|
Boost-Commit : |
Subject: [Boost-commit] svn:boost r67703 - trunk/boost/graph
From: jewillco_at_[hidden]
Date: 2011-01-05 20:51:19
Author: jewillco
Date: 2011-01-05 20:51:16 EST (Wed, 05 Jan 2011)
New Revision: 67703
URL: http://svn.boost.org/trac/boost/changeset/67703
Log:
Removed deprecated file
Removed:
trunk/boost/graph/kolmogorov_max_flow.hpp
Deleted: trunk/boost/graph/kolmogorov_max_flow.hpp
==============================================================================
--- trunk/boost/graph/kolmogorov_max_flow.hpp 2011-01-05 20:51:16 EST (Wed, 05 Jan 2011)
+++ (empty file)
@@ -1,814 +0,0 @@
-// Copyright (c) 2006, Stephan Diederich
-//
-// This code may be used under either of the following two licences:
-//
-// Permission is hereby granted, free of charge, to any person
-// obtaining a copy of this software and associated documentation
-// files (the "Software"), to deal in the Software without
-// restriction, including without limitation the rights to use,
-// copy, modify, merge, publish, distribute, sublicense, and/or
-// sell copies of the Software, and to permit persons to whom the
-// Software is furnished to do so, subject to the following
-// conditions:
-//
-// The above copyright notice and this permission notice shall be
-// included in all copies or substantial portions of the Software.
-//
-// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
-// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
-// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
-// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
-// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
-// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
-// OTHER DEALINGS IN THE SOFTWARE. OF SUCH DAMAGE.
-//
-// Or:
-//
-// Distributed under the Boost Software License, Version 1.0.
-// (See accompanying file LICENSE_1_0.txt or copy at
-// http://www.boost.org/LICENSE_1_0.txt)
-
-#ifndef BOOST_KOLMOGOROV_MAX_FLOW_HPP
-#define BOOST_KOLMOGOROV_MAX_FLOW_HPP
-
-#if defined(_MSC_VER) || defined(__BORLANDC__) || defined(__DMC__)
-# pragma message ("The kolmogorov_max_flow.hpp header is deprecated and will be removed in Boost 1.46. Use boykov_kolmogorov_max_flow.hpp instead.")
-#elif defined(__GNUC__) || defined(__HP_aCC) || defined(__SUNPRO_CC) || defined(__IBMCPP__)
-# warning "The kolmogorov_max_flow.hpp header is deprecated and will be removed in Boost 1.46. Use boykov_kolmogorov_max_flow.hpp instead."
-#endif
-
-#include <boost/config.hpp>
-#include <cassert>
-#include <vector>
-#include <list>
-#include <utility>
-#include <iosfwd>
-#include <algorithm> // for std::min and std::max
-
-#include <boost/pending/queue.hpp>
-#include <boost/limits.hpp>
-#include <boost/property_map/property_map.hpp>
-#include <boost/none_t.hpp>
-#include <boost/graph/graph_concepts.hpp>
-#include <boost/graph/named_function_params.hpp>
-#include <boost/graph/lookup_edge.hpp>
-
-namespace boost {
- namespace detail {
-
- template <class Graph,
- class EdgeCapacityMap,
- class ResidualCapacityEdgeMap,
- class ReverseEdgeMap,
- class PredecessorMap,
- class ColorMap,
- class DistanceMap,
- class IndexMap>
- class kolmogorov{
- typedef typename property_traits<EdgeCapacityMap>::value_type tEdgeVal;
- typedef graph_traits<Graph> tGraphTraits;
- typedef typename tGraphTraits::vertex_iterator vertex_iterator;
- typedef typename tGraphTraits::vertex_descriptor vertex_descriptor;
- typedef typename tGraphTraits::edge_descriptor edge_descriptor;
- typedef typename tGraphTraits::edge_iterator edge_iterator;
- typedef typename tGraphTraits::out_edge_iterator out_edge_iterator;
- typedef boost::queue<vertex_descriptor> tQueue; //queue of vertices, used in adoption-stage
- typedef typename property_traits<ColorMap>::value_type tColorValue;
- typedef color_traits<tColorValue> tColorTraits;
- typedef typename property_traits<DistanceMap>::value_type tDistanceVal;
-
- public:
- kolmogorov(Graph& g,
- EdgeCapacityMap cap,
- ResidualCapacityEdgeMap res,
- ReverseEdgeMap rev,
- PredecessorMap pre,
- ColorMap color,
- DistanceMap dist,
- IndexMap idx,
- vertex_descriptor src,
- vertex_descriptor sink):
- m_g(g),
- m_index_map(idx),
- m_cap_map(cap),
- m_res_cap_map(res),
- m_rev_edge_map(rev),
- m_pre_map(pre),
- m_tree_map(color),
- m_dist_map(dist),
- m_source(src),
- m_sink(sink),
- m_active_nodes(),
- m_in_active_list_vec(num_vertices(g), false),
- m_in_active_list_map(make_iterator_property_map(m_in_active_list_vec.begin(), m_index_map)),
- m_has_parent_vec(num_vertices(g), false),
- m_has_parent_map(make_iterator_property_map(m_has_parent_vec.begin(), m_index_map)),
- m_time_vec(num_vertices(g), 0),
- m_time_map(make_iterator_property_map(m_time_vec.begin(), m_index_map)),
- m_flow(0),
- m_time(1),
- m_last_grow_vertex(graph_traits<Graph>::null_vertex()){
- // initialize the color-map with gray-values
- vertex_iterator vi, v_end;
- for(boost::tie(vi, v_end) = vertices(m_g); vi != v_end; ++vi){
- set_tree(*vi, tColorTraits::gray());
- }
- // Initialize flow to zero which means initializing
- // the residual capacity equal to the capacity
- edge_iterator ei, e_end;
- for(boost::tie(ei, e_end) = edges(m_g); ei != e_end; ++ei) {
- m_res_cap_map[*ei] = m_cap_map[*ei];
- assert(m_rev_edge_map[m_rev_edge_map[*ei]] == *ei); //check if the reverse edge map is build up properly
- }
- //init the search trees with the two terminals
- set_tree(m_source, tColorTraits::black());
- set_tree(m_sink, tColorTraits::white());
- m_time_map[m_source] = 1;
- m_time_map[m_sink] = 1;
- }
-
- ~kolmogorov(){}
-
- tEdgeVal max_flow(){
- //augment direct paths from SOURCE->SINK and SOURCE->VERTEX->SINK
- augment_direct_paths();
- //start the main-loop
- while(true){
- bool path_found;
- edge_descriptor connecting_edge;
- boost::tie(connecting_edge, path_found) = grow(); //find a path from source to sink
- if(!path_found){
- //we're finished, no more paths were found
- break;
- }
- ++m_time;
- augment(connecting_edge); //augment that path
- adopt(); //rebuild search tree structure
- }
- return m_flow;
- }
-
- //the complete class is protected, as we want access to members in derived test-class (see $(BOOST_ROOT)/libs/graph/test/kolmogorov_max_flow_test.cpp)
- protected:
- void augment_direct_paths(){
- //in a first step, we augment all direct paths from source->NODE->sink
- //and additionally paths from source->sink
- //this improves especially graphcuts for segmentation, as most of the nodes have source/sink connects
- //but shouldn't have an impact on other maxflow problems (this is done in grow() anyway)
- out_edge_iterator ei, e_end;
- for(boost::tie(ei, e_end) = out_edges(m_source, m_g); ei != e_end; ++ei){
- edge_descriptor from_source = *ei;
- vertex_descriptor current_node = target(from_source, m_g);
- if(current_node == m_sink){
- tEdgeVal cap = m_res_cap_map[from_source];
- m_res_cap_map[from_source] = 0;
- m_flow += cap;
- continue;
- }
- edge_descriptor to_sink;
- bool is_there;
- boost::tie(to_sink, is_there) = lookup_edge(current_node, m_sink, m_g);
- if(is_there){
- tEdgeVal cap_from_source = m_res_cap_map[from_source];
- tEdgeVal cap_to_sink = m_res_cap_map[to_sink];
- if(cap_from_source > cap_to_sink){
- set_tree(current_node, tColorTraits::black());
- add_active_node(current_node);
- set_edge_to_parent(current_node, from_source);
- m_dist_map[current_node] = 1;
- m_time_map[current_node] = 1;
- //add stuff to flow and update residuals
- //we dont need to update reverse_edges, as incoming/outgoing edges to/from source/sink don't count for max-flow
- m_res_cap_map[from_source] -= cap_to_sink;
- m_res_cap_map[to_sink] = 0;
- m_flow += cap_to_sink;
- } else if(cap_to_sink > 0){
- set_tree(current_node, tColorTraits::white());
- add_active_node(current_node);
- set_edge_to_parent(current_node, to_sink);
- m_dist_map[current_node] = 1;
- m_time_map[current_node] = 1;
- //add stuff to flow and update residuals
- //we dont need to update reverse_edges, as incoming/outgoing edges to/from source/sink don't count for max-flow
- m_res_cap_map[to_sink] -= cap_from_source;
- m_res_cap_map[from_source] = 0;
- m_flow += cap_from_source;
- }
- } else if(m_res_cap_map[from_source]){
- //there is no sink connect, so we can't augment this path
- //but to avoid adding m_source to the active nodes, we just activate this node and set the approciate things
- set_tree(current_node, tColorTraits::black());
- set_edge_to_parent(current_node, from_source);
- m_dist_map[current_node] = 1;
- m_time_map[current_node] = 1;
- add_active_node(current_node);
- }
- }
- for(boost::tie(ei, e_end) = out_edges(m_sink, m_g); ei != e_end; ++ei){
- edge_descriptor to_sink = m_rev_edge_map[*ei];
- vertex_descriptor current_node = source(to_sink, m_g);
- if(m_res_cap_map[to_sink]){
- set_tree(current_node, tColorTraits::white());
- set_edge_to_parent(current_node, to_sink);
- m_dist_map[current_node] = 1;
- m_time_map[current_node] = 1;
- add_active_node(current_node);
- }
- }
- }
-
- /**
- * returns a pair of an edge and a boolean. if the bool is true, the edge is a connection of a found path from s->t , read "the link" and
- * source(returnVal, m_g) is the end of the path found in the source-tree
- * target(returnVal, m_g) is the beginning of the path found in the sink-tree
- */
- std::pair<edge_descriptor, bool> grow(){
- assert(m_orphans.empty());
- vertex_descriptor current_node;
- while((current_node = get_next_active_node()) != graph_traits<Graph>::null_vertex()){ //if there is one
- assert(get_tree(current_node) != tColorTraits::gray() && (has_parent(current_node) || current_node==m_source || current_node==m_sink));
- if(get_tree(current_node) == tColorTraits::black()){
- //source tree growing
- out_edge_iterator ei, e_end;
- if(current_node != m_last_grow_vertex){
- m_last_grow_vertex = current_node;
- boost::tie(m_last_grow_edge_it, m_last_grow_edge_end) = out_edges(current_node, m_g);
- }
- for(; m_last_grow_edge_it != m_last_grow_edge_end; ++m_last_grow_edge_it){
- edge_descriptor out_edge = *m_last_grow_edge_it;
- if(m_res_cap_map[out_edge] > 0){ //check if we have capacity left on this edge
- vertex_descriptor other_node = target(out_edge, m_g);
- if(get_tree(other_node) == tColorTraits::gray()){ //it's a free node
- set_tree(other_node, tColorTraits::black()); //aquire other node to our search tree
- set_edge_to_parent(other_node, out_edge); //set us as parent
- m_dist_map[other_node] = m_dist_map[current_node] + 1; //and update the distance-heuristic
- m_time_map[other_node] = m_time_map[current_node];
- add_active_node(other_node);
- } else if(get_tree(other_node) == tColorTraits::black()){
- if(is_closer_to_terminal(current_node, other_node)){ //we do this to get shorter paths. check if we are nearer to the source as its parent is
- set_edge_to_parent(other_node, out_edge);
- m_dist_map[other_node] = m_dist_map[current_node] + 1;
- m_time_map[other_node] = m_time_map[current_node];
- }
- } else{
- assert(get_tree(other_node)==tColorTraits::white());
- //kewl, found a path from one to the other search tree, return the connecting edge in src->sink dir
- return std::make_pair(out_edge, true);
- }
- }
- } //for all out-edges
- } //source-tree-growing
- else{
- assert(get_tree(current_node) == tColorTraits::white());
- out_edge_iterator ei, e_end;
- if(current_node != m_last_grow_vertex){
- m_last_grow_vertex = current_node;
- boost::tie(m_last_grow_edge_it, m_last_grow_edge_end) = out_edges(current_node, m_g);
- }
- for(; m_last_grow_edge_it != m_last_grow_edge_end; ++m_last_grow_edge_it){
- edge_descriptor in_edge = m_rev_edge_map[*m_last_grow_edge_it];
- if(m_res_cap_map[in_edge] > 0){ //check if there is capacity left
- vertex_descriptor other_node = source(in_edge, m_g);
- if(get_tree(other_node) == tColorTraits::gray()){ //it's a free node
- set_tree(other_node, tColorTraits::white()); //aquire that node to our search tree
- set_edge_to_parent(other_node, in_edge); //set us as parent
- add_active_node(other_node); //activate that node
- m_dist_map[other_node] = m_dist_map[current_node] + 1; //set its distance
- m_time_map[other_node] = m_time_map[current_node]; //and time
- } else if(get_tree(other_node) == tColorTraits::white()){
- if(is_closer_to_terminal(current_node, other_node)){
- //we are closer to the sink than its parent is, so we "adopt" him
- set_edge_to_parent(other_node, in_edge);
- m_dist_map[other_node] = m_dist_map[current_node] + 1;
- m_time_map[other_node] = m_time_map[current_node];
- }
- } else{
- assert(get_tree(other_node)==tColorTraits::black());
- //kewl, found a path from one to the other search tree, return the connecting edge in src->sink dir
- return std::make_pair(in_edge, true);
- }
- }
- } //for all out-edges
- } //sink-tree growing
- //all edges of that node are processed, and no more paths were found. so remove if from the front of the active queue
- finish_node(current_node);
- } //while active_nodes not empty
- return std::make_pair(edge_descriptor(), false); //no active nodes anymore and no path found, we're done
- }
-
- /**
- * augments path from s->t and updates residual graph
- * source(e, m_g) is the end of the path found in the source-tree
- * target(e, m_g) is the beginning of the path found in the sink-tree
- * this phase generates orphans on satured edges, if the attached verts are from different search-trees
- * orphans are ordered in distance to sink/source. first the farest from the source are front_inserted into the orphans list,
- * and after that the sink-tree-orphans are front_inserted. when going to adoption stage the orphans are popped_front, and so we process the nearest
- * verts to the terminals first
- */
- void augment(edge_descriptor e){
- assert(get_tree(target(e, m_g)) == tColorTraits::white());
- assert(get_tree(source(e, m_g)) == tColorTraits::black());
- assert(m_orphans.empty());
-
- const tEdgeVal bottleneck = find_bottleneck(e);
- //now we push the found flow through the path
- //for each edge we saturate we have to look for the verts that belong to that edge, one of them becomes an orphans
- //now process the connecting edge
- m_res_cap_map[e] -= bottleneck;
- assert(m_res_cap_map[e] >= 0);
- m_res_cap_map[m_rev_edge_map[e]] += bottleneck;
-
- //now we follow the path back to the source
- vertex_descriptor current_node = source(e, m_g);
- while(current_node != m_source){
- edge_descriptor pred = get_edge_to_parent(current_node);
- m_res_cap_map[pred] -= bottleneck;
- assert(m_res_cap_map[pred] >= 0);
- m_res_cap_map[m_rev_edge_map[pred]] += bottleneck;
- if(m_res_cap_map[pred] == 0){
- set_no_parent(current_node);
- m_orphans.push_front(current_node);
- }
- current_node = source(pred, m_g);
- }
- //then go forward in the sink-tree
- current_node = target(e, m_g);
- while(current_node != m_sink){
- edge_descriptor pred = get_edge_to_parent(current_node);
- m_res_cap_map[pred] -= bottleneck;
- assert(m_res_cap_map[pred] >= 0);
- m_res_cap_map[m_rev_edge_map[pred]] += bottleneck;
- if(m_res_cap_map[pred] == 0){
- set_no_parent(current_node);
- m_orphans.push_front(current_node);
- }
- current_node = target(pred, m_g);
- }
- //and add it to the max-flow
- m_flow += bottleneck;
- }
-
- /**
- * returns the bottleneck of a s->t path (end_of_path is last vertex in source-tree, begin_of_path is first vertex in sink-tree)
- */
- inline tEdgeVal find_bottleneck(edge_descriptor e){
- BOOST_USING_STD_MIN();
- tEdgeVal minimum_cap = m_res_cap_map[e];
- vertex_descriptor current_node = source(e, m_g);
- //first go back in the source tree
- while(current_node != m_source){
- edge_descriptor pred = get_edge_to_parent(current_node);
- minimum_cap = min BOOST_PREVENT_MACRO_SUBSTITUTION(minimum_cap, m_res_cap_map[pred]);
- current_node = source(pred, m_g);
- }
- //then go forward in the sink-tree
- current_node = target(e, m_g);
- while(current_node != m_sink){
- edge_descriptor pred = get_edge_to_parent(current_node);
- minimum_cap = min BOOST_PREVENT_MACRO_SUBSTITUTION(minimum_cap, m_res_cap_map[pred]);
- current_node = target(pred, m_g);
- }
- return minimum_cap;
- }
-
- /**
- * rebuild search trees
- * empty the queue of orphans, and find new parents for them or just drop them from the search trees
- */
- void adopt(){
- while(!m_orphans.empty() || !m_child_orphans.empty()){
- vertex_descriptor current_node;
- if(m_child_orphans.empty()){
- //get the next orphan from the main-queue and remove it
- current_node = m_orphans.front();
- m_orphans.pop_front();
- } else{
- current_node = m_child_orphans.front();
- m_child_orphans.pop();
- }
- if(get_tree(current_node) == tColorTraits::black()){
- //we're in the source-tree
- tDistanceVal min_distance = (std::numeric_limits<tDistanceVal>::max)();
- edge_descriptor new_parent_edge;
- out_edge_iterator ei, e_end;
- for(boost::tie(ei, e_end) = out_edges(current_node, m_g); ei != e_end; ++ei){
- const edge_descriptor in_edge = m_rev_edge_map[*ei];
- assert(target(in_edge, m_g) == current_node); //we should be the target of this edge
- if(m_res_cap_map[in_edge] > 0){
- vertex_descriptor other_node = source(in_edge, m_g);
- if(get_tree(other_node) == tColorTraits::black() && has_source_connect(other_node)){
- if(m_dist_map[other_node] < min_distance){
- min_distance = m_dist_map[other_node];
- new_parent_edge = in_edge;
- }
- }
- }
- }
- if(min_distance != (std::numeric_limits<tDistanceVal>::max)()){
- set_edge_to_parent(current_node, new_parent_edge);
- m_dist_map[current_node] = min_distance + 1;
- m_time_map[current_node] = m_time;
- } else{
- m_time_map[current_node] = 0;
- for(boost::tie(ei, e_end) = out_edges(current_node, m_g); ei != e_end; ++ei){
- edge_descriptor in_edge = m_rev_edge_map[*ei];
- vertex_descriptor other_node = source(in_edge, m_g);
- if(get_tree(other_node) == tColorTraits::black() && has_parent(other_node)){
- if(m_res_cap_map[in_edge] > 0){
- add_active_node(other_node);
- }
- if(source(get_edge_to_parent(other_node), m_g) == current_node){
- //we are the parent of that node
- //it has to find a new parent, too
- set_no_parent(other_node);
- m_child_orphans.push(other_node);
- }
- }
- }
- set_tree(current_node, tColorTraits::gray());
- } //no parent found
- } //source-tree-adoption
- else{
- //now we should be in the sink-tree, check that...
- assert(get_tree(current_node) == tColorTraits::white());
- out_edge_iterator ei, e_end;
- edge_descriptor new_parent_edge;
- tDistanceVal min_distance = (std::numeric_limits<tDistanceVal>::max)();
- for(boost::tie(ei, e_end) = out_edges(current_node, m_g); ei != e_end; ++ei){
- const edge_descriptor out_edge = *ei;
- if(m_res_cap_map[out_edge] > 0){
- const vertex_descriptor other_node = target(out_edge, m_g);
- if(get_tree(other_node) == tColorTraits::white() && has_sink_connect(other_node))
- if(m_dist_map[other_node] < min_distance){
- min_distance = m_dist_map[other_node];
- new_parent_edge = out_edge;
- }
- }
- }
- if(min_distance != (std::numeric_limits<tDistanceVal>::max)()){
- set_edge_to_parent(current_node, new_parent_edge);
- m_dist_map[current_node] = min_distance + 1;
- m_time_map[current_node] = m_time;
- } else{
- m_time_map[current_node] = 0;
- for(boost::tie(ei, e_end) = out_edges(current_node, m_g); ei != e_end; ++ei){
- const edge_descriptor out_edge = *ei;
- const vertex_descriptor other_node = target(out_edge, m_g);
- if(get_tree(other_node) == tColorTraits::white() && has_parent(other_node)){
- if(m_res_cap_map[out_edge] > 0){
- add_active_node(other_node);
- }
- if(target(get_edge_to_parent(other_node), m_g) == current_node){
- //we were it's parent, so it has to find a new one, too
- set_no_parent(other_node);
- m_child_orphans.push(other_node);
- }
- }
- }
- set_tree(current_node, tColorTraits::gray());
- } //no parent found
- } //sink-tree adoption
- } //while !orphans.empty()
- } //adopt
-
- /**
- * return next active vertex if there is one, otherwise a null_vertex
- */
- inline vertex_descriptor get_next_active_node(){
- while(true){
- if(m_active_nodes.empty())
- return graph_traits<Graph>::null_vertex();
- vertex_descriptor v = m_active_nodes.front();
-
- if(!has_parent(v) && v != m_source && v != m_sink){ //if it has no parent, this node can't be active(if its not source or sink)
- m_active_nodes.pop();
- m_in_active_list_map[v] = false;
- } else{
- assert(get_tree(v) == tColorTraits::black() || get_tree(v) == tColorTraits::white());
- return v;
- }
- }
- }
-
- /**
- * adds v as an active vertex, but only if its not in the list already
- */
- inline void add_active_node(vertex_descriptor v){
- assert(get_tree(v) != tColorTraits::gray());
- if(m_in_active_list_map[v]){
- return;
- } else{
- m_in_active_list_map[v] = true;
- m_active_nodes.push(v);
- }
- }
-
- /**
- * finish_node removes a node from the front of the active queue (its called in grow phase, if no more paths can be found using this node)
- */
- inline void finish_node(vertex_descriptor v){
- assert(m_active_nodes.front() == v);
- m_active_nodes.pop();
- m_in_active_list_map[v] = false;
- m_last_grow_vertex = graph_traits<Graph>::null_vertex();
- }
-
- /**
- * removes a vertex from the queue of active nodes (actually this does nothing,
- * but checks if this node has no parent edge, as this is the criteria for beeing no more active)
- */
- inline void remove_active_node(vertex_descriptor v){
- assert(!has_parent(v));
- }
-
- /**
- * returns the search tree of v; tColorValue::black() for source tree, white() for sink tree, gray() for no tree
- */
- inline tColorValue get_tree(vertex_descriptor v) const {
- return m_tree_map[v];
- }
-
- /**
- * sets search tree of v; tColorValue::black() for source tree, white() for sink tree, gray() for no tree
- */
- inline void set_tree(vertex_descriptor v, tColorValue t){
- m_tree_map[v] = t;
- }
-
- /**
- * returns edge to parent vertex of v;
- */
- inline edge_descriptor get_edge_to_parent(vertex_descriptor v) const{
- return m_pre_map[v];
- }
-
- /**
- * returns true if the edge stored in m_pre_map[v] is a valid entry
- */
- inline bool has_parent(vertex_descriptor v) const{
- return m_has_parent_map[v];
- }
-
- /**
- * sets edge to parent vertex of v;
- */
- inline void set_edge_to_parent(vertex_descriptor v, edge_descriptor f_edge_to_parent){
- assert(m_res_cap_map[f_edge_to_parent] > 0);
- m_pre_map[v] = f_edge_to_parent;
- m_has_parent_map[v] = true;
- }
-
- /**
- * removes the edge to parent of v (this is done by invalidating the entry an additional map)
- */
- inline void set_no_parent(vertex_descriptor v){
- m_has_parent_map[v] = false;
- }
-
- /**
- * checks if vertex v has a connect to the sink-vertex (@var m_sink)
- * @param v the vertex which is checked
- * @return true if a path to the sink was found, false if not
- */
- inline bool has_sink_connect(vertex_descriptor v){
- tDistanceVal current_distance = 0;
- vertex_descriptor current_vertex = v;
- while(true){
- if(m_time_map[current_vertex] == m_time){
- //we found a node which was already checked this round. use it for distance calculations
- current_distance += m_dist_map[current_vertex];
- break;
- }
- if(current_vertex == m_sink){
- m_time_map[m_sink] = m_time;
- break;
- }
- if(has_parent(current_vertex)){
- //it has a parent, so get it
- current_vertex = target(get_edge_to_parent(current_vertex), m_g);
- ++current_distance;
- } else{
- //no path found
- return false;
- }
- }
- current_vertex=v;
- while(m_time_map[current_vertex] != m_time){
- m_dist_map[current_vertex] = current_distance--;
- m_time_map[current_vertex] = m_time;
- current_vertex = target(get_edge_to_parent(current_vertex), m_g);
- }
- return true;
- }
-
- /**
- * checks if vertex v has a connect to the source-vertex (@var m_source)
- * @param v the vertex which is checked
- * @return true if a path to the source was found, false if not
- */
- inline bool has_source_connect(vertex_descriptor v){
- tDistanceVal current_distance = 0;
- vertex_descriptor current_vertex = v;
- while(true){
- if(m_time_map[current_vertex] == m_time){
- //we found a node which was already checked this round. use it for distance calculations
- current_distance += m_dist_map[current_vertex];
- break;
- }
- if(current_vertex == m_source){
- m_time_map[m_source] = m_time;
- break;
- }
- if(has_parent(current_vertex)){
- //it has a parent, so get it
- current_vertex = source(get_edge_to_parent(current_vertex), m_g);
- ++current_distance;
- } else{
- //no path found
- return false;
- }
- }
- current_vertex=v;
- while(m_time_map[current_vertex] != m_time){
- m_dist_map[current_vertex] = current_distance-- ;
- m_time_map[current_vertex] = m_time;
- current_vertex = source(get_edge_to_parent(current_vertex), m_g);
- }
- return true;
- }
-
- /**
- * returns true, if p is closer to a terminal than q
- */
- inline bool is_closer_to_terminal(vertex_descriptor p, vertex_descriptor q){
- //checks the timestamps first, to build no cycles, and after that the real distance
- return (m_time_map[q] <= m_time_map[p] && m_dist_map[q] > m_dist_map[p]+1);
- }
-
- ////////
- // member vars
- ////////
- Graph& m_g;
- IndexMap m_index_map;
- EdgeCapacityMap m_cap_map;
- ResidualCapacityEdgeMap m_res_cap_map;
- ReverseEdgeMap m_rev_edge_map;
- PredecessorMap m_pre_map; //stores paths found in the growth stage
- ColorMap m_tree_map; //maps each vertex into one of the two search tree or none (gray())
- DistanceMap m_dist_map; //stores distance to source/sink nodes
- vertex_descriptor m_source;
- vertex_descriptor m_sink;
-
- tQueue m_active_nodes;
- std::vector<bool> m_in_active_list_vec;
- iterator_property_map<std::vector<bool>::iterator, IndexMap> m_in_active_list_map;
-
- std::list<vertex_descriptor> m_orphans;
- tQueue m_child_orphans; // we use a second queuqe for child orphans, as they are FIFO processed
-
- std::vector<bool> m_has_parent_vec;
- iterator_property_map<std::vector<bool>::iterator, IndexMap> m_has_parent_map;
-
- std::vector<long> m_time_vec; //timestamp of each node, used for sink/source-path calculations
- iterator_property_map<std::vector<long>::iterator, IndexMap> m_time_map;
- tEdgeVal m_flow;
- long m_time;
- vertex_descriptor m_last_grow_vertex;
- out_edge_iterator m_last_grow_edge_it;
- out_edge_iterator m_last_grow_edge_end;
- };
- } //namespace detail
-
- /**
- * non-named-parameter version, given everything
- * this is the catch all version
- */
- template <class Graph, class CapacityEdgeMap, class ResidualCapacityEdgeMap, class ReverseEdgeMap,
- class PredecessorMap, class ColorMap, class DistanceMap, class IndexMap>
- typename property_traits<CapacityEdgeMap>::value_type
- kolmogorov_max_flow
- (Graph& g,
- CapacityEdgeMap cap,
- ResidualCapacityEdgeMap res_cap,
- ReverseEdgeMap rev_map,
- PredecessorMap pre_map,
- ColorMap color,
- DistanceMap dist,
- IndexMap idx,
- typename graph_traits<Graph>::vertex_descriptor src,
- typename graph_traits<Graph>::vertex_descriptor sink
- )
- {
- typedef typename graph_traits<Graph>::vertex_descriptor vertex_descriptor;
- typedef typename graph_traits<Graph>::edge_descriptor edge_descriptor;
- //as this method is the last one before we instantiate the solver, we do the concept checks here
- function_requires<VertexListGraphConcept<Graph> >(); //to have vertices(), num_vertices(),
- function_requires<EdgeListGraphConcept<Graph> >(); //to have edges()
- function_requires<IncidenceGraphConcept<Graph> >(); //to have source(), target() and out_edges()
- function_requires<LvaluePropertyMapConcept<CapacityEdgeMap, edge_descriptor> >(); //read flow-values from edges
- function_requires<Mutable_LvaluePropertyMapConcept<ResidualCapacityEdgeMap, edge_descriptor> >(); //write flow-values to residuals
- function_requires<LvaluePropertyMapConcept<ReverseEdgeMap, edge_descriptor> >(); //read out reverse edges
- function_requires<Mutable_LvaluePropertyMapConcept<PredecessorMap, vertex_descriptor> >(); //store predecessor there
- function_requires<Mutable_LvaluePropertyMapConcept<ColorMap, vertex_descriptor> >(); //write corresponding tree
- function_requires<Mutable_LvaluePropertyMapConcept<DistanceMap, vertex_descriptor> >(); //write distance to source/sink
- function_requires<ReadablePropertyMapConcept<IndexMap, vertex_descriptor> >(); //get index 0...|V|-1
- assert(num_vertices(g) >= 2 && src != sink);
- detail::kolmogorov<Graph, CapacityEdgeMap, ResidualCapacityEdgeMap, ReverseEdgeMap, PredecessorMap, ColorMap, DistanceMap, IndexMap>
- algo(g, cap, res_cap, rev_map, pre_map, color, dist, idx, src, sink);
- return algo.max_flow();
- }
-
- /**
- * non-named-parameter version, given: capacity, residucal_capacity, reverse_edges, and an index map.
- */
- template <class Graph, class CapacityEdgeMap, class ResidualCapacityEdgeMap, class ReverseEdgeMap, class IndexMap>
- typename property_traits<CapacityEdgeMap>::value_type
- kolmogorov_max_flow
- (Graph& g,
- CapacityEdgeMap cap,
- ResidualCapacityEdgeMap res_cap,
- ReverseEdgeMap rev,
- IndexMap idx,
- typename graph_traits<Graph>::vertex_descriptor src,
- typename graph_traits<Graph>::vertex_descriptor sink)
- {
- typename graph_traits<Graph>::vertices_size_type n_verts = num_vertices(g);
- std::vector<typename graph_traits<Graph>::edge_descriptor> predecessor_vec(n_verts);
- std::vector<default_color_type> color_vec(n_verts);
- std::vector<typename graph_traits<Graph>::vertices_size_type> distance_vec(n_verts);
- return kolmogorov_max_flow
- (g, cap, res_cap, rev,
- make_iterator_property_map(predecessor_vec.begin(), idx),
- make_iterator_property_map(color_vec.begin(), idx),
- make_iterator_property_map(distance_vec.begin(), idx),
- idx, src, sink);
- }
-
- /**
- * non-named-parameter version, some given: capacity, residual_capacity, reverse_edges, color_map and an index map.
- * Use this if you are interested in the minimum cut, as the color map provides that info
- */
- template <class Graph, class CapacityEdgeMap, class ResidualCapacityEdgeMap, class ReverseEdgeMap, class ColorMap, class IndexMap>
- typename property_traits<CapacityEdgeMap>::value_type
- kolmogorov_max_flow
- (Graph& g,
- CapacityEdgeMap cap,
- ResidualCapacityEdgeMap res_cap,
- ReverseEdgeMap rev,
- ColorMap color,
- IndexMap idx,
- typename graph_traits<Graph>::vertex_descriptor src,
- typename graph_traits<Graph>::vertex_descriptor sink)
- {
- typename graph_traits<Graph>::vertices_size_type n_verts = num_vertices(g);
- std::vector<typename graph_traits<Graph>::edge_descriptor> predecessor_vec(n_verts);
- std::vector<typename graph_traits<Graph>::vertices_size_type> distance_vec(n_verts);
-
- return kolmogorov_max_flow
- (g, cap, res_cap, rev,
- make_iterator_property_map(predecessor_vec.begin(), idx),
- color,
- make_iterator_property_map(distance_vec.begin(), idx),
- idx, src, sink);
- }
-
- /**
- * named-parameter version, some given
- */
- template <class Graph, class P, class T, class R>
- typename property_traits<typename property_map<Graph, edge_capacity_t>::const_type>::value_type
- kolmogorov_max_flow
- (Graph& g,
- typename graph_traits<Graph>::vertex_descriptor src,
- typename graph_traits<Graph>::vertex_descriptor sink,
- const bgl_named_params<P, T, R>& params)
- {
- return kolmogorov_max_flow(g,
- choose_const_pmap(get_param(params, edge_capacity), g, edge_capacity),
- choose_pmap(get_param(params, edge_residual_capacity), g, edge_residual_capacity),
- choose_const_pmap(get_param(params, edge_reverse), g, edge_reverse),
- choose_pmap(get_param(params, vertex_predecessor), g, vertex_predecessor),
- choose_pmap(get_param(params, vertex_color), g, vertex_color),
- choose_pmap(get_param(params, vertex_distance), g, vertex_distance),
- choose_const_pmap(get_param(params, vertex_index), g, vertex_index),
- src, sink);
- }
-
- /**
- * named-parameter version, none given
- */
- template <class Graph>
- typename property_traits<typename property_map<Graph, edge_capacity_t>::const_type>::value_type
- kolmogorov_max_flow
- (Graph& g,
- typename graph_traits<Graph>::vertex_descriptor src,
- typename graph_traits<Graph>::vertex_descriptor sink)
- {
- bgl_named_params<int, buffer_param_t> params(0); // bogus empty param
- return kolmogorov_max_flow(g, src, sink, params);
- }
-} // namespace boost
-
-#endif // BOOST_KOLMOGOROV_MAX_FLOW_HPP
-
Boost-Commit list run by bdawes at acm.org, david.abrahams at rcn.com, gregod at cs.rpi.edu, cpdaniel at pacbell.net, john at johnmaddock.co.uk