|
Ublas : |
Subject: Re: [ublas] [RFC PATCH] ublas: improved dense matrix multiplication performance
From: palik imre (imre_palik_at_[hidden])
Date: 2016-03-06 04:48:45
Out of curiosity, how do all these compare to the LU factorisation implemented in ublas?
Can I have a look at your lu.hpp to repo ?
--------------------------------------------
On Mon, 15/2/16, Michael Lehn <michael.lehn_at_[hidden]> wrote:
Subject: Re: [RFC PATCH] ublas: improved dense matrix multiplication performance
To: "Imre Palik" <imre_palik_at_[hidden]>
Cc: david.bellot_at_[hidden], ublas_at_[hidden]
Date: Monday, 15 February, 2016, 19:54
Thanks Imre,
and again sorry for the late response. The next weeks
I hopefully have more time, so let me know
if there is something I can do.
But at least I had some time to run some benchmarks
comparing the LU-factorization (and therefore
indirectly the GEMM and TRSM) with Intel MKL:
   http://www.mathematik.uni-ulm.de/~lehn/test_ublas/session8/page01.html
It also contains some first comparison with other C++
libraries. I started with Eigen. I also started
with
a simple BLAZE implementation of the LU algorithms. As
I wrote in a previous post, I really believe that
C++ has a great potential for HPC.
Cheers,
Michael
On 13 Feb 2016, at 14:43, Imre Palik <imre_palik_at_[hidden]>
wrote:
> This patch includes the gemm implementation from
Michael Lehn to
> boost::ublas.
>
> This modifies the workings of ublas::prod() and
ublas::axppy_prod()
> to use gemm() above a certain matrix size.
>
> This patch only contains the basic architecture, and a
generic c++
> implementation. All the architecture, or compiler
specific stuff
> will go to follow-up patches.
>
> Signed-off-by: Imre Palik <imre_palik_at_[hidden]>
> Cc: Michael Lehn <michael.lehn_at_[hidden]>
> ---
> include/boost/numeric/ublas/detail/gemm.hppÂ
    | 279 ++++++++++++++++++++++
> include/boost/numeric/ublas/matrix_expression.hpp
|Â 59 ++++-
> include/boost/numeric/ublas/operation.hpp Â
    | 87 ++++++-
> 3 files changed, 407 insertions(+), 18 deletions(-)
> create mode 100644
include/boost/numeric/ublas/detail/gemm.hpp
>
> diff --git
a/include/boost/numeric/ublas/detail/gemm.hpp
b/include/boost/numeric/ublas/detail/gemm.hpp
> new file mode 100644
> index 0000000..cb4a343
> --- /dev/null
> +++ b/include/boost/numeric/ublas/detail/gemm.hpp
> @@ -0,0 +1,279 @@
> +//
> +//Â Copyright (c) 2016
> +//Â Michael Lehn, Imre Palik
> +//
> +//Â Distributed under the Boost Software License,
Version 1.0. (See
> +//Â accompanying file LICENSE_1_0.txt or copy at
> +//Â http://www.boost.org/LICENSE_1_0.txt)
> +
> +#ifndef _BOOST_UBLAS_GEMM_
> +#define _BOOST_UBLAS_GEMM_
> +
> +#include <boost/type_traits/common_type.hpp>
> +#include <boost/align/aligned_alloc.hpp>
> +#include <boost/align/assume_aligned.hpp>
> +#include <boost/static_assert.hpp>
> +
> +namespace boost { namespace numeric { namespace ublas
{ namespace detail {
> +
> +Â Â template <typename T>
> +Â Â struct prod_block_size {
> +Â Â Â Â static const unsigned mc =
256;
> +Â Â Â Â static const unsigned kc =
512; // stripe length
> +Â Â Â Â static const unsigned nc =
4092;
> +Â Â Â Â static const unsigned mr =
4; // stripe width for lhs
> +Â Â Â Â static const unsigned nr =
12; // stripe width for rhs
> +Â Â Â Â static const unsigned
align = 64; // align temporary arrays to this boundary
> +Â Â Â Â static const unsigned
limit = 26; // Use gemm from this size
> +Â Â Â Â
BOOST_STATIC_ASSERT_MSG(mc>0 && kc>0
&& nc>0 && mr>0 && nr>0,
"Invalid block size.");
> +Â Â Â Â BOOST_STATIC_ASSERT_MSG(mc
% mr == 0, "MC must be a multiple of MR.");
> +Â Â Â Â BOOST_STATIC_ASSERT_MSG(nc
% nr == 0, "NC must be a multiple of NR.");
> +Â Â };
> +
> +Â Â template <typename E>
> +Â Â void
> +Â Â gescal(const typename E::value_type
&alpha, matrix_expression<E> &X)
> +Â Â {
> +Â Â Â Â typedef typename
E::size_type size_type;
> +
> +Â Â Â for (size_type i=0;
i<X().size1(); ++i) {
> +Â Â Â Â Â Â for
(size_type j=0; j<X().size2(); ++j) {
> +Â Â Â Â Â Â Â
X()(i,j) *= alpha;
> +Â Â Â Â Â Â }
> +Â Â Â Â }
> +Â Â }
> +
> +Â Â template <typename Index, typename
T>
> +Â Â void
> +Â Â geaxpy(Index m, Index n, const T
&alpha,
> +Â Â Â Â Â Â Â const T
*X, Index incRowX, Index incColX,
> +Â Â Â Â Â Â Â TÂ
    *Y, Index incRowY, Index incColY)
> +Â Â {
> +Â Â Â Â for (Index j=0; j<n;
++j) {
> +Â Â Â Â Â Â for (Index
i=0; i<m; ++i) {
> +Â Â Â Â Â Â Â
 Y[i*incRowY+j*incColY] +=
alpha*X[i*incRowX+j*incColX];
> +Â Â Â Â Â Â }
> +Â Â Â Â }
> +Â Â }
> +
> +Â Â template <typename Index, typename
TX>
> +Â Â void
> +Â Â gescal(Index m, Index n,
> +Â Â Â Â Â Â Â const TX
&alpha,
> +Â Â Â Â Â Â Â TX *X,
Index incRowX, Index incColX)
> +Â Â {
> +Â Â Â Â for (Index j=0; j<n;
++j) {
> +Â Â Â Â Â Â for (Index
i=0; i<m; ++i) {
> +Â Â Â Â Â Â Â
 X[i*incRowX+j*incColX] *= alpha;
> +Â Â Â Â Â Â }
> +Â Â Â Â }
> +Â Â }
> +
> +Â Â //-- Micro Kernel
--------------------------------------------------------------
> +Â Â template <typename Index, typename T,
typename TC, typename BlockSize>
> +Â Â void
> +Â Â ugemm(Index kc, TC alpha, const T *A,
const T *B,
> +Â Â Â Â Â TC beta, TC *C,
Index incRowC, Index incColC)
> +Â Â {
> +Â Â Â Â
BOOST_ALIGN_ASSUME_ALIGNED(A, BlockSize::align);
> +Â Â Â Â
BOOST_ALIGN_ASSUME_ALIGNED(B, BlockSize::align);
> +Â Â Â Â static const Index MR =
BlockSize::mr;
> +Â Â Â Â static const Index NR =
BlockSize::nr;
> +Â Â Â typename
boost::aligned_storage<sizeof(T[MR*NR]),alignof(BlockSize::align)>::type
Pa;
> +Â Â Â T *P =
reinterpret_cast<T*>(Pa.address());
> +Â Â Â for (unsigned c = 0; c < MR *
NR; c++)
> +Â Â Â Â P[c] = 0;
> +
> +Â Â Â Â for (Index l=0; l<kc;
++l) {
> +Â Â Â Â Â for (Index i=0;
i<MR; ++i) {
> +Â Â Â Â Â Â Â for
(Index j=0; j<NR; ++j) {
> +Â Â Â Â Â Â Â
   P[i* NR+j] += A[i]*B[j];
> +Â Â Â Â Â Â Â
 }
> +Â Â Â Â Â Â }
> +Â Â Â Â Â A += MR;
> +Â Â Â Â Â B += NR;
> +Â Â Â Â }
> +
> +Â Â Â if (alpha!=TC(1)) {
> +Â Â Â Â Â for (Index i=0;
i<MR; ++i) {
> +Â Â Â Â Â Â Â for
(Index j=0; j<NR; ++j) {
> +Â Â Â Â Â Â Â Â
P[i*NR+j] *= alpha;
> +Â Â Â Â Â Â }
> +Â Â Â Â Â }
> +Â Â Â }
> +
> +Â Â Â if (beta == TC(0)) {
> +Â Â Â Â Â for (Index i=0;
i<MR; ++i) {
> +Â Â Â Â Â Â Â for
(Index j=0; j<NR; ++j) {
> +Â Â Â Â Â Â Â
 C[i*incRowC+j*incColC] = P[i*NR+j];
> +Â Â Â Â Â Â }
> +Â Â Â Â Â }
> +Â Â Â } else {
> +Â Â Â Â Â for (Index i=0;
i<MR; ++i) {
> +Â Â Â Â Â Â Â for
(Index j=0; j<NR; ++j) {
> +Â Â Â Â Â Â Â
   C[i*incRowC+j*incColC] *= beta;
> +Â Â Â Â Â Â Â
   C[i*incRowC+j*incColC] += P[i*NR+j];
> +Â Â Â Â Â Â }
> +Â Â Â Â Â }
> +Â Â Â }
> +Â Â }
> +
> +Â Â //-- Macro Kernel
--------------------------------------------------------------
> +Â Â Â template <typename Index,
typename T, typename TC, typename BlockSize>
> +Â Â void
> +Â Â mgemm(Index mc, Index nc, Index kc, TC
alpha,
> +Â Â Â Â Â const T *A, const T
*B, TC beta,
> +Â Â Â Â Â TC *C, Index
incRowC, Index incColC)
> +Â Â {
> +Â Â Â Â static const Index MR =
BlockSize::mr;
> +Â Â Â Â static const Index NR =
BlockSize::nr;
> +    const Index mp =
(mc+MR-1) / MR;
> +    const Index np =
(nc+NR-1) / NR;
> +Â Â Â Â const Index mr_ = mc %
MR;
> +Â Â Â Â const Index nr_ = nc %
NR;
> +
> +Â Â Â Â for (Index j=0; j<np;
++j) {
> +Â Â Â Â Â Â const Index
nr = (j!=np-1 || nr_==0) ? NR : nr_;
> +Â Â Â Â Â Â T
C_[MR*NR];
> +
> +Â Â Â Â Â Â for (Index
i=0; i<mp; ++i) {
> +Â Â Â Â Â Â Â
 const Index mr = (i!=mp-1 || mr_==0) ? MR : mr_;
> +
> +Â Â Â Â Â Â Â
 if (mr==MR && nr==NR) {
> +Â Â Â Â Â Â Â
ugemm<Index, T, TC, BlockSize>(kc, alpha,
> +Â Â Â Â Â Â Â
      &A[i*kc*MR],
&B[j*kc*NR],
> +Â Â Â Â Â Â Â
      beta,
> +Â Â Â Â Â Â Â
     Â
&C[i*MR*incRowC+j*NR*incColC],
> +Â Â Â Â Â Â Â
      incRowC,
incColC);
> +Â Â Â Â Â Â Â
 } else {
> +Â Â Â Â Â Â Â
   std::fill_n(C_, MR*NR, T(0));
> +Â Â Â Â Â Â Â
   ugemm<Index, T, TC,
BlockSize>(kc, alpha,
> +Â Â Â Â Â Â Â
      &A[i*kc*MR],
&B[j*kc*NR],
> +Â Â Â Â Â Â Â
      T(0),
> +Â Â Â Â Â Â Â
      C_, NR,
Index(1));
> +Â Â Â Â Â Â Â
   gescal(mr, nr, beta,
> +Â Â Â Â Â Â Â
    Â
   &C[i*MR*incRowC+j*NR*incColC],
> +Â Â Â Â Â Â Â
    Â
   incRowC, incColC);
> +Â Â Â Â Â Â Â
   geaxpy(mr, nr, T(1), C_, NR, Index(1),
> +Â Â Â Â Â Â Â
    Â
   &C[i*MR*incRowC+j*NR*incColC],
> +Â Â Â Â Â Â Â
    Â
   incRowC, incColC);
> +Â Â Â Â Â Â Â
 }
> +Â Â Â Â Â Â }
> +Â Â Â Â }
> +Â Â }
> +
> +Â Â //-- Packing blocks
------------------------------------------------------------
> +Â Â Â template <typename E, typename
T, typename BlockSize>
> +Â Â void
> +Â Â pack_A(const matrix_expression<E>
&A, T *p)
> +Â Â {
> +Â Â Â Â typedef typename
E::size_type size_type;
> +
> +Â Â Â Â const size_type mc = A
().size1();
> +Â Â Â Â const size_type kc = A
().size2();
> +Â Â Â Â static const size_type MR
= BlockSize::mr;
> +Â Â Â Â const size_type mp =
(mc+MR-1) / MR;
> +
> +Â Â Â Â for (size_type j=0;
j<kc; ++j) {
> +Â Â Â Â Â Â for
(size_type l=0; l<mp; ++l) {
> +Â Â Â Â Â Â Â
 for (size_type i0=0; i0<MR; ++i0) {
> +Â Â Â Â Â Â Â
   size_type i = l*MR + i0;
> +Â Â Â Â Â Â Â
   size_type nu = l*MR*kc + j*MR + i0;
> +Â Â Â Â Â Â Â
   p[nu]    =
(i<mc) ? A()(i,j) : T(0);
> +Â Â Â Â Â Â Â
 }
> +Â Â Â Â Â Â }
> +Â Â Â Â }
> +Â Â }
> +
> +Â Â template <typename E, typename T,
typename BlockSize>
> +Â Â void
> +Â Â pack_B(const matrix_expression<E>
&B, T *p)
> +Â Â {
> +Â Â Â Â typedef typename
E::size_type size_type;
> +
> +Â Â Â Â const size_type kc = B
().size1();
> +Â Â Â Â const size_type nc = B
().size2();
> +Â Â Â Â static const size_type NR
= BlockSize::nr;
> +Â Â Â Â const size_type np =
(nc+NR-1) / NR;
> +
> +Â Â Â Â for (size_type l=0;
l<np; ++l) {
> +Â Â Â Â Â Â for
(size_type j0=0; j0<NR; ++j0) {
> +Â Â Â Â Â Â Â
 for (size_type i=0; i<kc; ++i) {
> +Â Â Â Â Â Â Â
   size_type j = l*NR+j0;
> +Â Â Â Â Â Â Â
   size_type nu = l*NR*kc + i*NR + j0;
> +Â Â Â Â Â Â Â
   p[nu]    =
(j<nc) ? B()(i,j) : T(0);
> +Â Â Â Â Â Â Â
 }
> +Â Â Â Â Â Â }
> +Â Â Â Â }
> +Â Â }
> +
> +Â Â //-- Frame routine
-------------------------------------------------------------
> +Â Â template <typename E1, typename E2,
typename E3, typename BlockSize>
> +Â Â void
> +Â Â gemm(typename E3::value_type alpha,
const matrix_expression<E1> &e1,
> +Â Â Â Â Â const
matrix_expression<E2> &e2,
> +Â Â Â Â Â Â typename
E3::value_type beta, matrix_expression<E3> &e3)
> +Â Â {
> +Â Â Â Â typedef typename
E3::size_type size_type;
> +Â Â Â Â typedef typename
E1::value_type value_type1;
> +Â Â Â Â typedef typename
E2::value_type value_type2;
> +Â Â Â Â typedef typename
E3::value_type value_type3;
> +Â Â Â Â typedef typename
common_type<value_type1, value_type2>::type
value_type_i;
> +
> +Â Â Â Â static const size_type MC
= BlockSize::mc;
> +Â Â Â Â static const size_type NC
= BlockSize::nc;
> +
> +Â Â Â Â const size_type m =
BOOST_UBLAS_SAME (e3 ().size1 (), e1 ().size1 ());
> +Â Â Â const size_type n =
BOOST_UBLAS_SAME (e3 ().size2 (), e2 ().size2 ());
> +Â Â Â Â const size_type k =
BOOST_UBLAS_SAME (e1 ().size2 (), e2 ().size1 ());
> +
> +Â Â Â Â static const size_type KC
= BlockSize::kc;
> +Â Â Â Â const size_type mb =
(m+MC-1) / MC;
> +Â Â Â Â const size_type nb =
(n+NC-1) / NC;
> +Â Â Â Â const size_type kb =
(k+KC-1) / KC;
> +Â Â Â Â const size_type mc_ = m %
MC;
> +Â Â Â Â const size_type nc_ = n %
NC;
> +Â Â Â Â const size_type kc_ = k %
KC;
> +
> +Â Â Â Â value_type3 *C_ =
&e3()(0,0);
> +Â Â Â Â const size_type incRowC =
&e3()(1,0) - &e3()(0,0);
> +Â Â Â Â const size_type incColC =
&e3()(0,1) - &e3()(0,0);
> +Â Â Â Â value_type_i *A =
> +Â Â Â Â Â Â
static_cast<value_type_i
*>(boost::alignment::aligned_alloc(BlockSize::align,
> +Â Â Â Â Â Â
        Â
        Â
   sizeof(value_type_i) * MC*KC));
> +Â Â Â Â value_type_i *B =
> +Â Â Â Â Â Â
static_cast<value_type_i
*>(boost::alignment::aligned_alloc(BlockSize::align,
> +Â Â Â Â Â Â
        Â
        Â
   sizeof(value_type_i) * KC*NC));
> +
> +Â Â Â Â if (alpha==value_type3(0)
|| k==0) {
> +Â Â Â Â Â Â gescal(beta,
e3);
> +Â Â Â Â Â Â return;
> +Â Â Â Â }
> +
> +Â Â Â Â for (size_type j=0;
j<nb; ++j) {
> +Â Â Â Â Â Â size_type nc
= (j!=nb-1 || nc_==0) ? NC : nc_;
> +
> +Â Â Â Â Â Â for
(size_type l=0; l<kb; ++l) {
> +Â Â Â Â Â Â Â
 size_type kc = (l!=kb-1 || kc_==0) ? KC : kc_;
> +Â Â Â Â Â Â Â
 value_type3 beta_ = (l==0) ? beta : value_type3(1);
> +
> +Â Â Â Â Â Â Â
 const matrix_range<const E2> Bs =
subrange(e2(), l*KC, l*KC+kc, j*NC, j*NC+nc);
> +Â Â Â Â Â Â Â
 pack_B<matrix_range<const E2>, value_type_i,
BlockSize>(Bs, B);
> +
> +Â Â Â Â Â Â Â
 for (size_type i=0; i<mb; ++i) {
> +Â Â Â Â Â Â Â
   size_type mc = (i!=mb-1 || mc_==0) ? MC
: mc_;
> +
> +Â Â Â Â Â Â Â
   const matrix_range<const E1> As =
subrange(e1(), i*MC, i*MC+mc, l*KC, l*KC+kc);
> +Â Â Â Â Â Â Â
   pack_A<matrix_range<const E1>,
value_type_i, BlockSize>(As, A);
> +
> +Â Â Â Â Â Â Â
   mgemm<size_type, value_type_i,
value_type3, BlockSize>(mc, nc, kc, alpha, A, B, beta_,
> +Â Â Â Â Â Â
   Â
&C_[i*MC*incRowC+j*NC*incColC],
> +Â Â Â Â Â Â
    incRowC, incColC);
> +Â Â Â Â Â Â Â
 }
> +Â Â Â Â Â Â }
> +Â Â Â Â }
> +Â Â Â boost::alignment::aligned_free(A);
> +Â Â Â boost::alignment::aligned_free(B);
> +Â Â }
> +}}}}
> +#endif
> diff --git
a/include/boost/numeric/ublas/matrix_expression.hpp
b/include/boost/numeric/ublas/matrix_expression.hpp
> index a363130..22bdb44 100644
> ---
a/include/boost/numeric/ublas/matrix_expression.hpp
> +++
b/include/boost/numeric/ublas/matrix_expression.hpp
> @@ -14,6 +14,7 @@
> #define _BOOST_UBLAS_MATRIX_EXPRESSION_
>
> #include
<boost/numeric/ublas/vector_expression.hpp>
> +#include <boost/numeric/ublas/detail/gemm.hpp>
>
> // Expression templates based on ideas of Todd
Veldhuizen and Geoffrey Furnish
> // Iterators based on ideas of Jeremy Siek
> @@ -5460,20 +5461,40 @@ namespace boost { namespace
numeric { namespace ublas {
>Â Â Â
   expression2_closure_type e2_;
>Â Â Â Â };
>
> +Â Â namespace detail {
> +Â Â Â template<class E1, class E2,
class P, bool s>
> +Â Â Â struct
binary_calculate_result_type;
> +
> +Â Â Â template<class E1, class E2,
class P>
> +Â Â Â struct
binary_calculate_result_type<E1, E2, P, false> {
> +Â Â Â typedef matrix_matrix_binary<E1,
E2, matrix_matrix_prod<E1, E2, P> > result_type;
> +Â Â Â };
> +
> +Â Â Â // TODO: should elaborate on this
for some dense types.
> +Â Â Â template<class E1, class E2,
class P>
> +Â Â Â struct
binary_calculate_result_type<E1, E2, P, true> {
> +Â Â Â typedef matrix<P>
result_type;
> +Â Â Â };
> +Â Â }
> +
>Â Â Â Â template<class T1, class E1,
class T2, class E2>
>Â Â Â Â struct
matrix_matrix_binary_traits {
> -Â Â Â Â typedef
unknown_storage_tag storage_category;
> +Â Â Â //Â Â Â Â
typedef unknown_storage_tag storage_category;
> +Â Â Â typedef typename
storage_restrict_traits<typename E1::storage_category,
typename E2::storage_category>::storage_category
storage_category;
>Â Â Â Â Â Â typedef
unknown_orientation_tag orientation_category;
>Â Â Â Â Â Â typedef typename
promote_traits<T1, T2>::promote_type promote_type;
>Â Â Â Â Â Â typedef
matrix_matrix_binary<E1, E2, matrix_matrix_prod<E1,
E2, promote_type> > expression_type;
> #ifndef BOOST_UBLAS_SIMPLE_ET_DEBUG
> -Â Â Â Â typedef expression_type
result_type;
> +Â Â Â //Â Â Â Â
typedef expression_type result_type;
> +Â Â Â typedef typename
detail::binary_calculate_result_type<E1, E2,
promote_type, boost::is_base_of<dense_proxy_tag,
storage_category>::value>::result_type result_type;
> #else
>Â Â Â Â Â Â typedef typename
E1::matrix_temporary_type result_type;
> #endif
>Â Â Â Â };
>
> -Â Â template<class E1, class E2>
> +Â Â template<class E1, class E2,
> +Â Â Â Â Â Â Â typename B
= detail::prod_block_size<typename
common_type<typename E1::value_type,
> +Â Â Â Â Â Â
        Â
        Â
     typename
E2::value_type>::type> >
>Â Â Â Â BOOST_UBLAS_INLINE
>Â Â Â Â typename
matrix_matrix_binary_traits<typename E1::value_type, E1,
>Â Â Â Â Â Â Â Â
       Â
     typename E2::value_type,
E2>::result_type
> @@ -5481,13 +5502,41 @@ namespace boost { namespace
numeric { namespace ublas {
>Â Â Â Â Â Â Â const
matrix_expression<E2> &e2,
>Â Â Â Â
   unknown_storage_tag,
>Â Â Â Â
   unknown_orientation_tag) {
> +
>Â Â Â Â Â Â typedef typename
matrix_matrix_binary_traits<typename E1::value_type, E1,
>Â Â Â Â Â Â Â Â
       Â
       Â
   typename E2::value_type,
E2>::expression_type expression_type;
>Â Â Â Â Â Â return
expression_type (e1 (), e2 ());
>Â Â Â Â }
>
> +Â Â template<class E1, class E2,
> +Â Â Â Â Â Â Â typename B
= detail::prod_block_size<typename
common_type<typename E1::value_type,
> +Â Â Â Â Â Â
        Â
        Â
     typename
E2::value_type>::type> >
> +Â Â BOOST_UBLAS_INLINE
> +Â Â typename
matrix_matrix_binary_traits<typename E1::value_type, E1,
> +Â Â Â Â Â Â Â
       Â
       typename
E2::value_type, E2>::result_type
> +Â Â prod (const matrix_expression<E1>
&e1,
> +Â Â Â Â Â const
matrix_expression<E2> &e2,
> +Â Â Â Â Â dense_proxy_tag,
> +Â Â Â Â Â
unknown_orientation_tag) {
> +Â Â Â Â typedef typename
matrix_matrix_binary_traits<typename E1::value_type, E1,
> +Â Â Â Â Â Â Â
       Â
       Â
     typename E2::value_type,
E2>::expression_type expression_type;
> +Â Â Â typedef typename
E1::matrix_temporary_type result_type;
> +Â Â Â typedef typename
result_type::value_type result_value;
> +
> +Â Â Â if (e1 ().size1() < B::limit ||
e2 ().size2() < B::limit) {
> +Â Â Â Â Â return
expression_type (e1 (), e2 ());
> +Â Â Â } else {
> +Â Â Â Â Â Â result_type
rv(e1 ().size1(), e2 ().size2());
> + Â Â Â Â Â detail::gemm<E1,
E2, result_type, B>(result_value(1), e1, e2,
> +Â Â Â Â Â Â
     result_value(0), rv);
> +Â Â Â Â Â return rv;
> +Â Â Â }
> +Â Â }
> +
>Â Â Â Â // Dispatcher
> -Â Â template<class E1, class E2>
> +Â Â template<class E1, class E2,
> +Â Â Â Â Â Â Â typename B
= detail::prod_block_size<typename
common_type<typename E1::value_type,
> +Â Â Â Â Â Â
        Â
        Â
     typename
E2::value_type>::type> >
>Â Â Â Â BOOST_UBLAS_INLINE
>Â Â Â Â typename
matrix_matrix_binary_traits<typename E1::value_type, E1,
>Â Â Â Â Â Â Â Â
       Â
     typename E2::value_type,
E2>::result_type
> @@ -5498,7 +5547,7 @@ namespace boost { namespace
numeric { namespace ublas {
>Â Â Â Â Â Â Â Â
       Â
       Â
   typename E2::value_type,
E2>::storage_category storage_category;
>Â Â Â Â Â Â typedef typename
matrix_matrix_binary_traits<typename E1::value_type, E1,
>Â Â Â Â Â Â Â Â
       Â
       Â
   typename E2::value_type,
E2>::orientation_category orientation_category;
> -Â Â Â Â return prod (e1, e2,
storage_category (), orientation_category ());
> +Â Â Â Â return prod<E1, E2,
B> (e1, e2, storage_category (), orientation_category
());
>Â Â Â Â }
>
>Â Â Â Â template<class E1, class
E2>
> diff --git a/include/boost/numeric/ublas/operation.hpp
b/include/boost/numeric/ublas/operation.hpp
> index 64657cc..80bfab6 100644
> --- a/include/boost/numeric/ublas/operation.hpp
> +++ b/include/boost/numeric/ublas/operation.hpp
> @@ -14,7 +14,7 @@
> #define _BOOST_UBLAS_OPERATION_
>
> #include <boost/numeric/ublas/matrix_proxy.hpp>
> -
> +#include <boost/numeric/ublas/detail/gemm.hpp>
> /** \file operation.hpp
>Â *Â \brief This file contains some
specialized products.
>Â */
> @@ -637,13 +637,45 @@ namespace boost { namespace
numeric { namespace ublas {
>Â Â Â Â Â Â return m;
>Â Â Â Â }
>
> -Â Â // Dispatcher
> -Â Â template<class M, class E1, class E2,
class TRI>
> +Â Â template<class M, class E1, class
E2,
> +Â Â Â Â Â Â Â typename B
= detail::prod_block_size<typename
common_type<typename E1::value_type,
> +Â Â Â Â Â Â
        Â
        Â
     typename
E2::value_type>::type> >
> +Â Â BOOST_UBLAS_INLINE
> +Â Â M&
> +Â Â axpy_prod (const
matrix_expression<E1> &e1,
> +Â Â Â Â Â Â
   const matrix_expression<E2>
&e2,
> +Â Â Â Â Â Â
   M &m, full,
> +Â Â Â Â Â
   dense_proxy_tag, bool init = true)
> +Â Â {
> +Â Â Â Â typedef typename
M::value_type value_type;
> +
> +Â Â Â Â if (m.size1() <
B::limit || m.size2() < B::limit) {
> +Â Â Â Â Â Â typedef
typename M::storage_category storage_category;
> +Â Â Â Â Â Â typedef
typename M::orientation_category orientation_category;
> +
> +Â Â Â Â Â Â if (init)
> +Â Â Â Â Â Â Â
 m.assign (zero_matrix<value_type> (e1 ().size1
(), e2 ().size2 ()));
> +Â Â Â Â Â Â return
axpy_prod (e1, e2, m, full (), storage_category (),
> +Â Â Â Â Â Â
      orientation_category
());
> +Â Â Â Â } else {
> +
> +
> +Â Â Â Â Â Â
detail::gemm<E1, E2, M, B>(value_type(1), e1, e2,
> +Â Â Â Â Â Â
       Â
   value_type(init? 0 : 1), m);
> +Â Â Â Â Â Â return m;
> +Â Â Â Â }
> +Â Â }
> +
> +Â Â // Dispatchers
> +Â Â template<class M, class E1, class E2,
class TRI, class S,
> +Â Â Â Â Â Â Â typename B
= detail::prod_block_size<typename
common_type<typename E1::value_type,
> +Â Â Â Â Â Â
        Â
        Â
     typename
E2::value_type>::type> >
>Â Â Â Â BOOST_UBLAS_INLINE
>Â Â Â Â M &
>Â Â Â Â axpy_prod (const
matrix_expression<E1> &e1,
>Â Â Â Â Â Â Â Â
const matrix_expression<E2> &e2,
> -Â Â Â Â Â Â
   M &m, TRI, bool init = true) {
> +Â Â Â Â Â Â
   M &m, TRI,
> +Â Â Â Â Â Â
   S, bool init = true) {
>Â Â Â Â Â Â typedef typename
M::value_type value_type;
>Â Â Â Â Â Â typedef typename
M::storage_category storage_category;
>Â Â Â Â Â Â typedef typename
M::orientation_category orientation_category;
> @@ -651,9 +683,31 @@ namespace boost { namespace
numeric { namespace ublas {
>
>Â Â Â Â Â Â if (init)
>Â Â Â Â Â
   m.assign (zero_matrix<value_type>
(e1 ().size1 (), e2 ().size2 ()));
> -Â Â Â Â return axpy_prod (e1, e2,
m, triangular_restriction (), storage_category (),
orientation_category ());
> +
> +Â Â Â Â return axpy_prod (e1, e2,
m, triangular_restriction (), storage_category (),
> +Â Â Â Â Â Â
    orientation_category ());
>Â Â Â Â }
> -Â Â template<class M, class E1, class E2,
class TRI>
> +
> +
> +Â Â template<class M, class E1, class E2,
class TRI,
> +Â Â Â Â Â Â Â typename B
= detail::prod_block_size<typename
common_type<typename E1::value_type,
> +Â Â Â Â Â Â
        Â
        Â
     typename
E2::value_type>::type> >
> +Â Â BOOST_UBLAS_INLINE
> +Â Â M &
> +Â Â axpy_prod (const
matrix_expression<E1> &e1,
> +Â Â Â Â Â Â
   const matrix_expression<E2>
&e2,
> +Â Â Â Â Â Â
   M &m, TRI, bool init = true) {
> +Â Â Â Â typedef typename
M::value_type value_type;
> +Â Â Â Â typedef typename
M::storage_category storage_category;
> +Â Â Â Â typedef typename
M::orientation_category orientation_category;
> +Â Â Â Â typedef TRI
triangular_restriction;
> +
> +Â Â Â Â return axpy_prod<M, E1,
E2, TRI, B> (e1, e2, m, triangular_restriction (),
> +Â Â Â Â Â Â
        Â
    storage_category (), init);
> +Â Â }
> +Â Â template<class M, class E1, class E2,
class TRI,
> +Â Â Â Â Â Â Â typename B
= detail::prod_block_size<typename
common_type<typename E1::value_type,
> +Â Â Â Â Â Â
        Â
        Â
     typename
E2::value_type>::type> >
>Â Â Â Â BOOST_UBLAS_INLINE
>Â Â Â Â M
>Â Â Â Â axpy_prod (const
matrix_expression<E1> &e1,
> @@ -663,7 +717,8 @@ namespace boost { namespace numeric
{ namespace ublas {
>Â Â Â Â Â Â typedef TRI
triangular_restriction;
>
>Â Â Â Â Â Â matrix_type m (e1
().size1 (), e2 ().size2 ());
> -Â Â Â Â return axpy_prod (e1, e2,
m, triangular_restriction (), true);
> +Â Â Â Â return axpy_prod<M, E1,
E2, TRI, B> (e1, e2, m, triangular_restriction (),
> +Â Â Â Â Â Â
        Â
    true);
>Â Â Â Â }
>
>Â Â Â /** \brief computes <tt>M += A
X</tt> or <tt>M = A X</tt> in an
> @@ -690,7 +745,9 @@ namespace boost { namespace numeric
{ namespace ublas {
>Â Â Â Â Â Â Â \param E1
type of a matrix expression \c A
>Â Â Â Â Â Â Â \param E2
type of a matrix expression \c X
>Â Â Â */
> -Â Â template<class M, class E1, class
E2>
> +Â Â template<class M, class E1, class
E2,
> +Â Â Â Â Â Â Â typename B
= detail::prod_block_size<typename
common_type<typename E1::value_type,
> +Â Â Â Â Â Â
        Â
        Â
     typename
E2::value_type>::type> >
>Â Â Â Â BOOST_UBLAS_INLINE
>Â Â Â Â M &
>Â Â Â Â axpy_prod (const
matrix_expression<E1> &e1,
> @@ -700,11 +757,15 @@ namespace boost { namespace
numeric { namespace ublas {
>Â Â Â Â Â Â typedef typename
M::storage_category storage_category;
>Â Â Â Â Â Â typedef typename
M::orientation_category orientation_category;
>
> -Â Â Â Â if (init)
> -Â Â Â Â Â Â m.assign
(zero_matrix<value_type> (e1 ().size1 (), e2 ().size2
()));
> -Â Â Â Â return axpy_prod (e1, e2,
m, full (), storage_category (), orientation_category ());
> +Â Â Â Â // if (init)
> +Â Â Â Â //Â
   m.assign (zero_matrix<value_type>
(e1 ().size1 (), e2 ().size2 ()));
> +Â Â Â Â return axpy_prod<M, E1,
E2, B> (e1, e2, m, full (), storage_category (),
> +Â Â Â Â Â Â
        Â
init);
>Â Â Â Â }
> -Â Â template<class M, class E1, class
E2>
> +
> +Â Â template<class M, class E1, class
E2,
> +Â Â Â Â Â Â Â typename B
= detail::prod_block_size<typename
common_type<typename E1::value_type,
> +Â Â Â Â Â Â
        Â
        Â
     typename
E2::value_type>::type> >
>Â Â Â Â BOOST_UBLAS_INLINE
>Â Â Â Â M
>Â Â Â Â axpy_prod (const
matrix_expression<E1> &e1,
> @@ -712,7 +773,7 @@ namespace boost { namespace numeric
{ namespace ublas {
>Â Â Â Â Â Â typedef M
matrix_type;
>
>Â Â Â Â Â Â matrix_type m (e1
().size1 (), e2 ().size2 ());
> -Â Â Â Â return axpy_prod (e1, e2,
m, full (), true);
> +Â Â Â Â return axpy_prod<M, E1,
E2, B> (e1, e2, m, full (), true);
>Â Â Â Â }
>
>
> --
> 1.9.1
>