent> sin(Big<Mantissa, Exponent> const& v)
+ {
+ return Sin(v);
+ }
+
+ template <uint Mantissa, uint Exponent>
+ inline Big<Mantissa, Exponent> cos(Big<Mantissa, Exponent> const& v)
+ {
+ return Cos(v);
+ }
+
+ template <uint Mantissa, uint Exponent>
+ inline Big<Mantissa, Exponent> tan(Big<Mantissa, Exponent> const& v)
+ {
+ return Tan(v);
+ }
+
+ template <uint Mantissa, uint Exponent>
+ inline Big<Mantissa, Exponent> atan(Big<Mantissa, Exponent> const& v)
+ {
+ return ATan(v);
+ }
+
+
+ template <uint Mantissa, uint Exponent>
+ inline Big<Mantissa, Exponent> atan2(Big<Mantissa, Exponent> const& y, Big<Mantissa, Exponent> const& x)
+ {
+ // return ATan2(y, 2); does not (yet) exist in ttmath...
+
+ // See http://en.wikipedia.org/wiki/Atan2
+
+ Big<Mantissa, Exponent> const zero(0);
+ Big<Mantissa, Exponent> const two(2);
+
+ if (y == zero)
+ {
+ // return x >= 0 ? 0 : pi and pi=2*arccos(0)
+ return x >= zero ? zero : two * ACos(zero);
+ }
+
+ return two * ATan((sqrt(x * x + y * y) - x) / y);
+ }
+
+}
+
+// Specific structure implementing constructor
+// (WHICH IS NECESSARY FOR Boost.Geometry because it enables using T() !! )
+struct ttmath_big : ttmath::Big<1,4>
+{
+ ttmath_big(double v = 0)
+ : ttmath::Big<1,4>(v)
+ {}
+ ttmath_big(ttmath::Big<1,4> const& v)
+ : ttmath::Big<1,4>(v)
+ {}
+
+ /*
+ inline operator double() const
+ {
+ return atof(this->ToString().c_str());
+ }
+
+ inline operator int() const
+ {
+ return atol(ttmath::Round(*this).ToString().c_str());
+ }
+ */
+};
+
+namespace boost{ namespace math { namespace constants
+{
+ // Workaround for boost::math::constants::pi:
+ // 1) lexical cast -> stack overflow and
+ // 2) because it is implemented as a function, generic implementation not possible
+
+ template <ttmath::uint Mantissa, ttmath::uint Exponent>
+ inline ttmath::Big<Mantissa, Exponent> ttmath_pi()
+ {
+ static ttmath::Big<Mantissa, Exponent> const the_pi("3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534211706798214808651328230664709384460955058223172535940812848111745028410270193852110555964462294895493038196");
+ return the_pi;
+ }
+
+
+ template <> inline ttmath::Big<1,4> pi<ttmath::Big<1,4> >(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC( (ttmath::Big<1,4>) ))
+ {
+ return ttmath_pi<1,4>();
+ }
+ template <> inline ttmath::Big<1,8> pi<ttmath::Big<1,8> >(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC( (ttmath::Big<1,8>) ))
+ {
+ return ttmath_pi<1,8>();
+ }
+
+ // and so on...
+ // or fix lexical_cast but probably has the same problem
+
+
+ template <> inline ttmath_big pi<ttmath_big >(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(ttmath_big))
+ {
+ return ttmath_pi<1,4>();
+ }
+
+}}}
+
+
+#endif
Boost-Commit list run by bdawes at acm.org, david.abrahams at rcn.com, gregod at cs.rpi.edu, cpdaniel at pacbell.net, john at johnmaddock.co.uk