|
Boost : |
From: Alec Ross (alec_at_[hidden])
Date: 2007-02-10 03:40:49
In message <7384990EC1040E4C8BC31CADFFDD428001C2A304_at_cedarrapids>,
james.jones_at_[hidden] writes
>From: Andreas Harnack <ah.boost.02_at_[hidden]>
...
>> You're right, there is a computational limit, but I wouldn't expect to
>> a see a dimension with the power of 31. Exponends of 4 are about the
>> highest I've ever seen, and (2*3*5*7*11*13*17)^3 still fits in 57 bits,
>> so we might want to use long or even long long unsigned ints, but that
>> should be fine for most situations.
>
>If exponents of 4 are the highest you've seen, shouldn't you consider
>the size of (2*3*5*7*11*13*17)^4, which requires 76 bits?
But ISTM that this information could be given by a sequence of powers
for each prime in the sequence: ie 4 bits * 7 in this second example.
What am I missing?
Alec
-- Alec Ross
Boost list run by bdawes at acm.org, gregod at cs.rpi.edu, cpdaniel at pacbell.net, john at johnmaddock.co.uk