|
Boost-Commit : |
Subject: [Boost-commit] svn:boost r75179 - in sandbox/numpy: . libs/numpy/example site_scons
From: talljimbo_at_[hidden]
Date: 2011-10-30 10:43:54
Author: jbosch
Date: 2011-10-30 10:43:53 EDT (Sun, 30 Oct 2011)
New Revision: 75179
URL: http://svn.boost.org/trac/boost/changeset/75179
Log:
added gaussian example, updated scons build
Added:
sandbox/numpy/libs/numpy/example/SConscript (contents, props changed)
sandbox/numpy/libs/numpy/example/demo_gaussian.py (contents, props changed)
sandbox/numpy/libs/numpy/example/gaussian.cpp (contents, props changed)
Text files modified:
sandbox/numpy/SConscript | 3 ++-
sandbox/numpy/site_scons/scons_tools.py | 8 ++++++--
2 files changed, 8 insertions(+), 3 deletions(-)
Modified: sandbox/numpy/SConscript
==============================================================================
--- sandbox/numpy/SConscript (original)
+++ sandbox/numpy/SConscript 2011-10-30 10:43:53 EDT (Sun, 30 Oct 2011)
@@ -10,7 +10,7 @@
)
boost_numpy_env = scons_tools.GetEnvironment().Clone()
boost_numpy_env.Append(CPPPATH=[os.path.abspath(os.curdir)])
-libpath = os.path.abspath("%s/numpy/src" % scons_tools.GetBuildDir())
+libpath = os.path.abspath("libs/numpy/src")
if os.environ.has_key("LD_LIBRARY_PATH"):
boost_numpy_env["ENV"]["LD_LIBRARY_PATH"] = "%s:%s" % (libpath, os.environ["LD_LIBRARY_PATH"])
else:
@@ -28,6 +28,7 @@
+ boost_numpy_env.Install(boost_numpy_env["INSTALL_LIB"], targets["boost.numpy"]["lib"])
)
targets["boost.numpy"]["test"] = SConscript("libs/numpy/test/SConscript")
+targets["boost.numpy"]["example"] = SConscript("libs/numpy/example/SConscript")
Return("targets")
Added: sandbox/numpy/libs/numpy/example/SConscript
==============================================================================
--- (empty file)
+++ sandbox/numpy/libs/numpy/example/SConscript 2011-10-30 10:43:53 EDT (Sun, 30 Oct 2011)
@@ -0,0 +1,11 @@
+Import("boost_numpy_env")
+
+example = []
+
+for name in ("ufunc", "dtype", "fromdata", "ndarray", "simple"):
+ example.extend(boost_numpy_env.Program(name, "%s.cpp" % name, LIBS="boost_numpy"))
+
+for name in ("gaussian",):
+ example.extend(boost_numpy_env.SharedLibrary(name, "%s.cpp" % name, SHLIBPREFIX="", LIBS="boost_numpy"))
+
+Return("example")
Added: sandbox/numpy/libs/numpy/example/demo_gaussian.py
==============================================================================
--- (empty file)
+++ sandbox/numpy/libs/numpy/example/demo_gaussian.py 2011-10-30 10:43:53 EDT (Sun, 30 Oct 2011)
@@ -0,0 +1,32 @@
+import numpy
+import gaussian
+
+mu = numpy.zeros(2, dtype=float)
+sigma = numpy.identity(2, dtype=float)
+sigma[0, 1] = 0.15
+sigma[1, 0] = 0.15
+
+g = gaussian.bivariate_gaussian(mu, sigma)
+
+r = numpy.linspace(-40, 40, 1001)
+x, y = numpy.meshgrid(r, r)
+
+z = g(x, y)
+
+s = z.sum() * (r[1] - r[0])**2
+print "sum (should be ~ 1):", s
+
+xc = (z * x).sum() / z.sum()
+print "x centroid (should be ~ %f): %f" % (mu[0], xc)
+
+yc = (z * y).sum() / z.sum()
+print "y centroid (should be ~ %f): %f" % (mu[1], yc)
+
+xx = (z * (x - xc)**2).sum() / z.sum()
+print "xx moment (should be ~ %f): %f" % (sigma[0,0], xx)
+
+yy = (z * (y - yc)**2).sum() / z.sum()
+print "yy moment (should be ~ %f): %f" % (sigma[1,1], yy)
+
+xy = 0.5 * (z * (x - xc) * (y - yc)).sum() / z.sum()
+print "xy moment (should be ~ %f): %f" % (sigma[0,1], xy)
Added: sandbox/numpy/libs/numpy/example/gaussian.cpp
==============================================================================
--- (empty file)
+++ sandbox/numpy/libs/numpy/example/gaussian.cpp 2011-10-30 10:43:53 EDT (Sun, 30 Oct 2011)
@@ -0,0 +1,237 @@
+#include <cmath>
+#include <memory>
+
+#include <boost/numpy.hpp>
+#include <boost/numeric/ublas/vector.hpp>
+#include <boost/numeric/ublas/matrix.hpp>
+
+namespace bp = boost::python;
+namespace bn = boost::numpy;
+
+/**
+ * This class represents a simple 2-d Gaussian (Normal) distribution, defined by a
+ * mean vector 'mu' and a covariance matrix 'sigma'.
+ */
+class bivariate_gaussian {
+public:
+
+ /**
+ * Boost.NumPy isn't designed to support specific C++ linear algebra or matrix/vector libraries;
+ * it's intended as a lower-level interface that can be used with any such C++ library.
+ *
+ * Here, we'll demonstrate these techniques with boost::ublas, but the same general principles
+ * should apply to other matrix/vector libraries.
+ */
+ typedef boost::numeric::ublas::c_vector<double,2> vector;
+ typedef boost::numeric::ublas::c_matrix<double,2,2> matrix;
+
+ vector const & get_mu() const { return _mu; }
+
+ matrix const & get_sigma() const { return _sigma; }
+
+ /**
+ * Evaluate the density of the distribution at a point defined by a two-element vector.
+ */
+ double operator()(vector const & p) const {
+ vector u = prod(_cholesky, p - _mu);
+ return 0.5 * _cholesky(0, 0) * _cholesky(1, 1) * std::exp(-0.5 * inner_prod(u, u)) / M_PI;
+ }
+
+ /**
+ * Evaluate the density of the distribution at an (x, y) point.
+ */
+ double operator()(double x, double y) const {
+ vector p;
+ p[0] = x;
+ p[1] = y;
+ return operator()(p);
+ }
+
+ /**
+ * Construct from a mean vector and covariance matrix.
+ */
+ bivariate_gaussian(vector const & mu, matrix const & sigma)
+ : _mu(mu), _sigma(sigma), _cholesky(compute_inverse_cholesky(sigma))
+ {}
+
+private:
+
+ /**
+ * This evaluates the inverse of the Cholesky factorization of a 2x2 matrix;
+ * it's just a shortcut in evaluating the density.
+ */
+ static matrix compute_inverse_cholesky(matrix const & m) {
+ matrix l;
+ // First do cholesky factorization: l l^t = m
+ l(0, 0) = std::sqrt(m(0, 0));
+ l(0, 1) = m(0, 1) / l(0, 0);
+ l(1, 1) = std::sqrt(m(1, 1) - l(0,1) * l(0,1));
+ // Now do forward-substitution (in-place) to invert:
+ l(0, 0) = 1.0 / l(0, 0);
+ l(1, 0) = l(0, 1) = -l(0, 1) / l(1, 1);
+ l(1, 1) = 1.0 / l(1, 1);
+ return l;
+ }
+
+ vector _mu;
+ matrix _sigma;
+ matrix _cholesky;
+
+};
+
+/*
+ * We have a two options for wrapping get_mu and get_sigma into NumPy-returning Python methods:
+ * - we could deep-copy the data, making totally new NumPy arrays;
+ * - we could make NumPy arrays that point into the existing memory.
+ * The latter is often preferable, especially if the arrays are large, but it's dangerous unless
+ * the reference counting is correct: the returned NumPy array needs to hold a reference that
+ * keeps the memory it points to from being deallocated as long as it is alive. This is what the
+ * "owner" argument to from_data does - the NumPy array holds a reference to the owner, keeping it
+ * from being destroyed.
+ *
+ * Note that this mechanism isn't completely safe for data members that can have their internal
+ * storage reallocated. A std::vector, for instance, can be invalidated when it is resized,
+ * so holding a Python reference to a C++ class that holds a std::vector may not be a guarantee
+ * that the memory in the std::vector will remain valid.
+ */
+
+/**
+ * These two functions are custom wrappers for get_mu and get_sigma, providing the shallow-copy
+ * conversion with reference counting described above.
+ *
+ * It's also worth noting that these return NumPy arrays that cannot be modified in Python;
+ * the const overloads of vector::data() and matrix::data() return const references,
+ * and passing a const pointer to from_data causes NumPy's 'writeable' flag to be set to false.
+ */
+static bn::ndarray py_get_mu(bp::object const & self) {
+ bivariate_gaussian::vector const & mu = bp::extract<bivariate_gaussian const &>(self)().get_mu();
+ return bn::from_data(
+ mu.data(),
+ bn::dtype::get_builtin<double>(),
+ bp::make_tuple(2),
+ bp::make_tuple(sizeof(double)),
+ self
+ );
+}
+static bn::ndarray py_get_sigma(bp::object const & self) {
+ bivariate_gaussian::matrix const & sigma = bp::extract<bivariate_gaussian const &>(self)().get_sigma();
+ return bn::from_data(
+ sigma.data(),
+ bn::dtype::get_builtin<double>(),
+ bp::make_tuple(2, 2),
+ bp::make_tuple(2 * sizeof(double), sizeof(double)),
+ self
+ );
+}
+
+/**
+ * To allow the constructor to work, we need to define some from-Python converters from NumPy arrays
+ * to the ublas types. The rvalue-from-python functionality is not well-documented in Boost.Python
+ * itself; you can learn more from boost/python/converter/rvalue_from_python_data.hpp.
+ */
+
+/**
+ * We start with two functions that just copy a NumPy array into ublas objects. These will be used
+ * in the templated converted below. The first just uses the operator[] overloads provided by
+ * bp::object.
+ */
+static void copy_ndarray_to_ublas(bn::ndarray const & array, bivariate_gaussian::vector & vec) {
+ vec[0] = bp::extract<double>(array[0]);
+ vec[1] = bp::extract<double>(array[1]);
+}
+/**
+ * Here, we'll take the alternate approach of using the strides to access the array's memory directly.
+ * This can be much faster for large arrays.
+ */
+static void copy_ndarray_to_ublas(bn::ndarray const & array, bivariate_gaussian::matrix & mat) {
+ // Unfortunately, get_strides() can't be inlined, so it's best to call it once up-front.
+ Py_intptr_t const * strides = array.get_strides();
+ for (int i = 0; i < 2; ++i) {
+ for (int j = 0; j < 2; ++j) {
+ mat(i, j) = *reinterpret_cast<double const *>(array.get_data() + i * strides[0] + j * strides[1]);
+ }
+ }
+}
+
+template <typename T, int N>
+struct bivariate_gaussian_ublas_from_python {
+
+ /**
+ * Register the converter.
+ */
+ bivariate_gaussian_ublas_from_python() {
+ bp::converter::registry::push_back(
+ &convertible,
+ &construct,
+ bp::type_id< T >()
+ );
+ }
+
+ /**
+ * Test to see if we can convert this to the desired type; if not return zero.
+ * If we can convert, returned pointer can be used by construct().
+ */
+ static void * convertible(PyObject * p) {
+ try {
+ bp::object obj(bp::handle<>(bp::borrowed(p)));
+ std::auto_ptr<bn::ndarray> array(
+ new bn::ndarray(
+ bn::from_object(obj, bn::dtype::get_builtin<double>(), N, N, bn::ndarray::V_CONTIGUOUS)
+ )
+ );
+ if (array->shape(0) != 2) return 0;
+ if (N == 2 && array->shape(1) != 2) return 0;
+ return array.release();
+ } catch (bp::error_already_set & err) {
+ bp::handle_exception();
+ return 0;
+ }
+ }
+
+ /**
+ * Finish the conversion by initializing the C++ object into memory prepared by Boost.Python.
+ */
+ static void construct(PyObject * obj, bp::converter::rvalue_from_python_stage1_data * data) {
+ // Extract the array we passed out of the convertible() member function.
+ std::auto_ptr<bn::ndarray> array(reinterpret_cast<bn::ndarray*>(data->convertible));
+ // Find the memory block Boost.Python has prepared for the result.
+ typedef bp::converter::rvalue_from_python_storage<T> storage_t;
+ storage_t * storage = reinterpret_cast<storage_t*>(data);
+ // Use placement new to initialize the result.
+ T * ublas_obj = new (storage->storage.bytes) T();
+ // Fill the result with the values from the NumPy array.
+ copy_ndarray_to_ublas(*array, *ublas_obj);
+ // Finish up.
+ data->convertible = storage->storage.bytes;
+ }
+
+};
+
+
+BOOST_PYTHON_MODULE(gaussian) {
+ bn::initialize();
+
+ // Register the from-python converters
+ bivariate_gaussian_ublas_from_python< bivariate_gaussian::vector, 1 >();
+ bivariate_gaussian_ublas_from_python< bivariate_gaussian::matrix, 2 >();
+
+ typedef double (bivariate_gaussian::*call_vector)(bivariate_gaussian::vector const &) const;
+
+ bp::class_<bivariate_gaussian>("bivariate_gaussian", bp::init<bivariate_gaussian const &>())
+
+ // Declare the constructor (wouldn't work without the from-python converters).
+ .def(bp::init< bivariate_gaussian::vector const &, bivariate_gaussian::matrix const & >())
+
+ // Use our custom reference-counting getters
+ .add_property("mu", &py_get_mu)
+ .add_property("sigma", &py_get_sigma)
+
+ // First overload accepts a two-element array argument
+ .def("__call__", (call_vector)&bivariate_gaussian::operator())
+
+ // This overload works like a binary NumPy universal function: you can pass
+ // in scalars or arrays, and the C++ function will automatically be called
+ // on each element of an array argument.
+ .def("__call__", bn::binary_ufunc<bivariate_gaussian,double,double,double>::make())
+ ;
+}
Modified: sandbox/numpy/site_scons/scons_tools.py
==============================================================================
--- sandbox/numpy/site_scons/scons_tools.py (original)
+++ sandbox/numpy/site_scons/scons_tools.py 2011-10-30 10:43:53 EDT (Sun, 30 Oct 2011)
@@ -251,6 +251,7 @@
all_all = []
build_all = []
install_all = []
+ example_all = []
test_all = []
scons.Help("""
To specify additional directories to add to the include or library paths, specify them
@@ -263,7 +264,8 @@
Global targets: 'all' (builds everything)
'build' (builds headers, libraries, and python wrappers)
'install' (copies files to global bin, include and lib directories)
- 'test' (runs unit tests; requires install)
+ 'example' (builds examples; may require install)
+ 'test' (runs unit tests; may require install)
These targets can be built for individual packages with the syntax
'[package]-[target]'. Some packages support additional targets, given below.
@@ -275,7 +277,7 @@
for pkg_name in sorted(targets.keys()):
pkg_targets = targets[pkg_name]
extra_targets = tuple(k for k in pkg_targets.keys() if k not in
- ("all","build","install","test"))
+ ("all","build","install","test","example"))
if extra_targets:
scons.Help("%-25s %s\n" % (pkg_name, ", ".join("'%s'" % k for k in extra_targets)))
else:
@@ -290,11 +292,13 @@
all_all.extend(pkg_all)
build_all.extend(pkg_build)
install_all.extend(pkg_targets.get("install", pkg_build))
+ example_all.extend(pkg_targets.get("example", pkg_targets.get("install", pkg_build)))
test_all.extend(pkg_targets.get("test", pkg_targets.get("install", pkg_build)))
env.Alias("all", all_all)
env.Alias("build", build_all)
env.Alias("install", install_all)
env.Alias("test", test_all)
+ env.Alias("example", example_all)
env.Default("build")
Boost-Commit list run by bdawes at acm.org, david.abrahams at rcn.com, gregod at cs.rpi.edu, cpdaniel at pacbell.net, john at johnmaddock.co.uk