Boost logo

Boost-Commit :

Subject: [Boost-commit] svn:boost r72877 - in sandbox/numpy: . boost boost/numpy boost/python boost/python/numpy libs/numpy libs/numpy/src libs/numpy/test libs/python/numpy
From: seefeld_at_[hidden]
Date: 2011-07-03 12:40:32


Author: stefan
Date: 2011-07-03 12:40:30 EDT (Sun, 03 Jul 2011)
New Revision: 72877
URL: http://svn.boost.org/trac/boost/changeset/72877

Log:
Rename (and move) boost.python.numpy to boost.numpy.
Added:
   sandbox/numpy/boost/numpy/
      - copied from r72875, /sandbox/numpy/boost/python/numpy/
   sandbox/numpy/boost/numpy.hpp
      - copied, changed from r72875, /sandbox/numpy/boost/python/numpy.hpp
   sandbox/numpy/libs/numpy/
      - copied from r72875, /sandbox/numpy/libs/python/numpy/
Removed:
   sandbox/numpy/boost/python/numpy/
   sandbox/numpy/boost/python/numpy.hpp
   sandbox/numpy/libs/python/numpy/
Text files modified:
   sandbox/numpy/SConscript | 34 +-
   sandbox/numpy/boost/numpy.hpp | 30 +-
   sandbox/numpy/boost/numpy/dtype.hpp | 72 ++--
   sandbox/numpy/boost/numpy/internal.hpp | 16
   sandbox/numpy/boost/numpy/invoke_matching.hpp | 224 ++++++++--------
   sandbox/numpy/boost/numpy/matrix.hpp | 65 ++--
   sandbox/numpy/boost/numpy/ndarray.hpp | 353 +++++++++++++-------------
   sandbox/numpy/boost/numpy/numpy_object_mgr_traits.hpp | 40 +-
   sandbox/numpy/boost/numpy/scalars.hpp | 67 ++--
   sandbox/numpy/boost/numpy/ufunc.hpp | 234 +++++++++--------
   sandbox/numpy/libs/numpy/src/SConscript | 4
   sandbox/numpy/libs/numpy/src/dtype.cpp | 114 ++++---
   sandbox/numpy/libs/numpy/src/matrix.cpp | 84 +++--
   sandbox/numpy/libs/numpy/src/ndarray.cpp | 526 +++++++++++++++++++--------------------
   sandbox/numpy/libs/numpy/src/numpy.cpp | 21
   sandbox/numpy/libs/numpy/src/scalars.cpp | 50 +-
   sandbox/numpy/libs/numpy/src/ufunc.cpp | 70 +++--
   sandbox/numpy/libs/numpy/test/SConscript | 6
   sandbox/numpy/libs/numpy/test/indexing.py | 12
   sandbox/numpy/libs/numpy/test/indexing_mod.cpp | 27 +
   sandbox/numpy/libs/numpy/test/ndarray_mod.cpp | 68 +---
   sandbox/numpy/libs/numpy/test/shapes_mod.cpp | 19
   sandbox/numpy/libs/numpy/test/templates_mod.cpp | 82 +++--
   sandbox/numpy/libs/numpy/test/ufunc_mod.cpp | 43 +-
   24 files changed, 1163 insertions(+), 1098 deletions(-)

Modified: sandbox/numpy/SConscript
==============================================================================
--- sandbox/numpy/SConscript (original)
+++ sandbox/numpy/SConscript 2011-07-03 12:40:30 EDT (Sun, 03 Jul 2011)
@@ -1,33 +1,33 @@
 import scons_tools
 import os
 
-targets = {"boost.python.numpy":{}}
+targets = {"boost.numpy":{}}
 
 scons_tools.LocalConfiguration(
- name="boost.python.numpy",
- libraries=["boost_python_numpy"],
+ name="boost.numpy",
+ libraries=["boost_numpy"],
     dependencies=("boost.python", "numpy")
     )
-bp_numpy_env = scons_tools.GetEnvironment().Clone()
-bp_numpy_env.Append(CPPPATH=[os.path.abspath(os.curdir)])
-libpath = os.path.abspath("%s/python/numpy/src" % scons_tools.GetBuildDir())
+boost_numpy_env = scons_tools.GetEnvironment().Clone()
+boost_numpy_env.Append(CPPPATH=[os.path.abspath(os.curdir)])
+libpath = os.path.abspath("%s/numpy/src" % scons_tools.GetBuildDir())
 if os.environ.has_key("LD_LIBRARY_PATH"):
- bp_numpy_env["ENV"]["LD_LIBRARY_PATH"] = "%s:%s" % (libpath, os.environ["LD_LIBRARY_PATH"])
+ boost_numpy_env["ENV"]["LD_LIBRARY_PATH"] = "%s:%s" % (libpath, os.environ["LD_LIBRARY_PATH"])
 else:
- bp_numpy_env["ENV"]["LD_LIBRARY_PATH"] = libpath
-bp_numpy_env.Append(LIBPATH=[libpath])
-bp_numpy_env.SetupPackages(["boost.python", "numpy"])
-Export("bp_numpy_env")
+ boost_numpy_env["ENV"]["LD_LIBRARY_PATH"] = libpath
+boost_numpy_env.Append(LIBPATH=[libpath])
+boost_numpy_env.SetupPackages(["boost.python", "numpy"])
+Export("boost_numpy_env")
 
-targets["boost.python.numpy"]["lib"] = SConscript("libs/python/numpy/src/SConscript")
-targets["boost.python.numpy"]["install"] = (
- bp_numpy_env.RecursiveInstall(
- os.path.join(bp_numpy_env["INSTALL_HEADERS"], "boost"),
+targets["boost.numpy"]["lib"] = SConscript("libs/numpy/src/SConscript")
+targets["boost.numpy"]["install"] = (
+ boost_numpy_env.RecursiveInstall(
+ os.path.join(boost_numpy_env["INSTALL_HEADERS"], "boost"),
         "boost",
         regex="(.*\.hpp)")
- + bp_numpy_env.Install(bp_numpy_env["INSTALL_LIB"], targets["boost.python.numpy"]["lib"])
+ + boost_numpy_env.Install(boost_numpy_env["INSTALL_LIB"], targets["boost.numpy"]["lib"])
     )
-targets["boost.python.numpy"]["test"] = SConscript("libs/python/numpy/test/SConscript")
+targets["boost.numpy"]["test"] = SConscript("libs/numpy/test/SConscript")
 
 
 Return("targets")

Copied: sandbox/numpy/boost/numpy.hpp (from r72875, /sandbox/numpy/boost/python/numpy.hpp)
==============================================================================
--- /sandbox/numpy/boost/python/numpy.hpp (original)
+++ sandbox/numpy/boost/numpy.hpp 2011-07-03 12:40:30 EDT (Sun, 03 Jul 2011)
@@ -1,25 +1,25 @@
-#ifndef BOOST_PYTHON_NUMPY_HPP_INCLUDED
-#define BOOST_PYTHON_NUMPY_HPP_INCLUDED
+#ifndef BOOST_NUMPY_HPP_INCLUDED
+#define BOOST_NUMPY_HPP_INCLUDED
 
 /**
- * @file boost/python/numpy.hpp
- * @brief Main public header file for boost.python.numpy.
+ * @file boost/numpy.hpp
+ * @brief Main public header file for boost.numpy.
  */
 
-#include <boost/python/numpy/dtype.hpp>
-#include <boost/python/numpy/ndarray.hpp>
-#include <boost/python/numpy/scalars.hpp>
-#include <boost/python/numpy/matrix.hpp>
-#include <boost/python/numpy/ufunc.hpp>
-#include <boost/python/numpy/invoke_matching.hpp>
+#include <boost/numpy/dtype.hpp>
+#include <boost/numpy/ndarray.hpp>
+#include <boost/numpy/scalars.hpp>
+#include <boost/numpy/matrix.hpp>
+#include <boost/numpy/ufunc.hpp>
+#include <boost/numpy/invoke_matching.hpp>
 
-namespace boost { namespace python {
+namespace boost {
 namespace numpy {
 
 /**
  * @brief Initialize the Numpy C-API
  *
- * This must be called before using anything in boost.python.numpy;
+ * This must be called before using anything in boost.numpy;
  * It should probably be the first line inside BOOST_PYTHON_MODULE.
  *
  * @internal This just calls the Numpy C-API functions "import_array()"
@@ -27,7 +27,7 @@
  */
 void initialize();
 
-} // namespace boost::python::numpy
-}} // namespace boost::python
+} // namespace boost::numpy
+} // namespace boost
 
-#endif // !BOOST_PYTHON_NUMPY_HPP_INCLUDED
+#endif // !BOOST_NUMPY_HPP_INCLUDED

Modified: sandbox/numpy/boost/numpy/dtype.hpp
==============================================================================
--- /sandbox/numpy/boost/python/numpy/dtype.hpp (original)
+++ sandbox/numpy/boost/numpy/dtype.hpp 2011-07-03 12:40:30 EDT (Sun, 03 Jul 2011)
@@ -1,59 +1,65 @@
-#ifndef BOOST_PYTHON_NUMPY_DTYPE_HPP_INCLUDED
-#define BOOST_PYTHON_NUMPY_DTYPE_HPP_INCLUDED
+#ifndef BOOST_NUMPY_DTYPE_HPP_INCLUDED
+#define BOOST_NUMPY_DTYPE_HPP_INCLUDED
 
 /**
- * @file boost/python/numpy/dtype.hpp
+ * @file boost/numpy/dtype.hpp
  * @brief Object manager for Python's numpy.dtype class.
  */
 
 #include <boost/python.hpp>
-#include <boost/python/numpy/numpy_object_mgr_traits.hpp>
+#include <boost/numpy/numpy_object_mgr_traits.hpp>
 
 #include <boost/mpl/for_each.hpp>
 #include <boost/type_traits/add_pointer.hpp>
 
-namespace boost { namespace python {
-namespace numpy {
+namespace boost
+{
+namespace numpy
+{
 
 /**
  * @brief A boost.python "object manager" (subclass of object) for numpy.dtype.
  *
  * @todo This could have a lot more interesting accessors.
  */
-class dtype : public object {
- static python::detail::new_reference convert(object_cref arg, bool align);
+class dtype : public python::object
+{
+ static python::detail::new_reference convert(python::object::object_cref arg, bool align);
 public:
 
- /// @brief Convert an arbitrary Python object to a data-type descriptor object.
- template <typename T>
- explicit dtype(T arg, bool align=false) : object(convert(arg, align)) {}
-
- /**
- * @brief Get the built-in numpy dtype associated with the given scalar template type.
- *
- * This is perhaps the most useful part of the numpy API: it returns the dtype object
- * corresponding to a built-in C++ type. This should work for any integer or floating point
- * type supported by numpy, and will also work for std::complex if
- * sizeof(std::complex<T>) == 2*sizeof(T).
- *
- * It can also be useful for users to add explicit specializations for POD structs
- * that return field-based dtypes.
- */
- template <typename T> static dtype get_builtin();
+ /// @brief Convert an arbitrary Python object to a data-type descriptor object.
+ template <typename T>
+ explicit dtype(T arg, bool align=false) : python::object(convert(arg, align)) {}
+
+ /**
+ * @brief Get the built-in numpy dtype associated with the given scalar template type.
+ *
+ * This is perhaps the most useful part of the numpy API: it returns the dtype object
+ * corresponding to a built-in C++ type. This should work for any integer or floating point
+ * type supported by numpy, and will also work for std::complex if
+ * sizeof(std::complex<T>) == 2*sizeof(T).
+ *
+ * It can also be useful for users to add explicit specializations for POD structs
+ * that return field-based dtypes.
+ */
+ template <typename T> static dtype get_builtin();
 
- /// @brief Return the size of the data type in bytes.
- int get_itemsize() const;
+ /// @brief Return the size of the data type in bytes.
+ int get_itemsize() const;
 
- BOOST_PYTHON_FORWARD_OBJECT_CONSTRUCTORS(dtype, object);
+ BOOST_PYTHON_FORWARD_OBJECT_CONSTRUCTORS(dtype, python::object);
 
 };
 
-} // namespace boost::python::numpy
+} // namespace boost::numpy
 
-namespace converter {
-NUMPY_OBJECT_MANAGER_TRAITS(python::numpy::dtype);
+namespace python
+{
+namespace converter
+{
+NUMPY_OBJECT_MANAGER_TRAITS(numpy::dtype);
 } // namespace boost::python::converter
+} // namespace boost::python
+} // namespace boost
 
-}} // namespace boost::python
-
-#endif // !BOOST_PYTHON_NUMPY_DTYPE_HPP_INCLUDED
+#endif // !BOOST_NUMPY_DTYPE_HPP_INCLUDED

Modified: sandbox/numpy/boost/numpy/internal.hpp
==============================================================================
--- /sandbox/numpy/boost/python/numpy/internal.hpp (original)
+++ sandbox/numpy/boost/numpy/internal.hpp 2011-07-03 12:40:30 EDT (Sun, 03 Jul 2011)
@@ -1,19 +1,19 @@
-#ifndef BOOST_PYTHON_NUMPY_INTERNAL_HPP_INCLUDED
-#define BOOST_PYTHON_NUMPY_INTERNAL_HPP_INCLUDED
+#ifndef BOOST_NUMPY_INTERNAL_HPP_INCLUDED
+#define BOOST_NUMPY_INTERNAL_HPP_INCLUDED
 
 /**
- * @file boost/python/numpy/internal.hpp
+ * @file boost/numpy/internal.hpp
  * @brief Internal header file to include the Numpy C-API headers.
  *
- * This should only be included by source files in the boost.python.numpy library itself.
+ * This should only be included by source files in the boost.numpy library itself.
  */
 
 #include <boost/python.hpp>
-#ifdef BOOST_PYTHON_NUMPY_INTERNAL
+#ifdef BOOST_NUMPY_INTERNAL
 #define NO_IMPORT_ARRAY
 #define NO_IMPORT_UFUNC
 #else
-#ifndef BOOST_PYTHON_NUMPY_INTERNAL_MAIN
+#ifndef BOOST_NUMPY_INTERNAL_MAIN
 ERROR_internal_hpp_is_for_internal_use_only
 #endif
 #endif
@@ -21,9 +21,9 @@
 #define PY_UFUNC_UNIQUE_SYMBOL BOOST_UFUNC_ARRAY_API
 #include <numpy/arrayobject.h>
 #include <numpy/ufuncobject.h>
-#include <boost/python/numpy.hpp>
+#include <boost/numpy.hpp>
 
 #define NUMPY_OBJECT_MANAGER_TRAITS_IMPL(pytype,manager) \
     PyTypeObject const * object_manager_traits<manager>::get_pytype() { return &pytype; }
 
-#endif // !BOOST_PYTHON_NUMPY_INTERNAL_HPP_INCLUDED
+#endif // !BOOST_NUMPY_INTERNAL_HPP_INCLUDED

Modified: sandbox/numpy/boost/numpy/invoke_matching.hpp
==============================================================================
--- /sandbox/numpy/boost/python/numpy/invoke_matching.hpp (original)
+++ sandbox/numpy/boost/numpy/invoke_matching.hpp 2011-07-03 12:40:30 EDT (Sun, 03 Jul 2011)
@@ -1,26 +1,30 @@
-#ifndef BOOST_PYTHON_NUMPY_INVOKE_MATCHING_HPP_INCLUDED
-#define BOOST_PYTHON_NUMPY_INVOKE_MATCHING_HPP_INCLUDED
+#ifndef BOOST_NUMPY_INVOKE_MATCHING_HPP_INCLUDED
+#define BOOST_NUMPY_INVOKE_MATCHING_HPP_INCLUDED
 
 /**
- * @file boost/python/numpy/invoke_matching.hpp
+ * @file boost/numpy/invoke_matching.hpp
  * @brief Template invocation based on dtype matching.
  */
 
-#include <boost/python/numpy/dtype.hpp>
-#include <boost/python/numpy/ndarray.hpp>
+#include <boost/numpy/dtype.hpp>
+#include <boost/numpy/ndarray.hpp>
 
 #include <boost/mpl/integral_c.hpp>
 
-namespace boost { namespace python { namespace numpy {
-
-namespace detail {
-
-struct add_pointer_meta {
+namespace boost
+{
+namespace numpy
+{
+namespace detail
+{
 
- template <typename T>
- struct apply {
- typedef typename boost::add_pointer<T>::type type;
- };
+struct add_pointer_meta
+{
+ template <typename T>
+ struct apply
+ {
+ typedef typename boost::add_pointer<T>::type type;
+ };
 
 };
 
@@ -28,157 +32,155 @@
 struct nd_template_match_found {};
 
 template <typename Function>
-struct dtype_template_invoker {
+struct dtype_template_invoker
+{
     
- template <typename T>
- void operator()(T *) const {
- if (dtype::get_builtin<T>() == m_dtype) {
- m_func.template apply<T>();
- throw dtype_template_match_found();
- }
+ template <typename T>
+ void operator()(T *) const
+ {
+ if (dtype::get_builtin<T>() == m_dtype)
+ {
+ m_func.template apply<T>();
+ throw dtype_template_match_found();
     }
+ }
 
- dtype_template_invoker(dtype const & dtype_, Function func) :
- m_dtype(dtype_), m_func(func) {}
+ dtype_template_invoker(dtype const & dtype_, Function func)
+ : m_dtype(dtype_), m_func(func) {}
 
 private:
- dtype const & m_dtype;
- Function m_func;
+ dtype const & m_dtype;
+ Function m_func;
 };
 
 template <typename Function>
-struct dtype_template_invoker< boost::reference_wrapper<Function> > {
+struct dtype_template_invoker< boost::reference_wrapper<Function> >
+{
     
- template <typename T>
- void operator()(T *) const {
- if (dtype::get_builtin<T>() == m_dtype) {
- m_func.template apply<T>();
- throw dtype_template_match_found();
- }
+ template <typename T>
+ void operator()(T *) const
+ {
+ if (dtype::get_builtin<T>() == m_dtype)
+ {
+ m_func.template apply<T>();
+ throw dtype_template_match_found();
     }
+ }
 
- dtype_template_invoker(dtype const & dtype_, Function & func) :
- m_dtype(dtype_), m_func(func) {}
+ dtype_template_invoker(dtype const & dtype_, Function & func)
+ : m_dtype(dtype_), m_func(func) {}
 
 private:
- dtype const & m_dtype;
- Function & m_func;
+ dtype const & m_dtype;
+ Function & m_func;
 };
 
 template <typename Function>
-struct nd_template_invoker {
-
- template <int N>
- void operator()(boost::mpl::integral_c<int,N> *) const {
- if (m_nd == N) {
- m_func.template apply<N>();
- throw nd_template_match_found();
- }
+struct nd_template_invoker
+{
+ template <int N>
+ void operator()(boost::mpl::integral_c<int,N> *) const
+ {
+ if (m_nd == N)
+ {
+ m_func.template apply<N>();
+ throw nd_template_match_found();
     }
+ }
 
- nd_template_invoker(int nd, Function func) :
- m_nd(nd), m_func(func) {}
+ nd_template_invoker(int nd, Function func) : m_nd(nd), m_func(func) {}
 
 private:
- int m_nd;
- Function m_func;
+ int m_nd;
+ Function m_func;
 };
 
 template <typename Function>
-struct nd_template_invoker< boost::reference_wrapper<Function> > {
-
- template <int N>
- void operator()(boost::mpl::integral_c<int,N> *) const {
- if (m_nd == N) {
- m_func.template apply<N>();
- throw nd_template_match_found();
- }
+struct nd_template_invoker< boost::reference_wrapper<Function> >
+{
+ template <int N>
+ void operator()(boost::mpl::integral_c<int,N> *) const
+ {
+ if (m_nd == N)
+ {
+ m_func.template apply<N>();
+ throw nd_template_match_found();
     }
+ }
 
- nd_template_invoker(int nd, Function & func) :
- m_nd(nd), m_func(func) {}
+ nd_template_invoker(int nd, Function & func) : m_nd(nd), m_func(func) {}
 
 private:
- int m_nd;
- Function & m_func;
+ int m_nd;
+ Function & m_func;
 };
 
-} // namespace boost::python::numpy::detail
+} // namespace boost::numpy::detail
 
 template <typename Sequence, typename Function>
-void invoke_matching_nd(int nd, Function f) {
- detail::nd_template_invoker<Function> invoker(nd, f);
- try {
- boost::mpl::for_each< Sequence, detail::add_pointer_meta >(invoker);
- } catch (detail::nd_template_match_found &) {
- return;
- }
- PyErr_SetString(PyExc_TypeError, "number of dimensions not found in template list.");
- throw_error_already_set();
+void invoke_matching_nd(int nd, Function f)
+{
+ detail::nd_template_invoker<Function> invoker(nd, f);
+ try { boost::mpl::for_each< Sequence, detail::add_pointer_meta >(invoker);}
+ catch (detail::nd_template_match_found &) { return;}
+ PyErr_SetString(PyExc_TypeError, "number of dimensions not found in template list.");
+ python::throw_error_already_set();
 }
 
 template <typename Sequence, typename Function>
-void invoke_matching_dtype(dtype const & dtype_, Function f) {
- detail::dtype_template_invoker<Function> invoker(dtype_, f);
- try {
- boost::mpl::for_each< Sequence, detail::add_pointer_meta >(invoker);
- } catch (detail::dtype_template_match_found &) {
- return;
- }
- PyErr_SetString(PyExc_TypeError, "dtype not found in template list.");
- throw_error_already_set();
+void invoke_matching_dtype(dtype const & dtype_, Function f)
+{
+ detail::dtype_template_invoker<Function> invoker(dtype_, f);
+ try { boost::mpl::for_each< Sequence, detail::add_pointer_meta >(invoker);}
+ catch (detail::dtype_template_match_found &) { return;}
+ PyErr_SetString(PyExc_TypeError, "dtype not found in template list.");
+ python::throw_error_already_set();
 }
 
-namespace detail {
+namespace detail
+{
 
 template <typename T, typename Function>
-struct array_template_invoker_wrapper_2 {
-
- template <int N>
- void apply() const {
- m_func.template apply<T,N>();
- }
-
- array_template_invoker_wrapper_2(Function & func) :
- m_func(func) {}
+struct array_template_invoker_wrapper_2
+{
+ template <int N>
+ void apply() const { m_func.template apply<T,N>();}
+ array_template_invoker_wrapper_2(Function & func) : m_func(func) {}
 
 private:
- Function & m_func;
+ Function & m_func;
 };
 
 template <typename DimSequence, typename Function>
-struct array_template_invoker_wrapper_1 {
-
- template <typename T>
- void apply() const {
- invoke_matching_nd<DimSequence>(m_nd, array_template_invoker_wrapper_2<T,Function>(m_func));
- }
-
- array_template_invoker_wrapper_1(int nd, Function & func) :
- m_nd(nd), m_func(func) {}
+struct array_template_invoker_wrapper_1
+{
+ template <typename T>
+ void apply() const { invoke_matching_nd<DimSequence>(m_nd, array_template_invoker_wrapper_2<T,Function>(m_func));}
+ array_template_invoker_wrapper_1(int nd, Function & func) : m_nd(nd), m_func(func) {}
 
 private:
- int m_nd;
- Function & m_func;
+ int m_nd;
+ Function & m_func;
 };
 
 template <typename DimSequence, typename Function>
 struct array_template_invoker_wrapper_1< DimSequence, boost::reference_wrapper<Function> >
- : public array_template_invoker_wrapper_1< DimSequence, Function >
+ : public array_template_invoker_wrapper_1< DimSequence, Function >
 {
- array_template_invoker_wrapper_1(int nd, Function & func) :
- array_template_invoker_wrapper_1< DimSequence, Function >(nd, func) {}
+ array_template_invoker_wrapper_1(int nd, Function & func)
+ : array_template_invoker_wrapper_1< DimSequence, Function >(nd, func) {}
 };
 
-} // namespace boost::python::numpy::detail
+} // namespace boost::numpy::detail
 
 template <typename TypeSequence, typename DimSequence, typename Function>
-void invoke_matching_array(ndarray const & array_, Function f) {
- detail::array_template_invoker_wrapper_1<DimSequence,Function> wrapper(array_.get_nd(), f);
- invoke_matching_dtype<TypeSequence>(array_.get_dtype(), wrapper);
+void invoke_matching_array(ndarray const & array_, Function f)
+{
+ detail::array_template_invoker_wrapper_1<DimSequence,Function> wrapper(array_.get_nd(), f);
+ invoke_matching_dtype<TypeSequence>(array_.get_dtype(), wrapper);
 }
 
+} // namespace boost::numpy
+} // namespace boost
 
-}}} // namespace boost::python::numpy
-
-#endif // !BOOST_PYTHON_NUMPY_INVOKE_MATCHING_HPP_INCLUDED
+#endif // !BOOST_NUMPY_INVOKE_MATCHING_HPP_INCLUDED

Modified: sandbox/numpy/boost/numpy/matrix.hpp
==============================================================================
--- /sandbox/numpy/boost/python/numpy/matrix.hpp (original)
+++ sandbox/numpy/boost/numpy/matrix.hpp 2011-07-03 12:40:30 EDT (Sun, 03 Jul 2011)
@@ -1,18 +1,19 @@
-#ifndef BOOST_PYTHON_NUMPY_MATRIX_HPP_INCLUDED
-#define BOOST_PYTHON_NUMPY_MATRIX_HPP_INCLUDED
+#ifndef BOOST_NUMPY_MATRIX_HPP_INCLUDED
+#define BOOST_NUMPY_MATRIX_HPP_INCLUDED
 
 /**
- * @file boost/python/numpy/matrix.hpp
+ * @file boost/numpy/matrix.hpp
  * @brief Object manager for numpy.matrix.
  */
 
 #include <boost/python.hpp>
-#include <boost/python/numpy/numpy_object_mgr_traits.hpp>
-#include <boost/python/numpy/ndarray.hpp>
+#include <boost/numpy/numpy_object_mgr_traits.hpp>
+#include <boost/numpy/ndarray.hpp>
 
-namespace boost { namespace python {
-
-namespace numpy {
+namespace boost
+{
+namespace numpy
+{
 
 /**
  * @brief A boost.python "object manager" (subclass of object) for numpy.matrix.
@@ -24,39 +25,43 @@
  * bad things happen when Python shuts down. I think this solution is safe, but I'd
  * love to get that confirmed.
  */
-class matrix : public ndarray {
- static object construct(object_cref obj, dtype const & dt, bool copy);
- static object construct(object_cref obj, bool copy);
+class matrix : public ndarray
+{
+ static python::object construct(object_cref obj, dtype const & dt, bool copy);
+ static python::object construct(object_cref obj, bool copy);
 public:
 
- BOOST_PYTHON_FORWARD_OBJECT_CONSTRUCTORS(matrix, ndarray);
+ BOOST_PYTHON_FORWARD_OBJECT_CONSTRUCTORS(matrix, ndarray);
 
- /// @brief Equivalent to "numpy.matrix(obj,dt,copy)" in Python.
- explicit matrix(object const & obj, dtype const & dt, bool copy=true) :
- ndarray(extract<ndarray>(construct(obj, dt, copy))) {}
+ /// @brief Equivalent to "numpy.matrix(obj,dt,copy)" in Python.
+ explicit matrix(python::object const & obj, dtype const & dt, bool copy=true)
+ : ndarray(python::extract<ndarray>(construct(obj, dt, copy))) {}
 
- /// @brief Equivalent to "numpy.matrix(obj,copy=copy)" in Python.
- explicit matrix(object const & obj, bool copy=true) :
- ndarray(extract<ndarray>(construct(obj, copy))) {}
+ /// @brief Equivalent to "numpy.matrix(obj,copy=copy)" in Python.
+ explicit matrix(python::object const & obj, bool copy=true)
+ : ndarray(python::extract<ndarray>(construct(obj, copy))) {}
 
- /// \brief Return a view of the matrix with the given dtype.
- matrix view(dtype const & dt) const;
+ /// \brief Return a view of the matrix with the given dtype.
+ matrix view(dtype const & dt) const;
 
- /// \brief Copy the scalar (deep for all non-object fields).
- matrix copy() const;
+ /// \brief Copy the scalar (deep for all non-object fields).
+ matrix copy() const;
 
- /// \brief Transpose the matrix.
- matrix transpose() const;
+ /// \brief Transpose the matrix.
+ matrix transpose() const;
 
 };
 
-} // namespace boost::python::numpy
-
-namespace converter {
+} // namespace boost::numpy
+namespace python
+{
+namespace converter
+{
 
-NUMPY_OBJECT_MANAGER_TRAITS(python::numpy::matrix);
+NUMPY_OBJECT_MANAGER_TRAITS(numpy::matrix);
 
 } // namespace boost::python::converter
-}} // namespace boost::python
+} // namespace boost::python
+} // namespace boost
 
-#endif // !BOOST_PYTHON_NUMPY_MATRIX_HPP_INCLUDED
+#endif // !BOOST_NUMPY_MATRIX_HPP_INCLUDED

Modified: sandbox/numpy/boost/numpy/ndarray.hpp
==============================================================================
--- /sandbox/numpy/boost/python/numpy/ndarray.hpp (original)
+++ sandbox/numpy/boost/numpy/ndarray.hpp 2011-07-03 12:40:30 EDT (Sun, 03 Jul 2011)
@@ -1,21 +1,23 @@
-#ifndef BOOST_PYTHON_NUMPY_NDARRAY_HPP_INCLUDED
-#define BOOST_PYTHON_NUMPY_NDARRAY_HPP_INCLUDED
+#ifndef BOOST_NUMPY_NDARRAY_HPP_INCLUDED
+#define BOOST_NUMPY_NDARRAY_HPP_INCLUDED
 
 /**
- * @file boost/python/numpy/ndarray.hpp
+ * @file boost/numpy/ndarray.hpp
  * @brief Object manager and various utilities for numpy.ndarray.
  */
 
 #include <boost/python.hpp>
 #include <boost/utility/enable_if.hpp>
 #include <boost/type_traits/is_integral.hpp>
-#include <boost/python/numpy/numpy_object_mgr_traits.hpp>
-#include <boost/python/numpy/dtype.hpp>
+#include <boost/numpy/numpy_object_mgr_traits.hpp>
+#include <boost/numpy/dtype.hpp>
 
 #include <vector>
 
-namespace boost { namespace python {
-namespace numpy {
+namespace boost
+{
+namespace numpy
+{
 
 /**
  * @brief A boost.python "object manager" (subclass of object) for numpy.ndarray.
@@ -23,120 +25,123 @@
  * @todo This could have a lot more functionality (like boost::python::numeric::array).
  * Right now all that exists is what was needed to move raw data between C++ and Python.
  */
-class ndarray : public object {
+class ndarray : public python::object
+{
 
- /**
- * @brief An internal struct that's byte-compatible with PyArrayObject.
- *
- * This is just a hack to allow inline access to this stuff while hiding numpy/arrayobject.h
- * from the user.
- */
- struct array_struct {
- PyObject_HEAD
- char * data;
- int nd;
- Py_intptr_t * shape;
- Py_intptr_t * strides;
- PyObject * base;
- PyObject * descr;
- int flags;
- PyObject * weakreflist;
- };
-
- /// @brief Return the held Python object as an array_struct.
- array_struct * get_struct() const { return reinterpret_cast<array_struct*>(this->ptr()); }
+ /**
+ * @brief An internal struct that's byte-compatible with PyArrayObject.
+ *
+ * This is just a hack to allow inline access to this stuff while hiding numpy/arrayobject.h
+ * from the user.
+ */
+ struct array_struct
+ {
+ PyObject_HEAD
+ char * data;
+ int nd;
+ Py_intptr_t * shape;
+ Py_intptr_t * strides;
+ PyObject * base;
+ PyObject * descr;
+ int flags;
+ PyObject * weakreflist;
+ };
+
+ /// @brief Return the held Python object as an array_struct.
+ array_struct * get_struct() const { return reinterpret_cast<array_struct*>(this->ptr()); }
 
 public:
+
+ /**
+ * @brief Enum to represent (some) of Numpy's internal flags.
+ *
+ * These don't match the actual Numpy flag values; we can't get those without including
+ * numpy/arrayobject.h or copying them directly. That's very unfortunate.
+ *
+ * @todo I'm torn about whether this should be an enum. It's very convenient to not
+ * make these simple integer values for overloading purposes, but the need to
+ * define every possible combination and custom bitwise operators is ugly.
+ */
+ enum bitflag
+ {
+ NONE=0x0, C_CONTIGUOUS=0x1, F_CONTIGUOUS=0x2, V_CONTIGUOUS=0x1|0x2,
+ ALIGNED=0x4, WRITEABLE=0x8, BEHAVED=0x4|0x8,
+ CARRAY_RO=0x1|0x4, CARRAY=0x1|0x4|0x8, CARRAY_MIS=0x1|0x8,
+ FARRAY_RO=0x2|0x4, FARRAY=0x2|0x4|0x8, FARRAY_MIS=0x2|0x8,
+ UPDATE_ALL=0x1|0x2|0x4, VARRAY=0x1|0x2|0x8, ALL=0x1|0x2|0x4|0x8
+ };
+
+ BOOST_PYTHON_FORWARD_OBJECT_CONSTRUCTORS(ndarray, object);
+
+ /// @brief Return a view of the scalar with the given dtype.
+ ndarray view(dtype const & dt) const;
 
- /**
- * @brief Enum to represent (some) of Numpy's internal flags.
- *
- * These don't match the actual Numpy flag values; we can't get those without including
- * numpy/arrayobject.h or copying them directly. That's very unfortunate.
- *
- * @todo I'm torn about whether this should be an enum. It's very convenient to not
- * make these simple integer values for overloading purposes, but the need to
- * define every possible combination and custom bitwise operators is ugly.
- */
- enum bitflag {
- NONE=0x0, C_CONTIGUOUS=0x1, F_CONTIGUOUS=0x2, V_CONTIGUOUS=0x1|0x2,
- ALIGNED=0x4, WRITEABLE=0x8, BEHAVED=0x4|0x8,
- CARRAY_RO=0x1|0x4, CARRAY=0x1|0x4|0x8, CARRAY_MIS=0x1|0x8,
- FARRAY_RO=0x2|0x4, FARRAY=0x2|0x4|0x8, FARRAY_MIS=0x2|0x8,
- UPDATE_ALL=0x1|0x2|0x4, VARRAY=0x1|0x2|0x8, ALL=0x1|0x2|0x4|0x8
- };
-
- BOOST_PYTHON_FORWARD_OBJECT_CONSTRUCTORS(ndarray, object);
-
- /// @brief Return a view of the scalar with the given dtype.
- ndarray view(dtype const & dt) const;
-
- /// @brief Copy the scalar (deep for all non-object fields).
- ndarray copy() const;
+ /// @brief Copy the scalar (deep for all non-object fields).
+ ndarray copy() const;
 
- /// @brief Return the size of the nth dimension.
- int const shape(int n) const { return get_shape()[n]; }
+ /// @brief Return the size of the nth dimension.
+ int const shape(int n) const { return get_shape()[n]; }
 
- /// @brief Return the stride of the nth dimension.
- int const strides(int n) const { return get_strides()[n]; }
+ /// @brief Return the stride of the nth dimension.
+ int const strides(int n) const { return get_strides()[n]; }
     
- /**
- * @brief Return the array's raw data pointer.
- *
- * This returns char so stride math works properly on it. It's pretty much
- * expected that the user will have to reinterpret_cast it.
- */
- char * get_data() const { return get_struct()->data; }
-
- /// @brief Return the array's data-type descriptor object.
- dtype get_dtype() const;
-
- /// @brief Return the object that owns the array's data, or None if the array owns its own data.
- object get_base() const;
-
- /// @brief Set the object that owns the array's data. Use with care.
- void set_base(object const & base);
-
- /// @brief Return the shape of the array as an array of integers (length == get_nd()).
- Py_intptr_t const * get_shape() const { return get_struct()->shape; }
-
- /// @brief Return the stride of the array as an array of integers (length == get_nd()).
- Py_intptr_t const * get_strides() const { return get_struct()->strides; }
-
- /// @brief Return the number of array dimensions.
- int const get_nd() const { return get_struct()->nd; }
-
- /// @brief Return the array flags.
- bitflag const get_flags() const;
-
- /// @brief Reverse the dimensions of the array.
- ndarray transpose() const;
-
- /// @brief Eliminate any unit-sized dimensions.
- ndarray squeeze() const;
-
- /// @brief Equivalent to self.reshape(*shape) in Python.
- ndarray reshape(tuple const & shape) const;
-
- /**
- * @brief If the array contains only a single element, return it as an array scalar; otherwise return
- * the array.
- *
- * @internal This is simply a call to PyArray_Return();
- */
- object scalarize() const;
+ /**
+ * @brief Return the array's raw data pointer.
+ *
+ * This returns char so stride math works properly on it. It's pretty much
+ * expected that the user will have to reinterpret_cast it.
+ */
+ char * get_data() const { return get_struct()->data; }
+
+ /// @brief Return the array's data-type descriptor object.
+ dtype get_dtype() const;
+
+ /// @brief Return the object that owns the array's data, or None if the array owns its own data.
+ python::object get_base() const;
+
+ /// @brief Set the object that owns the array's data. Use with care.
+ void set_base(object const & base);
+
+ /// @brief Return the shape of the array as an array of integers (length == get_nd()).
+ Py_intptr_t const * get_shape() const { return get_struct()->shape; }
+
+ /// @brief Return the stride of the array as an array of integers (length == get_nd()).
+ Py_intptr_t const * get_strides() const { return get_struct()->strides; }
+
+ /// @brief Return the number of array dimensions.
+ int const get_nd() const { return get_struct()->nd; }
+
+ /// @brief Return the array flags.
+ bitflag const get_flags() const;
+
+ /// @brief Reverse the dimensions of the array.
+ ndarray transpose() const;
+
+ /// @brief Eliminate any unit-sized dimensions.
+ ndarray squeeze() const;
+
+ /// @brief Equivalent to self.reshape(*shape) in Python.
+ ndarray reshape(python::tuple const & shape) const;
+
+ /**
+ * @brief If the array contains only a single element, return it as an array scalar; otherwise return
+ * the array.
+ *
+ * @internal This is simply a call to PyArray_Return();
+ */
+ python::object scalarize() const;
 };
 
 /**
  * @brief Construct a new array with the given shape and data type, with data initialized to zero.
  */
-ndarray zeros(tuple const & shape, dtype const & dt);
+ndarray zeros(python::tuple const & shape, dtype const & dt);
 ndarray zeros(int nd, Py_intptr_t const * shape, dtype const & dt);
 
 /**
  * @brief Construct a new array with the given shape and data type, with data left uninitialized.
  */
-ndarray empty(tuple const & shape, dtype const & dt);
+ndarray empty(python::tuple const & shape, dtype const & dt);
 ndarray empty(int nd, Py_intptr_t const * shape, dtype const & dt);
 
 /**
@@ -144,45 +149,41 @@
  *
  * @todo This does't seem to handle ndarray subtypes the same way that "numpy.array" does in Python.
  */
-ndarray array(object const & obj);
-ndarray array(object const & obj, dtype const & dt);
+ndarray array(python::object const & obj);
+ndarray array(python::object const & obj, dtype const & dt);
 
-namespace detail {
+namespace detail
+{
 
-ndarray from_data_impl(
- void * data,
- dtype const & dt,
- std::vector<Py_intptr_t> const & shape,
- std::vector<Py_intptr_t> const & strides,
- object const & owner,
- bool writeable
-);
+ndarray from_data_impl(void * data,
+ dtype const & dt,
+ std::vector<Py_intptr_t> const & shape,
+ std::vector<Py_intptr_t> const & strides,
+ python::object const & owner,
+ bool writeable);
 
 template <typename Container>
-ndarray from_data_impl(
- void * data,
- dtype const & dt,
- Container shape,
- Container strides,
- object const & owner,
- bool writeable,
- typename boost::enable_if< boost::is_integral<typename Container::value_type> >::type * enabled = NULL
-) {
- std::vector<Py_intptr_t> shape_(shape.begin(),shape.end());
- std::vector<Py_intptr_t> strides_(strides.begin(), strides.end());
- return from_data_impl(data, dt, shape_, strides_, owner, writeable);
+ndarray from_data_impl(void * data,
+ dtype const & dt,
+ Container shape,
+ Container strides,
+ python::object const & owner,
+ bool writeable,
+ typename boost::enable_if< boost::is_integral<typename Container::value_type> >::type * enabled = NULL)
+{
+ std::vector<Py_intptr_t> shape_(shape.begin(),shape.end());
+ std::vector<Py_intptr_t> strides_(strides.begin(), strides.end());
+ return from_data_impl(data, dt, shape_, strides_, owner, writeable);
 }
 
-ndarray from_data_impl(
- void * data,
- dtype const & dt,
- object const & shape,
- object const & strides,
- object const & owner,
- bool writeable
-);
+ndarray from_data_impl(void * data,
+ dtype const & dt,
+ python::object const & shape,
+ python::object const & strides,
+ python::object const & owner,
+ bool writeable);
 
-} // namespace boost::python::numpy::detail
+} // namespace boost::numpy::detail
 
 /**
  * @brief Construct a new ndarray object from a raw pointer.
@@ -198,14 +199,13 @@
  * @todo Should probably take ranges of iterators rather than actual container objects.
  */
 template <typename Container>
-inline ndarray from_data(
- void * data,
- dtype const & dt,
- Container shape,
- Container strides,
- object const & owner
-) {
- return numpy::detail::from_data_impl(data, dt, shape, strides, owner, true);
+inline ndarray from_data(void * data,
+ dtype const & dt,
+ Container shape,
+ Container strides,
+ python::object const & owner)
+{
+ return numpy::detail::from_data_impl(data, dt, shape, strides, owner, true);
 }
 
 /**
@@ -224,14 +224,13 @@
  * @todo Should probably take ranges of iterators rather than actual container objects.
  */
 template <typename Container>
-inline ndarray from_data(
- void const * data,
- dtype const & dt,
- Container shape,
- Container strides,
- object const & owner
-) {
- return numpy::detail::from_data_impl(const_cast<void*>(data), dt, shape, strides, owner, false);
+inline ndarray from_data(void const * data,
+ dtype const & dt,
+ Container shape,
+ Container strides,
+ python::object const & owner)
+{
+ return numpy::detail::from_data_impl(const_cast<void*>(data), dt, shape, strides, owner, false);
 }
 
 /**
@@ -244,44 +243,54 @@
  * @param[in] nd_max Maximum number of dimensions.
  * @param[in] flags Bitwise OR of flags specifying additional requirements.
  */
-ndarray from_object(object const & obj, dtype const & dt,
+ndarray from_object(python::object const & obj, dtype const & dt,
                     int nd_min, int nd_max, ndarray::bitflag flags=ndarray::NONE);
 
-inline ndarray from_object(object const & obj, dtype const & dt,
- int nd, ndarray::bitflag flags=ndarray::NONE) {
- return from_object(obj, dt, nd, nd, flags);
+inline ndarray from_object(python::object const & obj, dtype const & dt,
+ int nd, ndarray::bitflag flags=ndarray::NONE)
+{
+ return from_object(obj, dt, nd, nd, flags);
 }
 
-inline ndarray from_object(object const & obj, dtype const & dt, ndarray::bitflag flags=ndarray::NONE) {
- return from_object(obj, dt, 0, 0, flags);
+inline ndarray from_object(python::object const & obj, dtype const & dt, ndarray::bitflag flags=ndarray::NONE)
+{
+ return from_object(obj, dt, 0, 0, flags);
 }
 
-ndarray from_object(object const & obj, int nd_min, int nd_max,
+ndarray from_object(python::object const & obj, int nd_min, int nd_max,
                     ndarray::bitflag flags=ndarray::NONE);
 
-inline ndarray from_object(object const & obj, int nd, ndarray::bitflag flags=ndarray::NONE) {
- return from_object(obj, nd, nd, flags);
+inline ndarray from_object(python::object const & obj, int nd, ndarray::bitflag flags=ndarray::NONE)
+{
+ return from_object(obj, nd, nd, flags);
 }
 
-inline ndarray from_object(object const & obj, ndarray::bitflag flags=ndarray::NONE) {
- return from_object(obj, 0, 0, flags);
+inline ndarray from_object(python::object const & obj, ndarray::bitflag flags=ndarray::NONE)
+{
+ return from_object(obj, 0, 0, flags);
 }
 
-inline ndarray::bitflag operator|(ndarray::bitflag a, ndarray::bitflag b) {
- return ndarray::bitflag(int(a) | int(b));
+inline ndarray::bitflag operator|(ndarray::bitflag a, ndarray::bitflag b)
+{
+ return ndarray::bitflag(int(a) | int(b));
 }
 
-inline ndarray::bitflag operator&(ndarray::bitflag a, ndarray::bitflag b) {
- return ndarray::bitflag(int(a) & int(b));
+inline ndarray::bitflag operator&(ndarray::bitflag a, ndarray::bitflag b)
+{
+ return ndarray::bitflag(int(a) & int(b));
 }
 
-} // namespace boost::python::numpy
+} // namespace boost::numpy
 
-namespace converter {
+namespace python
+{
+namespace converter
+{
 
-NUMPY_OBJECT_MANAGER_TRAITS(python::numpy::ndarray);
+NUMPY_OBJECT_MANAGER_TRAITS(numpy::ndarray);
 
 } // namespace boost::python::converter
-}} // namespace boost::python
+} // namespace boost::python
+} // namespace boost
 
-#endif // !BOOST_PYTHON_NUMPY_NDARRAY_HPP_INCLUDED
+#endif // !BOOST_NUMPY_NDARRAY_HPP_INCLUDED

Modified: sandbox/numpy/boost/numpy/numpy_object_mgr_traits.hpp
==============================================================================
--- /sandbox/numpy/boost/python/numpy/numpy_object_mgr_traits.hpp (original)
+++ sandbox/numpy/boost/numpy/numpy_object_mgr_traits.hpp 2011-07-03 12:40:30 EDT (Sun, 03 Jul 2011)
@@ -1,27 +1,31 @@
-#ifndef BOOST_PYTHON_NUMPY_NUMPY_OBJECT_MGR_TRAITS_HPP_INCLUDED
-#define BOOST_PYTHON_NUMPY_NUMPY_OBJECT_MGR_TRAITS_HPP_INCLUDED
+#ifndef BOOST_NUMPY_NUMPY_OBJECT_MGR_TRAITS_HPP_INCLUDED
+#define BOOST_NUMPY_NUMPY_OBJECT_MGR_TRAITS_HPP_INCLUDED
 
 /**
- * @file boost/python/numpy/numpy_object_mgr_traits.hpp
+ * @file boost/numpy/numpy_object_mgr_traits.hpp
  * @brief Macro that specializes object_manager_traits by requiring a
  * source-file implementation of get_pytype().
  */
 
 #define NUMPY_OBJECT_MANAGER_TRAITS(manager) \
- template <> \
- struct object_manager_traits<manager> { \
- BOOST_STATIC_CONSTANT(bool, is_specialized = true); \
- static inline python::detail::new_reference adopt(PyObject* x) { \
- return python::detail::new_reference(python::pytype_check((PyTypeObject*)get_pytype(), x)); \
- } \
- static bool check(PyObject* x) { \
- return ::PyObject_IsInstance(x, (PyObject*)get_pytype()); \
- } \
- static manager* checked_downcast(PyObject* x) { \
- return python::downcast<manager>((checked_downcast_impl)(x, (PyTypeObject*)get_pytype())); \
- } \
- static PyTypeObject const * get_pytype(); \
- }
+template <> \
+struct object_manager_traits<manager> \
+{ \
+ BOOST_STATIC_CONSTANT(bool, is_specialized = true); \
+ static inline python::detail::new_reference adopt(PyObject* x) \
+ { \
+ return python::detail::new_reference(python::pytype_check((PyTypeObject*)get_pytype(), x)); \
+ } \
+ static bool check(PyObject* x) \
+ { \
+ return ::PyObject_IsInstance(x, (PyObject*)get_pytype()); \
+ } \
+ static manager* checked_downcast(PyObject* x) \
+ { \
+ return python::downcast<manager>((checked_downcast_impl)(x, (PyTypeObject*)get_pytype())); \
+ } \
+ static PyTypeObject const * get_pytype(); \
+}
 
-#endif // !BOOST_PYTHON_NUMPY_NUMPY_OBJECT_MGR_TRAITS_HPP_INCLUDED
+#endif // !BOOST_NUMPY_NUMPY_OBJECT_MGR_TRAITS_HPP_INCLUDED
 

Modified: sandbox/numpy/boost/numpy/scalars.hpp
==============================================================================
--- /sandbox/numpy/boost/python/numpy/scalars.hpp (original)
+++ sandbox/numpy/boost/numpy/scalars.hpp 2011-07-03 12:40:30 EDT (Sun, 03 Jul 2011)
@@ -1,55 +1,60 @@
-#ifndef BOOST_PYTHON_NUMPY_SCALARS_HPP_INCLUDED
-#define BOOST_PYTHON_NUMPY_SCALARS_HPP_INCLUDED
+#ifndef BOOST_NUMPY_SCALARS_HPP_INCLUDED
+#define BOOST_NUMPY_SCALARS_HPP_INCLUDED
 
 /**
- * @file boost/python/numpy/scalars.hpp
+ * @file boost/numpy/scalars.hpp
  * @brief Object managers for array scalars (currently only numpy.void is implemented).
  */
 
 #include <boost/python.hpp>
-#include <boost/python/numpy/numpy_object_mgr_traits.hpp>
-#include <boost/python/numpy/dtype.hpp>
+#include <boost/numpy/numpy_object_mgr_traits.hpp>
+#include <boost/numpy/dtype.hpp>
 
-namespace boost { namespace python {
-namespace numpy {
+namespace boost
+{
+namespace numpy
+{
 
 /**
  * @brief A boost.python "object manager" (subclass of object) for numpy.void.
  *
  * @todo This could have a lot more functionality.
  */
-class void_ : public object {
- static python::detail::new_reference convert(object_cref arg, bool align);
+class void_ : public python::object
+{
+ static python::detail::new_reference convert(object_cref arg, bool align);
 public:
 
- /**
- * @brief Construct a new array scalar with the given size and void dtype.
- *
- * Data is initialized to zero. One can create a standalone scalar object
- * with a certain dtype "dt" with:
- * @code
- * void_ scalar = void_(dt.get_itemsize()).view(dt);
- * @endcode
- */
- explicit void_(Py_ssize_t size);
+ /**
+ * @brief Construct a new array scalar with the given size and void dtype.
+ *
+ * Data is initialized to zero. One can create a standalone scalar object
+ * with a certain dtype "dt" with:
+ * @code
+ * void_ scalar = void_(dt.get_itemsize()).view(dt);
+ * @endcode
+ */
+ explicit void_(Py_ssize_t size);
 
- BOOST_PYTHON_FORWARD_OBJECT_CONSTRUCTORS(void_, object);
+ BOOST_PYTHON_FORWARD_OBJECT_CONSTRUCTORS(void_, object);
 
- /// @brief Return a view of the scalar with the given dtype.
- void_ view(dtype const & dt) const;
+ /// @brief Return a view of the scalar with the given dtype.
+ void_ view(dtype const & dt) const;
 
- /// @brief Copy the scalar (deep for all non-object fields).
- void_ copy() const;
+ /// @brief Copy the scalar (deep for all non-object fields).
+ void_ copy() const;
 
 };
 
-} // namespace boost::python::numpy
-
-namespace converter {
-
-NUMPY_OBJECT_MANAGER_TRAITS(python::numpy::void_);
+} // namespace boost::numpy
 
+namespace python
+{
+namespace converter
+{
+NUMPY_OBJECT_MANAGER_TRAITS(numpy::void_);
 } // namespace boost::python::converter
-}} // namespace boost::python
+} // namespace boost::python
+} // namespace boost
 
-#endif // !BOOST_PYTHON_NUMPY_SCALARS_HPP_INCLUDED
+#endif // !BOOST_NUMPY_SCALARS_HPP_INCLUDED

Modified: sandbox/numpy/boost/numpy/ufunc.hpp
==============================================================================
--- /sandbox/numpy/boost/python/numpy/ufunc.hpp (original)
+++ sandbox/numpy/boost/numpy/ufunc.hpp 2011-07-03 12:40:30 EDT (Sun, 03 Jul 2011)
@@ -1,18 +1,20 @@
-#ifndef BOOST_PYTHON_NUMPY_UFUNC_HPP_INCLUDED
-#define BOOST_PYTHON_NUMPY_UFUNC_HPP_INCLUDED
+#ifndef BOOST_NUMPY_UFUNC_HPP_INCLUDED
+#define BOOST_NUMPY_UFUNC_HPP_INCLUDED
 
 /**
- * @file boost/python/numpy/ufunc.hpp
+ * @file boost/numpy/ufunc.hpp
  * @brief Utilities to create ufunc-like broadcasting functions out of C++ functors.
  */
 
 #include <boost/python.hpp>
-#include <boost/python/numpy/numpy_object_mgr_traits.hpp>
-#include <boost/python/numpy/dtype.hpp>
-#include <boost/python/numpy/ndarray.hpp>
-
-namespace boost { namespace python {
-namespace numpy {
+#include <boost/numpy/numpy_object_mgr_traits.hpp>
+#include <boost/numpy/dtype.hpp>
+#include <boost/numpy/ndarray.hpp>
+
+namespace boost
+{
+namespace numpy
+{
 
 /**
  * @brief A boost.python "object manager" (subclass of object) for PyArray_MultiIter.
@@ -30,39 +32,40 @@
  * It's more dangerous than most object managers, however - maybe it actually belongs in
  * a detail namespace?
  */
-class multi_iter : public object {
+class multi_iter : public python::object
+{
 public:
 
- BOOST_PYTHON_FORWARD_OBJECT_CONSTRUCTORS(multi_iter, object);
+ BOOST_PYTHON_FORWARD_OBJECT_CONSTRUCTORS(multi_iter, python::object);
 
- /// @brief Increment the iterator.
- void next();
+ /// @brief Increment the iterator.
+ void next();
 
- /// @brief Check if the iterator is at its end.
- bool not_done() const;
+ /// @brief Check if the iterator is at its end.
+ bool not_done() const;
 
- /// @brief Return a pointer to the element of the nth broadcasted array.
- char * get_data(int n) const;
+ /// @brief Return a pointer to the element of the nth broadcasted array.
+ char * get_data(int n) const;
 
- /// @brief Return the number of dimensions of the broadcasted array expression.
- int const get_nd() const;
+ /// @brief Return the number of dimensions of the broadcasted array expression.
+ int const get_nd() const;
     
- /// @brief Return the shape of the broadcasted array expression as an array of integers.
- Py_intptr_t const * get_shape() const;
+ /// @brief Return the shape of the broadcasted array expression as an array of integers.
+ Py_intptr_t const * get_shape() const;
 
- /// @brief Return the shape of the broadcasted array expression in the nth dimension.
- Py_intptr_t const shape(int n) const;
+ /// @brief Return the shape of the broadcasted array expression in the nth dimension.
+ Py_intptr_t const shape(int n) const;
     
 };
 
 /// @brief Construct a multi_iter over a single sequence or scalar object.
-multi_iter make_multi_iter(object const & a1);
+multi_iter make_multi_iter(python::object const & a1);
 
 /// @brief Construct a multi_iter by broadcasting two objects.
-multi_iter make_multi_iter(object const & a1, object const & a2);
+multi_iter make_multi_iter(python::object const & a1, python::object const & a2);
 
 /// @brief Construct a multi_iter by broadcasting three objects.
-multi_iter make_multi_iter(object const & a1, object const & a2, object const & a3);
+multi_iter make_multi_iter(python::object const & a1, python::object const & a2, python::object const & a3);
 
 /**
  * @brief Helps wrap a C++ functor taking a single scalar argument as a broadcasting ufunc-like
@@ -70,16 +73,17 @@
  *
  * Typical usage looks like this:
  * @code
- * struct TimesPI {
- * typedef double argument_type;
- * typedef double result_type;
- * double operator()(double input) const { return input * M_PI; }
+ * struct TimesPI
+ * {
+ * typedef double argument_type;
+ * typedef double result_type;
+ * double operator()(double input) const { return input * M_PI; }
  * };
  *
- * BOOST_PYTHON_MODULE(example) {
- * class_< TimesPI >("TimesPI")
- * .def("__call__", unary_ufunc<TimesPI>::make())
- * ;
+ * BOOST_PYTHON_MODULE(example)
+ * {
+ * class_< TimesPI >("TimesPI")
+ * .def("__call__", unary_ufunc<TimesPI>::make());
  * }
  * @endcode
  *
@@ -87,39 +91,43 @@
 template <typename TUnaryFunctor,
           typename TArgument=typename TUnaryFunctor::argument_type,
           typename TResult=typename TUnaryFunctor::result_type>
-struct unary_ufunc {
-
- /**
- * @brief A C++ function with object arguments that broadcasts its arguments before
- * passing them to the underlying C++ functor.
- */
- static object call(TUnaryFunctor & self, object const & input, object const & output) {
- dtype in_dtype = dtype::get_builtin<TArgument>();
- dtype out_dtype = dtype::get_builtin<TResult>();
- ndarray in_array = from_object(input, in_dtype, ndarray::ALIGNED);
- ndarray out_array = (output != object()) ?
- from_object(output, out_dtype, ndarray::ALIGNED | ndarray::WRITEABLE)
- : zeros(in_array.get_nd(), in_array.get_shape(), out_dtype);
- multi_iter iter = make_multi_iter(in_array, out_array);
- while (iter.not_done()) {
- TArgument * argument = reinterpret_cast<TArgument*>(iter.get_data(0));
- TResult * result = reinterpret_cast<TResult*>(iter.get_data(1));
- *result = self(*argument);
- iter.next();
- }
- return out_array.scalarize();
- }
-
- /**
- * @brief Construct a boost.python function object from call() with reasonable keyword names.
- *
- * Users will often want to specify their own keyword names with the same signature, but this
- * is a convenient shortcut.
- */
- static object make() {
- return make_function(call, default_call_policies(), (arg("input"), arg("output")=object()));
- }
+struct unary_ufunc
+{
 
+ /**
+ * @brief A C++ function with object arguments that broadcasts its arguments before
+ * passing them to the underlying C++ functor.
+ */
+ static python::object call(TUnaryFunctor & self, python::object const & input, python::object const & output)
+ {
+ dtype in_dtype = dtype::get_builtin<TArgument>();
+ dtype out_dtype = dtype::get_builtin<TResult>();
+ ndarray in_array = from_object(input, in_dtype, ndarray::ALIGNED);
+ ndarray out_array = (output != python::object()) ?
+ from_object(output, out_dtype, ndarray::ALIGNED | ndarray::WRITEABLE)
+ : zeros(in_array.get_nd(), in_array.get_shape(), out_dtype);
+ multi_iter iter = make_multi_iter(in_array, out_array);
+ while (iter.not_done())
+ {
+ TArgument * argument = reinterpret_cast<TArgument*>(iter.get_data(0));
+ TResult * result = reinterpret_cast<TResult*>(iter.get_data(1));
+ *result = self(*argument);
+ iter.next();
+ }
+ return out_array.scalarize();
+ }
+
+ /**
+ * @brief Construct a boost.python function object from call() with reasonable keyword names.
+ *
+ * Users will often want to specify their own keyword names with the same signature, but this
+ * is a convenient shortcut.
+ */
+ static python::object make()
+ {
+ namespace p = python;
+ return p::make_function(call, p::default_call_policies(), (p::arg("input"), p::arg("output")=p::object()));
+ }
 };
 
 /**
@@ -128,17 +136,18 @@
  *
  * Typical usage looks like this:
  * @code
- * struct CosSum {
- * typedef double first_argument_type;
- * typedef double second_argument_type;
- * typedef double result_type;
- * double operator()(double input1, double input2) const { return std::cos(input1 + input2); }
+ * struct CosSum
+ * {
+ * typedef double first_argument_type;
+ * typedef double second_argument_type;
+ * typedef double result_type;
+ * double operator()(double input1, double input2) const { return std::cos(input1 + input2); }
  * };
  *
- * BOOST_PYTHON_MODULE(example) {
- * class_< CosSum >("CosSum")
- * .def("__call__", binary_ufunc<CosSum>::make())
- * ;
+ * BOOST_PYTHON_MODULE(example)
+ * {
+ * class_< CosSum >("CosSum")
+ * .def("__call__", binary_ufunc<CosSum>::make());
  * }
  * @endcode
  *
@@ -147,47 +156,54 @@
           typename TArgument1=typename TBinaryFunctor::first_argument_type,
           typename TArgument2=typename TBinaryFunctor::second_argument_type,
           typename TResult=typename TBinaryFunctor::result_type>
-struct binary_ufunc {
+struct binary_ufunc
+{
 
- static object call(TBinaryFunctor & self, object const & input1, object const & input2,
- object const & output)
+ static python::object
+ call(TBinaryFunctor & self, python::object const & input1, python::object const & input2,
+ python::object const & output)
+ {
+ dtype in1_dtype = dtype::get_builtin<TArgument1>();
+ dtype in2_dtype = dtype::get_builtin<TArgument2>();
+ dtype out_dtype = dtype::get_builtin<TResult>();
+ ndarray in1_array = from_object(input1, in1_dtype, ndarray::ALIGNED);
+ ndarray in2_array = from_object(input2, in2_dtype, ndarray::ALIGNED);
+ multi_iter iter = make_multi_iter(in1_array, in2_array);
+ ndarray out_array = (output != python::object())
+ ? from_object(output, out_dtype, ndarray::ALIGNED | ndarray::WRITEABLE)
+ : zeros(iter.get_nd(), iter.get_shape(), out_dtype);
+ iter = make_multi_iter(in1_array, in2_array, out_array);
+ while (iter.not_done())
     {
- dtype in1_dtype = dtype::get_builtin<TArgument1>();
- dtype in2_dtype = dtype::get_builtin<TArgument2>();
- dtype out_dtype = dtype::get_builtin<TResult>();
- ndarray in1_array = from_object(input1, in1_dtype, ndarray::ALIGNED);
- ndarray in2_array = from_object(input2, in2_dtype, ndarray::ALIGNED);
- multi_iter iter = make_multi_iter(in1_array, in2_array);
- ndarray out_array = (output != object()) ?
- from_object(output, out_dtype, ndarray::ALIGNED | ndarray::WRITEABLE)
- : zeros(iter.get_nd(), iter.get_shape(), out_dtype);
- iter = make_multi_iter(in1_array, in2_array, out_array);
- while (iter.not_done()) {
- TArgument1 * argument1 = reinterpret_cast<TArgument1*>(iter.get_data(0));
- TArgument2 * argument2 = reinterpret_cast<TArgument2*>(iter.get_data(1));
- TResult * result = reinterpret_cast<TResult*>(iter.get_data(2));
- *result = self(*argument1, *argument2);
- iter.next();
- }
- return out_array.scalarize();
- }
-
- static object make() {
- return make_function(
- call, default_call_policies(),
- (arg("input1"), arg("input2"), arg("output")=object())
- );
- }
+ TArgument1 * argument1 = reinterpret_cast<TArgument1*>(iter.get_data(0));
+ TArgument2 * argument2 = reinterpret_cast<TArgument2*>(iter.get_data(1));
+ TResult * result = reinterpret_cast<TResult*>(iter.get_data(2));
+ *result = self(*argument1, *argument2);
+ iter.next();
+ }
+ return out_array.scalarize();
+ }
+
+ static python::object make()
+ {
+ namespace p = python;
+ return p::make_function(call, p::default_call_policies(),
+ (p::arg("input1"), p::arg("input2"), p::arg("output")=p::object()));
+ }
 
 };
 
-} // namespace boost::python::numpy
+} // namespace boost::numpy
 
-namespace converter {
+namespace python
+{
+namespace converter
+{
 
-NUMPY_OBJECT_MANAGER_TRAITS(python::numpy::multi_iter);
+NUMPY_OBJECT_MANAGER_TRAITS(numpy::multi_iter);
 
 } // namespace boost::python::converter
-}} // namespace boost::python
+} // namespace boost::python
+} // namespace boost
 
-#endif // !BOOST_PYTHON_NUMPY_UFUNC_HPP_INCLUDED
+#endif // !BOOST_NUMPY_UFUNC_HPP_INCLUDED

Deleted: sandbox/numpy/boost/python/numpy.hpp
==============================================================================
--- sandbox/numpy/boost/python/numpy.hpp 2011-07-03 12:40:30 EDT (Sun, 03 Jul 2011)
+++ (empty file)
@@ -1,33 +0,0 @@
-#ifndef BOOST_PYTHON_NUMPY_HPP_INCLUDED
-#define BOOST_PYTHON_NUMPY_HPP_INCLUDED
-
-/**
- * @file boost/python/numpy.hpp
- * @brief Main public header file for boost.python.numpy.
- */
-
-#include <boost/python/numpy/dtype.hpp>
-#include <boost/python/numpy/ndarray.hpp>
-#include <boost/python/numpy/scalars.hpp>
-#include <boost/python/numpy/matrix.hpp>
-#include <boost/python/numpy/ufunc.hpp>
-#include <boost/python/numpy/invoke_matching.hpp>
-
-namespace boost { namespace python {
-namespace numpy {
-
-/**
- * @brief Initialize the Numpy C-API
- *
- * This must be called before using anything in boost.python.numpy;
- * It should probably be the first line inside BOOST_PYTHON_MODULE.
- *
- * @internal This just calls the Numpy C-API functions "import_array()"
- * and "import_ufunc()".
- */
-void initialize();
-
-} // namespace boost::python::numpy
-}} // namespace boost::python
-
-#endif // !BOOST_PYTHON_NUMPY_HPP_INCLUDED

Modified: sandbox/numpy/libs/numpy/src/SConscript
==============================================================================
--- /sandbox/numpy/libs/python/numpy/src/SConscript (original)
+++ sandbox/numpy/libs/numpy/src/SConscript 2011-07-03 12:40:30 EDT (Sun, 03 Jul 2011)
@@ -1,4 +1,4 @@
-Import("bp_numpy_env")
-lib = bp_numpy_env.SharedLibrary("boost_python_numpy", Glob("*.cpp"))
+Import("boost_numpy_env")
+lib = boost_numpy_env.SharedLibrary("boost_numpy", Glob("*.cpp"))
 
 Return("lib")

Modified: sandbox/numpy/libs/numpy/src/dtype.cpp
==============================================================================
--- /sandbox/numpy/libs/python/numpy/src/dtype.cpp (original)
+++ sandbox/numpy/libs/numpy/src/dtype.cpp 2011-07-03 12:40:30 EDT (Sun, 03 Jul 2011)
@@ -1,58 +1,65 @@
-#define BOOST_PYTHON_NUMPY_INTERNAL
-#include <boost/python/numpy/internal.hpp>
+#define BOOST_NUMPY_INTERNAL
+#include <boost/numpy/internal.hpp>
 
 #define NUMPY_DTYPE_TRAITS_BUILTIN(ctype,code) \
- template <> struct dtype_traits<ctype> { \
- static dtype get() { \
- return dtype( \
- python::detail::new_reference( \
- reinterpret_cast<PyObject*>(PyArray_DescrFromType(code)) \
- ) \
- ); \
- } \
- }; \
- template dtype dtype::get_builtin<ctype>()
+template <> struct dtype_traits<ctype> \
+{ \
+ static dtype get() \
+ { \
+ return dtype(python::detail::new_reference \
+ (reinterpret_cast<PyObject*>(PyArray_DescrFromType(code)))); \
+ } \
+}; \
+template dtype dtype::get_builtin<ctype>()
 
 #define NUMPY_DTYPE_TRAITS_COMPLEX(creal, ctype, code) \
- template <> struct dtype_traits< std::complex<creal> > { \
- static dtype get() { \
- if (sizeof(ctype) != sizeof(std::complex<creal>)) { \
- PyErr_SetString(PyExc_TypeError, "Cannot reinterpret std::complex<T> as T[2]"); \
- throw_error_already_set(); \
- } \
- return dtype( \
- python::detail::new_reference( \
- reinterpret_cast<PyObject*>(PyArray_DescrFromType(code)) \
- ) \
- ); \
- } \
- }; \
- template dtype dtype::get_builtin< std::complex<creal> >()
-
-namespace boost { namespace python {
-namespace converter {
-NUMPY_OBJECT_MANAGER_TRAITS_IMPL(PyArrayDescr_Type, python::numpy::dtype)
+template <> struct dtype_traits< std::complex<creal> > \
+{ \
+ static dtype get() \
+ { \
+ if (sizeof(ctype) != sizeof(std::complex<creal>)) \
+ { \
+ PyErr_SetString(PyExc_TypeError, "Cannot reinterpret std::complex<T> as T[2]"); \
+ python::throw_error_already_set(); \
+ } \
+ return dtype(python::detail::new_reference \
+ (reinterpret_cast<PyObject*>(PyArray_DescrFromType(code)))); \
+ } \
+}; \
+template dtype dtype::get_builtin< std::complex<creal> >()
+
+namespace boost
+{
+namespace python
+{
+namespace converter
+{
+NUMPY_OBJECT_MANAGER_TRAITS_IMPL(PyArrayDescr_Type, numpy::dtype)
 } // namespace boost::python::converter
+} // namespace boost::python
 
-namespace numpy {
+namespace numpy
+{
 
 template <typename T> struct dtype_traits;
 
-python::detail::new_reference dtype::convert(object const & arg, bool align) {
- PyArray_Descr* obj=NULL;
- if (align) {
- if (PyArray_DescrAlignConverter(arg.ptr(), &obj) < 0)
- throw_error_already_set();
- } else {
- if (PyArray_DescrConverter(arg.ptr(), &obj) < 0)
- throw_error_already_set();
- }
- return python::detail::new_reference(reinterpret_cast<PyObject*>(obj));
+python::detail::new_reference dtype::convert(python::object const & arg, bool align)
+{
+ PyArray_Descr* obj=NULL;
+ if (align)
+ {
+ if (PyArray_DescrAlignConverter(arg.ptr(), &obj) < 0)
+ python::throw_error_already_set();
+ }
+ else
+ {
+ if (PyArray_DescrConverter(arg.ptr(), &obj) < 0)
+ python::throw_error_already_set();
+ }
+ return python::detail::new_reference(reinterpret_cast<PyObject*>(obj));
 }
 
-int dtype::get_itemsize() const {
- return reinterpret_cast<PyArray_Descr*>(ptr())->elsize;
-}
+int dtype::get_itemsize() const { return reinterpret_cast<PyArray_Descr*>(ptr())->elsize;}
 
 template <typename T>
 dtype dtype::get_builtin() { return dtype_traits<T>::get(); }
@@ -78,15 +85,18 @@
 NUMPY_DTYPE_TRAITS_COMPLEX(long double, npy_clongdouble, NPY_CLONGDOUBLE);
 
 #if 0
-template <> struct dtype_traits<bool> {
- static dtype get() {
- if (sizeof(bool) == sizeof(npy_ubyte)) return dtype_traits<npy_ubyte>::get();
- if (sizeof(bool) == sizeof(npy_bool)) return dtype_traits<npy_bool>::get();
- PyErr_SetString(PyExc_TypeError, "Cannot determine numpy dtype corresponding to C++ bool.");
- throw_error_already_set();
- }
+template <> struct dtype_traits<bool>
+{
+ static dtype get()
+ {
+ if (sizeof(bool) == sizeof(npy_ubyte)) return dtype_traits<npy_ubyte>::get();
+ if (sizeof(bool) == sizeof(npy_bool)) return dtype_traits<npy_bool>::get();
+ PyErr_SetString(PyExc_TypeError, "Cannot determine numpy dtype corresponding to C++ bool.");
+ python::throw_error_already_set();
+ }
 };
 template dtype dtype::get_builtin<bool>();
 #endif
 
-}}} // namespace boost::python::numpy
+} // namespace boost::numpy
+} // namespace boost

Modified: sandbox/numpy/libs/numpy/src/matrix.cpp
==============================================================================
--- /sandbox/numpy/libs/python/numpy/src/matrix.cpp (original)
+++ sandbox/numpy/libs/numpy/src/matrix.cpp 2011-07-03 12:40:30 EDT (Sun, 03 Jul 2011)
@@ -1,51 +1,63 @@
-#define BOOST_PYTHON_NUMPY_INTERNAL
-#include <boost/python/numpy/internal.hpp>
-#include <boost/python/numpy/matrix.hpp>
-
-namespace boost { namespace python {
-namespace numpy { namespace detail {
-inline object get_matrix_type() {
- object module = import("numpy");
- return module.attr("matrix");
-}
-}} // namespace numpy::detail
-
-namespace converter {
-
-PyTypeObject const * object_manager_traits<numpy::matrix>::get_pytype() {
- return reinterpret_cast<PyTypeObject*>(numpy::detail::get_matrix_type().ptr());
+#define BOOST_NUMPY_INTERNAL
+#include <boost/numpy/internal.hpp>
+#include <boost/numpy/matrix.hpp>
+
+namespace boost
+{
+namespace numpy
+{
+namespace detail
+{
+inline python::object get_matrix_type()
+{
+ python::object module = python::import("numpy");
+ return module.attr("matrix");
+}
+} // namespace boost::numpy::detail
+} // namespace boost::numpy
+
+namespace python
+{
+namespace converter
+{
+
+PyTypeObject const * object_manager_traits<numpy::matrix>::get_pytype()
+{
+ return reinterpret_cast<PyTypeObject*>(numpy::detail::get_matrix_type().ptr());
 }
 
 } // namespace boost::python::converter
+} // namespace boost::python
 
-namespace numpy {
+namespace numpy
+{
 
-object matrix::construct(object const & obj, dtype const & dt, bool copy) {
- return numpy::detail::get_matrix_type()(obj, dt, copy);
+python::object matrix::construct(python::object const & obj, dtype const & dt, bool copy)
+{
+ return numpy::detail::get_matrix_type()(obj, dt, copy);
 }
 
-object matrix::construct(object const & obj, bool copy) {
- return numpy::detail::get_matrix_type()(obj, object(), copy);
+python::object matrix::construct(python::object const & obj, bool copy)
+{
+ return numpy::detail::get_matrix_type()(obj, object(), copy);
 }
 
-matrix matrix::view(dtype const & dt) const {
- return matrix(
- python::detail::new_reference(
- PyObject_CallMethod(this->ptr(), const_cast<char*>("view"), const_cast<char*>("O"), dt.ptr())
- )
- );
+matrix matrix::view(dtype const & dt) const
+{
+ return matrix(python::detail::new_reference
+ (PyObject_CallMethod(this->ptr(), const_cast<char*>("view"), const_cast<char*>("O"), dt.ptr())));
 }
 
-matrix matrix::copy() const {
- return matrix(
- python::detail::new_reference(
- PyObject_CallMethod(this->ptr(), const_cast<char*>("copy"), const_cast<char*>(""))
- )
- );
+matrix matrix::copy() const
+{
+ return matrix(python::detail::new_reference
+ (PyObject_CallMethod(this->ptr(), const_cast<char*>("copy"), const_cast<char*>(""))));
 }
 
-matrix matrix::transpose() const {
- return matrix(extract<matrix>(ndarray::transpose()));
+matrix matrix::transpose() const
+{
+ return matrix(python::extract<matrix>(ndarray::transpose()));
 }
 
-}}} // namespace boost::python::numpy
+} // namespace boost::numpy
+} // namespace boost

Modified: sandbox/numpy/libs/numpy/src/ndarray.cpp
==============================================================================
--- /sandbox/numpy/libs/python/numpy/src/ndarray.cpp (original)
+++ sandbox/numpy/libs/numpy/src/ndarray.cpp 2011-07-03 12:40:30 EDT (Sun, 03 Jul 2011)
@@ -1,285 +1,269 @@
-#define BOOST_PYTHON_NUMPY_INTERNAL
-#include <boost/python/numpy/internal.hpp>
+#define BOOST_NUMPY_INTERNAL
+#include <boost/numpy/internal.hpp>
 
-namespace boost { namespace python {
-namespace converter {
-NUMPY_OBJECT_MANAGER_TRAITS_IMPL(PyArray_Type, python::numpy::ndarray)
+namespace boost
+{
+namespace python
+{
+namespace converter
+{
+NUMPY_OBJECT_MANAGER_TRAITS_IMPL(PyArray_Type, numpy::ndarray)
 } // namespace boost::python::converter
+} // namespace boost::python
 
-namespace numpy {
+namespace numpy
+{
+namespace detail
+{
+
+ndarray::bitflag numpy_to_bitflag(int const f)
+{
+ ndarray::bitflag r = ndarray::NONE;
+ if (f & NPY_C_CONTIGUOUS) r = (r | ndarray::C_CONTIGUOUS);
+ if (f & NPY_F_CONTIGUOUS) r = (r | ndarray::F_CONTIGUOUS);
+ if (f & NPY_ALIGNED) r = (r | ndarray::ALIGNED);
+ if (f & NPY_WRITEABLE) r = (r | ndarray::WRITEABLE);
+ return r;
+}
+
+int const bitflag_to_numpy(ndarray::bitflag f)
+{
+ int r = 0;
+ if (f & ndarray::C_CONTIGUOUS) r |= NPY_C_CONTIGUOUS;
+ if (f & ndarray::F_CONTIGUOUS) r |= NPY_F_CONTIGUOUS;
+ if (f & ndarray::ALIGNED) r |= NPY_ALIGNED;
+ if (f & ndarray::WRITEABLE) r |= NPY_WRITEABLE;
+ return r;
+}
+
+bool is_c_contiguous(std::vector<Py_intptr_t> const & shape,
+ std::vector<Py_intptr_t> const & strides,
+ int itemsize)
+{
+ std::vector<Py_intptr_t>::const_reverse_iterator j = strides.rbegin();
+ int total = itemsize;
+ for (std::vector<Py_intptr_t>::const_reverse_iterator i = shape.rbegin(); i != shape.rend(); ++i, ++j)
+ {
+ if (total != *j) return false;
+ total *= (*i);
+ }
+ return true;
+}
+
+bool is_f_contiguous(std::vector<Py_intptr_t> const & shape,
+ std::vector<Py_intptr_t> const & strides,
+ int itemsize)
+{
+ std::vector<Py_intptr_t>::const_iterator j = strides.begin();
+ int total = itemsize;
+ for (std::vector<Py_intptr_t>::const_iterator i = shape.begin(); i != shape.end(); ++i, ++j)
+ {
+ if (total != *j) return false;
+ total *= (*i);
+ }
+ return true;
+}
+
+bool is_aligned(std::vector<Py_intptr_t> const & strides,
+ int itemsize)
+{
+ for (std::vector<Py_intptr_t>::const_iterator i = strides.begin(); i != strides.end(); ++i)
+ {
+ if (*i % itemsize) return false;
+ }
+ return true;
+}
+
+inline PyArray_Descr * incref_dtype(dtype const & dt)
+{
+ Py_INCREF(dt.ptr());
+ return reinterpret_cast<PyArray_Descr*>(dt.ptr());
+}
+
+ndarray from_data_impl(void * data,
+ dtype const & dt,
+ python::object const & shape,
+ python::object const & strides,
+ python::object const & owner,
+ bool writeable)
+{
+ std::vector<Py_intptr_t> shape_(len(shape));
+ std::vector<Py_intptr_t> strides_(len(strides));
+ if (shape_.size() != strides_.size())
+ {
+ PyErr_SetString(PyExc_ValueError, "Length of shape and strides arrays do not match.");
+ python::throw_error_already_set();
+ }
+ for (std::size_t i = 0; i < shape_.size(); ++i)
+ {
+ shape_[i] = python::extract<Py_intptr_t>(shape[i]);
+ strides_[i] = python::extract<Py_intptr_t>(strides[i]);
+ }
+ return from_data_impl(data, dt, shape_, strides_, owner, writeable);
+}
+
+ndarray from_data_impl(void * data,
+ dtype const & dt,
+ std::vector<Py_intptr_t> const & shape,
+ std::vector<Py_intptr_t> const & strides,
+ python::object const & owner,
+ bool writeable)
+{
+ if (shape.size() != strides.size())
+ {
+ PyErr_SetString(PyExc_ValueError, "Length of shape and strides arrays do not match.");
+ python::throw_error_already_set();
+ }
+ int itemsize = dt.get_itemsize();
+ int flags = 0;
+ if (writeable) flags |= NPY_WRITEABLE;
+ if (is_c_contiguous(shape, strides, itemsize)) flags |= NPY_C_CONTIGUOUS;
+ if (is_f_contiguous(shape, strides, itemsize)) flags |= NPY_F_CONTIGUOUS;
+ if (is_aligned(strides, itemsize)) flags |= NPY_ALIGNED;
+ ndarray r(python::detail::new_reference
+ (PyArray_NewFromDescr(&PyArray_Type,
+ incref_dtype(dt),
+ shape.size(),
+ const_cast<Py_intptr_t*>(&shape.front()),
+ const_cast<Py_intptr_t*>(&strides.front()),
+ data,
+ flags,
+ NULL)));
+ r.set_base(owner);
+ return r;
+}
 
-namespace detail {
+} // namespace detail
 
-ndarray::bitflag numpy_to_bitflag(int const f) {
- ndarray::bitflag r = ndarray::NONE;
- if (f & NPY_C_CONTIGUOUS) r = (r | ndarray::C_CONTIGUOUS);
- if (f & NPY_F_CONTIGUOUS) r = (r | ndarray::F_CONTIGUOUS);
- if (f & NPY_ALIGNED) r = (r | ndarray::ALIGNED);
- if (f & NPY_WRITEABLE) r = (r | ndarray::WRITEABLE);
- return r;
+ndarray ndarray::view(dtype const & dt) const
+{
+ return ndarray(python::detail::new_reference
+ (PyObject_CallMethod(this->ptr(), const_cast<char*>("view"), const_cast<char*>("O"), dt.ptr())));
 }
 
-int const bitflag_to_numpy(ndarray::bitflag f) {
- int r = 0;
- if (f & ndarray::C_CONTIGUOUS) r |= NPY_C_CONTIGUOUS;
- if (f & ndarray::F_CONTIGUOUS) r |= NPY_F_CONTIGUOUS;
- if (f & ndarray::ALIGNED) r |= NPY_ALIGNED;
- if (f & ndarray::WRITEABLE) r |= NPY_WRITEABLE;
- return r;
+ndarray ndarray::copy() const
+{
+ return ndarray(python::detail::new_reference
+ (PyObject_CallMethod(this->ptr(), const_cast<char*>("copy"), const_cast<char*>(""))));
 }
 
-bool is_c_contiguous(
- std::vector<Py_intptr_t> const & shape,
- std::vector<Py_intptr_t> const & strides,
- int itemsize
-) {
- std::vector<Py_intptr_t>::const_reverse_iterator j = strides.rbegin();
- int total = itemsize;
- for (std::vector<Py_intptr_t>::const_reverse_iterator i = shape.rbegin(); i != shape.rend(); ++i, ++j) {
- if (total != *j) return false;
- total *= (*i);
- }
- return true;
-}
-
-bool is_f_contiguous(
- std::vector<Py_intptr_t> const & shape,
- std::vector<Py_intptr_t> const & strides,
- int itemsize
-) {
- std::vector<Py_intptr_t>::const_iterator j = strides.begin();
- int total = itemsize;
- for (std::vector<Py_intptr_t>::const_iterator i = shape.begin(); i != shape.end(); ++i, ++j) {
- if (total != *j) return false;
- total *= (*i);
- }
- return true;
-}
-
-bool is_aligned(
- std::vector<Py_intptr_t> const & strides,
- int itemsize
-) {
- for (std::vector<Py_intptr_t>::const_iterator i = strides.begin(); i != strides.end(); ++i) {
- if (*i % itemsize) return false;
- }
- return true;
-}
-
-inline PyArray_Descr * incref_dtype(dtype const & dt) {
- Py_INCREF(dt.ptr());
- return reinterpret_cast<PyArray_Descr*>(dt.ptr());
-}
-
-ndarray from_data_impl(
- void * data,
- dtype const & dt,
- object const & shape,
- object const & strides,
- object const & owner,
- bool writeable
-) {
- std::vector<Py_intptr_t> shape_(len(shape));
- std::vector<Py_intptr_t> strides_(len(strides));
- if (shape_.size() != strides_.size()) {
- PyErr_SetString(PyExc_ValueError, "Length of shape and strides arrays do not match.");
- throw_error_already_set();
- }
- for (std::size_t i = 0; i < shape_.size(); ++i) {
- shape_[i] = extract<Py_intptr_t>(shape[i]);
- strides_[i] = extract<Py_intptr_t>(strides[i]);
- }
- return from_data_impl(data, dt, shape_, strides_, owner, writeable);
-}
-
-ndarray from_data_impl(
- void * data,
- dtype const & dt,
- std::vector<Py_intptr_t> const & shape,
- std::vector<Py_intptr_t> const & strides,
- object const & owner,
- bool writeable
-) {
- if (shape.size() != strides.size()) {
- PyErr_SetString(PyExc_ValueError, "Length of shape and strides arrays do not match.");
- throw_error_already_set();
- }
- int itemsize = dt.get_itemsize();
- int flags = 0;
- if (writeable) flags |= NPY_WRITEABLE;
- if (is_c_contiguous(shape, strides, itemsize)) flags |= NPY_C_CONTIGUOUS;
- if (is_f_contiguous(shape, strides, itemsize)) flags |= NPY_F_CONTIGUOUS;
- if (is_aligned(strides, itemsize)) flags |= NPY_ALIGNED;
- ndarray r(
- python::detail::new_reference(
- PyArray_NewFromDescr(
- &PyArray_Type,
- incref_dtype(dt),
- shape.size(),
- const_cast<Py_intptr_t*>(&shape.front()),
- const_cast<Py_intptr_t*>(&strides.front()),
- data,
- flags,
- NULL
- )
- )
- );
- r.set_base(owner);
- return r;
+dtype ndarray::get_dtype() const
+{
+ return dtype(python::detail::borrowed_reference(get_struct()->descr));
 }
 
-} // namespace detail
+python::object ndarray::get_base() const
+{
+ if (get_struct()->base == NULL) return object();
+ return python::object(python::detail::borrowed_reference(get_struct()->base));
+}
+
+void ndarray::set_base(object const & base)
+{
+ Py_XDECREF(get_struct()->base);
+ if (base != object())
+ {
+ Py_INCREF(base.ptr());
+ get_struct()->base = base.ptr();
+ }
+ else
+ {
+ get_struct()->base = NULL;
+ }
+}
+
+ndarray::bitflag const ndarray::get_flags() const
+{
+ return numpy::detail::numpy_to_bitflag(get_struct()->flags);
+}
+
+ndarray ndarray::transpose() const
+{
+ return ndarray(python::detail::new_reference
+ (PyArray_Transpose(reinterpret_cast<PyArrayObject*>(this->ptr()), NULL)));
+}
+
+ndarray ndarray::squeeze() const
+{
+ return ndarray(python::detail::new_reference
+ (PyArray_Squeeze(reinterpret_cast<PyArrayObject*>(this->ptr()))));
+}
+
+ndarray ndarray::reshape(python::tuple const & shape) const
+{
+ return ndarray(python::detail::new_reference
+ (PyArray_Reshape(reinterpret_cast<PyArrayObject*>(this->ptr()), shape.ptr())));
+}
+
+python::object ndarray::scalarize() const
+{
+ Py_INCREF(ptr());
+ return python::object(python::detail::new_reference(PyArray_Return(reinterpret_cast<PyArrayObject*>(ptr()))));
+}
+
+ndarray zeros(python::tuple const & shape, dtype const & dt)
+{
+ int nd = len(shape);
+ Py_intptr_t dims[nd];
+ for (int n=0; n<nd; ++n) dims[n] = python::extract<Py_intptr_t>(shape[n]);
+ return ndarray(python::detail::new_reference
+ (PyArray_Zeros(nd, dims, detail::incref_dtype(dt), 0)));
+}
 
-ndarray ndarray::view(dtype const & dt) const {
- return ndarray(
- python::detail::new_reference(
- PyObject_CallMethod(this->ptr(), const_cast<char*>("view"), const_cast<char*>("O"), dt.ptr())
- )
- );
-}
-
-ndarray ndarray::copy() const {
- return ndarray(
- python::detail::new_reference(
- PyObject_CallMethod(this->ptr(), const_cast<char*>("copy"), const_cast<char*>(""))
- )
- );
-}
-
-dtype ndarray::get_dtype() const {
- return dtype(python::detail::borrowed_reference(get_struct()->descr));
-}
-
-object ndarray::get_base() const {
- if (get_struct()->base == NULL) return object();
- return object(python::detail::borrowed_reference(get_struct()->base));
-}
-
-void ndarray::set_base(object const & base) {
- Py_XDECREF(get_struct()->base);
- if (base != object()) {
- Py_INCREF(base.ptr());
- get_struct()->base = base.ptr();
- } else {
- get_struct()->base = NULL;
- }
-}
-
-ndarray::bitflag const ndarray::get_flags() const {
- return numpy::detail::numpy_to_bitflag(get_struct()->flags);
-}
-
-ndarray ndarray::transpose() const {
- return ndarray(
- python::detail::new_reference(
- PyArray_Transpose(reinterpret_cast<PyArrayObject*>(this->ptr()), NULL)
- )
- );
-}
-
-ndarray ndarray::squeeze() const {
- return ndarray(
- python::detail::new_reference(
- PyArray_Squeeze(reinterpret_cast<PyArrayObject*>(this->ptr()))
- )
- );
-}
-
-ndarray ndarray::reshape(tuple const & shape) const {
- return ndarray(
- python::detail::new_reference(
- PyArray_Reshape(reinterpret_cast<PyArrayObject*>(this->ptr()), shape.ptr())
- )
- );
-}
-
-object ndarray::scalarize() const {
- Py_INCREF(ptr());
- return object(python::detail::new_reference(PyArray_Return(reinterpret_cast<PyArrayObject*>(ptr()))));
-}
-
-ndarray zeros(tuple const & shape, dtype const & dt) {
- int nd = len(shape);
- Py_intptr_t dims[nd];
- for (int n=0; n<nd; ++n) dims[n] = extract<Py_intptr_t>(shape[n]);
- return ndarray(
- python::detail::new_reference(
- PyArray_Zeros(nd, dims, detail::incref_dtype(dt), 0)
- )
- );
-}
-
-ndarray zeros(int nd, Py_intptr_t const * shape, dtype const & dt) {
- return ndarray(
- python::detail::new_reference(
- PyArray_Zeros(nd, const_cast<Py_intptr_t*>(shape), detail::incref_dtype(dt), 0)
- )
- );
-}
-
-ndarray empty(tuple const & shape, dtype const & dt) {
- int nd = len(shape);
- Py_intptr_t dims[nd];
- for (int n=0; n<nd; ++n) dims[n] = extract<Py_intptr_t>(shape[n]);
- return ndarray(
- python::detail::new_reference(
- PyArray_Empty(nd, dims, detail::incref_dtype(dt), 0)
- )
- );
-}
-
-ndarray empty(int nd, Py_intptr_t const * shape, dtype const & dt) {
- return ndarray(
- python::detail::new_reference(
- PyArray_Empty(nd, const_cast<Py_intptr_t*>(shape), detail::incref_dtype(dt), 0)
- )
- );
-}
-
-ndarray array(object const & obj) {
- return ndarray(
- python::detail::new_reference(
- PyArray_FromAny(obj.ptr(), NULL, 0, 0, NPY_ENSUREARRAY, NULL)
- )
- );
-}
-
-ndarray array(object const & obj, dtype const & dt) {
- return ndarray(
- python::detail::new_reference(
- PyArray_FromAny(obj.ptr(), detail::incref_dtype(dt), 0, 0, NPY_ENSUREARRAY, NULL)
- )
- );
-}
-
-ndarray from_object(object const & obj, dtype const & dt, int nd_min, int nd_max, ndarray::bitflag flags) {
- int requirements = detail::bitflag_to_numpy(flags);
- return ndarray(
- python::detail::new_reference(
- PyArray_FromAny(
- obj.ptr(),
- detail::incref_dtype(dt),
- nd_min, nd_max,
- requirements,
- NULL
- )
- )
- );
-}
-
-ndarray from_object(object const & obj, int nd_min, int nd_max, ndarray::bitflag flags) {
- int requirements = detail::bitflag_to_numpy(flags);
- return ndarray(
- python::detail::new_reference(
- PyArray_FromAny(
- obj.ptr(),
- NULL,
- nd_min, nd_max,
- requirements,
- NULL
- )
- )
- );
+ndarray zeros(int nd, Py_intptr_t const * shape, dtype const & dt)
+{
+ return ndarray(python::detail::new_reference
+ (PyArray_Zeros(nd, const_cast<Py_intptr_t*>(shape), detail::incref_dtype(dt), 0)));
 }
 
-}}}
+ndarray empty(python::tuple const & shape, dtype const & dt)
+{
+ int nd = len(shape);
+ Py_intptr_t dims[nd];
+ for (int n=0; n<nd; ++n) dims[n] = python::extract<Py_intptr_t>(shape[n]);
+ return ndarray(python::detail::new_reference
+ (PyArray_Empty(nd, dims, detail::incref_dtype(dt), 0)));
+}
+
+ndarray empty(int nd, Py_intptr_t const * shape, dtype const & dt)
+{
+ return ndarray(python::detail::new_reference
+ (PyArray_Empty(nd, const_cast<Py_intptr_t*>(shape), detail::incref_dtype(dt), 0)));
+}
+
+ndarray array(python::object const & obj)
+{
+ return ndarray(python::detail::new_reference
+ (PyArray_FromAny(obj.ptr(), NULL, 0, 0, NPY_ENSUREARRAY, NULL)));
+}
+
+ndarray array(python::object const & obj, dtype const & dt)
+{
+ return ndarray(python::detail::new_reference
+ (PyArray_FromAny(obj.ptr(), detail::incref_dtype(dt), 0, 0, NPY_ENSUREARRAY, NULL)));
+}
+
+ndarray from_object(python::object const & obj, dtype const & dt, int nd_min, int nd_max, ndarray::bitflag flags)
+{
+ int requirements = detail::bitflag_to_numpy(flags);
+ return ndarray(python::detail::new_reference
+ (PyArray_FromAny(obj.ptr(),
+ detail::incref_dtype(dt),
+ nd_min, nd_max,
+ requirements,
+ NULL)));
+}
+
+ndarray from_object(python::object const & obj, int nd_min, int nd_max, ndarray::bitflag flags)
+{
+ int requirements = detail::bitflag_to_numpy(flags);
+ return ndarray(python::detail::new_reference
+ (PyArray_FromAny(obj.ptr(),
+ NULL,
+ nd_min, nd_max,
+ requirements,
+ NULL)));
+}
+
+}
+}

Modified: sandbox/numpy/libs/numpy/src/numpy.cpp
==============================================================================
--- /sandbox/numpy/libs/python/numpy/src/numpy.cpp (original)
+++ sandbox/numpy/libs/numpy/src/numpy.cpp 2011-07-03 12:40:30 EDT (Sun, 03 Jul 2011)
@@ -1,13 +1,16 @@
-#define BOOST_PYTHON_NUMPY_INTERNAL_MAIN
-#include <boost/python/numpy/internal.hpp>
+#define BOOST_NUMPY_INTERNAL_MAIN
+#include <boost/numpy/internal.hpp>
 
-namespace boost { namespace python {
+namespace boost
+{
+namespace numpy
+{
 
-namespace numpy {
-
-void initialize() {
- import_array();
- import_ufunc();
+void initialize()
+{
+ import_array();
+ import_ufunc();
 }
 
-}}}
+}
+}

Modified: sandbox/numpy/libs/numpy/src/scalars.cpp
==============================================================================
--- /sandbox/numpy/libs/python/numpy/src/scalars.cpp (original)
+++ sandbox/numpy/libs/numpy/src/scalars.cpp 2011-07-03 12:40:30 EDT (Sun, 03 Jul 2011)
@@ -1,35 +1,35 @@
-#define BOOST_PYTHON_NUMPY_INTERNAL
-#include <boost/python/numpy/internal.hpp>
+#define BOOST_NUMPY_INTERNAL
+#include <boost/numpy/internal.hpp>
 
-namespace boost { namespace python {
-namespace converter {
-NUMPY_OBJECT_MANAGER_TRAITS_IMPL(PyVoidArrType_Type, python::numpy::void_)
+namespace boost
+{
+namespace python
+{
+namespace converter
+{
+NUMPY_OBJECT_MANAGER_TRAITS_IMPL(PyVoidArrType_Type, numpy::void_)
 } // namespace boost::python::converter
+} // namespace boost::python
 
-namespace numpy {
+namespace numpy
+{
 
-void_::void_(Py_ssize_t size) :
- object(
- python::detail::new_reference(
- PyObject_CallFunction((PyObject*)&PyVoidArrType_Type, const_cast<char*>("i"), size)
- )
- )
+void_::void_(Py_ssize_t size)
+ : object(python::detail::new_reference
+ (PyObject_CallFunction((PyObject*)&PyVoidArrType_Type, const_cast<char*>("i"), size)))
 {}
 
-void_ void_::view(dtype const & dt) const {
- return void_(
- python::detail::new_reference(
- PyObject_CallMethod(this->ptr(), const_cast<char*>("view"), const_cast<char*>("O"), dt.ptr())
- )
- );
+void_ void_::view(dtype const & dt) const
+{
+ return void_(python::detail::new_reference
+ (PyObject_CallMethod(this->ptr(), const_cast<char*>("view"), const_cast<char*>("O"), dt.ptr())));
 }
 
-void_ void_::copy() const {
- return void_(
- python::detail::new_reference(
- PyObject_CallMethod(this->ptr(), const_cast<char*>("copy"), const_cast<char*>(""))
- )
- );
+void_ void_::copy() const
+{
+ return void_(python::detail::new_reference
+ (PyObject_CallMethod(this->ptr(), const_cast<char*>("copy"), const_cast<char*>(""))));
 }
 
-}}}
+}
+}

Modified: sandbox/numpy/libs/numpy/src/ufunc.cpp
==============================================================================
--- /sandbox/numpy/libs/python/numpy/src/ufunc.cpp (original)
+++ sandbox/numpy/libs/numpy/src/ufunc.cpp 2011-07-03 12:40:30 EDT (Sun, 03 Jul 2011)
@@ -1,48 +1,64 @@
-#define BOOST_PYTHON_NUMPY_INTERNAL
-#include <boost/python/numpy/internal.hpp>
-#include <boost/python/numpy/ufunc.hpp>
-
-namespace boost { namespace python {
-namespace converter {
-NUMPY_OBJECT_MANAGER_TRAITS_IMPL(PyArrayMultiIter_Type, python::numpy::multi_iter)
+#define BOOST_NUMPY_INTERNAL
+#include <boost/numpy/internal.hpp>
+#include <boost/numpy/ufunc.hpp>
+
+namespace boost
+{
+namespace python
+{
+namespace converter
+{
+NUMPY_OBJECT_MANAGER_TRAITS_IMPL(PyArrayMultiIter_Type, numpy::multi_iter)
 } // namespace boost::python::converter
+} // namespace boost::python
 
-namespace numpy {
+namespace numpy
+{
 
-multi_iter make_multi_iter(object const & a1) {
- return multi_iter(python::detail::new_reference(PyArray_MultiIterNew(1, a1.ptr())));
+multi_iter make_multi_iter(python::object const & a1)
+{
+ return multi_iter(python::detail::new_reference(PyArray_MultiIterNew(1, a1.ptr())));
 }
 
-multi_iter make_multi_iter(object const & a1, object const & a2) {
- return multi_iter(python::detail::new_reference(PyArray_MultiIterNew(2, a1.ptr(), a2.ptr())));
+multi_iter make_multi_iter(python::object const & a1, python::object const & a2)
+{
+ return multi_iter(python::detail::new_reference(PyArray_MultiIterNew(2, a1.ptr(), a2.ptr())));
 }
 
-multi_iter make_multi_iter(object const & a1, object const & a2, object const & a3) {
- return multi_iter(python::detail::new_reference(PyArray_MultiIterNew(3, a1.ptr(), a2.ptr(), a3.ptr())));
+multi_iter make_multi_iter(python::object const & a1, python::object const & a2, python::object const & a3)
+{
+ return multi_iter(python::detail::new_reference(PyArray_MultiIterNew(3, a1.ptr(), a2.ptr(), a3.ptr())));
 }
 
-void multi_iter::next() {
- PyArray_MultiIter_NEXT(ptr());
+void multi_iter::next()
+{
+ PyArray_MultiIter_NEXT(ptr());
 }
 
-bool multi_iter::not_done() const {
- return PyArray_MultiIter_NOTDONE(ptr());
+bool multi_iter::not_done() const
+{
+ return PyArray_MultiIter_NOTDONE(ptr());
 }
 
-char * multi_iter::get_data(int i) const {
- return reinterpret_cast<char*>(PyArray_MultiIter_DATA(ptr(), i));
+char * multi_iter::get_data(int i) const
+{
+ return reinterpret_cast<char*>(PyArray_MultiIter_DATA(ptr(), i));
 }
 
-int const multi_iter::get_nd() const {
- return reinterpret_cast<PyArrayMultiIterObject*>(ptr())->nd;
+int const multi_iter::get_nd() const
+{
+ return reinterpret_cast<PyArrayMultiIterObject*>(ptr())->nd;
 }
 
-Py_intptr_t const * multi_iter::get_shape() const {
- return reinterpret_cast<PyArrayMultiIterObject*>(ptr())->dimensions;
+Py_intptr_t const * multi_iter::get_shape() const
+{
+ return reinterpret_cast<PyArrayMultiIterObject*>(ptr())->dimensions;
 }
 
-Py_intptr_t const multi_iter::shape(int n) const {
- return reinterpret_cast<PyArrayMultiIterObject*>(ptr())->dimensions[n];
+Py_intptr_t const multi_iter::shape(int n) const
+{
+ return reinterpret_cast<PyArrayMultiIterObject*>(ptr())->dimensions[n];
 }
 
-}}}
+}
+}

Modified: sandbox/numpy/libs/numpy/test/SConscript
==============================================================================
--- /sandbox/numpy/libs/python/numpy/test/SConscript (original)
+++ sandbox/numpy/libs/numpy/test/SConscript 2011-07-03 12:40:30 EDT (Sun, 03 Jul 2011)
@@ -1,12 +1,12 @@
-Import("bp_numpy_env")
+Import("boost_numpy_env")
 
 test = []
 
 for name in ("ufunc", "templates"):
- mod = bp_numpy_env.SharedLibrary("%s_mod" % name, "%s_mod.cpp" % name, SHLIBPREFIX="",
+ mod = boost_numpy_env.SharedLibrary("%s_mod" % name, "%s_mod.cpp" % name, SHLIBPREFIX="",
                                      LIBS="boost_python_numpy")
     test.extend(
- bp_numpy_env.PythonUnitTest("%s.py" % name, mod)
+ boost_numpy_env.PythonUnitTest("%s.py" % name, mod)
         )
 
 Return("test")

Modified: sandbox/numpy/libs/numpy/test/indexing.py
==============================================================================
--- /sandbox/numpy/libs/python/numpy/test/indexing.py (original)
+++ sandbox/numpy/libs/numpy/test/indexing.py 2011-07-03 12:40:30 EDT (Sun, 03 Jul 2011)
@@ -29,11 +29,11 @@
                 numpy.testing.assert_equal(indexing_mod.indexarray(x,chk),chk)
                 chk = numpy.array([[0,1],[2,3]])
                 numpy.testing.assert_equal(indexing_mod.indexarray(x,chk),chk)
-# x = numpy.arange(9).reshape(3,3)
-# y = numpy.array([0,1])
-# z = numpy.array([0,2])
-# chk = numpy.array([0,5])
-# numpy.testing.assert_equal(indexing_mod.indexarray(x,y,z),chk) # This throws an assertion error, indicates shape mismatch
+ x = numpy.arange(9).reshape(3,3)
+ y = numpy.array([0,1])
+ z = numpy.array([0,2])
+ chk = numpy.array([0,5])
+ #numpy.testing.assert_equal(indexing_mod.indexarray(x,y,z),chk) # This throws an assertion error, indicates shape mismatch
                 x = numpy.arange(0,10)
                 b = x>4
                 chk = numpy.array([5,6,7,8,9])
@@ -42,7 +42,7 @@
                 b = numpy.array([0,2])
                 sl = slice(0,2)
                 chk = numpy.array([[0,1,2],[6,7,8]])
- numpy.testing.assert_equal(indexing_mod.indexslice(x,b,sl),chk)
+ #numpy.testing.assert_equal(indexing_mod.indexslice(x,b,sl),chk)
 
 if __name__=="__main__":
         unittest.main()

Modified: sandbox/numpy/libs/numpy/test/indexing_mod.cpp
==============================================================================
--- /sandbox/numpy/libs/python/numpy/test/indexing_mod.cpp (original)
+++ sandbox/numpy/libs/numpy/test/indexing_mod.cpp 2011-07-03 12:40:30 EDT (Sun, 03 Jul 2011)
@@ -1,21 +1,22 @@
-#include <boost/python/numpy.hpp>
+#include <boost/numpy.hpp>
 #include <boost/python/slice.hpp>
 
-namespace bp = boost::python;
+namespace p = boost::python;
+namespace np = boost::numpy;
 
-bp::object single(bp::numpy::ndarray ndarr, int i) { return ndarr[i];}
-bp::object slice(bp::numpy::ndarray ndarr, bp::slice sl) { return ndarr[sl];}
-bp::object indexarray(bp::numpy::ndarray ndarr, bp::numpy::ndarray d1) { return ndarr[d1];}
-bp::object indexarray_2d(bp::numpy::ndarray ndarr, bp::numpy::ndarray d1,bp::numpy::ndarray d2) { return ndarr[d1][d2];}
-bp::object indexslice(bp::numpy::ndarray ndarr, bp::numpy::ndarray d1,bp::slice sl) { return ndarr[d1][sl];}
+p::object single(np::ndarray ndarr, int i) { return ndarr[i];}
+p::object slice(np::ndarray ndarr, p::slice sl) { return ndarr[sl];}
+p::object indexarray(np::ndarray ndarr, np::ndarray d1) { return ndarr[d1];}
+//p::object indexarray_2d(np::ndarray ndarr, np::ndarray d1,np::ndarray d2) { return ndarr[d1,d2];}
+//p::object indexslice(np::ndarray ndarr, np::ndarray d1, p::slice sl) { return ndarr[d1][sl];}
 
 BOOST_PYTHON_MODULE(indexing_mod)
 {
- bp::numpy::initialize();
- bp::def("single", &single);
- bp::def("slice", &slice);
- bp::def("indexarray", &indexarray);
- bp::def("indexarray", &indexarray_2d);
- bp::def("indexslice", &indexslice);
+ np::initialize();
+ p::def("single", single);
+ p::def("slice", slice);
+ p::def("indexarray", indexarray);
+ // p::def("indexarray", indexarray_2d);
+ // p::def("indexslice", indexslice);
 
 }

Modified: sandbox/numpy/libs/numpy/test/ndarray_mod.cpp
==============================================================================
--- /sandbox/numpy/libs/python/numpy/test/ndarray_mod.cpp (original)
+++ sandbox/numpy/libs/numpy/test/ndarray_mod.cpp 2011-07-03 12:40:30 EDT (Sun, 03 Jul 2011)
@@ -1,54 +1,38 @@
-#include <boost/python/numpy.hpp>
+#include <boost/numpy.hpp>
 
-namespace bp = boost::python;
+namespace p = boost::python;
+namespace np = boost::numpy;
 
-bp::numpy::ndarray zeros(bp::tuple shape, bp::numpy::dtype dt) {
- return bp::numpy::zeros(shape, dt);
-}
-
-bp::numpy::ndarray array2(bp::object obj,bp::numpy::dtype dt) {
- return bp::numpy::array(obj,dt);
-}
-
-bp::numpy::ndarray array1(bp::object obj) {
- return bp::numpy::array(obj);
-}
-
-bp::numpy::ndarray empty1(bp::tuple shape, bp::numpy::dtype dt) {
- return bp::numpy::empty(shape,dt);
-}
+np::ndarray zeros(p::tuple shape, np::dtype dt) { return np::zeros(shape, dt);}
+np::ndarray array2(p::object obj, np::dtype dt) { return np::array(obj,dt);}
+np::ndarray array1(p::object obj) { return np::array(obj);}
+np::ndarray empty1(p::tuple shape, np::dtype dt) { return np::empty(shape,dt);}
 
-bp::numpy::ndarray c_empty(bp::tuple shape, bp::numpy::dtype dt) {
+np::ndarray c_empty(p::tuple shape, np::dtype dt)
+{
   // convert 'shape' to a C array so we can test the corresponding
   // version of the constructor
- unsigned len = bp::len(shape);
+ unsigned len = p::len(shape);
   Py_intptr_t *c_shape = new Py_intptr_t[len];
   for (unsigned i = 0; i != len; ++i)
- c_shape[i] = bp::extract<Py_intptr_t>(shape[i]);
- bp::numpy::ndarray result = bp::numpy::empty(len, c_shape, dt);
+ c_shape[i] = p::extract<Py_intptr_t>(shape[i]);
+ np::ndarray result = np::empty(len, c_shape, dt);
   delete [] c_shape;
   return result;
 }
 
-bp::numpy::ndarray transpose(bp::numpy::ndarray arr) {
- return arr.transpose();
-}
-
-bp::numpy::ndarray squeeze(bp::numpy::ndarray arr) {
- return arr.squeeze();
-}
-
-bp::numpy::ndarray reshape(bp::numpy::ndarray arr,bp::tuple tup) {
- return arr.reshape(tup);
-}
-BOOST_PYTHON_MODULE(ndarray_mod) {
- bp::numpy::initialize();
- bp::def("zeros", &zeros);
- bp::def("array",&array2);
- bp::def("array",&array1);
- bp::def("empty",&empty1);
- bp::def("c_empty",&c_empty);
- bp::def("transpose",&transpose);
- bp::def("squeeze",&squeeze);
- bp::def("reshape",&reshape);
+np::ndarray transpose(np::ndarray arr) { return arr.transpose();}
+np::ndarray squeeze(np::ndarray arr) { return arr.squeeze();}
+np::ndarray reshape(np::ndarray arr,p::tuple tup) { return arr.reshape(tup);}
+BOOST_PYTHON_MODULE(ndarray_mod)
+{
+ np::initialize();
+ p::def("zeros", zeros);
+ p::def("array", array2);
+ p::def("array", array1);
+ p::def("empty", empty1);
+ p::def("c_empty", c_empty);
+ p::def("transpose", transpose);
+ p::def("squeeze", squeeze);
+ p::def("reshape", reshape);
 }

Modified: sandbox/numpy/libs/numpy/test/shapes_mod.cpp
==============================================================================
--- /sandbox/numpy/libs/python/numpy/test/shapes_mod.cpp (original)
+++ sandbox/numpy/libs/numpy/test/shapes_mod.cpp 2011-07-03 12:40:30 EDT (Sun, 03 Jul 2011)
@@ -1,13 +1,16 @@
-#include <boost/python/numpy.hpp>
+#include <boost/numpy.hpp>
 
-namespace bp = boost::python;
+namespace p = boost::python;
+namespace np = boost::numpy;
 
-bp::numpy::ndarray reshape(bp::numpy::ndarray old_array, bp::tuple shape) {
- bp::numpy::ndarray local_shape = old_array.reshape(shape);
- return local_shape;
+np::ndarray reshape(np::ndarray old_array, p::tuple shape)
+{
+ np::ndarray local_shape = old_array.reshape(shape);
+ return local_shape;
 }
 
-BOOST_PYTHON_MODULE(shapes_mod) {
- bp::numpy::initialize();
- bp::def("reshape", &reshape);
+BOOST_PYTHON_MODULE(shapes_mod)
+{
+ np::initialize();
+ p::def("reshape", reshape);
 }

Modified: sandbox/numpy/libs/numpy/test/templates_mod.cpp
==============================================================================
--- /sandbox/numpy/libs/python/numpy/test/templates_mod.cpp (original)
+++ sandbox/numpy/libs/numpy/test/templates_mod.cpp 2011-07-03 12:40:30 EDT (Sun, 03 Jul 2011)
@@ -1,51 +1,57 @@
-#include <boost/python/numpy.hpp>
+#include <boost/numpy.hpp>
 #include <boost/mpl/vector.hpp>
 #include <boost/mpl/vector_c.hpp>
 
-namespace bp = boost::python;
+namespace p = boost::python;
+namespace np = boost::numpy;
 
-struct ArrayFiller {
+struct ArrayFiller
+{
 
- typedef boost::mpl::vector< short, int, float, std::complex<double> > TypeSequence;
- typedef boost::mpl::vector_c< int, 1, 2 > DimSequence;
+ typedef boost::mpl::vector< short, int, float, std::complex<double> > TypeSequence;
+ typedef boost::mpl::vector_c< int, 1, 2 > DimSequence;
 
- template <typename T, int N>
- void apply() const {
- if (N == 1) {
- char * p = argument.get_data();
- int stride = argument.strides(0);
- int size = argument.shape(0);
- for (int n = 0; n != size; ++n, p += stride) {
- *reinterpret_cast<T*>(p) = static_cast<T>(n);
- }
- } else {
- char * row_p = argument.get_data();
- int row_stride = argument.strides(0);
- int col_stride = argument.strides(1);
- int rows = argument.shape(0);
- int cols = argument.shape(1);
- int i = 0;
- for (int n = 0; n != rows; ++n, row_p += row_stride) {
- char * col_p = row_p;
- for (int m = 0; m != cols; ++i, ++m, col_p += col_stride) {
- *reinterpret_cast<T*>(col_p) = static_cast<T>(i);
- }
- }
- }
+ explicit ArrayFiller(np::ndarray const & arg) : argument(arg) {}
+
+ template <typename T, int N>
+ void apply() const
+ {
+ if (N == 1)
+ {
+ char * p = argument.get_data();
+ int stride = argument.strides(0);
+ int size = argument.shape(0);
+ for (int n = 0; n != size; ++n, p += stride)
+ *reinterpret_cast<T*>(p) = static_cast<T>(n);
     }
+ else
+ {
+ char * row_p = argument.get_data();
+ int row_stride = argument.strides(0);
+ int col_stride = argument.strides(1);
+ int rows = argument.shape(0);
+ int cols = argument.shape(1);
+ int i = 0;
+ for (int n = 0; n != rows; ++n, row_p += row_stride)
+ {
+ char * col_p = row_p;
+ for (int m = 0; m != cols; ++i, ++m, col_p += col_stride)
+ *reinterpret_cast<T*>(col_p) = static_cast<T>(i);
+ }
+ }
+ }
 
- bp::numpy::ndarray argument;
-
- explicit ArrayFiller(bp::numpy::ndarray const & arg) : argument(arg) {}
-
+ np::ndarray argument;
 };
 
-void fill(bp::numpy::ndarray const & arg) {
- ArrayFiller filler(arg);
- bp::numpy::invoke_matching_array< ArrayFiller::TypeSequence, ArrayFiller::DimSequence >(arg, filler);
+void fill(np::ndarray const & arg)
+{
+ ArrayFiller filler(arg);
+ np::invoke_matching_array<ArrayFiller::TypeSequence, ArrayFiller::DimSequence >(arg, filler);
 }
 
-BOOST_PYTHON_MODULE(templates_mod) {
- bp::numpy::initialize();
- bp::def("fill", &fill);
+BOOST_PYTHON_MODULE(templates_mod)
+{
+ np::initialize();
+ p::def("fill", fill);
 }

Modified: sandbox/numpy/libs/numpy/test/ufunc_mod.cpp
==============================================================================
--- /sandbox/numpy/libs/python/numpy/test/ufunc_mod.cpp (original)
+++ sandbox/numpy/libs/numpy/test/ufunc_mod.cpp 2011-07-03 12:40:30 EDT (Sun, 03 Jul 2011)
@@ -1,31 +1,30 @@
-#include <boost/python/numpy.hpp>
+#include <boost/numpy.hpp>
 
-namespace bp = boost::python;
+namespace p = boost::python;
+namespace np = boost::numpy;
 
-struct UnaryCallable {
-
- typedef double argument_type;
- typedef double result_type;
-
- double operator()(double r) const { return r * 2; }
+struct UnaryCallable
+{
+ typedef double argument_type;
+ typedef double result_type;
 
+ double operator()(double r) const { return r * 2;}
 };
 
-struct BinaryCallable {
-
- typedef double first_argument_type;
- typedef double second_argument_type;
- typedef double result_type;
-
- double operator()(double a, double b) const { return a * 2 + b * 3; }
+struct BinaryCallable
+{
+ typedef double first_argument_type;
+ typedef double second_argument_type;
+ typedef double result_type;
 
+ double operator()(double a, double b) const { return a * 2 + b * 3;}
 };
 
-BOOST_PYTHON_MODULE(ufunc_mod) {
- bp::numpy::initialize();
- bp::class_< UnaryCallable, boost::shared_ptr<UnaryCallable> >("UnaryCallable")
- .def("__call__", bp::numpy::unary_ufunc<UnaryCallable>::make());
- bp::class_< BinaryCallable, boost::shared_ptr<BinaryCallable> >("BinaryCallable")
- .def("__call__", bp::numpy::binary_ufunc<BinaryCallable>::make());
-
+BOOST_PYTHON_MODULE(ufunc_mod)
+{
+ np::initialize();
+ p::class_<UnaryCallable, boost::shared_ptr<UnaryCallable> >("UnaryCallable")
+ .def("__call__", np::unary_ufunc<UnaryCallable>::make());
+ p::class_< BinaryCallable, boost::shared_ptr<BinaryCallable> >("BinaryCallable")
+ .def("__call__", np::binary_ufunc<BinaryCallable>::make());
 }


Boost-Commit list run by bdawes at acm.org, david.abrahams at rcn.com, gregod at cs.rpi.edu, cpdaniel at pacbell.net, john at johnmaddock.co.uk