
Boost : 
From: Noah Stein (noah_at_[hidden])
Date: 20041107 15:24:59
> Original Message
> From: boostbounces_at_[hidden] [mailto:boostbounces_at_[hidden]]
> On Behalf Of Michael Walter
> Sent: Sunday, November 07, 2004 2:52 AM
> To: boost_at_[hidden]
> Subject: Re: Re[6]: [boost] Re: Re: GUI Library Proposal for a Proposal
> > MW> a vector space:
> > MW> difference :: E^n x E^n > R^n
> > I just do not get this. Why would you have a difference between two
> > points in E^n defined as a point in R^n?
> Please read what I wrote: ".. to a vector in a vector space.". R^n is
> a *vector* space, hence the difference between two points in E^n is a
> *vector* in R^n.
The simplest way to say it is that point subtraction is not closed. It's no
stranger than the fact that square root is not closed for reals.
> Now, you can state the identification between points and vectors: E^n =
> R^n
> Again, in C++:
> typedef vector<n> point<n>;
If you are merely going to create a typedef, there's absolutely no reason to
differentiate the two. Through the magic of typdef'ing, they would be
semantically identical. Using your notation, E^n != R^n. They're both
represented by ntuples, but beyond that they are different. They have
different operations. R^n has addition and subtraction, E^n has no addition
operation and its subtraction isn't closed in E^n. R^n has inner and outer
products, E^n does not.
The above statement is true for affine and projective spaces. In a
Grassmann space, points may be added together; however, points still do not
have inner and outer products. In geometric algebra all the operations are
defined and closed on all types. Somebody here wrote a GA library a year or
two ago IIRC.
 Noah
Boost list run by bdawes at acm.org, gregod at cs.rpi.edu, cpdaniel at pacbell.net, john at johnmaddock.co.uk