|
Boost-Commit : |
Subject: [Boost-commit] svn:boost r75965 - sandbox/math_constants/boost/math/constants
From: pbristow_at_[hidden]
Date: 2011-12-15 12:08:02
Author: pbristow
Date: 2011-12-15 12:08:01 EST (Thu, 15 Dec 2011)
New Revision: 75965
URL: http://svn.boost.org/trac/boost/changeset/75965
Log:
added calculation for catalan and zeta3(3) Apery. more TODO
Text files modified:
sandbox/math_constants/boost/math/constants/calculate_constants.hpp | 102 ++++++++++++++++++++++++++++++++++++---
1 files changed, 92 insertions(+), 10 deletions(-)
Modified: sandbox/math_constants/boost/math/constants/calculate_constants.hpp
==============================================================================
--- sandbox/math_constants/boost/math/constants/calculate_constants.hpp (original)
+++ sandbox/math_constants/boost/math/constants/calculate_constants.hpp 2011-12-15 12:08:01 EST (Thu, 15 Dec 2011)
@@ -498,6 +498,8 @@
);
// T gamma("0.57721566490153286060651209008240243104215933593992");
return gamma;
+ // TODO calculate this - JM has code.
+
}
template <class T, int N>
@@ -523,6 +525,7 @@
template <class T, int N>
inline T calculate_cf10(const mpl::int_<N>&BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE_SPEC(T))
{
+ // TODO calculate this.
BOOST_MATH_STD_USING
T cf10("1.030640834100712935881776094116936840925");
return cf10;
@@ -543,26 +546,101 @@
template <class T, int N>
inline T calculate_zeta_three(const mpl::int_<N>&BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE_SPEC(T))
{
+ // http://mathworld.wolfram.com/AperysConstant.html
+ // http://en.wikipedia.org/wiki/Mathematical_constant
+
// http://oeis.org/A002117/constant
- T zeta3("1.20205690315959428539973816151144999076"
- "4986292340498881792271555341838205786313"
- "09018645587360933525814619915");
- return zeta3;
+ //T zeta3("1.20205690315959428539973816151144999076"
+ // "4986292340498881792271555341838205786313"
+ // "09018645587360933525814619915");
+
+ //"1.202056903159594285399738161511449990, 76498629234049888179227155534183820578631309018645587360933525814619915" A002117
+ // 1.202056903159594285399738161511449990, 76498629234049888179227155534183820578631309018645587360933525814619915780, +00);
+ //"1.2020569031595942 double
+ // http://www.spaennare.se/SSPROG/ssnum.pdf // section 11, Algorithmfor Aperys constant zeta(3).
+ // Programs to Calculate some Mathematical Constants to Large Precision, Document Version 1.50
+
+ // by Stefan Spannare September 19, 2007
+ // zeta(3) = 1/64 * sum
+ T n_fact=static_cast<T>(1); // build n! for n = 0.
+ T sum = static_cast<double>(77); // Start with n = 0 case.
+ // for n = 0, (77/1) /64 = 1.203125
+ //double lim = std::numeric_limits<double>::epsilon();
+ T lim = boost::math::tools::epsilon<T>();
+ for(unsigned int n = 1; n < 40; ++n)
+ { // three to five decimal digits per term, so 40 should be plenty for 100 decimal digits.
+ //cout << "n = " << n << endl;
+ n_fact *= n; // n!
+ T n_fact_p10 = n_fact * n_fact * n_fact * n_fact * n_fact * n_fact * n_fact * n_fact * n_fact * n_fact; // (n!)^10
+ T num = ((205 * n * n) + (250 * n) + 77) * n_fact_p10; // 205n^2 + 250n + 77
+ // int nn = (2 * n + 1);
+ // T d = factorial(nn); // inline factorial.
+ T d = 1;
+ for(unsigned int i = 1; i <= (n+n + 1); ++i) // (2n + 1)
+ {
+ d *= i;
+ }
+ T den = d * d * d * d * d; // [(2n+1)!]^5
+ //cout << "den = " << den << endl;
+ T term = num/den;
+ if (n % 2 != 0)
+ { //term *= -1;
+ sum -= term;
+ }
+ else
+ {
+ sum += term;
+ }
+ //cout << "term = " << term << endl;
+ //cout << "sum/64 = " << sum/64 << endl;
+ if(abs(term) < lim)
+ {
+ break;
+ }
+ }
+ return sum / 64;
}
template <class T, int N>
inline T calculate_catalan(const mpl::int_<N>&BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE_SPEC(T))
{ // http://oeis.org/A006752/constant
- T c("0.915965594177219015054603514932384110774"
- "1493742816721342664981196217630197762547"
- "69479356512926115106248574");
- return c;
+ //T c("0.915965594177219015054603514932384110774"
+ //"149374281672134266498119621763019776254769479356512926115106248574");
+
+ // 9.159655941772190150546035149323841107, 74149374281672134266498119621763019776254769479356512926115106248574422619, -01);
+
+ // This is equation (entry) 31 from
+ // http://www-2.cs.cmu.edu/~adamchik/articles/catalan/catalan.htm
+ // See also http://www.mpfr.org/algorithms.pdf
+ T k_fact = 1;
+ T tk_fact = 1;
+ T sum = 1;
+ T term;
+ T lim = boost::math::tools::epsilon<T>();
+
+ for(unsigned k = 1;; ++k)
+ {
+ k_fact *= k;
+ tk_fact *= (2 * k) * (2 * k - 1);
+ term = k_fact * k_fact / (tk_fact * (2 * k + 1) * (2 * k + 1));
+ sum += term;
+ if(term < lim)
+ {
+ break;
+ }
+ }
+ return boost::math::constants::pi<T, boost::math::policies::policy<> >()
+ * log(2 + boost::math::constants::root_three<T, boost::math::policies::policy<> >())
+ / 8
+ + 3 * sum / 8;
}
template <class T, int N>
inline T calculate_khinchin(const mpl::int_<N>&BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE_SPEC(T))
{ // from e_float constants.cpp
+ // http://mathworld.wolfram.com/KhinchinsConstant.html
+ // TODO calculate this.
T k( "2.6854520010653064453097148354817956938203822939944629530511523455572188595371520028011411749318476979"
"9515346590528809008289767771641096305179253348325966838185231542133211949962603932852204481940961806"
"8664166428930847788062036073705350103367263357728904990427070272345170262523702354581068631850103237"
@@ -581,6 +659,7 @@
inline T calculate_extreme_value_skewness(const mpl::int_<N>&BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE_SPEC(T))
{ // from e_float constants.cpp
// Mathematica: N[12 Sqrt[6] Zeta[3]/Pi^3, 1101]
+ // TODO Calculate this.
T ev(
"1.1395470994046486574927930193898461120875997958365518247216557100852480077060706857071875468869385150"
@@ -602,8 +681,9 @@
inline T calculate_glaisher(const mpl::int_<N>&BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE_SPEC(T))
{ // from http://mpmath.googlecode.com/svn/data/glaisher.txt
// 20,000 digits of the Glaisher-Kinkelin constant A = exp(1/2 - zeta'(-1))
- // Computed using A = exp((6 (-zeta'(2))/pi^2 + log 2 pi + gamma)/12)
+ // Computed using A = exp((6 (-zeta(2))/pi^2 + log 2 pi + gamma)/12)
// with Euler-Maclaurin summation for zeta'(2).
+ // TODO calculate this.
T g(
"1.282427129100622636875342568869791727767688927325001192063740021740406308858826"
@@ -628,7 +708,7 @@
{ // From e_float
// 1100 digits of the Rayleigh distribution skewness
// Mathematica: N[2 Sqrt[Pi] (Pi - 3)/((4 - Pi)^(3/2)), 1100]
-
+ // TODO Calculate this using pi_minus_three etc.
T rs(
"0.6311106578189371381918993515442277798440422031347194976580945856929268196174737254599050270325373067"
@@ -648,6 +728,7 @@
template <class T, int N>
inline T calculate_rayleigh_kurtosis_excess(const mpl::int_<N>&BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE_SPEC(T))
{ // - (6 Pi^2 - 24 Pi + 16)/((Pi - 4)^2)
+ // TODO Calculate this using pi_minus_four etc.
return - (((static_cast<T>(6) * pi<T, policies::policy<policies::digits2<N> > >()
* pi<T, policies::policy<policies::digits2<N> > >())
- (static_cast<T>(24) * pi<T, policies::policy<policies::digits2<N> > >()) + static_cast<T>(16) )
@@ -660,6 +741,7 @@
template <class T, int N>
inline T calculate_rayleigh_kurtosis(const mpl::int_<N>&BOOST_MATH_APPEND_EXPLICIT_TEMPLATE_TYPE_SPEC(T))
{ // 3 - (6 Pi^2 - 24 Pi + 16)/((Pi - 4)^2)
+ // TODO Calculate this using pi_minus_four etc.
return static_cast<T>(3) - (((static_cast<T>(6) * pi<T, policies::policy<policies::digits2<N> > >()
* pi<T, policies::policy<policies::digits2<N> > >())
- (static_cast<T>(24) * pi<T, policies::policy<policies::digits2<N> > >()) + static_cast<T>(16) )
Boost-Commit list run by bdawes at acm.org, david.abrahams at rcn.com, gregod at cs.rpi.edu, cpdaniel at pacbell.net, john at johnmaddock.co.uk