|
Boost-Commit : |
Subject: [Boost-commit] svn:boost r85487 - in sandbox/multiprecision.cpp_bin_float/boost/multiprecision: . cpp_bin_float
From: john_at_[hidden]
Date: 2013-08-27 12:21:48
Author: johnmaddock
Date: 2013-08-27 12:21:48 EDT (Tue, 27 Aug 2013)
New Revision: 85487
URL: http://svn.boost.org/trac/boost/changeset/85487
Log:
Refactor the code a bit and make binary-decimal conversion correctly rounded for all exponent values.
Added:
sandbox/multiprecision.cpp_bin_float/boost/multiprecision/cpp_bin_float/
sandbox/multiprecision.cpp_bin_float/boost/multiprecision/cpp_bin_float/io.hpp (contents, props changed)
Text files modified:
sandbox/multiprecision.cpp_bin_float/boost/multiprecision/cpp_bin_float.hpp | 313 ------------------------
sandbox/multiprecision.cpp_bin_float/boost/multiprecision/cpp_bin_float/io.hpp | 503 ++++++++++++++++++++++++++++++++++++++++
2 files changed, 507 insertions(+), 309 deletions(-)
Modified: sandbox/multiprecision.cpp_bin_float/boost/multiprecision/cpp_bin_float.hpp
==============================================================================
--- sandbox/multiprecision.cpp_bin_float/boost/multiprecision/cpp_bin_float.hpp Tue Aug 27 10:23:19 2013 (r85486)
+++ sandbox/multiprecision.cpp_bin_float/boost/multiprecision/cpp_bin_float.hpp 2013-08-27 12:21:48 EDT (Tue, 27 Aug 2013) (r85487)
@@ -217,170 +217,7 @@
return *this;
}
- cpp_bin_float& operator=(const char *s)
- {
- const char* org_s = s;
- cpp_int n;
- int decimal_exp = 0;
- bool ss = false;
- //
- // Extract the sign:
- //
- if(*s == '-')
- {
- ss = true;
- ++s;
- }
- else if(*s == '+')
- ++s;
- //
- // Special cases first:
- //
- if((std::strcmp(s, "nan") == 0) || (std::strcmp(s, "NaN") == 0) || (std::strcmp(s, "NAN") == 0))
- {
- return *this = std::numeric_limits<number<cpp_bin_float<Bits> > >::quiet_NaN().backend();
- }
- if((std::strcmp(s, "inf") == 0) || (std::strcmp(s, "Inf") == 0) || (std::strcmp(s, "INF") == 0) || (std::strcmp(s, "infinity") == 0) || (std::strcmp(s, "Infinity") == 0) || (std::strcmp(s, "INFINITY") == 0))
- {
- *this = std::numeric_limits<number<cpp_bin_float<Bits> > >::infinity().backend();
- if(ss)
- negate();
- return *this;
- }
- //
- // Digits before the point:
- //
- while(*s && (*s >= '0') && (*s <= '9'))
- {
- n *= 10u;
- n += *s - '0';
- ++s;
- }
- // The decimal point (we really should localise this!!)
- if(*s && (*s == '.'))
- ++s;
- //
- // Digits after the point:
- //
- while(*s && (*s >= '0') && (*s <= '9'))
- {
- n *= 10u;
- n += *s - '0';
- --decimal_exp;
- ++s;
- }
- //
- // See if there's an exponent:
- //
- if(*s && ((*s == 'e') || (*s == 'E')))
- {
- ++s;
- int e = 0;
- int es = false;
- if(*s && (*s == '-'))
- {
- es = true;
- ++s;
- }
- else if(*s && (*s == '+'))
- ++s;
- while(*s && (*s >= '0') && (*s <= '9'))
- {
- e *= 10u;
- e += *s - '0';
- ++s;
- }
- if(es)
- e = -e;
- decimal_exp += e;
- }
- if(*s)
- {
- //
- // Oops unexpected input at the end of the number:
- //
- BOOST_THROW_EXCEPTION(std::runtime_error("Unable to parse string as a valid floating point number."));
- }
- if(n == 0)
- {
- // Result is necessarily zero:
- *this = 0;
- return *this;
- }
- if(decimal_exp > 300)
- {
- //
- // TODO, FIXME, temporary hack!!
- boost::multiprecision::detail::convert_from_string(*this, org_s);
- }
- else if(decimal_exp >= 0)
- {
- // Nice and simple, the result is an integer...
- n *= pow(cpp_int(5), decimal_exp);
- exponent() = (int)Bits - 1;
- exponent() += decimal_exp;
- copy_and_round(*this, n.backend());
- if(ss != sign())
- negate();
- }
- else if(decimal_exp > -300)
- {
- // Result is the ratio of two integers: we need to organise the
- // division so as to produce at least an N-bit result which we can
- // round according to the remainder.
- cpp_int d = pow(cpp_int(5), -decimal_exp);
- int shift = (int)Bits - msb(n) + msb(d);
- exponent() = Bits - 1 + decimal_exp;
- if(shift > 0)
- {
- n <<= shift;
- exponent() -= shift;
- }
- cpp_int q, r;
- divide_qr(n, d, q, r);
- int gb = msb(q);
- BOOST_ASSERT(gb >= Bits - 1);
- //
- // Check for rounding conditions we have to
- // handle ourselves:
- //
- if(gb == Bits - 1)
- {
- // Exactly the right number of bits, use the remainder to round:
- r *= 2;
- int c = r.compare(d);
- if(c == 0)
- {
- // Tie:
- if(q.backend().limbs()[0] & 1)
- ++q;
- }
- else if(c > 0)
- ++q;
- }
- else if(bit_test(q, gb - (int)Bits) && ((int)lsb(q) == (gb - (int)Bits)))
- {
- // Too many bits in q and the bits in q indicate a tie, but we can break that using r:
- q >>= gb - (int)Bits + 1;
- BOOST_ASSERT(msb(q) >= Bits - 1);
- if(r)
- ++q;
- else if(q.backend().limbs()[0] & 1)
- ++q;
- exponent() += gb - (int)Bits + 1;
- }
- copy_and_round(*this, q.backend());
- if(ss != sign())
- negate();
- }
- else
- {
- // TODO, FIXME, temporary hack!!!
- boost::multiprecision::detail::convert_from_string(*this, org_s);
- }
-
- return *this;
- }
+ cpp_bin_float& operator=(const char *s);
void swap(cpp_bin_float &o) BOOST_NOEXCEPT
{
@@ -389,151 +226,7 @@
std::swap(m_sign, o.m_sign);
}
- std::string str(std::streamsize dig, std::ios_base::fmtflags f) const
- {
- if(dig == 0)
- dig = std::numeric_limits<number<cpp_bin_float<Bits> > >::max_digits10;
-
- bool scientific = (f & std::ios_base::scientific) == std::ios_base::scientific;
- bool fixed = !scientific && (f & std::ios_base::fixed);
-
- if(exponent() <= cpp_bin_float<Bits>::max_exponent)
- {
- // How far to left-shift in order to demormalise the mantissa:
- int shift = (int)Bits - exponent() - 1;
- if(std::abs(exponent()) < 1000)
- {
- //
- // With a smallish exponent we can use exact integer arithmetic
- // to figure out what to print, basically we create an N digit
- // integer plus a remainder:
- //
- int digits_wanted = static_cast<int>(dig);
- int base10_exp = exponent() >= 0 ? static_cast<int>(std::floor(0.30103 * exponent())) : static_cast<int>(std::ceil(0.30103 * exponent()));
- //
- // For fixed formatting we want /dig/ digits after the decimal point,
- // so if the exponent is zero, allowing for the one digit before the
- // decimal point, we want 1 + dig digits etc.
- //
- if(fixed)
- digits_wanted += 1 + base10_exp;
- if(scientific)
- digits_wanted += 1;
- if(digits_wanted < -1)
- {
- // Fixed precision, no significant digits, and nothing to round!
- std::string s("0");
- if(sign())
- s.insert(0, 1, '-');
- boost::multiprecision::detail::format_float_string(s, base10_exp, dig, f, true);
- return s;
- }
- //
- // power10 is the base10 exponent we need to multiply/divide by in order
- // to convert our denormalised number to an integer with the right number of digits:
- //
- int power10 = digits_wanted - base10_exp - 1;
- //
- // If we calculate 5^power10 rather than 10^power10 we need to move
- // 2^power10 into /shift/
- //
- shift -= power10;
- cpp_int i;
- std::string s;
- int roundup = 0; // 0=no rounding, 1=tie, 2=up
- do
- {
- //
- // Our integer is: bits() * 2^-shift * 5^power10
- //
- i = bits();
- if(shift < 0)
- {
- i <<= -shift;
- if(power10 > 0)
- i *= pow(cpp_int(5), power10);
- else if(power10 < 0)
- {
- cpp_int r;
- cpp_int d = pow(cpp_int(5), -power10);
- divide_qr(i, d, i, r);
- r <<= 1;
- int c = r.compare(d);
- roundup = c < 0 ? 0 : c == 0 ? 1 : 2;
- }
- }
- else
- {
- //
- // Our integer is bits() * 2^-shift * 10^power10
- //
- if(power10 >= 0)
- {
- if(power10)
- i *= pow(cpp_int(5), power10);
- if(shift && bit_test(i, shift - 1))
- {
- if((int)lsb(i) == shift - 1)
- roundup = 1;
- else
- roundup = 2;
- }
- i >>= shift;
- }
- else
- {
- cpp_int r;
- cpp_int d = pow(cpp_int(5), -power10);
- d <<= shift;
- divide_qr(i, d, i, r);
- r <<= 1;
- int c = r.compare(d);
- roundup = c < 0 ? 0 : c == 0 ? 1 : 2;
- }
- }
- s = i.str(0, std::ios_base::fmtflags(0));
- //
- // Check if we got the right number of digits, this
- // is really a test of whether we calculated the
- // decimal exponent correctly:
- //
- int digits_got = i ? s.size() : 0;
- if(digits_got != digits_wanted)
- {
- base10_exp += digits_got - digits_wanted;
- if(fixed)
- digits_wanted = digits_got; // strange but true.
- power10 = digits_wanted - base10_exp - 1;
- shift = (int)Bits - exponent() - 1 - power10;
- if(fixed)
- break;
- roundup = 0;
- }
- else
- break;
- }
- while(true);
- //
- // Check whether we need to round up: note that we could equally round up
- // the integer /i/ above, but since we need to perform the rounding *after*
- // the conversion to a string and the digit count check, we might as well
- // do it hear:
- //
- if((roundup == 2) || ((roundup == 1) && ((s[s.size() - 1] - '0') & 1)))
- {
- boost::multiprecision::detail::round_string_up_at(s, s.size() - 1, base10_exp);
- }
-
- if(sign())
- s.insert(0, 1, '-');
-
- boost::multiprecision::detail::format_float_string(s, base10_exp, dig, f, false);
- return s;
- }
- }
- // TODO, FIXME, temporary hack!!!
- return boost::multiprecision::detail::convert_to_string(*this, dig, f);
- }
+ std::string str(std::streamsize dig, std::ios_base::fmtflags f) const;
void negate()
{
@@ -1337,6 +1030,8 @@
}} // namespaces
+#include <boost/multiprecision/cpp_bin_float/io.hpp>
+
namespace std{
//
Added: sandbox/multiprecision.cpp_bin_float/boost/multiprecision/cpp_bin_float/io.hpp
==============================================================================
--- /dev/null 00:00:00 1970 (empty, because file is newly added)
+++ sandbox/multiprecision.cpp_bin_float/boost/multiprecision/cpp_bin_float/io.hpp 2013-08-27 12:21:48 EDT (Tue, 27 Aug 2013) (r85487)
@@ -0,0 +1,503 @@
+///////////////////////////////////////////////////////////////
+// Copyright 2013 John Maddock. Distributed under the Boost
+// Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_
+
+#ifndef BOOST_MP_CPP_BIN_FLOAT_IO_HPP
+#define BOOST_MP_CPP_BIN_FLOAT_IO_HPP
+
+namespace boost{ namespace multiprecision{ namespace cpp_bf_io_detail{
+
+//
+// Multiplies a by b and shifts the result so it fits inside max_bits bits,
+// returns by how much the result was shifted.
+//
+inline int restricted_multiply(cpp_int& result, const cpp_int& a, const cpp_int& b, int max_bits, int& error)
+{
+ result = a * b;
+ int gb = msb(result);
+ int rshift = 0;
+ if(gb > max_bits)
+ {
+ rshift = gb - max_bits;
+ int lb = lsb(result);
+ int roundup = 0;
+ // The error rate increases by the error of both a and b,
+ // this may be overly pessimistic in many case as we're assuming
+ // that a and b have the same level of uncertainty...
+ if(lb < rshift)
+ error = error ? error * 2 : 1;
+ if(bit_test(result, rshift - 1))
+ {
+ if(lb == rshift - 1)
+ roundup = 1;
+ else
+ roundup = 2;
+ }
+ result >>= rshift;
+ if((roundup == 2) || ((roundup == 1) && (result.backend().limbs()[0] & 1)))
+ ++result;
+ }
+ return rshift;
+}
+//
+// Computes a^e shifted to the right so it fits in max_bits, returns how far
+// to the right we are shifted.
+//
+inline int restricted_pow(cpp_int& result, const cpp_int& a, int e, int max_bits, int& error)
+{
+ BOOST_ASSERT(&result != &a);
+ int exp = 0;
+ if(e == 1)
+ {
+ result = a;
+ return exp;
+ }
+ else if(e == 2)
+ {
+ return restricted_multiply(result, a, a, max_bits, error);
+ }
+ else if(e == 3)
+ {
+ exp = restricted_multiply(result, a, a, max_bits, error);
+ exp += restricted_multiply(result, result, a, max_bits, error);
+ return exp;
+ }
+ int p = e / 2;
+ exp = restricted_pow(result, a, p, max_bits, error);
+ exp *= 2;
+ exp += restricted_multiply(result, result, result, max_bits, error);
+ if(e & 1)
+ exp += restricted_multiply(result, result, a, max_bits, error);
+ return exp;
+}
+
+inline int get_round_mode(const cpp_int& what, int location, int error)
+{
+ //
+ // Can we round what at /location/, if the error in what is /error/ in
+ // units of 0.5ulp. Return:
+ //
+ // -1: Can't round.
+ // 0: leave as is.
+ // 1: tie.
+ // 2: round up.
+ //
+ int error_radius = error & 1 ? (1 + error) / 2 : error / 2;
+ if(bit_test(what, location))
+ {
+ if(lsb(what) == location)
+ return error ? -1 : 1; // Either a tie or can't round depending on whether we have any error
+ if(!error)
+ return 2; // no error, round up.
+ cpp_int t = what - error_radius;
+ if(lsb(t) >= location)
+ return -1;
+ return 2;
+ }
+ else if(error)
+ {
+ cpp_int t = what + error_radius;
+ return bit_test(t, location) ? -1 : 0;
+ }
+ return 0;
+}
+
+inline int get_round_mode(cpp_int& r, cpp_int& d, int error)
+{
+ //
+ // Lets suppose we have an inexact division by d, where the true
+ // value for the divisor is d+error, then we have:
+ //
+ // n r
+ // --- = q + -----------
+ // d + error d + error
+ //
+ // So rounding depends on whether 2r > d + error.
+ //
+ // We return:
+ // 0 = down down.
+ // 1 = tie.
+ // 2 = round up.
+ // -1 = couldn't decide.
+ //
+ r <<= 1;
+ int c = r.compare(d);
+ if(c == 0)
+ return error ? -1 : 1;
+ //
+ // Error is in units of 0.5ulp, so figure out what radius on d that is:
+ error = error & 1 ? (error + 1) / 2 : error / 2;
+ if(c > 0)
+ {
+ d += error;
+ return r.compare(d) > 0 ? 2 : -1;
+ }
+ d -= error;
+ return r.compare(d) < 0 ? 0 : -1;
+}
+
+} // namespace
+
+namespace backends{
+
+template <unsigned Bits>
+cpp_bin_float<Bits>& cpp_bin_float<Bits>::operator=(const char *s)
+{
+ const char* org_s = s;
+ cpp_int n;
+ int decimal_exp = 0;
+ bool ss = false;
+ //
+ // Extract the sign:
+ //
+ if(*s == '-')
+ {
+ ss = true;
+ ++s;
+ }
+ else if(*s == '+')
+ ++s;
+ //
+ // Special cases first:
+ //
+ if((std::strcmp(s, "nan") == 0) || (std::strcmp(s, "NaN") == 0) || (std::strcmp(s, "NAN") == 0))
+ {
+ return *this = std::numeric_limits<number<cpp_bin_float<Bits> > >::quiet_NaN().backend();
+ }
+ if((std::strcmp(s, "inf") == 0) || (std::strcmp(s, "Inf") == 0) || (std::strcmp(s, "INF") == 0) || (std::strcmp(s, "infinity") == 0) || (std::strcmp(s, "Infinity") == 0) || (std::strcmp(s, "INFINITY") == 0))
+ {
+ *this = std::numeric_limits<number<cpp_bin_float<Bits> > >::infinity().backend();
+ if(ss)
+ negate();
+ return *this;
+ }
+ //
+ // Digits before the point:
+ //
+ while(*s && (*s >= '0') && (*s <= '9'))
+ {
+ n *= 10u;
+ n += *s - '0';
+ ++s;
+ }
+ // The decimal point (we really should localise this!!)
+ if(*s && (*s == '.'))
+ ++s;
+ //
+ // Digits after the point:
+ //
+ while(*s && (*s >= '0') && (*s <= '9'))
+ {
+ n *= 10u;
+ n += *s - '0';
+ --decimal_exp;
+ ++s;
+ }
+ //
+ // See if there's an exponent:
+ //
+ if(*s && ((*s == 'e') || (*s == 'E')))
+ {
+ ++s;
+ int e = 0;
+ int es = false;
+ if(*s && (*s == '-'))
+ {
+ es = true;
+ ++s;
+ }
+ else if(*s && (*s == '+'))
+ ++s;
+ while(*s && (*s >= '0') && (*s <= '9'))
+ {
+ e *= 10u;
+ e += *s - '0';
+ ++s;
+ }
+ if(es)
+ e = -e;
+ decimal_exp += e;
+ }
+ if(*s)
+ {
+ //
+ // Oops unexpected input at the end of the number:
+ //
+ BOOST_THROW_EXCEPTION(std::runtime_error("Unable to parse string as a valid floating point number."));
+ }
+ if(n == 0)
+ {
+ // Result is necessarily zero:
+ *this = 0;
+ return *this;
+ }
+ if(decimal_exp > 300)
+ {
+ //
+ // TODO, FIXME, temporary hack!!
+ boost::multiprecision::detail::convert_from_string(*this, org_s);
+ }
+ else if(decimal_exp >= 0)
+ {
+ // Nice and simple, the result is an integer...
+ n *= pow(cpp_int(5), decimal_exp);
+ exponent() = (int)Bits - 1;
+ exponent() += decimal_exp;
+ copy_and_round(*this, n.backend());
+ if(ss != sign())
+ negate();
+ }
+ else if(decimal_exp > -300)
+ {
+ // Result is the ratio of two integers: we need to organise the
+ // division so as to produce at least an N-bit result which we can
+ // round according to the remainder.
+ cpp_int d = pow(cpp_int(5), -decimal_exp);
+ int shift = (int)Bits - msb(n) + msb(d);
+ exponent() = Bits - 1 + decimal_exp;
+ if(shift > 0)
+ {
+ n <<= shift;
+ exponent() -= shift;
+ }
+ cpp_int q, r;
+ divide_qr(n, d, q, r);
+ int gb = msb(q);
+ BOOST_ASSERT(gb >= Bits - 1);
+ //
+ // Check for rounding conditions we have to
+ // handle ourselves:
+ //
+ if(gb == Bits - 1)
+ {
+ // Exactly the right number of bits, use the remainder to round:
+ r *= 2;
+ int c = r.compare(d);
+ if(c == 0)
+ {
+ // Tie:
+ if(q.backend().limbs()[0] & 1)
+ ++q;
+ }
+ else if(c > 0)
+ ++q;
+ }
+ else if(bit_test(q, gb - (int)Bits) && ((int)lsb(q) == (gb - (int)Bits)))
+ {
+ // Too many bits in q and the bits in q indicate a tie, but we can break that using r:
+ q >>= gb - (int)Bits + 1;
+ BOOST_ASSERT(msb(q) >= Bits - 1);
+ if(r)
+ ++q;
+ else if(q.backend().limbs()[0] & 1)
+ ++q;
+ exponent() += gb - (int)Bits + 1;
+ }
+ copy_and_round(*this, q.backend());
+ if(ss != sign())
+ negate();
+ }
+ else
+ {
+ // TODO, FIXME, temporary hack!!!
+ boost::multiprecision::detail::convert_from_string(*this, org_s);
+ }
+
+ return *this;
+}
+
+template <unsigned Bits>
+std::string cpp_bin_float<Bits>::str(std::streamsize dig, std::ios_base::fmtflags f) const
+{
+ if(dig == 0)
+ dig = std::numeric_limits<number<cpp_bin_float<Bits> > >::max_digits10;
+
+ bool scientific = (f & std::ios_base::scientific) == std::ios_base::scientific;
+ bool fixed = !scientific && (f & std::ios_base::fixed);
+
+ std::string s;
+
+ if(exponent() <= cpp_bin_float<Bits>::max_exponent)
+ {
+ // How far to left-shift in order to demormalise the mantissa:
+ int shift = (int)Bits - exponent() - 1;
+ int digits_wanted = static_cast<int>(dig);
+ int base10_exp = exponent() >= 0 ? static_cast<int>(std::floor(0.30103 * exponent())) : static_cast<int>(std::ceil(0.30103 * exponent()));
+ //
+ // For fixed formatting we want /dig/ digits after the decimal point,
+ // so if the exponent is zero, allowing for the one digit before the
+ // decimal point, we want 1 + dig digits etc.
+ //
+ if(fixed)
+ digits_wanted += 1 + base10_exp;
+ if(scientific)
+ digits_wanted += 1;
+ if(digits_wanted < -1)
+ {
+ // Fixed precision, no significant digits, and nothing to round!
+ s = "0";
+ if(sign())
+ s.insert(0, 1, '-');
+ boost::multiprecision::detail::format_float_string(s, base10_exp, dig, f, true);
+ return s;
+ }
+ //
+ // power10 is the base10 exponent we need to multiply/divide by in order
+ // to convert our denormalised number to an integer with the right number of digits:
+ //
+ int power10 = digits_wanted - base10_exp - 1;
+ //
+ // If we calculate 5^power10 rather than 10^power10 we need to move
+ // 2^power10 into /shift/
+ //
+ shift -= power10;
+ cpp_int i;
+ int roundup = 0; // 0=no rounding, 1=tie, 2=up
+ static const unsigned limb_bits = sizeof(limb_type) * CHAR_BIT;
+ int max_bits = Bits + (Bits % limb_bits ? limb_bits - Bits % limb_bits : 0) + limb_bits;
+ do
+ {
+ int error = 0;
+ int calc_exp = 0;
+ //
+ // Our integer result is: bits() * 2^-shift * 5^power10
+ //
+ i = bits();
+ if(shift < 0)
+ {
+ if(power10 >= 0)
+ {
+ // We go straight to the answer with all integer arithmetic,
+ // the result is always exact and never needs rounding:
+ i <<= -shift;
+ if(power10)
+ i *= pow(cpp_int(5), power10);
+ }
+ else if(power10 < 0)
+ {
+ cpp_int d;
+ calc_exp = boost::multiprecision::cpp_bf_io_detail::restricted_pow(d, cpp_int(5), -power10, max_bits, error);
+ shift += calc_exp;
+ BOOST_ASSERT(shift < 0); // Must still be true!
+ i <<= -shift;
+ cpp_int r;
+ divide_qr(i, d, i, r);
+ roundup = boost::multiprecision::cpp_bf_io_detail::get_round_mode(r, d, error);
+ if(roundup < 0)
+ {
+ max_bits *= 2;
+ shift = (int)Bits - exponent() - 1 - power10;
+ continue;
+ }
+ }
+ }
+ else
+ {
+ //
+ // Our integer is bits() * 2^-shift * 10^power10
+ //
+ if(power10 > 0)
+ {
+ if(power10)
+ {
+ cpp_int t;
+ calc_exp = boost::multiprecision::cpp_bf_io_detail::restricted_pow(t, cpp_int(5), power10, max_bits, error);
+ calc_exp += boost::multiprecision::cpp_bf_io_detail::restricted_multiply(i, i, t, max_bits, error);
+ shift -= calc_exp;
+ }
+ if((shift < 0) || ((shift == 0) && error))
+ {
+ // We only get here if we were asked for a crazy number of decimal digits -
+ // more than are present in a 2^max_bits number.
+ max_bits *= 2;
+ shift = (int)Bits - exponent() - 1 - power10;
+ continue;
+ }
+ if(shift)
+ {
+ roundup = boost::multiprecision::cpp_bf_io_detail::get_round_mode(i, shift - 1, error);
+ if(roundup < 0)
+ {
+ max_bits *= 2;
+ shift = (int)Bits - exponent() - 1 - power10;
+ continue;
+ }
+ i >>= shift;
+ }
+ }
+ else
+ {
+ // We're right shifting, *and* dividing by 5^-power10,
+ // so 5^-power10 can never be that large or we'd simply
+ // get zero as a result, and that case is already handled above:
+ cpp_int r;
+ cpp_int d = pow(cpp_int(5), -power10);
+ d <<= shift;
+ divide_qr(i, d, i, r);
+ r <<= 1;
+ int c = r.compare(d);
+ roundup = c < 0 ? 0 : c == 0 ? 1 : 2;
+ }
+ }
+ s = i.str(0, std::ios_base::fmtflags(0));
+ //
+ // Check if we got the right number of digits, this
+ // is really a test of whether we calculated the
+ // decimal exponent correctly:
+ //
+ int digits_got = i ? s.size() : 0;
+ if(digits_got != digits_wanted)
+ {
+ base10_exp += digits_got - digits_wanted;
+ if(fixed)
+ digits_wanted = digits_got; // strange but true.
+ power10 = digits_wanted - base10_exp - 1;
+ shift = (int)Bits - exponent() - 1 - power10;
+ if(fixed)
+ break;
+ roundup = 0;
+ }
+ else
+ break;
+ }
+ while(true);
+ //
+ // Check whether we need to round up: note that we could equally round up
+ // the integer /i/ above, but since we need to perform the rounding *after*
+ // the conversion to a string and the digit count check, we might as well
+ // do it here:
+ //
+ if((roundup == 2) || ((roundup == 1) && ((s[s.size() - 1] - '0') & 1)))
+ {
+ boost::multiprecision::detail::round_string_up_at(s, s.size() - 1, base10_exp);
+ }
+
+ if(sign())
+ s.insert(0, 1, '-');
+
+ boost::multiprecision::detail::format_float_string(s, base10_exp, dig, f, false);
+ }
+ else
+ {
+ switch(exponent())
+ {
+ case exponent_zero:
+ s = "0";
+ boost::multiprecision::detail::format_float_string(s, 0, dig, f, true);
+ break;
+ case exponent_nan:
+ s = "nan";
+ break;
+ case exponent_infinity:
+ s = sign() ? "-inf" : f & std::ios_base::showpos ? "+inf" : "inf";
+ break;
+ }
+ }
+ return s;
+}
+
+}}} // namespaces
+
+#endif
+
Boost-Commit list run by bdawes at acm.org, david.abrahams at rcn.com, gregod at cs.rpi.edu, cpdaniel at pacbell.net, john at johnmaddock.co.uk