|
Boost-Commit : |
Subject: [Boost-commit] svn:boost r75289 - sandbox/multiprecision/libs/multiprecision/example/evaluate_examples
From: pbristow_at_[hidden]
Date: 2011-11-03 13:43:13
Author: pbristow
Date: 2011-11-03 13:43:12 EDT (Thu, 03 Nov 2011)
New Revision: 75289
URL: http://svn.boost.org/trac/boost/changeset/75289
Log:
MInor edits
Text files modified:
sandbox/multiprecision/libs/multiprecision/example/evaluate_examples/evaluate_examples.cpp | 24 ++++++++++++------------
1 files changed, 12 insertions(+), 12 deletions(-)
Modified: sandbox/multiprecision/libs/multiprecision/example/evaluate_examples/evaluate_examples.cpp
==============================================================================
--- sandbox/multiprecision/libs/multiprecision/example/evaluate_examples/evaluate_examples.cpp (original)
+++ sandbox/multiprecision/libs/multiprecision/example/evaluate_examples/evaluate_examples.cpp 2011-11-03 13:43:12 EDT (Thu, 03 Nov 2011)
@@ -65,13 +65,13 @@
{
using std::cout;
using std::endl;
-
+
using boost::multiprecision::mp_float;
using boost::multiprecision::one;
using boost::multiprecision::pi;
//[evaluate_examples
-
+
/*`For these examples, we could set the stream precision to show all potentially significant digits.
`using std::numeric_limits<mp_float>::max_digits10`
but some of these digits are 'noisy' and not exact, so we could also chose to show only those
@@ -80,7 +80,7 @@
the precision not overridden.
*/
cout.precision(std::numeric_limits<mp_float>::digits10);
-
+
/*`[h4 Examples of evaluating [^mp_float] variables]
Shows examples of evaluating constants and evaluating mathematical functions using mp_float.
@@ -90,7 +90,7 @@
Construction of `mp_float` from all integer types is always exact
(unless they overflow `std::numeric_limits<mp_float>::digits10` digits).
*/
- mp_float i(12345);
+ mp_float i(12345);
cout << "mp_float i(12345); = " << i << endl; // mp_float i(12345); = 12345
//` And much large integers can be stored (exactly).
@@ -102,7 +102,7 @@
//` So ensure that you always construct or assign from an mp_float, for example:
- mp_float i64 = mp_float(i32max); //
+ mp_float i64 = mp_float(i32max); //
cout << "mp_float i32max = " << i64 << endl; // 2147483647
i64 *= i32max;
cout << "mp_float i32max * i32max = " << i64 << endl; // 4611686014132420609
@@ -136,7 +136,7 @@
mp_float my_pi(pi());
cout << " pi() = " << my_pi << endl; // 3.1415926535897932384626433832795028841971693993751
-
+
//` Or most simply, use a built-in constant.
const mp_float half_pi2 = pi()/2;
cout << "half_pi2 = " << half_pi2 << endl; // 1.5707963267948966192313216916397514420985846996876
@@ -163,7 +163,7 @@
However, the right way is to use the `mp_float` function `exp1` to get `e`.
*/
- mp_float e(exp1());
+ mp_float e(exp1());
cout << "Euler's number e = " << e << endl;
cout << "Euler-Mascheroni gamma = " << boost::multiprecision::euler_gamma() << endl;
@@ -172,11 +172,11 @@
cout << "sqrt(3) = " << sqrt_3 << endl; // 1.7320508075688772935274463415058723669428052538104
-//`But there is also a function sqrt3() provided for [radic]3
+//`But there is also a function sqrt3() provided for [radic]3
cout << "sqrt3() = " << sqrt3() << endl; // 1.7320508075688772935274463415058723669428052538104
-//`There are not just plain vanilla functions, for example the gamma function
+//`There are not just plain vanilla functions, for example the gamma function
cout << "gamma(mp_float(1993)/733) = " << gamma(mp_float(1993)/733) << endl;
// 1.5683282929651009293238041703928088537599945734689
@@ -184,12 +184,12 @@
/*`And the zeta [zeta] function, for example used to compute the
[@http://en.wikipedia.org/wiki/Riemann_zeta_function Riemann zeta function]
of the prime number 3, [zeta](3),
-(also known as [@http://en.wikipedia.org/wiki/Ap%C3%A9ry Apery's] constant).
+(also known as [@http://en.wikipedia.org/wiki/Ap%C3%A9ry Aperys] constant).
*/
cout << "zeta(3) = " << riemann_zeta(mp_float(3)) << endl;
// 1.2020569031595942853997381615114499907649862923405
-//] [/evaluate_examples]
+//] [/evaluate_examples]
return 0;
} // int main()
@@ -209,7 +209,7 @@
is = 1.234567890123456789012345678901234567890123456789e+119
pi() = 3.1415926535897932384626433832795028841971693993751
half_pi2 = 1.5707963267948966192313216916397514420985846996876
- Euler's number e = 2.7182818284590452353602874713526624977572470937
+ Euler number e = 2.7182818284590452353602874713526624977572470937
Euler-Mascheroni gamma = 0.57721566490153286060651209008240243104215933593992
sqrt(3) = 1.7320508075688772935274463415058723669428052538104
sqrt3() = 1.7320508075688772935274463415058723669428052538104
Boost-Commit list run by bdawes at acm.org, david.abrahams at rcn.com, gregod at cs.rpi.edu, cpdaniel at pacbell.net, john at johnmaddock.co.uk